

TEXT SEARCHABLE DOCUMENT 2009

DP Barcode: D321165

MRID No.:

Purity: 99.7%

466191-03

DATA EVALUATION RECORD AQUATIC INVERTEBRATE LIFE CYCLE TEST GUIDELINE 72-4(B)

1. CHEMICAL: Fipronil

PC Code No.: 129121

2. TEST MATERIAL: Fipronil

3. CITATION

Cafarella, Mark A. Authors:

Study Completion Date: Laboratory: Sponsor: Laboratory Report ID:

Fipronil - Life-Cycle Toxicity Test with Mysids (Americamysis bahia) Under Static Conditions in a Water-Sediment System February 24, 2005 Springborn Smithers Laboratories **BASF** Corporation Springborn Smithers Study No. 986.6163 Sponsor Protocol/Project No. 198247 BASF Reg. Doc. No. 2005/5000047 466191-03

4. <u>**REVIEWED BY:</u>** Anita Ullagaddi, EPS, EFED/ERB1</u>

MRID No.:

DP Barcode:

Title:

Signature:

Date: 3/12/09 Date: 3/12/09

5. APPROVED BY: Edward Odenkirchen, Ph.D., EFED/ERB1

Signature:

2083582

6. STUDY PARAMETERS

Age of Test Organism:

Definitive Test Duration: Study Method: Type of Concentrations:

Parental mysids: sexually mature, 21 days old Juvenile mysids: ≤24 hours old 28 days Static, water-sediment system Measured

7. <u>CONCLUSIONS</u>:

In a mysid life cycle study (MRID 46619103), fipronil concentrations in the water decreased over the study duration. Measured concentrations were below the level of detection (4 ng/L) on and after Day 14 (15 ng/L nominal group), Day 21 (30 ng/L nominal group), and 28 (60 ng/L nominal group). Therefore, measured concentrations are used to represent exposure levels in this study. Time-weighted average mean measured concentrations were calculated to estimate the concentration to which the mysids were exposed.

No statistically significant effects were observed in this study. However, there was a trend of decreasing population over time. The apparent population effect did not reach statistical significance when compared to the solvent control; however, these results appear to be biologically relevant because there was a dose-response trend and the total number of mysids was approximately 25% lower than controls at the highest mean measured concentration of 0.014 ug a.i./L (14 ng a.i./L). Therefore, based on a reduction in the number of free-ranging mysids, the NOAEC appears to be between 0.004 and 0.014 ug a.i./L.

Results Synopsis

A clear NOAEC was not established. There was a concentration-response relationship between mysid population and fipronil. The total number of mysids was approximately 25% lower than controls at the highest mean measured concentration of 0.014 ug/L. Therefore, based on a reduction in the number of free-ranging mysids, the NOAEC appears to be between 0.004 and 0.014 ug/L.

8. ADEQUACY OF THE STUDY

A. Classification: Supplemental

B. Rationale: The study does not satisfy a data requirement.

C. Repairability: N/A

9. MAJOR GUIDELINE DEVIATIONS:

1) Three toxicant concentrations were used instead of five.

2) Individual numbers of offspring per female was not reported.

3) A negative control was not used. Therefore, potential solvent effects could not evaluated.

MRID No.: 466191-03

10. MATERIALS AND METHODS:

A. **Biological System:**

Guideline Criteria	Reported Information
Species: An estuarine shrimp species, preferably <u>Americamysis bahia</u> .	Test species is <u>Americamysis bahia</u> . Juvenile mysids (\leq 24 hours old) and sexually mature (21 days old) mysids, <i>Americamysis bahia</i> , formerly <i>Mysidopsis</i> <i>bahia</i> , were used to initiate the life-cycle test.
Duration of the Test: A mysid test must not be terminated before 7 days past the median time of 1 st brood release in the control treatment.	28 days
Source (or supplier)	Aquatic BioSystems, Inc., Springborn Smithers culture
Parental Acclimation 1) Parental stock must be maintained separately from the brood culture in dilution water and under test conditions.	1) Protocol does not state whether parental stock was maintained separately from brood culture.
2) Mysids should be in good health.	2) Health of mysids not reported.
Parental Acclimation Period At least 14 days	14 days
Chamber Location: Treatments should be randomly assigned to test chamber locations.	Organisms were impartially placed in test vessels.
 Brood Stock: Test started with mysids: 1) from only one brood stock or 2) from brood stock which has not obtained sexual maturity or had been maintained for > 	Mysids were cultured in one of several 76- L glass aquaria with a closed-loop recirculating filtration system providing seawater to the aquaria. The seawater in the

