VALENT U.S.A. CORPORATION
VALENT TECHNICAL CENTER
DUBLIN, CALIFORNIA

DETERMINATION OF PYRIPROXYFEN
AND 4'-OH-PYRIPROXYFEN
IN ALMOND HULLS

METHOD RM-33H

DATE: SEPTEMBER 17, 1997

INTRODUCTION

This method determines residues of pyriproxyfen [V-71639; 4-phenoxypyphenyl(\(R\))\text{\(-\)(2-pyridyloxy) propyl ether}] and its metabolite/degrade, 4'-OH-pyriproxyfen [4-(4-hydroxyphenoxy) phenyl(\(R\))\text{\(-\)(2-pyridyloxy) propyl ether}], in almond hulls. This method is based on procedures developed by Sumitomo Chemical Company, Ltd, Environmental Health Science Laboratory, Takarazuka, Japan (Report No. ER-MT-8925).

Briefly, pyriproxyfen and 4'-OH-pyriproxyfen are extracted from almond hulls using a 4:1 mixture of methanol and water. Pyriproxyfen residues are partitioned from this extract with hexane and analyzed by gas chromatography using a nitrogen-phosphorus specific flame-ionization detector (NPD) following a silica gel column cleanup. 4'-OH-pyriproxyfen residues are partitioned from the remaining methanol:water extract with hexane after evaporation of the methanol. The 4'-OH-pyriproxyfen residues are quantified by high performance liquid chromatography (HPLC) using a fluorescence detector after a silica gel column cleanup.

REAGENTS

Acetone - pesticide quality or equivalent.

Diethyl ether - anhydrous, Analytical Reagent, Mallinckrodt or equivalent.

Hexane - pesticide quality or equivalent.

Methanol - pesticide quality or equivalent.

Phosphoric acid, 85% - reagent grade or equivalent.
REAGENTS (CONTINUED)

Silica Gel 60 - 70-230 mesh, EM Science Cat # 7734-7 or equivalent. Prepare for use as follows: Activate by heating for at least 16 hours at 130°C. Cool to room temperature and add 10% (w/w) of deionized water and gently rotate until all lumps are removed. Allow to equilibrate for at least 16 hours before use. Store at room temperature in a tightly capped bottle (see Note 1).

Sodium chloride - reagent grade or equivalent.

Sodium sulfate - anhydrous, granular, AR grade or equivalent.

Tetrahydrofuran - HPLC grade or equivalent.

Toluene - pesticide quality or equivalent.

Water - deionized.

Water- HPLC grade.

REAGENT SOLUTIONS

Methanol:water solution, 4:1 (v/v) - Combine 4 parts methanol with 1 part deionized water (for extraction) or HPLC grade water (for mobile phase). For example, add 800 mL methanol and 200 mL of water sequentially to a reagent bottle. Store at room temperature.

Methanol:tetrahydrofuran solution, 2:3 (v/v) - Combine 2 parts methanol with 3 parts tetrahydrofuran. For example, add 400 mL methanol and 600 mL of tetrahydrofuran sequentially to a reagent bottle. Store at room temperature.

Hexane:acetone, 7:3 (v/v) - Combine 7 parts of hexane with 3 parts of acetone. For example, add 700 mL of hexane and 300 mL of acetone sequentially to a reagent bottle. Store at room temperature.

Hexane:diethyl ether, 15:1 (v/v) - Combine 15 parts of hexane with 1 part of diethyl ether. For example, add 600 mL of hexane and 40 mL of diethyl ether sequentially to a reagent bottle. Store at room temperature.

Water, acidified (0.04% phosphoric acid, v/v) - Add 0.5 mL of 85% phosphoric acid to 1 liter of HPLC grade water. Store at room temperature.
REFERENCE STANDARDS

Pyriproxyfen - analytical standard of known purity. Prepare a stock solution containing 1.0 mg/mL in acetone. Prepare a minimum of four linearity standards by diluting this stock solution with toluene to concentrations ranging from 0.10 to 2.0 μg/mL (see Note 2). Prepare a calibrating solution containing 1.0 μg/mL by diluting the stock solution with toluene. (The calibrating solution may be used as one of the four required linearity standards). Prepare fortifying solutions by diluting the stock solution to 10.0 μg/mL and 1.0 μg/mL with acetone. All solutions should be kept refrigerated when not in use.

