MICHAEL ALAVANJA, DR.P.H.
SENIOR INVESTIGATOR
OCCUPATIONAL & ENVIRONMENTAL EPIDEMIOLOGY BRANCH, DCEG, NCI

OCTOBER 11, 2011, BIOMARKERS IN PESTICIDE, SURVEILLANCE, AND EPIDEMIOLOGY RESEARCH

21ST CENTURY TOXICOLOGY STATE HOLDER WORKSHOP.
Agenda

1) Introduction
 • Background and design of the AHS

2) Cancer epidemiology/biomarker studies
 • e.g., multiple myeloma, prostate cancer

3) Exposure assessment in the AHS
1. Introduction

Goal of Research Program:

- Identify human carcinogens among 80 active ingredients in pesticide formulations used occupationally by hundreds of million people worldwide.

- Concept for the Agricultural Health Study presented to NCI peer review

- Field Work Began December 13, 1993

- Cancer Incidence and Mortality Monitoring: 1993-2008
Only 1 pesticide (arsenical insecticides) and 1 pesticide contaminant (dioxin) are classified as Human Carcinogens by IARC, although many others are suspected carcinogens.

Previous health studies characterized as having inadequate exposure assessment, reducing our ability to identify agents responsible for disease (Zahm et al., 1997, Kromhout and Heedrick 2005).

Case-control studies (case-recall bias)

Factory-based pesticide studies—frequently too small to assess individual pesticides for cancer.
Causal Logic to Establish Human Carcinogenicity

- Epidemiology
- Biological Plausibility
- Exposure Assessment
Agricultural Health Study (AHS) Design

- Prospective (exposures assessed prior to cancer onset):
 - 52,000 private applicators (i.e., farmers)
 - 32,000 spouses of farmers
 - 5,000 commercial applicators

- Two important agricultural states (Iowa & North Carolina)
 - Corn, soybean and hog production in both states
 - Distinctive agriculture in North Carolina: fruits, vegetables, tobacco, cotton
Little loss to cancer incidence follow-up (<2 %)
- Population-based cancer registries in both states
- Determine if study subjects move from state (IRS records)
- National Death Index (NDI)-no loss to mortality follow-up

Over one-million person-years of follow-up
2. Cancer Epidemiology/Biomarker Studies

Goals of Research Program:
- Identify human carcinogens among 80 active ingredients in pesticide formulations used occupationally by hundreds of millions of people world-wide.
 - Establish Exposure Algorithm
 - Nested Case-Control Analyses (N=5)
 - Follow-up Cohort Analyses (N=27)
 - Biomarker Studies

- **2002**
 - AHS Exposure Algorithm (Dosemeci et al., Annals of Ind. Hygiene; 46:245-260)

- **2003**
 - First Nested Case-Control Study: Prostate Cancer (Alavanja et al., AJE; 157:800-814)

- **2004**
 - First Cohort Analysis: Alachlor (Lee W et al., AJE; 159:378-830)
Multiple Myeloma (MM)

2005
- MM SIR= 1.34 (0.97-1.81) (Alavanja et al., Scand J Work Environ; 31;39-45)

Specific Aims:
- Identify pesticides that may be responsible for the excess MM risk in the AHS.

2009
- MGUS 2-fold excess in AHS (Landgren et al., Blood; 113: 6386-6391)
- Identify pesticides and other occupational exposures etiologically linked to monoclonal gammopathy of undetermined significance (MGUS), a confirmed precursor of MM.

2010
- Initiated Biomarker Study (BEEA) (Alavanja et al.)
Multiple Myeloma (MM)

- A largely incurable neoplasm of plasma cells characterized by an overproduction of monoclonal immunoglobulins

- MM is highly fatal
MGUS Precedes Multiple Myeloma (MM): in a Prospective Study (PLCO)

- MGUS ---> MM

 - MM always preceded by a premalignant disorder MGUS [monoclonal gammopathy of undetermined significance]. (Landgren O et al., Blood 2009;113:5412-5417)
Risk of MGUS in AHS vs. Olmstead County, MN

<table>
<thead>
<tr>
<th>Population</th>
<th>Total, n</th>
<th>MGUS, n</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olmstead County</td>
<td>9,469</td>
<td>350</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td>AHS cohort</td>
<td>555</td>
<td>38</td>
<td>1.9 (1.3-2.7)</td>
</tr>
</tbody>
</table>