Guideline Criteria	Reported Information
14 days in a laboratory with same food, water, temperature, and salinity used in the test.	aquaria was characterized as having a salinity of 19 to 21%, and a pH range of 8.2 to 8.3 during the 14-day period prior to test initiation.
	Sediment and overlying water were added to each replicate exposure vessel and allowed to equilibrate for three days prior to test substance application. The test substance was introduced into the aquaria one hour before test initiation. The test was initiated when the test organisms were impartially placed in the test vessels.
Distribution:No. of mysids before pairing: Minimum of15 mysids per compartment, 2 compartmentsper chamber, 2 chambers per concentration fora total of 60/treatment level.No. of mysids after pairing: \geq 20 randomly selected pairs/treatment (excessmales should be held in separate compartmentin same treatment to replace paired males).	200 mysids per treatment level and control (50 per aquarium) 20 pairs/treatment (excess males in separate compartment in same to replace paired males).
	Note: Each exposure aquarium contained five mysid pairing chambers used to house sexually mature male and female organisms. At test initiation (day 0), and the time of sexual maturity (approximately day 14 of the test), adult mysids were transferred to the pairing chambers. The first group of mysids (21 days old, designated group 1) were placed into the retention chambers on day 0. These mysids were selected from the holding tank in the culture facility. The second group of sexually mature mysids were selected from the initial group of juvenile mysids exposed
4	

Guideline Criteria	Reported Information
	in the aquarium on test day 0 (designated group 2). One male and one female were kept in each pairing chamber. A maximum of five pairing chambers were impartially suspended so as to not disturb the sediment layer in each test chamber.
	At initiation, each aquarium was stocked with 50 mysids (200 mysids per treatment level and control). Mysids, 24 hours old, were divided among 16 beakers. The beakers contained culture water and were held in a water bath maintained at 25 °C. The organisms were impartially selected and distributed to the beakers by adding five organisms at a time to each beaker until each beaker contained 50 mysids. Each group of 50 mysids was then transferred to one of the 16 labeled aquaria. In addition, forty sexually mature mysids were placed in the twenty retention chambers (five per aquarium) of each treatment level and solvent control. The test was initiated when the mysids were placed in their respective test aquaria
	Each group of 50 mysids was then transferred to one of the 16 labeled aquaria. In addition, forty sexually mature mysids were placed in the twenty retention chambers (five per aquarium) of each treatment level and solvent control.
 Pairing: 1) Should be conducted when most of the mysids are sexually mature (usu. 10-14 days after test initiation). 2) Should be paired on the same day 	1)At test initiation, 21-day old mature male/female pairs were transferred from cultures into each of five individual glass pairing chambers. These organisms were used to

Guideline Criteria	Reported Information
	 evaluate mysid reproduction during the initial 14-day exposure (designated group 1). 2) Juveniles (designated group 2) were exposed for 14 days, then paired.
 Feeding: 1) Mysids should be fed live brine shrimp nauplii at least once daily. 2) 150 live brine shrimp nauplii per mysid per day or 75 twice a day is recommended. 	During culture and testing, mysids were fed live brine shrimp (Anemia sauna) nauplii <48 hours old (post-hydration), twice daily, with one feeding supplemented with Selco®.
Counts: Live adult mysids should be counted 1) at initiation, 2) at pairing, 3) and daily after pairing	Live adult mysids were counted daily.
4) Live young must be counted and removed daily.	4) Live young in each pairing chamber were counted, recorded, and removed daily up until test day 14. At test day 14, all mysids were removed and counted from the retention chambers in order to initiate the mysid pairing of group 2.
5) Missing or impinged animals should be recorded.	5) Dead and missing mysids were counted and removed daily. Female survival was adjusted to account for impinged mysids.
Controls: Negative control and carrier control (when applicable) are required.	Four replicates of a solvent control were studied. One replicate was found to have been inadvertently dosed and was excluded from the pooled solvent control data. A negative control was not used.

