US EPA ARCHIVE DOCUMENT
MOBAY CHEMICAL CORPORATION
AGRICULTURAL DIVISION
Research and Development Department

TITLE: A Method for the Determination of C₃GUTHION and GUTHION Oxygen Analog in Bovine Tissues and Milk Utilizing Gas Chromatography and High Pressure Liquid Chromatography

AUTHORS: J. P. Wargo, R. J. Pollock¹ and R. R. Gronberg

ABSTRACT: A method is described for the analysis of GUTHION and GUTHION oxygen analog in bovine tissues and milk. The method for tissues and milk involves an initial extraction using acetone and dichloromethane (DCM) followed by an acetonitrile:hexane partition clean-up. The initial extraction for fat utilized hexane and acetonitrile followed by a partition clean-up. An additional solvent partition clean-up followed by a silica gel column clean-up and another acetonitrile:hexane partition clean-up was performed prior to gas liquid chromatographic analysis for GUTHION and high pressure liquid chromatographic analysis for GUTHION oxygen analog. The sensitivity of the method is 0.01 ppm for tissues and 0.001 ppm for milk.

DATE: April 10, 1978

NOTEBOOK REFERENCE: 78-R-183

¹Analytical Development Corporation
Monument, Colorado

APPROVED BY T. Bill Waggone

CONFIDENTIAL
PROPERTY OF
CHEMAGRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION

GUTHION is a Reg. TM of the Parent Company of Farbenfabriken Bayer GmbH, Leverkusen.
RESEARCH REPORT

To: Chemagro Agricultural Division
Mobay Chemical Corporation
P. O. Box 4913 - Hawthorn Road
Kansas City, Missouri 64120

ADC Project: #378

Date: April 10, 1978

ANALYTICAL METHOD FOR THE DETERMINATION OF
RESIDUES OF GUTHION AND GUTHION OXYGEN ANALOG IN
BOVINE TISSUES (LIVER, MUSCLE, FAT, KIDNEY) AND MILK

I. INTRODUCTION

This report contains an analytical method to determine residues of Guthion and Guthion oxygen analog in bovine tissues and milk. The sensitivity of detection is 0.01 ppm in tissue and 0.001 ppm in milk. The parent Guthion is quantitated on a gas chromatograph equipped with a flame photometric detector, while the oxygen analog is quantitated on an HPLC at a wavelength of 280 nm.

Recovery data and chromatograms obtained from the validation analyses of each tissue and milk are contained in this report.* The data were obtained by analyzing the samples according to the method contained in this report.

II. MATERIALS AND METHOD

A. Apparatus Required

1. Assorted laboratory glassware.

2. Waring (explosion proof) Laboratory Blender.

3. Gas Chromatograph, Tracor 222, equipped with a flame photometric detector in the phosphorous mode.

5. Rotary vacuum evaporator.

B. Reagents Required

1. Acetone - Nanograde® - Registered trademark of Mallinckrodt Chemical Works, St. Louis, Missouri.

2. Acetonitrile - Nanograde®.

*See Chemagro Report No. 66440.
II. MATERIALS AND METHOD

B. Reagents Required (cont.)

5. Ethyl Acetate - Nanograde®.
8. Glass wool.
10. Methanol - Nanograde®.

11. Silica Gel - 10% water; heat the silica gel (80/100 mesh) 24 hours at 120°C; deactivate 10% with water (90g silica gel and 10 ml distilled water); mix well and allow the deactivated silica gel to stand 24 hours before use.

12. Sodium Chloride (10% w/v in distilled water).

13. Sodium Sulfate, - granular anhydrous - benzene wash before use.

C. Special Reagents

1. PS Guthion Spiking Solutions

 a. Solution "A" - Dissolve 100.0 mg of recrystallized PS Guthion in benzene and dilute to volume in a 50 ml volumetric flask. This solution contains 2 mg PS Guthion per ml.

 b. Solution "B" - Pipet 5.0 ml of Solution "A" into a 250 ml volumetric flask and dilute to volume with benzene. This solution contains 40 μg of PS Guthion per ml.

 c. Solution "C" - Pipet 1.0 ml of Solution "A" into a 200 ml volumetric flask and dilute to volume with benzene. This solution contains 10 μg of PS Guthion per ml.
II. MATERIALS AND METHOD

C. Special Reagents

1. PS Guthion Spiking Solutions (cont.)

 d. Solution "D" - Pipet 5.0 ml of Solution "B" into a 100 ml volumetric flask and dilute to volume with benzene. This solution contains 2 μg of PS Guthion per ml.

