US ERA ARCHIVE DOCUMENT

Extended F₁ One Generation Reproductive Toxicity Study

Moving Toward a New Toxicology Testing Paradigm

Origin

- ILSI-HESI-ACSA effort to improve the testing requirements for agricultural chemicals. (Three Task Forces)
 - ADME
 - Systemic Toxicology
 - Life Stages
- Goal: Develop scientifically credible and viable methods for assessing the safety of crop protection chemicals more efficiently, with fewer animals and artifacts.
 - Conserve resources
 - Reduce and refine animal use
 - Incorporate relevant measurements
 - Evaluate Reproductive, CNS and Immune function.

Life Stages Task Force Strategy

How Can Testing Be Effective & Efficient (Includes measures not currently done)

- Introduce greater flexibility through a <u>science</u> <u>based approach</u> using available information and a <u>logical "step-wise" process</u>
- Integrate improved understanding of <u>target</u> <u>dosing based on ADME</u>
 - Dose setting
 - Life stages
- Incorporate development & reproductive endpoints as well <u>neurological</u>, <u>immunological</u> & <u>endocrine systems</u>

Life Stages Task Force Recommendations Flexibility

- Consider all relevant information.
- Evaluate more than just reproduction and development in F1 pups (neurotox, immunotox and endocrine endpoints).
- Include key indicators (triggers for developmental effect) which, if negative, give a high level of confidence of no adverse effects
- Production of F2 generation not automatic (depends on triggers in P0, F1 and other relevant information).
 - If positive results are found, move to a more tailored testing approach follows which may include extension of testing the 2nd generation

Life Stages Task Force Recommendations

- New study design: Extended F₁ One Generation Reproductive Toxicity Test
 - Significant departure from the current multigeneration guideline study
 - F₁ animals subjected to a far more comprehensive evaluation than what is currently done.
 - Extensively peer reviewed and published "A tiered approach to life stages testing for agricultural chemical safety assessment" [Cooper et al., (2006) Crit Rev Toxicol.;36(1):69-98.]
 - Post publication evaluation by U.S. experts to address further improvements in design.
 - May eventually replace OPPTS 870.3800 guideline and OECD 416.

Extended F₁ One Generation Reproductive Study Protocol

PO dosed 90 days

P♂ & P♀ Necropsy; Repro and Target organ pathology

Cohort 1: F₁ Reproductive toxicity (PND 90) N=2
Triggered Mating for second generation
Male repro tox post mating; Female PND 21

Cohort 2, Neurotoxicity (PND 90) N=1
Set 1a: F₁ clinical path/ target organ pathology
Set 1b: F₁ developmental neurotoxicity

Cohort 3, Immunotoxicity (PND 70) N =1

Better definition of required endpoints, histopathology and thyroid hormones

Better definition of triggers

F₂ pup Standardize PND 4; Necropsy PND 21: Target organ pathology

P♂ & ♀ exposure

for Dam and Offspring

P&F, exposure

Selected $F_1 \stackrel{?}{\circlearrowleft} \& \bigcirc$; $F2 \stackrel{?}{\circlearrowleft} \& \bigcirc$

Major Features of Study Design

- Incorporates use of toxicokinetic data in study design
 - TK study conducted prior to Extended F₁ One-Gen study usually as part of the range-finding study
- Abbreviated pre-mating period
 - 4 weeks vs. current 10 weeks
- Extensive hematology, clinical chemistry, urinalysis, histopathology evaluations
- Include elements of the developmental neurotoxicity and immunotoxicity studies
- Trigger production of F₂ generation
 - If F₂ generation is not triggered, the study uses ≈ 1200 fewer animals

Advantages of Extended F₁ One Generation Reproductive Toxicity Study

- Inclusion of additional measures indicative of anti-androgen effects (e.g., nipple retention)
- Evaluation of special toxicities (e.g., nervous and immune system)
- Inclusion of hormonal measures (e.g., thyroid)
- Inclusion of ADME
- Reduce/refine/replace animal use
 - More efficient utilization of animals
 - Use fewer animals
- Flexible and cost effective
 - Reduce cost & time in data development
 - Reduce resources needed by EPA to review & process data