B. <u>Physical System</u>:

Guideline Criteria	Reported Information
Test Water:	
1) May be natural (sterilized and filtered) or	1) Natural filtered seawater was diluted with
a commercial mixture:	laboratory well water.
2) Water must be free of pollutants.	2) Pesticides, PCBs, and metals were not
	detected.
3) During the test, difference between	
highest and lowest measured salinities must	
be less than 10 ‰ (parts per thousand).	
Should be measured daily.	
4) Salinity should be between 15 and 30 ‰.	4) Salinity was 20 ‰ at test preparation.
	Maintained at 20 ± 3 ‰.
5) pH should be measured at the beginning,	
end of test and weekly.	5) pH was 7.9 at test preparation.
6) DO must be measured (a) each conc. (a)	
least once a wk.	6) DO was 9.7 mg/L at test preparation.
7) See details in ASTME 1101	Dissolved everyon concentration will and
7) See details in AS1W E-1191.	Dissolved oxygen concentration, pH and
	of each treatment level and the colvent
	control solutions throughout the exposure
	period
	period.
Test Temperature:	
1) Measured daily in one chamber and at	A Visitherm submersible heater was used in
least 3 times in all chambers.	each tank to maintain test solution
2) Mean measured temperature for each	temperature at 25 ± 2 °C. Temperature was
chamber at test termination should be within	measured daily in each replicate of each
1°C of selected test temperature.	treatment level and solvent control.
3) Each individual measured temperature	
must be within 3°C of the mean of the time-	
4) For myrid shring 2700 in the state	
5) Whenever town is measured as well as the second	
in more than one test chamber the highest of	
in more than one test champer the highest &	

MRID No.: 466191-03

Guideline Criteria	Reported Information
lowest temp. must not differ by more than 2°C.	
Photoperiod: Recommend 16L/8D. 14L/10D also acceptable.	16L/8D
Dosing Apparatus: 1) Intermittent flow proportional diluters or continuous flow serial diluters should be used.	
2) A minimum of 5 toxicant concentrations	Three toxicant concentrations were studies.
3) with a dilution factor not greater than 0.5 and controls should be used.	A dilution factor of 0.5 was used.
Toxicant Mixing: 1) Mixing chamber is recommended but not required;	
2) Aeration should not be used for mixing;3) It must be demonstrated that the test solution is completely mixed before intro. into the test system;	2) Due to the anaerobic nature of marine sediments, aeration with oil-free air was utilized throughout the test.
4) Flow splitting accuracy must be within 10%.	
 Test Vessels: 1) Material: all glass, No. 316 stainless steel, or perflorocarbon plastic Test Chambers: 1)Most common: 300x450x150 mm deep with solution depth of 100 mm. 2) Should be covered. Test Compartments (within 	Glass aquaria and pairing chambers were used. 39 x 20 x 25 cm
chambers): 1) Size: 250 ml beaker with side cutouts covered with nylon mesh or stainless steel screen.	Cylindrical glass jars with 5.1 cm diameter

Guideline Criteria	Reported Information
or 3) 90 or 140 mm inside dia. glass Petri dish bottoms with collars made of 200 - 250 um mesh screen.	and 10 cm height
 Flow Rate: 1) Flow rates should provide 5 to 10 volume additions per 24 hr. 2) Flow rate must maintain DO at or above 60% of saturation and maintain the toxicant level. 3) Meter systems calibrated before study and checked twice daily during test period. 	Not applicable for a static study.
Aeration: 1) Dilution water should be aerated to insure DO concentration at or near 100% saturation. 2) Test tanks may be aerated.	Aeration with oil-free air was utilized throughout the test.

MRID No.: 466191-03

C. Chemical System:

Guideline Criteria	Reported Information
Concentrations: 1) Minimum of 5 concentrations and a control, all replicated, plus solvent control if appropriate.	1) 3 concentrations (15, 30, and 60 ng a.i./L) plus a solvent control were tested in replicates of 4.
2) Toxicant conc. must be measured in one tank at each treatment level every week.	2) For the first two replicates of each treatment level, concentrations were measured on day 0, day 7, and day 21. For the second two replicates, concentrations were measured on day 0, day 4, day 14, and day 28. In the 30 ng a.i./L treatment group, the fourth replicate was not measured for concentration because it was lost due to a broken heater. On day 0, the pooled solvent control had a measured concentration of the test chemical. On day 1, it was determined that the second replicate had been inadvertently dosed.
3) One concentration must adversely affect a life stage and one concentration must not affect any life stage.	3) Based on the author's reported LOEC of >60 ng a.i./L, no adverse effects were observed in any life stage. Statistically significant effects were observed; however, since there was no dose-response relationship, effects were determined not to be biologically significant.
4) The measured conc. of the test material of any treatment should be at least 50% of the time-weighted average measured conc. for >10% of the duration of the test.	4) Measured concentrations were 2pproximately 20% to 40% of nominal at Day 4.