2. PO Guthion Spiking Solutions

 a. Solution "A" - Dissolve 95.0 mg of recrystallized PO Guthion in benzene and dilute to volume in a 50 ml volumetric flask. This solution contains 2 mg PO Guthion equivalents per ml.

 b. Solution "B" - Pipet 5.0 ml of Solution "A" into a 250 ml volumetric flask and dilute to volume with benzene. This solution contains 40 μg of PO Guthion per ml.

 c. Solution "C" - Pipet 1.0 ml of Solution "A" into a 200 ml volumetric flask and dilute to volume with benzene. This solution contains 10 μg of PO Guthion per ml.

 d. Solution "D" - Pipet 5.0 ml of Solution "B" into a 100 ml volumetric flask and dilute to volume with benzene. This solution contains 2 μg of PO Guthion per ml.

3. PS Guthion Standard Solutions (For GC Analysis)

 a. Solution #1 - Dissolve 10.0 mg of recrystallized Guthion in benzene and dilute to volume in a 500 ml volumetric flask. This solution contains 20 μg of PS Guthion per ml. Store in a freezer.

 b. Solution #2 - Pipet 5.0 ml of Solution #1 into a 50 ml volumetric flask and dilute to volume with ethyl acetate. This solution contains 2.0 μg of PS Guthion per ml. (The stability of Guthion of ethyl acetate for long duration is not known.)
II. MATERIALS AND METHOD

C. Special Reagents (cont.)

4. PO Guthion (Equivalent) Standard Solution (For LC Analysis)
 a. Solution #1 - Dissolve 9.50 mg of recrystallized
 PO Guthion in 50% acetonitrile/dichloromethane
 and dilute to volume in a 500 ml volumetric flask.
 This solution contains 20 μg PO Guthion equivalents
 per ml. Store in a freezer.

 b. Solution #2 - Pipet 5.0 ml of Solution #1 into a
 50 ml volumetric flask and dilute to volume with
 50% acetonitrile/dichloromethane. This solution
 contains 2.0 μg of PO Guthion per ml.

D. Detailed Procedure

1. Initial Extraction (except for fat; see Procedure
 Notes, pages 9 & 10)
 a. Weigh 200 grams of milk or 100 grams of tissue
 into a blender jar and add 5 grams Hyflow Super
 Cel (10 grams for milk).

 b. Add 200 ml of acetone and blend 2 minutes (400
 ml for milk).

 c. Filter under vacuum through Whatman No. 31 filter
 paper.

 d. Return the filter cake and paper to the blender
 jar, add 200 ml of dichloromethane (DCM) and
 blend for 5 minutes.

 e. Filter under vacuum through Whatman No. 31 filter
 paper and wash the filter cake with 100 ml DCM.

 f. Transfer the combined filtrates to a 1,000 ml
 separatory funnel. Rinse the suction flask with
 100 ml DCM and add to the combined filtrates.

 g. Shake the separatory funnel vigorously for 30
 seconds. Allow the layers to separate and drain
 lower organic phase through Whatman 2V fluted
 filter paper into a 1,000 ml flat bottom (FB)
 flask.
II. MATERIALS AND METHOD

D. Detailed Procedure

1. Initial Extraction (cont.)

 h. Evaporate the extract just to dryness (oil).

2. Acetonitrile Hexane Partition

 a. Dissolve the residue in 200 ml of hexane pre-saturated with acetonitrile (ACN), and transfer to a 500 ml separatory funnel.

 b. Extract the hexane solution with 100 ml of ACN presaturated with hexane.

 c. Drain lower ACN phase into a second 500 ml separatory funnel containing 200 ml hexane presaturated with ACN. Shake for one minute.

 d. Draw off the lower ACN phase from the second separatory funnel into a 500 ml E flask.

 e. Repeat Steps b through d twice, with 50 ml portions of ACN presaturated with hexane.

 f. Evaporate the combined ACN fractions just to dryness.