Retrospective Analysis of Multigeneration Reproductive Toxicity Study

Goals

- Confirm that an Extended F₁ 1-generation Reproductive Toxicity Study as proposed by ILSI/HESI ACSA workgroup and described in Cooper et al. (2006) would not fail to identify critical sensitive endpoints or lower NOAELs¹
- Evaluate the contribution of the second generation to hazard identification or characterization
- Determine if the proposed triggers would accurately and reliably identify the need to mate the F₁ generation to produce an F₂ generation

Contribution of F₂ Generation to Hazard Identification/characterization

- Are lower No-Observed-Adverse-Effect-Levels (NOAELs) identified in the second generation (F₂) relative to the first generation?
- Are different effects identified in F₂ generation?

Effectiveness of Triggers to Produce an F₂ Generations

- Do triggers accurately identify the need to mate the F₁ offspring to produce an F₂ generation?
 - Reproductive triggers (e.g., adverse effect on fertility/fecundity of P generation, effects on sexual maturation of F₁ pups)
 - Offspring triggers (e.g., F₁ pup malformations, F₁ pup weight decreases in the absence of maternal body weight decreases)
 - Results are consistent with those reported RIVM and Canada/PMRA

List of potential endpoints considered for triggering an F₂ generation*.

Reproductive Endpoint	Offspring Endpoint
P ₁ Estrous Cycle Evaluation	\downarrow Maternal (P) bw same dose as \downarrow F ₁ pup bw
P ₁ Fertility (# implantations, pregnancy rate, gestational interval ₎	↓ lactation index (PND4-21)
F ₁ Litter parameters (litter size, litter weight, sex ratio ₎	F ₁ pup mortality
F ₁ Developmental landmarks (AGD, nipple retention, puberty onset, PPS, VO)	F_1 pup malformations (eg, hypospadia, cryptocordysm, one eye, large head)
F ₁ Estrous Cycle Evaluation	↓F ₁ pup viability index (PND0-4)
P ₁ Reproductive Organ Weights	\downarrow F ₁ live birth index
P ₁ Reproductive Organ Histopathology	\downarrow F_1 pup bw only
P ₁ Andrology (sperm parameters)	
P ₁ Qualitative Ovarian Assessment	
F ₁ Reproductive Organ Weights	
F ₁ Reproductive Organ Histopathology	
F ₁ Andrology (sperm parameters ₎	
F ₁ Qualitative Ovarian Assessment	

US EPA/OPP Retrospective Analysis:Results and Conclusions

- F₂ generation has little value for establishing RfDs (ADIs) or informing FQPA SF decisions
 - For reproductive effects, ≈2% chemicals in the F₂
 LOAEL < F₁ LOAEL and F2 effects only categories
 - For offspring effects, ≈4-5% chemicals in the F₂
 LOAEL < F₁ LOAEL and F2 only categories
- F₂ generation has little value for identifying unique effects (*i.e.*, different from effects reported in the F₁)

US EPA/OPP Retrospective Analysis:Results and Conclusions

- If the Extended One-Generation Toxicity had been implemented,
 - An F₂ generation would have been triggered for approximately 43% of the chemicals
 - 100,000 animals would have been saved

Ongoing Activities

- Draft guideline being considered for adoption by OECD
- Merging retrospective analyses conducted by the Netherlands, Canada, and the US

Outstanding Issues

- DNT and DIT modules
 - Will these modules be mandatory or optional?
 - Will they be mandatory for all chemicals including industrial chemicals, cosmetics
- Refining the triggers to produce an F₂ generation
 - Currently the F₂ is triggered 43% of the time
- Sample size
 - Number of animals for reproductive toxicity cohort

Future Activities

- New guideline will be discussed at OECD's WNT (Working Group of the National Coordinators of the Test Guidelines Program) meeting in March 2009
- Expert group will reconvene in October 2009 to discuss remaining technical issues including refined triggers and merged retrospective analyses
- Proposed new guideline will be presented to the SAP on Nov. 2009
- OECD will consider adoption of new guideline (including refined triggers) during 2010 WNT meeting