4’-OH-pyriproxyfen - analytical standard of known purity. Prepare a stock solution containing 1.0 mg/mL in acetone. Prepare a fortifying solution by diluting the stock solution to 1.0 μg/mL with methanol:water (4:1, v/v). Prepare a minimum of four linearity standards by diluting the stock solution with methanol:water (4:1, v/v) to concentrations ranging from 0.20 to 2.0 μg/mL (see Note 2). Prepare a calibrating solution containing 1.0 μg/mL by diluting the stock solution with methanol:water (4:1, v/v). (The calibrating solution may be used as one of the four required linearity standards). All solutions should be kept refrigerated when not in use.

EQUIPMENT

Acrodisc® LC 13 PVDF Syringe Filters - 0.45 μm pore size, Luerlock inlet and 13 mm minispike outlet or equivalent.

Beakers - 100 mL.

Büchner funnels - 9 cm diameter.

Filter flasks - 500 mL.

Filter funnels - approximately 10 cm diameter.

Filter paper - Whatman GF/A glass fiber or equivalent, 9 cm diameter.

Gas Chromatograph - Hewlett-Packard Model 5890, equipped with a packed column glass insert for splitless injection (HP Part No. 5080-8732, packed with approximately 5 mm of silanized glass wool), an NP detector, automatic sampler, and HP ChemStation or equivalent system.

Glass chromatography column - 19 mm ID x 300 mm with 250 mL reservoir and Teflon stopcock, Kontes Cat. # K-420280-0232 or equivalent.

Glass wool - Pyrex® or equivalent.
EQUIPMENT (CONTINUED)

HPLC - Hewlett-Packard Model 1050 equipped with a tertiary pump, an autosampler, an HP ChemStation, and an HP Model 1046 fluorescence detector or equivalent system.

Mason jars - 1 pint with plastic screw cap lids or equivalent.

Omni-Mixer with adapter for use with 1-pint Mason jars.

Pasteur pipets - 5¾" and 9".

Rotary evaporator - Büchi (Brinkman) or equivalent, equipped with a temperature controlled water bath.

Round-bottom flasks - 50 mL, 250 mL, 500 mL, and 1000 mL.

Separatory funnels - 500 mL.

Syringe - Tuberculin, with glass Luer-Tip, 1 mL capacity, VWR Cat # BD 2004 or equivalent.

Ultrasonic cleaner - Branson 3200 or equivalent.

ANALYTICAL PROCEDURES

1. Extraction of Sample

Weigh 20 grams (± 0.1 grams) of sample into a one pint Mason jar. At this point, if required by the testing facility, control samples for method recovery should be fortified with pyriproxyfen and 4’-OH-pyriproxyfen (see Note 3). Add 100 mL of methanol:water (4:1, v/v) to the sample and blend on the Omni-Mixer for 5 minutes.

Decant the sample into a 500 mL filter flask using a Büchner funnel and 2 sheets of Whatman GF/A glass fiber filter paper. Re-extract the sample with an additional 100 mL portion of methanol:water (4:1, v/v) as described above and filter the extract into the 500 mL filter flask, combining this extract with the first. Rinse the Mason jar with two 20 mL portions of methanol:water (4:1, v/v) and add to the Büchner funnel.
2. Extraction of Pyriproxyfen

Transfer the sample extract to a 500 mL separatory funnel, add approximately 0.5 gram of sodium chloride, and shake to dissolve the salt. Add 150 mL of hexane to the separatory funnel, using portions of this hexane to rinse the filter flask. Shake vigorously for approximately one minute and allow the phases to separate. Drain the lower methanol:water layer into the original filter flask and pour the upper hexane phase into a 500 mL round-bottom flask through a 10 cm filter funnel containing approximately 50 grams of sodium sulfate, suspended on a plug of glass wool.

Transfer the methanol:water phase back to the separatory funnel and re-extract with an additional 100 mL portion of hexane as described above. Rinse the sodium sulfate with two 10 mL portions of hexane. Reserve the methanol:water phase for Step 3, Extraction of 4'-OH-Pyriproxyfen. At this point, the pyriproxyfen extract may be stored overnight at ≤0°C. Evaporate the combined hexane phases just to dryness using a rotary-evaporator and water bath set to <40°C before proceeding to Step 4, Silica Gel Column Cleanup - Pyriproxyfen.