3. Dichloromethane/Aqueous Partition

 a. Dissolve the residue in 25 ml methanol and add 100 ml of 10% NaCl in distilled water. Transfer to a 250 ml separatory funnel.

 b. Extract with 3 x 50 ml portions of DCM.

 c. Drain lower layers into a 250 ml E flask.

 d. Evaporate the combined DCM fractions just to dryness.

 e. Dissolve residue in 10 ml benzene.
II. MATERIALS AND METHOD

D. Detailed Procedure (cont.)

4. Chromatographic Column Cleanup

 a. Tamp a plug of glass wool into the bottom of a 46 cm x 2 cm bell column having a 300 ml reservoir.

 b. Fill the column to the bell with benzene and begin a slow drip. Slowly pour 15 grams of 10% deactivated silica gel into the benzene. Add 10 grams of Na₂SO₄ to the top of the silica gel and allow the benzene to drain to the top of the Na₂SO₄.

 c. Transfer the residue dissolved in benzene from above (II.D.3.e.) to the column. Start column drip rate at one per second into a beaker.

 d. Just as the top of the solvent reaches the silica gel bed, add a 15 ml benzene rinse of sample flask to column.

 e. Just as the top of the solvent reaches the silica gel bed, add 25 ml benzene.

 f. Just as the top of the solvent reaches the silica gel bed, change receivers to a 250 ml FB flask and add 150 ml DCM and collect. This fraction contains PS Guthion. (Label the flasks "A" Fraction.)

 g. Evaporate the DCM just to dryness and proceed with the ACN Hexane Partition #2 in Section D.5. below.

 h. Change receivers to a second 500 ml FB flask and add 250 ml 25% ACN in DCM and collect. This fraction contains the oxygen analog, PO Guthion. (Label the flasks "B" Fraction.)

 i. Evaporate the ACN/DCM just to dryness and proceed with ACN Hexane Partition #2 in Section D.5. below.
II. MATERIALS AND METHOD

D. Detailed Procedure (cont.)

5. Acetonitrile Hexane Partition #2

a. Dissolve the residue in 100 ml of hexane presaturated with ACN and transfer to a 250 ml separatory funnel.

b. Extract the hexane solution with 50 ml of ACN presaturated with hexane.

c. Drain lower ACN phase into a second 250 ml separatory funnel containing 100 ml hexane presaturated with ACN. Shake.

d. Draw off the lower ACN phase from the second separatory funnel into a 250 ml PB flask.

e. Repeat Steps b through d twice, with 25 ml portions of ACN presaturated with hexane.

f. Evaporate the combined ACN fractions just to dryness.

g. Proceed to Section D.6. with the "A" Fractions (PS Guthion Fraction).

h. Proceed to Section D.7. with the "B" Fractions (PO Guthion Fraction).

6. Gas Liquid Chromatography

Column: 24" x 2 mm i.d. borosilicate glass column packed with 5% OV-210 on 80/100 mesh Chromosorb W (HP).

Column Conditioning: Attach column to injection port fitting. Purge the column for 15 minutes, 40 cc/min helium. Cap end of column and heat to 250°C for 1 hour. Cool, remove cap, purge 2 hours, 40 cc/min helium at 310°C. Attach column to detector and proceed with analysis.
II. MATERIALS AND METHOD

D. Detailed Procedure

6. Gas Liquid Chromatography (cont.)

Gases: Rotometer Settings

\[
\begin{align*}
N_2 &= 4.0 \\
O_2 &= 12.0 \\
\text{Air} &= 100 \\
H_2 &= 150
\end{align*}
\]

Temperature °C: Column: 225°C
Injection Port: 250°C

Sensitivity: Instrumental response for the standard (2 ng/µl equivalent to 0.1 ppm in tissues or 0.01 ppm in milk) must be sufficient to obtain greater than 50% full scale response.

a. Dissolve the sample from Section D.5.g. above in ethyl acetate, 5 ml volume for tissue samples and 1 ml volume for milk. [If the sample contains a sizeable residue (volume), transfer quantitatively to a graduated tube and dilute to volume]. The sample or standard are generally injected in a volume of 5. µl. A greater volume may be used to obtain the desired sensitivity.

b. Identify Guthion by its retention time and measure the peak produced.

