National Pesticide Program

A Strategic Vision for a 21st Century Testing & Assessment Paradigm

Dr. Steven Bradbury, Director
Office of Pesticide Programs
US Environmental Protection Agency
National Pesticide Program

• MISSION
 – Best Possible Regulatory Decisions to Protect Public Health and the Environment
 – Rely on All Available and Relevant Scientifically Sound Information
National Pesticide Program

• At a Glance
 – Over 5,000 regulatory decisions annually
 – Approximately 1,100 active ingredients & 19,000 products
 – Reevaluation of existing pesticides on a regular schedule to ensure safety standards continue to be met
National Pesticide Program
At a Glance

• Safety evaluations required for both human health & ecological risks
 – ‘Conventional‘, biochemical, antimicrobial active ingredients
 – Food-use & non-food use inert ingredients

• Data required for registration
 – Vary across types of pesticide chemicals
 • Extensive for food use, conventional active ingredients to minimal for non-food use inert ingredients
National Pesticide Program Challenges

• Large Number of Chemicals to Review with Many Possible Adverse Outcomes
• Finite Resources and Time
• Public Expectations for Scientific Soundness, Transparency, and Timeliness
• Science Increasingly Complex & Changing
 – New Risk Assessment & Management Challenges Always Arise

- Sponsored by EPA
- Committee recognized improvements in:
 - Technologies to evaluate perturbations in biological pathways (what a chemical does)
 - Data storing, analysis & management

• Use cell-based (high through put) assays to understand how chemicals perturb normal cellular functions (i.e., toxicity pathway)
 – Establish relationships of perturbations with “adverse outcomes”

• Develop in vitro to in vivo extrapolation methods

• Integrate results to predict hazard/risk

Broader coverage of chemicals & endpoints
Reduce cost & time of testing
Use fewer animals
OPP Vision for a New Toxicology Testing & Assessment Paradigm

Program Priority
Work toward transitioning new 21st century technologies, to enhance the efficiency & effectiveness of chemical risk management

CURRENT
- Heavy reliance on animal studies
- Generate information for all possible outcomes
- Based on traditional toxicity tests

FUTURE
- Less reliance on animal studies
- Tailor data generation
- Based on understanding of toxicity pathways
Integrated Approaches to Testing & Assessment (IATA)

- **INTEGRATE** existing information
 - Use information from new technologies with combined estimates of exposure in a manner that leads to better predictions of risk for regulatory endpoints
- **FORMULATE** plausible & testable hypotheses
- **TARGET** in vivo testing on chemicals & endpoints of concern
Integrated Approaches to Testing & Assessment (IATA)

• Originated from OECD
 – Dec 2007 workshop hosted by EPA

• Consistent with
 – 2007 NRC Report
 – EPA’s (SPC-FTTW) Strategic Plan for Evaluating the Toxicity of Chemicals
Integrated Approaches to Testing & Assessment” (IATA)

• Not new
 – Long history with chemicals lack data
 • Industrial Chemical Program, pesticide inert ingredients
• Incorporates various tools and types of information
• Evolves with science
Current Testing Paradigm

Risk Managers Focus on Potential Adverse Outcomes

- Mortality
 - Systemic Toxicity
 - Disease
 - Cancer

- Reproductive Fitness
 - Viable Offspring
 - Fertility

- Developmental Impairment
 - Terato
 - Prenatal Deficits

BATTERY of Animal Testing (Part 158)

Generates animal data for all possible outcomes to determine which possible effects are relevant
New Integrated Paradigm

Chemical Inventories

Existing data; In silico and In vitro Prioritization; Screening

Molecular Interactions
Biochemical Responses
Cellular Responses
Tissue/Organ Function
Adverse Outcomes

Efficient, Focused In vivo Animal Testing

Mortality
• Systemic Toxicity
• Disease
• Cancer

Reproductive Fitness
• Viable Offspring
• Fertility

Developmental Impairment
• Terato
• Prenatal Deficits
Goal: Enhance Integrated Testing & Assessment with New Technologies & Toxicity Pathway Knowledge

- Exposure information
- (Q)SAR, in vitro screens
- Chemical groupings & read across

Prioritize for further testing

Targeted in vivo testing

Hazard Information

Risk Assessment & Risk Management

Existing information

Make toxicity predictions by combining different types of existing information on a similar chemical or group of similar compounds
Near Term Goal: 1-3 years

Transition New Predictive Methods

• Strengthen priority setting/screening for data-poor compounds by using new predictive methods to fill data gaps and to guide targeted in vivo testing

• Maximize the value obtained from each in vivo study

• Transition away from chemical-by-chemical approaches by leveraging knowledge on groups of chemicals with shared properties
Transition New Predictive Methods

• Integrate into existing risk assessment paradigm

\[\text{Risk} = \text{Hazard} \times \text{Exposure} \]

New Technologies

• Use new methods in real time and real world situations
• Evaluate & refine through an iterative process
Paradigm Shift: Increasing Effectiveness & Efficiency

Routinely use in silico & in vitro models to predict adverse consequences for critical toxicities

Understand linkage of biological events to adverse outcome

Less reliance on animal studies
Tailor data generation
Based on understanding of toxicity pathways

All Chemicals

Long Term Goal

Structure
Molecular
Cellular
Organ
Individual
Partnerships & Collaborations

• Internal Partners
 – EPA regulatory and research programs

• External Partners
 – State, Federal & International Agencies
 – Stakeholders
International Partnerships

- Global Acceptance
- Information Sharing
- Common Application Tool Boxes
- Mutually Accepted Test Guidelines
- Harmonize Frameworks & Guidance

Organization for Economic Cooperation & Development
North American Free Trade Agreement
International Program for Chemical Safety
European Food Safety Authority, etc.
Stakeholder Engagement

• What are these tools & how will they be applied?
• What is the expected timeline for transition to new tools?
• Why are changes needed?
• What are the expected improvements in health and environmental protection?
• How will we recognize success & failure?
http://www.epa.gov/pesticides/science/testing-assessment.html
Achievable with strong scientific & stakeholder support through a transparent process

“Integrative Approaches to Testing & Assessment” using 21st Century Technologies