US ERA ARCHIVE DOCUMENT



## Integrated Approach to Testing and Assessment to Inform Regulatory Decisions

Dr. Jack Fowle
Deputy Director, Health Effects Division
Office of Pesticide Programs
US Environmental Protection Agency
Fowle.jack@epa.gov



### **Case Study Overview**

- Role: How to use available predictive tools now to evaluate hazard and exposure
- Goal: Make current risk assessment process more effective & efficient
- Benefits:
  - -Save resources
  - -Save time
  - -Draw on all existing data
  - Incorporate new technologies



## Paradigm Shift: Increasing Effectiveness & Efficiency

**CURRENT** 

**FUTURE** 

- In situations with poor data:
  - Maximize use of non-animal predictive methods to fill data gaps
- In situations with rich data:
  - -Maximize any use of animal testing
  - -Enhance interpretation of existing information



# Goal: Evaluate Inherent Chemical Properties More Efficiently & Effectively

Chemical-specific properties that determine

How it is used (exposure potential)



## How do we get there? Screening & Knowledgebases

- Screening requires relational, integrated and interactive knowledgebases – not just databases
- Goal:
  - -Use screening as a predictive tool
  - Develop and expand knowledgebases that describe inherent chemical properties based on known molecular structure, and chemical and biological interactions



**Goal: Clustering Chemicals Using Inherent Properties** 





#### **Data-Limited Chemicals**

#### **Today's Tool Box**

Existing information + some use of:



ToxRefDb **ECOTOX ACTOR ToxCast QSAR Models** DSSTox

Chemical grouping or categories & readacross

.... And more

#### **Improved Tool Box Using Newer Approaches**

Integrating these in a way that makes sense

**ToxRefDb** 

**ECOTOX** 

**ACToR** 

MetaPath

ToxCast

QSAR

**DSSTox** 

.... And

more

(links

Relational **Databases** knowledge)



(chemical, biological & toxicity characteristics)



#### **Goal: More Effective Animal Usage**

- Address quickly & accurately susceptible populations (Food Quality Protection Act) and reduce animal usage
- Integrate approaches to evaluate reproductive
   & other life stage effects
  - -Full usage of animals in each study
  - -Focus on effects of concern
  - -Promote flexibility to use existing knowledge
  - -Reduce/refine animal usage



#### **Example**

Unknown or Data Poor Chemical (e.g., pesticide inert ingredients, industrial chemicals, metabolites of a pesticide active ingredient)

Are we concerned about this chemical?
If so, for which effects?
What information do we need?

Predictive
Metabolism

Biological Responses
(in vitro, if available in vivo)



#### **Example**

Unknown or Data Poor Chemical (e.g., pesticide inert ingredients, industrial chemicals, metabolites of a pesticide active ingredient)

Are we concerned about this chemical? YES

If so, for which effects?

What information do we need?

#### Carcinogenicity - NO

- -No structural analog alerts
- -Negative mutagenicity
- -No high-throughput screening signaling Profile Alerts

Exposure/Use

Physical Chemical Properties & Structural Characteristics

Estrogen receptor binding - YES

Screening level developmental & reproductive assays

Predictive

Metabolism Biological Responses

(in vitro, if available in vivo)



## **Example: Pesticide with Traditional Database**

- Herbicide A: Agriculture & residential uses
- Issues were raised from existing information
  - Developmental neurotoxicity
  - -Reproductive, thyroid & endocrine toxicity
- Currently, guidelines call for 2-generation reproductive test & DNT test (extensive use of animals)
- Revising current guidelines to reduce animal use from conventional study protocols by using alternative test: the extended F1







#### **New: Extended 1-Generation Reproductive Study**



Satellite Group:

Mechanism of chemical absorption data: fetus, dams, lactation.



## Herbicide A: New Extended 1-Generation Reproductive Study



Traditional Approach:

2-gen, developmental neurotoxicity & immunotoxicity - ~7,000 animals

New Extended 1-Generation Approach = ~1,400 animals



### **Summary**

- Integrated testing approaches evolves as new tools emerge
- Near term efforts:
  - Prioritization screening for data poor chemicals
  - Enhance interpretation of existing information & maximize animal testing information for data rich chemicals
- Holistic considerations of manufacture, use, exposure, hazard and risk