

Medical Management of Pesticide Poisoning: Why We Need Diagnostic Tools

James R. Roberts, MD, MPH Associate Professor Pediatrics Medical University of South Carolina Charleston, SC

Who I Am

- General Pediatrician & Academician
 MPH from Univ Alabama at Birmingham
- Focus area of Pediatric Environmental Health (PEH)
 - Lead poisoning and GIS
 Pesticide poisoning and exposure
 - Environmental contributors to asthma
- Actively see patients in teaching setting

US EPA ARCHIVE DOCUMENT

EPA's Recognition and Management of Pesticide Poisonings

- Co-Editor of 5th Edition– 1999
 - Acute Care Manual
 - New Chapters, References
 - English and Spanish
- Wide Distribution in US and Latin America
- Available On-line
 - <u>http://www.epa.gov/oppfead1/safety/healthcare/handbook/handbook.htm</u>
- Chapter revisions for the 6th edition are currently underway Finished!!

New for the 6th Edition

- Revisions of all chapters
- Pyrethroids as a stand alone chapter
- New content in acute poisoning
 - Neonicotinoids and N-Phenylpyrazole insecticides
 - Glyphosate
- Chronic Effects
 - Neurological/neurodevelopmental
 - Cancer
 - Endocrine
 - Asthma

Medical School and Residency Training

- In medical school, ~ 7 hours on environmental health (EH) related topics (over all 4 years)¹
- US pediatric residency spends an average of two hours on EH related material²
 - Highly dependent on presence of faculty with expertise
- RRC requirement to include environmental influences on health
 - "effects on child health of common environmental toxins, such as lead, and also of potential agents used in bioterrorism"

Schenk M, et al. *Acad Med* 1996; 71:499-501 Roberts JR, Gitterman B. *Amb Peds* 2003;3:57-59

What most Physicians Know about Diagnosis

- Rely on clinician's ability to recognize pesticide by clues in the history and PE
- My experience with students/ residents
 - They often equate "Pesticide" with "Insecticide"
 - (and "Insecticides" with "Organophosphates")
 - Most can recall generalities of OP poisoning
 - Not differences between kids and adults
 - A differential diagnosis of pesticides?!
 - Rat poison equates "look for bleeding"
 - No institutional memory of convulsants

Home Use of Pesticides

- Insecticides are applied as a spray or powder in 66% of homes
 - 19% once a month
 - 14% two times a month or more often
- 12% said their doctor discussed pesticides
- Information sources for parents?
 - Pediatricians– 52%
 - (next closest, Internet at 30%)

What most Physicians Know about Diagnosis

- 160 Washington DC area physicians¹
 - 69% did not diagnose pesticide toxicity
 - 53% had ever considered the diagnosis
 - 64% felt poorly prepared to answer patients' questions about pesticides
 - 40% needed more information on pesticides
- Need for clinically relevant CME
- Greater discomfort with chronic or subacute toxicity

Balbus JM, et al. J Agromedicine 2006;11:27-38.

What most Physicians Know about Diagnosis

- Survey of teachers of pediatric environmental health (PEH)
- Asked about abilities to teach specific subjects
 - >80% confident teaching about lead poisoning, asthma, and tobacco smoke exposure
 - 72% for carbon monoxide
 - 64% for mercury and neurodevelopment
 - 40% said they felt confident in teaching about pesticides (3rd lowest)

What some Physicians Have Missed about Diagnosis

- OP poisoning may be different in kids than adults
 - Seizures (22-25% in kids)^{1,2} (2-3% in adults)
 - Mental status changes (lethargy/ coma: 54-96%)^{1,2}
 - 80% transferred with wrong diagnosis¹
- Lack of diagnostic tests for many pesticides
 - Cholinesterase testing
 - Anything other than organophosphates are often not on their radar
- Pesticide levels/ metabolites
 - Public health biomarkers
 - Research tool Zwiener RJ, Ginsburg CM. Pediatrics 1988;81:121-6 Sofer S, et al. Pediatric Emerg Care 1989;5:222-5