-Landgren O et al., Blood (2009); 113(25):6386-6391
-Protein Immunology Laboratory at Mayo Clinic, Rochester, Minnesota
(Robert Kyle, Jerry Katzmann, Vincent Rajkumar)
Specific Pesticide Use at Enrollment and Risk of MGUS in 2008 Among 679 Male Applicators in the AHS

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Exposed</th>
<th>Total n</th>
<th>Exposed n</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieldrin</td>
<td>Never</td>
<td>649</td>
<td>31</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td></td>
<td>Ever</td>
<td>20</td>
<td>6</td>
<td>5.6 (1.9-16.6)</td>
</tr>
<tr>
<td>Carbon tetrachloride/Carbon disulfide mix</td>
<td>Never</td>
<td>632</td>
<td>31</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td></td>
<td>Ever</td>
<td>41</td>
<td>7</td>
<td>3.9 (1.5-10.0)</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>Never</td>
<td>649</td>
<td>31</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td></td>
<td>Ever</td>
<td>20</td>
<td>6</td>
<td>2.4 (1.1-5.3)</td>
</tr>
</tbody>
</table>

Landgren O et al., Blood (2009); 113(25):6386-6391

Protein Immunology Laboratory at Mayo Clinic, Rochester, Minnesota (Robert Kyle, Jerry Katzmann, Vincent Rajkumar)
Permethrin Use at Enrollment and Risk of Multiple Myeloma in the AHS

<table>
<thead>
<tr>
<th>Tertile</th>
<th>Intensity-Weighted Lifetime Exposure-Days</th>
<th>No</th>
<th>RR</th>
<th>(95% CI)</th>
<th>p-trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>29</td>
<td>1.0</td>
<td>(ref.)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>0.92</td>
<td>(0.22-3.85)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>1.55</td>
<td>(0.47-5.12)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
<td>5.01</td>
<td>(2.41-10.42)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

-Rusiecki et al., Environ Health Perspect (2009); 117(4):581-586
Current Research for MM

- Initiated the Biomarkers of Exposure and Effect in Agriculture study (Alavanja et al., BEEA Study, 2010)
 - 1,600 AHS study subjects will donate blood and urine samples (2010-2014)
 - Biomarker questionnaire to assess current exposures
Potential Future Work on BEEA: Other Biomarkers of Potential Interest

- Measure monoclonal B-cell lymphocytosis (MBL)
- Measures of oxidative stress
- Measures of epigenetic changes
- Markers of immune perturbation
- Chromosomal aberrations
- Other biomarkers as appropriate
Specific aims:

- Identify pesticide exposures that may be responsible for the excess prostate cancer risk in the AHS cohort.

- Identify markers of susceptibility that may be associated with prostate cancer etiology in the AHS cohort.
Nested Case-Control Study
(Alavanja et al., AJE 2003, 157:800-814)

Prostate cancer risk (Significant interaction with family history PC):
- Fonofos
- Coumaphos
- Phorate
- Permethrin
- Butylate

- Terbufos (Near significant interaction with family history of PC)
Risk of Prostate Cancer by Fonofos Exposure With and Without a Family History of Prostate Cancer in the AHS

<table>
<thead>
<tr>
<th>Pesticide Lifetime exposure days</th>
<th>PC risk, no family history of PC</th>
<th>95% C.I. Cases</th>
<th>PC risk, family history of PC</th>
<th>95% C.I. Cases</th>
<th>Statistical interaction, PC history & Pesticide Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Odds Ratio 1.00 Ref.</td>
<td>534</td>
<td>Odds Ratio 1.00 Ref.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>>0-20</td>
<td>1.08 0.82-1.41 58</td>
<td>1.42 0.84-2.41 16</td>
<td>1.28 (1.07-1.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>20-56</td>
<td>0.93 0.70-1.35 51</td>
<td>1.57 0.95-2.60 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>56</td>
<td>0.86 0.60-1.24 30</td>
<td>1.77 1.03-3.05 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P trend</td>
<td>P=0.37</td>
<td></td>
<td>P=0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mahajan R et al. Environ Health Perspecti (2006); 114 (12): 1838-1842
Case-Control Study of Prostate Cancer; Gene-by-Environment Interaction

<table>
<thead>
<tr>
<th>Chromosome 8q24, fonofos exposure and prostate cancer risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fonofos exposure</td>
</tr>
<tr>
<td>Odds Ratio</td>
</tr>
<tr>
<td>95% C.I.</td>
</tr>
</tbody>
</table>