Calculations:

\[
\text{ppm} = \frac{\text{sample peak}}{\text{standard peak}} \times \text{Std}^1 \times \text{sample dilution}
\]

^1Use 0.1 for tissues and 0.01 for milk calculations.

7. High Pressure Liquid Chromatography

Column: Partisil PXS 10/25 Silica Gel Whatman, 25 cm x 4.6 mm i.d.

Mobile Phase: 50% ACN/50% DCM
II. MATERIALS AND METHOD

D. Detailed Procedure

7. High Pressure Liquid Chromatography (cont.)

Pressure: approximately 500 psi

Sensitivity Setting: 0.50 AUFS for milk
0.25 AUFS for tissue

Wavelength: 280 nm

Pre-Column: HC Pellosil, 6 cm x 4 mm i.d.

Instrument: Glenco HPLC System I, Glenco Scientific, Inc., Houston, Texas

a. Dissolve the sample from Section D.5.h. above in 50% ACN/50% DCM, 5 ml volume for tissue samples and 1 ml volume for milk. Filter through a 0.5 micron Milli-Pore filter using a syringe and Swinny adaptor. Inject 100 μl samples interspersed with 100 μl samples of a 2 ng/μl standard.

b. Identify PO Guthion (oxygen analog) by its retention time and measure the peak produced.

Calculations:

\[\text{ppm} = \frac{\text{sample peak}}{\text{standard peak}} \times \text{Std}^1 \times \text{sample dilution} \]

^1Use 0.1 for tissues and 0.01 for milk calculations.

8. Procedure Notes

a. Initial Extraction for Fat (Only)

(1) Weigh 100 grams of fat into a blender jar and add 10 grams of Hyflow Super Cel.

(2) Add 250 ml hexane and blend for 2 minutes.

(3) Filter under vacuum through Whatman No. 31 filter paper.
II. MATERIALS AND METHOD

D. Detailed Procedure

8. Procedure Notes

a. Initial Extraction for Fat (Only) (cont.)

(4) Return the filter cake to the blender jar, add 250 ml hexane and blend for 5 minutes.

(5) Filter under vacuum through Whatman No. 31 filter paper and wash the filter cake with 150 ml of acetonitrile.

(6) Transfer the combined filtrates to a 1,000 ml separatory funnel. Rinse the suction flask with 50 ml acetonitrile and add to the combined filtrate.

(7) Shake the separatory funnel vigorously for one minute and allow the layers to separate.

(8) Proceed with Section D.2.c. and follow the procedure to the end (D.7.b.).

9. Recoveries Through Method

The following tables (I through V) (Appendix I) and enclosed chromatograms (Appendix II)* show recovery values and chromatograms obtained for the analysis of each matrix for PS Guthion and PO Guthion. Typical control, recovery and standard chromatograms are included in this report.

ANALYTICAL DEVELOPMENT CORPORATION

By: Durene V. Gilsdorf
Durene V. Gilsdorf, M.T. (ASCP)
Research Assistant

& Sharon V. Stone
Research Technician

*Chemagro Report No. 66440.
TABLE I

MUSCLE TISSUE (BOVINE) RECOVERIES

A. PS Guthion - Analyzed by GC/FPD

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>Corrected ppm</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Muscle Control (100 grams)</td>
<td>0.0101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Muscle Control</td>
<td>0.0057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>Muscle Control + 0.05 ppm PS Guthion</td>
<td>0.0344</td>
<td>0.0265</td>
<td>53.0</td>
</tr>
<tr>
<td>4a</td>
<td>Muscle Control + 0.05 ppm PS Guthion</td>
<td>0.0476</td>
<td>0.0397</td>
<td>79.4</td>
</tr>
<tr>
<td>5a</td>
<td>Muscle Control + 0.10 ppm PS Guthion</td>
<td>0.1117</td>
<td>0.1038</td>
<td>103.8</td>
</tr>
<tr>
<td>6a</td>
<td>Muscle Control + 0.10 ppm PS Guthion</td>
<td>0.0987</td>
<td>0.0908</td>
<td>90.8</td>
</tr>
</tbody>
</table>