Poison Control Center Data

Pesticide1997-19992001-2003Total/ mod to severe morb/ death

- Pyrethroids 25,569/2,388/1 52,767/2333/4
- Organophos- 40,090/ 1,994/ 21 28,503/ 1700/ 23 phates

453/56/4

- Carbamates
- Strychnine
- Paraquat

12,051/ 523/ 1 563/ 72/ 5

11,249/ 502/ 3 401/ 50/ 4 232/ 35/ 8

Compiled from Annual Reports from Poison Control Center Data; reported every fall in Am J Emer Med (at least until recently, now in Clinical Toxicology)

2006 Report of Poison Control Centers' National Poison Data System

Pesticide2006120092Total/ mod-severe morb/ death

- Pyrethroids
- Organophos
 -phates
- Carbamates
- Strychnine
- Paraquat
- Boric Acid

3,175/ 119/ 2 104/ 6/ 0 61/ 8/ 1 4,216/ 11/ 0

26,083/889/3

5,411/242/3

23,060/ 768/ 4 4,223/ 187/ 3

2,611/ 102/ 3 84/ 7/ 0 111/ 7/ 2 4,821/ 11/ 1

¹Bronstein AC, Spyker DA, et al. *Clinical Toxicology* 2007;45(8):815-917 ²Bronstein AC, Spyker DA, et al. *Clinical Toxicology* 2010;48(10):979-1178

Biomarkers in NHANES

- Organophosphates
- Carbamate
- Pyrethroid Insecticides
- Organochlorine Insecticides
- DEET metabolite
- Chlorophenoxy herbicides (2,4 D, etc)
- Atrazine
- ortho-Phenylphenol
- para-Dichlorobenzene (2,5-Dichlorophenol) Moth balls, room deodorizer

NHANES= National Health and Nutrition Examination Survey

Organophosphate Metabolites (Found in children's urine)

Pyrethroid Metabolites (Found in children's urine)

3-Phenoxybenzoic

acid

Cypermethrin

Deltamethrin

Permethrin

Pesticide Biomarkers

Pros

- Allows population based data
- Helpful for research
- Tracking exposure in populations and comparing to national average

Cons

- Exposure does not equate to disease
- Not immediately accessible
 - No help to the clinician trying to manage a case
 - Not considered diagnostic

US EPA ARCHIVE DOCUMENT

Pesticides with Diagnostics (Some only of limited availability)

- OPs and Carbamates
 Cholinesterase level*
- Paraquat and Diquat
- Arsenic
- Hydrogen Cyanide
- Brodifacoum (and other warfarins)
- Al and Zn phosphide
- Thallium sulfate

- Dithionite test (colorimetric)[#]
- 24 hour urine*
- Cyanide ion (CN⁻)
- Prothrombin Time (PT)
- Hyperphosphatemia (non sp)
- 24 hour urine, also serum*

*Though available, still sent out to reference lab #Questionable availability Pesticides without available tests: Or: Limited to Gov't or University Lab (Partial Listing)

- Pyrethroids/pyrethrins
- Chloropicrin
- Chlorophenoxy herbicides
- Neonicotinoids
- N-phenylpyrazones (Fipronil)
- Carbon disulfide

- Organochlorines
- Strychnine
- Tetramethylenedisulfotetramine (TETS)
- Hexachlorobenzene

Neonicotinoids

- Insecticide; Marketed in US early 1990s
 - Quickly expanding market share 11-15%
- Acts on nicotinic ACh receptors (nAChR)
- Selective for insect nAChRs
 - Human toxicity has been reported
 - Have some other metabolic responses
 - Activation of protein kinase cascade which may decrease neurologic functions

Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action. *Annu Rev Pharmacol Toxicol.* 2005;45:247-268