3. Extraction of 4'-OH-Pyriproxyfen

Transfer the reserved methanol:water phase from Step 2 to a 1000 mL round-bottom flask and evaporate the methanol using a rotary-evaporator and water bath set to <40°C. Return the aqueous extract to the separatory funnel. Add 25 mL of deionized water to the round-bottom flask, sonicate briefly and add to the separatory funnel. Add 100 mL of hexane to the separatory funnel and shake vigorously for approximately one minute. Allow the phases to separate then drain the lower aqueous phase into the 1000 mL round-bottom flask and pour the upper hexane phase into a clean 500 mL round-bottom flask through a 10 cm filter funnel containing approximately 50 grams of sodium sulfate, suspended on a plug of glass wool. Return the aqueous phase to the separatory funnel and re-extract with two 100 mL portions of hexane, as described above. At this point, the 4'-OH-pyriproxyfen extract may be stored overnight at ≤0°C. Evaporate the combined hexane phases just to dryness using a rotary-evaporator and water bath set to <40°C before proceeding to Step 5, Silica Gel Column Cleanup - 4'-OH-Pyriproxyfen.

4. Silica Gel Column Cleanup - Pyriproxyfen

Place a glass wool plug at the bottom of the glass chromatography column. Weigh 15 grams of silica gel (deactivated with 10% water, see Note 1) into a beaker and suspend in approximately 60 mL of hexane. Pour the silica gel slurry into the column while tapping the side of the column. Wash the sides of the column with hexane as needed and cap the silica gel with 1-3 grams of sodium sulfate. Drain the hexane to the top of the sodium sulfate layer.
Re-dissolve the pyriproxyfen extract (from Step 2) in 1 mL of toluene followed by 2 mL of hexane. Sonicate the round-bottom flask for 15 seconds if necessary to dissolve any residue adhering to the walls of the flask and transfer the sample extract to the column. Rinse the round-bottom flask with three 3 mL portions of hexane and transfer each rinse to the top of the column. Drain the solvent to the top of the sodium sulfate layer after each rinse.

Elute the column with an additional 88 mL of hexane (total of 100 mL), then 50 mL of hexane:diethyl ether (15:1, v/v). (Rinse the round-bottom flask with the hexane:diethyl ether and sonicate for 15 seconds before transferring to the column). Discard these eluants.

Place a 250 mL round-bottom flask under the column and elute the pyriproxyfen with 50 mL of hexane:diethyl ether (15:1, v/v) followed by 30 mL of hexane:acetone (7:3, v/v). (Rinse the 500 mL round-bottom sample flask with each eluting solvent and sonicate for 15 seconds before transferring to the column).

Evaporate the eluate just to dryness using a rotary-evaporator and water bath set to <40°C. Add 2.0 mL of toluene to the flask, stopper, swirl, and sonicate for approximately 15 seconds to completely dissolve the residue. Transfer the extract to an autosampler vial and store at ≤0°C until GC analysis.

5. Silica Gel Column Cleanup - 4'-OH-Pyriproxyfen

Place a glass wool plug at the bottom of the glass chromatography column. Weigh 15 grams of silica gel (deactivated with 10% water, see Note 1) into a beaker and suspend in approximately 60 mL of hexane. Pour the silica gel slurry into the column while tapping the side of the column. Wash the sides of the column with hexane as needed and cap the silica gel with 1-3 grams of sodium sulfate. Drain the hexane to the top of the sodium sulfate layer.

Re-dissolve the 4'-OH-pyriproxyfen extract (from Step 3) in 1 mL of toluene followed by 2 mL of hexane. Sonicate the round-bottom flask for 15 seconds if necessary to dissolve any residue adhering to the walls of the flask and transfer the sample extract to the column. Rinse the round-bottom flask with three 3 mL portions of hexane and transfer each rinse to the top of the column. Drain the solvent to the top of the sodium sulfate layer after each rinse.