B. PO Guthion - Analyzed by HPLC

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>Corrected ppm</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Muscle Control (100 grams)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2b</td>
<td>Muscle Control</td>
<td>0.0000</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3b</td>
<td>Muscle Control + 0.05 ppm PO Guthion</td>
<td>0.0422</td>
<td>0.0422</td>
<td>84.4</td>
</tr>
<tr>
<td>4b</td>
<td>Muscle Control + 0.05 ppm PO Guthion</td>
<td>0.0430</td>
<td>0.0430</td>
<td>86.0</td>
</tr>
<tr>
<td>5b</td>
<td>Muscle Control + 0.10 ppm PO Guthion</td>
<td>0.0734</td>
<td>0.0734</td>
<td>73.4</td>
</tr>
<tr>
<td>6b</td>
<td>Muscle Control + 0.10 ppm PO Guthion</td>
<td>0.0796</td>
<td>0.0796</td>
<td>79.6</td>
</tr>
</tbody>
</table>

REFERENCE: NBR #A-31
TABLE II

FAT TISSUE (BOVINE) RECOVERIES

A. PS Guthion - Analyzed by GC/FPD

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Fat Control (100 grams)</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2a</td>
<td>Fat Control</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3a</td>
<td>Fat Control + 0.05 ppm PS Guthion</td>
<td>0.0437</td>
<td>87.4</td>
</tr>
<tr>
<td>4a</td>
<td>Fat Control + 0.05 ppm PS Guthion</td>
<td>0.0459</td>
<td>91.8</td>
</tr>
<tr>
<td>5a</td>
<td>Fat Control + 0.1 ppm PS Guthion</td>
<td>0.0974</td>
<td>97.4</td>
</tr>
<tr>
<td>6a</td>
<td>Fat Control + 0.1 ppm PS Guthion</td>
<td>0.0980</td>
<td>98.0</td>
</tr>
</tbody>
</table>

B. PO Guthion - Analyzed by HPLC

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Fat Control (100 grams)</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2b</td>
<td>Fat Control</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3b</td>
<td>Fat Control + 0.05 ppm PO Guthion</td>
<td>0.0474</td>
<td>94.8</td>
</tr>
<tr>
<td>4b</td>
<td>Fat Control + 0.05 ppm PO Guthion</td>
<td>0.0520</td>
<td>104.0</td>
</tr>
<tr>
<td>5b</td>
<td>Fat Control + 0.1 ppm PO Guthion</td>
<td>0.0820</td>
<td>82.0</td>
</tr>
<tr>
<td>6b</td>
<td>Fat Control + 0.1 ppm PO Guthion</td>
<td>0.0890</td>
<td>89.0</td>
</tr>
</tbody>
</table>

REFERENCE: NBR #A-31
TABLE III
MILK (BOVINE) RECOVERIES

A. PS Guthion - Analyzed by GC/FPD

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Milk Control (200 grams)</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2a</td>
<td>Milk Control</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3a</td>
<td>Milk Control + 0.005 ppm PS Guthion</td>
<td>0.0039</td>
<td>78.0</td>
</tr>
<tr>
<td>4a</td>
<td>Milk Control + 0.005 ppm PS Guthion</td>
<td>0.0041</td>
<td>82.0</td>
</tr>
<tr>
<td>5a</td>
<td>Milk Control + 0.01 ppm PS Guthion</td>
<td>0.0083</td>
<td>83.0</td>
</tr>
<tr>
<td>6a</td>
<td>Milk Control + 0.01 ppm PS Guthion</td>
<td>0.0074</td>
<td>74.0</td>
</tr>
<tr>
<td>7a</td>
<td>Milk Control + 0.02 ppm PS Guthion</td>
<td>0.0189</td>
<td>95.0</td>
</tr>
<tr>
<td>8a</td>
<td>Milk Control + 0.02 ppm PS Guthion</td>
<td>0.0162</td>
<td>81.0</td>
</tr>
</tbody>
</table>