Neonicotinoids

- Human data limited to several case reports and one series of 68 patients
 - 2 deaths of autopsy-confirmed imidacloprid poisoning
- Excess nicotinic stimulation
 - Disorientation, agitation, drowsiness, loss of consciousness, tachycardia
 Rhabdomyolysis, V-tach/V-Fib in severe cases
- Case series primarily GI complaints (N/V, diarrhea)
 - 1 patient with respiratory failure
- Diagnostics not available
- On the other hand, is less acutely toxic than OPs, and it would be helpful to distinguish the two

N-Phenylpyrazole Insecticides Fipronil

- First registered in 1996
 - Agricultural crops, Lawns, Pets for fleas and ticks
- Inhibit GABA receptor and blocks gated chloride channels
 - Produces hyper excitability of cell
 - Same mechanism as organochlorines, but only affects some channels and high affinity for insects
- Some reports of human toxicity
 - GI symptoms predominate (n/v diarrhea)
 - Neurologic symptoms may occur
 - Loss of consciousness and seizures

Fung HT, et al J Tox Clin Tox 2003;41:245-8 Chowdowski Z, et al. J Tox Clin Tox 2004;42:189-90 Lee S, et al. Clin Tox 2010;48:737-44

• How do physicians typically use diagnostic testing in the clinical setting?

Infectious Disease Example

- Sore throat, feels hot
- Headache, fatigue
- Red throat, 103.8° F
- Swollen lymph nodes
- Half of his class was out last week with swine flu
- Mom is panicked

US EPA ARCHIVE DOCUMENT

How do I know what it is?

- Differential Diagnosis
 - Gp A strep, Influenza,
 - (including H1N1)
 - Adenovirus, Mono
 - "other virus"
- Rapid Test!
 - Available for Strep throat and Influenza
 - Monospot for mononucleosis

Treat Strep Throat: Happy Outcome

Clinical Medicine is not Always that Clear...

- 4 year old child is brought in because he "doesn't look right"
- Child is not responsive to voice
- Shortly after arrival you notice some twitching of the side of his face, and eyes deviate
- Progresses to generalized
- 2-3 minute seizure, but within 15 minutes they start up again, last longer, harder to stop

US EPA ARCHIVE DOCUMENT

Managing the Seizure

- Rectal diazepam (Valium®) initially until an IV can be placed
- Subsequent doses of lorazepam (Ativan®) and maybe a second medication

Breathing often stops by this time

- On exam, he is now sedated, on the ventilator
- Afebrile, crackles in his lungs
- What do we have at our disposal to figure out why he is seizing?

Medical History

- In this case, often not so helpful
- Typically, a sound from the bedroom or toddler found lying on the ground
- Previous hx of seizures? Family Hx?
- Often initially a negative hx of any exposure
 - True in pesticide exposures
 - True in other cases (cocaine, stimulants, PCP)
 - Medications, sometimes more forthcoming
- Febrile illness preceded seizure?

- Head CT/Brain MRI– "Always" done Often negative
- EEG– may be helpful or even diagnostic
 often normal
- Spinal fluid culture– No Meningitis (48°)
- Rapid tests W. Nile v. and Herpes neg. (12-48°)
- Blood sugar and serum NA & Ca normal
- Lead level- typically 1 week, but can be STAT)
- Urine drug screen (positive for benzodiazepines)
- Cholinesterase testing (still a send out)
 - Normal, but reported 2 days later

Summary

- Pesticides were among the least of all PEH related topics that faculty felt comfortable teaching about
- Having a way of testing would likely increase physician's ability to consider and diagnose
 - Lead level, chelation therapy
 - Cotinine, anti-smoking aids
 - Asthma, skin allergy testing; multiple options

Summary A Clinician's Wish List

- Rapidly available diagnostic testing
 - Could be part of registration process
- Provide greater support for effective clinical education, particularly front line personnel
- Helps diagnose and begin appropriate Rx
 - We have atropine and pralidoxime
 - Or even tell us atropine would be inappropriate to give
 - Supportive care
 - Allows provider to reassure a patient/family if we can definitely rule it out