US ERA ARCHIVE DOCUMENT

Using Searchable Databases and Predictive Systems: MetaPath

Mary Manibusan
Toxicology and Epidemiology Branch Chief
Office of Pesticide Programs
U. S. EPA
manibusan.mary@epa.gov

Case Study Overview:

- Metabolism Pathway Database (MetaPath) is a computational tool that can be used now in the current risk assessment paradigm
- Leverages all existing metabolism knowledge and allows for the potential to reduce animal testing by focusing testing requirements on data needed to support risk assessment
- Streamlines the current risk assessment process by enhancing the efficiency and effectiveness of identifying common and relevant metabolites for inclusion in the risk assessment

United States Environmental Protection

Initial Steps (1-3 yrs) Case Study

Pesticide Risk Assessment

- Pesticide risk assessments must consider exposure to active ingredient (parent compound) and exposure to major metabolites or environmental degradates that have toxic potential.
 - Metabolism data plays a critical role in pesticide risk assessments, particularly in defining residues of concern in plants, livestock, and drinking water.
- The determination of which metabolites/degradates to include in the risk assessment and tolerance expression must be made for every pesticide active ingredient.
- To expedite the systematic review of pesticide metabolism data, the USEPA initiated the development of MetaPath, a relational and searchable database.

MetaPath and DER Composer

- Database stores information on pesticide metabolism
 - Stores pathway and summary information on pesticide metabolism in lab animals, livestock, plants, and environmental transformation products
 - Allows visualization of parent chemicals & metabolites displayed as a pathway
 - Enables efficient and systematic metabolite comparisons across chemicals, species, and environmental media of potential risk concerns
- Data Evaluation Record (DER) ← Opproser
 - -Captures data efficiently for output in a Word document
 - Enables the continuous autopopulation of MetaPath.

MetaPath Benefits

- Provides a common platform for global joint reviews/work share efforts
- Provides structure-based searching and identification of structurally similar or unique metabolites
- Identifies common metabolites as residues in plants and livestock.
- Compiles metabolism information systematically to facilitate the development of the metabolism simulator (predictive software).

Build scientific database to use existing metabolism information in real time & situations

Predictive Model 2013

MetaPath

Metabolic Simulator

Lab animal (mostly rat)

Livestock

Plant & Env Degradates

Predict

Easy Information Retrieval & Searching

- Similar metabolites from different parent compounds?
- •Sex & species differences?
- •Common metabolites formed across rat, livestock, plants, and in the environment?
- •Differences in metabolism in a single dose vs. repeat dose study?

Example 1: Reduction in Animal Testing

- An older pesticide "A" is undergoing re-evaluation
 - The rat metabolism study identified three specific metabolites of toxicity concern
 - Question: Will these same three metabolites be found in poultry_{metabolism} ma p?
 - We have no poultry metabolism data on pesticide "A"
 - Search MetaPath for structural analogs with poultry metabolism data to determine whether same/similar metabolites are formed.

United States
Environmental Protection Map Comparisons – One selected map can be compared to another structurally
Agency similar compound

Results:

- Poultry metabolism data from a structurally similar compound confirmed all three metabolites are formed and should be accounted for in the exposure assessment
- No additional poultry metabolism study needed on Pesticide "A" because the data from Pesticide "B" adequately addressed the metabolites of concern so there is an immediate reduction of animal testing

Example 2: Increased Effectiveness/Efficiency of Risk Assessment

- New Pesticide "C" is a Sulfonylurea
 - –Question: Are there any other registered pesticide active ingredients that are structurally related to Pesticide "C"?
 - If so, what are the common metabolites of toxicity concern?
 - Structural sub-fragment search in MetaPath for sulfonylurea pesticides and compare metabolic maps

United States Environmental Protection Agency

Initial Steps (1-3 yrs) Case Study

Search MetaPath for structural analogs to Parent

Structural sub-fragment search

Pesticide C

Pesticide W

Pesticide X

Pesticide Y

Pesticide Z

United States Environmental Protection Agency

Initial Steps (1-3 yrs) Case Study

Results

Metabolism maps for each pesticide related to "C" are examined. For instance, map for Pesticide "W" has metabolites of concern

Results:

- Four additional sulfonylurea pesticides with submitted rat metabolism maps
- Efficient comparison across maps to identify major, common metabolites with potential toxicity concerns to include in the risk assessment
- Enhances the effectiveness of the risk assessment by allowing reviewers to compare metabolism maps to identify similarity and differences in metabolic profiles

International Collaborations

- Goal: Common international platform for populating & evaluating metabolism information
 - International MetaPath User Group established under OECD (Working Group on Pesticides)
 - -Collaborators include:
 - Health Canada
 - European Food Safety Authority
 - Australia's Pesticides & Veterinary Medicines Authority and Office of Chemical Safety & Environmental Health
 - Germany's Federal Institute for Risk Assessment
 - France's French Agency for Food, Environment and Occupational Health and Safety

Acknowledgements:

- Successful collaborative partnership between Office of Pesticide Programs and Office of Research and Development Laboratories
 - Dr. Patricia Schmieder and Dr. Rick Kolanczyk,
 National Health and Environmental Effects Research
 Laboratory
 - Dr. Jack Jones, National Exposure Research Laboratory