Elute the column with an additional 88 mL of hexane (total of 100 mL), then 100 mL of hexane:diethyl ether (15:1, v/v), followed by 20 mL of hexane:acetone (7:3, v/v). (Rinse the 500 mL round-bottom sample flask with each eluting solvent and sonicate for 15 seconds before transferring to the column). Discard these eluants.
Valent U.S.A. Corporation

Place a 250 mL round-bottom flask under the column and elute the 4'-OH-pyriproxyfen with 60 mL of hexane:acetone (7:3, v/v). Evaporate the eluate to dryness using a rotary-evaporator and water bath set to <40°C and transfer to a 50 mL round-bottom flask, using three 3 mL portions of acetone to rinse the 250 mL round-bottom flask (sonicate the first rinse). Evaporate the eluate to dryness using a rotary-evaporator and water bath set to <40°C. Rinse the sides of the 50 mL round-bottom flask down with two 1 mL portions of acetone and re-evaporate to dryness using a rotary-evaporator and water bath set to <40°C.

Add 1.0 mL of methanol:water (4:1, v/v) to the 50 mL round-bottom flask. Stopper, swirl and sonicate for approximately 15 seconds to completely dissolve the residue. Attach an Acrodisc filter to the glass syringe (plunger removed) and transfer the extract to the syringe barrel using a Pasteur pipet. Insert the plunger into the syringe barrel and gently push the sample extract through the filter into an autosampler vial. Seal and store at ≤0°C until HPLC analysis.

6. Gas Chromatography Measurement For Pyriproxyfen

Analyze the sample extracts for pyriproxyfen, along with calibrating standard solutions, using the following (or similar) operating conditions:

Column: DB-5 (30 M x 530 µm) wide bore capillary (1.5 µm film thickness).
J & W Scientific Cat # 125-5032 or equivalent.

Column Oven Temperature Program:
- Initial Temp: 265°C
- Hold Time: 2.0 minutes
- Prog Rate: 10°C/minute
- Final Temp: 285°C
- Hold Time: 5 minutes

Detector Temperature: 300°C
Injector Temperature: 250°C
Carrier Gas: Helium at 10 mL/min
Make-Up Gas: Helium at 20 mL/min
Air: 102 mL/min
Hydrogen: 3.8 mL/min
Injection Size: 1.0 µL
Retention Time: 3.3 minutes

The GC parameters shown above are given only as a guide. They may be modified as needed to optimize the chromatography or to resolve matrix interferences. Each set of chromatograms must be clearly labeled with the GC parameters used.
Valent U.S.A. Corporation

The recommended sequence of samples and standards for analysis is: calibrating standard, sample, sample, sample, calibrating standard, etc. (The calibrating standard vials contain 1.0 μg/mL of pyriproxyfen in toluene). This sequence may, however, be modified if the reproducibility requirement is met (see Note 4). Each sequence must begin and end with a calibration standard.

7. HPLC Measurement For 4’-OH-Pyriproxyfen

Analyze the sample extracts, along with calibrating standard solutions, using the following (or similar) operating conditions:

Column: Phenomenex Prodigy® ODS (3) (250 mm x 4.6 mm, 5 μm particle size), Phenomenex Cat # 00G-4097-E0 or equivalent.

Column Temperature: 35°C
Mobile phase: A = methanol:THF (2:3, v/v); B = water + 0.05% 85% H₃PO₄ (v/v).

Gradient:
- T = 0, 45% A + 55% B
- T = 8, 45% A + 55% B
- T = 28, 75% A + 25% B
- T = 36, 75% A + 25% B

Flow rate: 1.0 mL/min.
Injection volume: 50 μL

Detector: HP Model 1046A Fluorescence Detector (FLD)
- Excitation wavelength: 235 nm
- Emission wavelength: 327 nm

The HPLC parameters shown above are given only as a guide. They may be modified as needed to optimize the chromatography or to resolve matrix interferences. Each set of chromatograms must be clearly labeled with the parameters used.

The recommended sequence of samples and standards for analysis is: calibrating standard, sample, sample, sample, calibrating standard, etc. The calibrating standard vials contain 1.0 μg/mL of 4’-OH-pyriproxyfen in methanol:water (4:1, v/v). This sequence may, however, be modified if the reproducibility requirement is met (see Note 4). Each sequence must begin and end with a calibration standard.
8. Calculations

The amount of each analyte in each sample is calculated using the following formula:

\[
\text{ppm Pyriproxyfen} / 4\'\text{-OH} - \text{Pyr} = \frac{B \times C \times V \times DF}{A \times W}
\]

where:

B = integration counts for the analyte in the sample.