- Koutros, et al., Cancer Research 2010; 70(22):9224-9233
- previously identified variant rs4242382
- adjusted P-interaction=0.02
- 776 cases + 1,444 controls
Case-Control Study of Prostate Cancer; Gene-by-Environment Interaction (continued)

Chromosome 8q24, terbufos exposure and prostate cancer risk

<table>
<thead>
<tr>
<th>Exposure Level</th>
<th>Odds Ratio</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No terbufos exposure</td>
<td>1.13</td>
<td>0.87-1.47</td>
</tr>
<tr>
<td>Low terbufos exposure</td>
<td>1.71</td>
<td>1.07-2.74</td>
</tr>
<tr>
<td>High terbufos exposure</td>
<td>2.15</td>
<td>1.32-3.52</td>
</tr>
</tbody>
</table>

-Koutros, et al., Cancer Research 2010; 70(22):9224-9233

-Previously identified variant rs4242382
-Adjusted *P*-interaction=0.02
-Similar effect modification for fonofos, coumaphos, phorate, permethrin
-Fonofos, phorate and terbufos are phosphorodithioates
Future/Current Biomarker work in this Case- Control Study

- Susceptibility genes (*replication necessary*):
 - Base-excision repair (BER)- Hughes Barry et al.
 - Nucleotide excision repair (NER)- Hughes Barry et al.
 - Xenobiotic metabolizing enzymes (XME)- Koutros et al.
 - Others genes/pathways from prostate etiology literature

- Telomere length- Hou, et al., ongoing

- Epigenetics- Hou, et al., ongoing
3. Exposure Assessment in AHS

Specific aims:

- Optimize questionnaire-based exposure assessment by improving the exposure algorithm

2002
- AHS Exposure Algorithm (Dosemeci et al., Annals of Ind Hygiene; 46:245-260).

2010
- Assessment of Algorithm (Thomas et al., J Exp Sci Env Epidemiol; 20:193-134)

2010
- Assessment of Algorithm (Coble et al., Submitted)
Intensity Weighted Exposure Days

Intensity Weighted Exposure Days =

Total Days of Specific Pesticide Use \times Intensity Score
AHS Exposure Assessment Algorithm

Intensity Score =
(Mix + Application Method + Repair) * PPE

AHS Algorithm Intensity Score Evaluation

<table>
<thead>
<tr>
<th>Algorithm intensity scores from observations and an interviewer administered questionnaire and correlation between scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
</tr>
</tbody>
</table>

Thomas et al.; J Exposure Science and Environ Epidem; 2010;20(6):559-569
Distributions of Day-1 post-application urinary 2,4-D concentrations across three “tertiles” of algorithm intensity scores (*geometric mean [GM] values for low and medium groups are significantly different from the GM in the high group).
Future Cancer Etiology in AHS

- Reevaluate approximately 30 pesticides for various cancers—e.g., atrazine-Beane Freeman et al.
- Evaluate less frequently used pesticides in AHS
- Evaluate cancers of lower frequency (e.g., leukemia, NHL)
- Biomarkers of Exposure and Effect in Agriculture (BEEA)
 - MGUS
 - MBL
 - Other
 - Expand the Study
- G X E Analysis for Prostate Cancer
- Environmental Cancer Risk —(e.g., Dr. Ward: drinking water, Dr. Beane Freeman: endotoxin)
Intramural Research Team

- National Cancer Institute:
 - Michael Alavanja Co-PI
 - Laura Beane Freeman Co-PI
 - Mary Ward
 - Sonja Berndt
 - Stella Koutros
 - Gabriella Andreotti
 - Jonathan Hofmann
 - Neil Caporaso
 - Ola Lundgren
 - Sharon Savage
 - Rashmi Sinha
 - Jay Lubin
 - Aaron Blair
 - Shelia Zahm
 - Kathryn Hughes Barry
 - Curt Dellavalle

- NIEHS
 - Jane Hoppin Co-PI
 - Dale Sandler Co-PI
 - Freya Kamel
 - Donna Baird
 - Olga Basso
 - Stephanie London
 - Beth Regan
 - David Umbach
 - Clarice Weinberg
 - Martha Montgomery
 - Sharon Myers
 - Tina Saldana
 - Martin Valcin
 - Jenna Waggoner

- NIOSH
 - Cynthia Hines Co-PI
 - Brian Curwin
 - Paul Henneberger
 - Greg Kullman

- USEPA
 - Kent Thomas CO-PI
 - Carol Christensen
Thank you.

- Questions?