B. PO Guthion - Analyzed by HPLC

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>Corrected ppm</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Milk Control (200 grams)</td>
<td>0.0024</td>
<td>0.0022 (Avg)</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>Milk Control</td>
<td>0.0020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>Milk Control + 0.005 ppm PO Guthion</td>
<td>0.0053</td>
<td>0.0031</td>
<td>62.0</td>
</tr>
<tr>
<td>4b</td>
<td>Milk Control + 0.005 ppm PO Guthion</td>
<td>0.0057</td>
<td>0.0035</td>
<td>70.0</td>
</tr>
<tr>
<td>5b</td>
<td>Milk Control + 0.01 ppm PO Guthion</td>
<td>0.0100</td>
<td>0.0078</td>
<td>78.0</td>
</tr>
<tr>
<td>6b</td>
<td>Milk Control + 0.01 ppm PO Guthion</td>
<td>0.0106</td>
<td>0.0084</td>
<td>84.0</td>
</tr>
<tr>
<td>7b</td>
<td>Milk Control + 0.02 ppm PO Guthion</td>
<td>0.0192</td>
<td>0.0170</td>
<td>85.0</td>
</tr>
<tr>
<td>8b</td>
<td>Milk Control + 0.02 ppm PO Guthion</td>
<td>0.0182</td>
<td>0.0160</td>
<td>80.0</td>
</tr>
</tbody>
</table>

REFERENCE: NBR #A-31
TABLE IV

KIDNEY TISSUE (BOVINE) RECOVERIES

A. PS Guthion - Analyzed by GC/FPD

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Kidney Control (100 grams)</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2a</td>
<td>Kidney Control</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3a</td>
<td>Kidney Control + 0.05 ppm PS Guthion</td>
<td>0.0557</td>
<td>111.4</td>
</tr>
<tr>
<td>4a</td>
<td>Kidney Control + 0.05 ppm PS Guthion</td>
<td>0.0559</td>
<td>111.8</td>
</tr>
<tr>
<td>5a</td>
<td>Kidney Control + 0.1 ppm PS Guthion</td>
<td>0.1049</td>
<td>104.9</td>
</tr>
<tr>
<td>6a</td>
<td>Kidney Control + 0.1 ppm PS Guthion</td>
<td>0.0980</td>
<td>98.0</td>
</tr>
</tbody>
</table>

B. PO Guthion - Analyzed by HPLC

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Kidney Control (100 grams)</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2b</td>
<td>Kidney Control</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3b</td>
<td>Kidney Control + 0.05 ppm PO Guthion</td>
<td>0.0411</td>
<td>82.2</td>
</tr>
<tr>
<td>4b</td>
<td>Kidney Control + 0.05 ppm PO Guthion</td>
<td>0.0453</td>
<td>90.6</td>
</tr>
<tr>
<td>5b</td>
<td>Kidney Control + 0.1 ppm PO Guthion</td>
<td>0.0818</td>
<td>81.8</td>
</tr>
<tr>
<td>6b</td>
<td>Kidney Control + 0.1 ppm PO Guthion</td>
<td>0.0901</td>
<td>90.1</td>
</tr>
</tbody>
</table>

REFERENCE: NBR #A-31
TABLE V

LIVER TISSUE (BOVINE) RECOVERIES

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Liver Control (100 grams)</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2a</td>
<td>Liver Control</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3a</td>
<td>Liver Control + 0.05 ppm PS Guthion</td>
<td>0.0421</td>
<td>84.2</td>
</tr>
<tr>
<td>4a</td>
<td>Liver Control + 0.05 ppm PS Guthion</td>
<td>0.0447</td>
<td>89.2</td>
</tr>
<tr>
<td>5a</td>
<td>Liver Control + 0.1 ppm PS Guthion</td>
<td>0.0944</td>
<td>94.4</td>
</tr>
<tr>
<td>6a</td>
<td>Liver Control + 0.1 ppm PS Guthion</td>
<td>0.0806</td>
<td>80.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Fortification</th>
<th>ppm Found</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Liver Control (100 grams)</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>2b</td>
<td>Liver Control</td>
<td>0.0000</td>
<td>---</td>
</tr>
<tr>
<td>3b</td>
<td>Liver Control + 0.05 ppm PO Guthion</td>
<td>0.0450</td>
<td>90.0</td>
</tr>
<tr>
<td>4b</td>
<td>Liver Control + 0.05 ppm PO Guthion</td>
<td>0.0449</td>
<td>89.8</td>
</tr>
<tr>
<td>5b</td>
<td>Liver Control + 0.1 ppm PO Guthion</td>
<td>0.0844</td>
<td>84.4</td>
</tr>
<tr>
<td>6b</td>
<td>Liver Control + 0.1 ppm PO Guthion</td>
<td>0.0866</td>
<td>86.6</td>
</tr>
</tbody>
</table>