C = concentration of analyte in the calibrating standard (1.0 µg/mL).

V = final volume of the sample extract (2.0 mL for pyriproxyfen and 1.0 mL for 4'-OH-pyriproxyfen).

DF = dilution factor, used if the sample extract is diluted prior to analysis.

A = mean integration counts for analyte in the calibrating standards.

W = sample weight (20 grams)

LIMITS OF DETECTION AND QUANTITATION

The limit of detection (LOD) of pyriproxyfen and 4'-OH-pyriproxyfen in almond hulls analyzed by this method is 0.01 ppm. The validated limit of quantitation (LOQ) for both analytes is 0.02 ppm.

ANALYSIS TIME

A trained analyst can complete the analysis of a set of eight samples for pyriproxyfen and 4'-OH-pyriproxyfen in approximately 8 hours. The results are available within 24 hours of initiating the analysis.
NOTES

1. Each batch of silica gel must be checked for recovery of pyriproxyfen and 4'-OH-pyriproxyfen as follows: Transfer 1.0 mL of the 1.0 μg/mL pyriproxyfen fortifying solution and 1.0 mL of the 1.0 μg/mL 4'-OH-pyriproxyfen fortifying solution to separate 50 mL round-bottom flasks and evaporate to dryness using a rotary-evaporator and water bath set to <40°C. Transfer each residue to a silica gel column and elute the pyriproxyfen and 4'-OH-pyriproxyfen as described under Step 4 (for pyriproxyfen) and Step 5 (for 4'-OH-pyriproxyfen). Evaporate the eluates to dryness using a rotary-evaporator and water bath set to <40°C. Add 1.0 mL of toluene to the flask containing the pyriproxyfen eluate and 1.0 mL of methanol:water (4:1, v/v) to the flask containing the 4'-OH-pyriproxyfen eluate. Swirl each flask to completely dissolve the residues.

Analyze the pyriproxyfen eluate and the 1.0 μg/mL calibrating standard as described under Step 6, Gas Chromatography Measurement For Pyriproxyfen. Analyze the 4'-OH-pyriproxyfen eluate and the 1.0 μg/mL calibrating standard as described under Step 7, HPLC Measurement For 4'-OH-Pyriproxyfen. If either eluate peak is less than 90% of its corresponding calibrating standard, then the elution profile of the analyte must be determined.

2. At Valent, linearity of the gas chromatograph and liquid chromatograph must be determined each day that samples are analyzed (Valent SOP #VR-007). Linearity is determined by analyzing a series of linearity standards containing 0.10 to 2.0 μg/mL of pyriproxyfen and 0.2 to 2.0 μg/mL of 4'-OH-pyriproxyfen. The response for each standard is normalized to response per 1.0 μg/mL by dividing the response of each standard by its concentration. The coefficient of variation (CV) of these responses must be 10% or less. Sample extracts must be diluted to bring the concentration of each analyte within the range of linearity established.

3. At Valent, a standard operating procedure (SOP# VR-002) requires that fortified control samples be analyzed with each set of samples. If the testing facility does not require concurrent analysis of fortified control samples, or if a UTC sample is not available, this method requirement may be waived.

The level of fortification is generally 0.02 ppm (the LOQ of the method) and/or 0.1 ppm. For example, pyriproxyfen fortifications are made by adding 0.4 mL of the 1.0 μg/mL fortifying solution and 0.20 mL 10.0 μg/mL pyriproxyfen fortifying solution to a 20 gram sample. (The higher fortification is made using the more concentrated fortifying solution to minimize the volume of acetone added to the sample). The 4'-OH-pyriproxyfen fortifications are made by adding 0.4 mL and 2.0 mL of the 1.0 μg/mL fortifying solution to a 20 gram sample. Method recoveries must be 70% to 120% to be acceptable unless approved by the chemist responsible for the analysis.
4. At Valent, reproducibility of an analytical run is determined by calculating the CV from the peak units obtained for the calibrating standards analyzed during the run. For a run to be acceptable, these CV's must be 10% or less unless approved by the chemist responsible for the analysis (Valent SOP #VR-013).

METHOD APPROVAL

Written by: J.W. Pensyl
Date: 9-18-97

Reviewed by: G. H. Fujiie
Date: 9/23/97

Reviewed by: QAU
Date: 9/29/97
Calibration Standard
1.0 μg/mL in Toluene
1.0 ng injected

Untreated Control Almond Hull
10 mg Crop Equivalents Injected
UTC Almond Hull
Fortified with 0.02 ppm Pyriproxyfen
10 mg Crop Equivalents Injected

UTC Almond Hull
Fortified with 0.10 ppm Pyriproxyfen
10 mg Crop Equivalents Injected
UTC Almond Hull
Fortified with 0.02 ppm 4'-OH-Pyr
1.0 gram Crop Equivalents Injected

Untreated Control Almond Hull
Fortified with 0.10 ppm 4'-OH-Pyr
1.0 gram Crop Equivalents Injected
EPA ADDENDUM For Residue Analytical Methods
PP#s 7F04882 and 8F05022

1) ACLB made slight modifications to the GC/NPD instrument parameters. The parameters were the same for all six commodities.

The parameters for the GC/NPD were:
- Gas Chromatograph: HP 6890 GC with NPD.
- Column: DB-17, 15m x 0.53mm i.d., 1 um film thickness
- Carrier gas: Helium, 10.0/min.
- Oven Temperature: Initial 80°C, Hold for 1.0 min.
 40°C/min to 205°C, Hold for 2.5 min.
 10°C/min. to 240°C, Hold for 6.0 min.
- Injector temperature: 250°C
- Injection volume: 4 uL
- Detector temperature: 320°C
- Hydrogen Flow: 3.0 mL/min
- Air Flow: 60 mL/min
- Makeup: 20 mL/min Helium

2) The flow rate for the silica gel column chromatography procedure was not specified. ACLB used a flow rate of 10 mL/min for all six commodities.

3a) Valent has not submitted an enforcement method for Orange Oil. Per conversation with Charles Green (Valent) on 4/20/99, it was suggested to perform a Hexane/Acetonitrile partitioning on the orange oil aliquot (5 gram sample). The partitioning step involved dissolving the orange oil in 70 mL acetonitrile (hexane saturated) and partitioning it with 100 mL hexane (acetonitrile saturated). The acetonitrile layer was kept and the hexane layer was partitioned with two additional 70 mL portions of acetonitrile (hexane saturated). The acetonitrile layers were combined and evaporated to dryness. The sample was taken through the methylene chloride partitioning step, as stated in Method RM-33P-1-3 for citrus. The remaining procedure was to carried out as stated in the citrus method.

 ACLB tried the approach with control and spiking at the 0.02 ppm level and was unsuccessful. The analyte was not recovered and appeared oily. ACLB modified the procedure as follows:

3b) ACLB's Modification For Orange Oil: A 5 gram portion of orange oil was partitioned with acetonitrile/hexane as stated in 4a. After evaporating the acetonitrile layer, ACLB skipped the dichloromethane partitioning step and cleaned up the sample using the silica gel column chromatography procedure, as stated in Method RM-33H
EPA ADDENDUM For Residue Analytical Methods
PP#s 7F04882 and 8F05022
(Continued)

(Almond Hulls) and Method RM-33N-2 (Nutmeat). Prior to GC analysis, the extract was
taken to dryness and dissolved in 2 mL hexane (acetonitrile saturated) and partitioned
three times with 2 mL acetonitrile (hexane saturated). The acetonitrile layers were
combined, evaporated to dryness, and dissolved to the appropriate volume with toluene
for GC analysis. The acetonitrile/hexane partitioning step, prior to GC analysis, was the
same as described in the nutmeat procedure (RM-33N-2). This additional cleanup
greatly improved the quality of the chromatography for oily crops.

4) Prior to GC analysis, for the orange commodities, ACB added the same
acetonitrile/hexane partitioning step, as described in 4b. This final cleanup step greatly
reduced the deep yellow color and remaining oils, contained in the final extract. This
was ACB's only modification to Method RM-33P-1-3 (citrus).