REFERENCE: NBR #A-31
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>3-24-98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Peak Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0/190.0</td>
</tr>
</tbody>
</table>

Confidential

Property of
Chemagro Agricultural Division
Mobay Chemical Corporation
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date</th>
<th>PO Guthion</th>
<th>Lined</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-31</td>
<td>4-4-78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEAK HEIGHT (in. MD, ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 / 69.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PQ GLUTAMON LIVER FOR TIFIED
At 0.1 ppm PQ
and A-31, FP = #1
Pepk Height 11 in.
Station

136.0/157.0

CONIFIDENTIAL
PROPERTY OF
CHEMAGRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION
<table>
<thead>
<tr>
<th>Date</th>
<th>Treatment</th>
<th>Peak Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-24-78</td>
<td>Control</td>
<td>152.3</td>
</tr>
<tr>
<td></td>
<td>PS. GRIFFON KIDNEY</td>
<td></td>
</tr>
<tr>
<td>HBR 9-31</td>
<td>#10</td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL

PROPERTY OF

CHEMACRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION
PS (GUILLON) KIDNEY
FORTIFIED AT 0.1 ppm PS

NUM. 0-31 PG #18
PEAK HEIGHT IN MM:

155.2 / 148.0

CONFIDENTIAL
PROPERTY OF
CHEMAGRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION
<table>
<thead>
<tr>
<th>Date</th>
<th>ID</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-22-78</td>
<td>90</td>
<td>0.1ppm PO</td>
</tr>
<tr>
<td>10-31</td>
<td>90</td>
<td>0.1ppm PO</td>
</tr>
<tr>
<td>PEAK HEIGHT</td>
<td>104</td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL

PROPERTY OF

CHAMAGRO AGRICULTURAL DIVISION
MOSSY CHEMICAL CORPORATION
<table>
<thead>
<tr>
<th>Channel</th>
<th>Gain</th>
<th>Filter</th>
<th>Date</th>
<th>Time</th>
<th>PS</th>
<th>Response</th>
<th>Peak Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/31</td>
<td>0:31</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Confidential

Property of

Chemical Agricultural Division

Mobay Chemical Corporation
<table>
<thead>
<tr>
<th>Control</th>
<th>3.27%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Height in cm</td>
<td>0.0/204.0</td>
</tr>
</tbody>
</table>

CONFDENTIAL

PROPERTY OF

CHEMAGRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION

29
PO GUINEA MUSCLE
FORTIFIED @ 0.1 ppm PO
Lot: 12121
Buffer: 0.01 M NaOH

CONFIDENTIAL
PROPERTY OF
CHEMAGRO AGRICULTURAL DIVISION
MODAY CHEMICAL CORPORATION
Sample & No.
Date: 3-2-77
PS: G4001
Chem: Fe
Conc.:
Nor. 501 Chrom. No.
PNA: H-501 Atrn. 2

Confidential

Property of
CHEMAGRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION
<table>
<thead>
<tr>
<th>Date</th>
<th>PS Guatemalan Milk</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16/78</td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>PERK-HEIGHT 10 min</td>
<td></td>
<td>0.01450</td>
</tr>
<tr>
<td>PS Gutman</td>
<td>Milk</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Fortified @ 0.01 ppm PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3-71</td>
<td>PP + 13</td>
<td></td>
</tr>
<tr>
<td>154.0/187.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL

PROPERTY OF

CHEMAGRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date</th>
<th>PO Goat Milk</th>
<th>Control</th>
<th>Queal</th>
<th>Process</th>
<th>J3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-10-78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.0/75.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL

PROPERTY OF

CHEMAGRO AGRICULTURAL DIVISION
MOBAY CHEMICAL CORPORATION