MRID No.: 466191-03

Guideline Criteria	Reported Information
5) The measured conc. for any treatment level should not be more than 30% higher than the time-weighted average measured conc. for more than 5% of the duration of the test.	5)
 Solvents: 1) Should not exceed 0.1 ml/L in a flow- through system. 2) Following solvents are acceptable: triethylene glycol, methanol, acetone, ethanol. 	 Solvent prepared at a concentration of 0.1 mL/L for this static system. Acetone was used as a solvent.

Comments:

The test system also included sediments. The study report included the following description of the sediment. "The sediment used during this study was collected from Little Harbor Beach, Wareham, Massachusetts. Prior to use and characterization, the sediment was wet pressed through a 2.0-mm sieve to remove large particles. The sediment used in this study was characterized by Agvise Laboratories, Northwood, North Dakota, as having a percent organic carbon of 2.7%, a particle size distribution of 77% sand, 14% silt and 9% clay, a pH of 7.7 and a percent moisture at 1/3 bar (water holding capacity) of 19.2%. Prior to allocation to the test vessels, a sample of the sediment pore water was collected by centrifugation and measured for total ammonia. The concentration of ammonia in the pore water was 18.6 mg/L as nitrogen, and was below levels that would affect the performance of the test. A representative sample of the sediment source was analyzed for the presence of pesticides, PCBs and toxic metals by GeoLabs, Inc., Braintree, Massachusetts. None of these compounds were detected at concentrations that would be considered to have an adverse impact on the results of the test."

11. <u>REPORTED RESULTS</u>:

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes.
Controls: 1) Survival of the first-generation controls	1) Survival of parental females was $92 \pm$

Guideline Criteria	Reported Information
(between pairing and test termination) must not be less than 70%.	14% (second replicate of solvent control excluded from analysis since it was inadvertently dosed). Survival of juvenile females was 100%. Survival was adjusted for impingement.
2) At least 75% of the paired 1 st generation females in the controls produced young	2) On day 14, 87% of females in the three pooled solvent control replicates had produced young, although not all parental females that produced young were still alive.
3) The average number of young produced by the 1 st generation females in the control(s) was at least 3.	Average number of young produced in the solvent control was >3 for all replicates. However, the average number of young in the inadvertently dosed control replicate was 1.8.
Data Endpoints must include:	
1) Survival of first-generation mysids Female Male	Survival of first generation male and female mysids was evaluated.
2) Number of live young produced per female3) Dry weight of each first-generation mysid	2) The ratio of the total number of offspring produced to the total number of females per chamber per reproductive day was evaluated; individual data not reported.
 alive at the end of the test Female Male 4) Length of each first-generation mysid 	Individual lengths and weights of all surviving males and females were recorded for each replicate of each concentration and the solvent control.
alive at the end of the study Female Male	
5) Incidence of pathological or histological effects:	5) Data not reported.
6) Observations of other effects or clinical signs.	6) Observations were inadvertently not conducted.

Guideline Criteria	Reported Information
Raw data included? (Y/N) At a minimum, individual data should be included for:	Yes
 surviving 1st generation _ and _ mysids. Number of live young produced per female 	1) Survivors reported.
 3) Individual length measurements of _ and _ mysids. 4) Individual dry weight measurements for	2) Total number of live young reported per group of females per reproductive day.
and _ mysids at the end of the test.	Individual lengths and dry weights reported.

466191-03

Results tables from the study report are presented below. Water and sediment measurements are presented in study tables 2 and 3, and effects data summaries are presented in Tables 4 and 5 of the study report. These tables are included below.

Table 2.Concentrations of fipronil measured in overlying water samples
during the 28-day life-cycle exposure of mysids (Americamysis bahia)
in a water-sediment system.

				في يوسياه بدالا المسورة ال				-	-					
Nominal						O1	erlyin	g Wat	er					
Concentration					Mes	sured (Concen	tration	(ng a.i./	<u>L)</u>				
(ng a.i./L)	Replicate	Day 0	Mean	Day 1	Day 4	Mean	Day 7	Mean	Day 14	Mean	Day 21	Mean	Day 28	Меап
Solvent	A	14 ª		<4.0	<4.0	<4.0	<4.0	<4.0	NA	<4.0	<4.0	<4.0	NA	<4.0
Control	В			53 ^b	48		53		NA		34		NA	
	C			<4.0	<4.0		NA		<4.0		NA	•	<4.0	
	D			<4.0	<4.0		NA		<4.0		NA	•	<4.0	
15	A	14	17	NS	NAd	6.4	6.2	5.6	NA	<4.0	<4.0	<4.0	NA	<4.0
	B	15		NS	NA		4.9		NA		<4.0		NA	
	С	20		NS	6.4		NA		<4.0		NA		<4.0	
	D ·	19		NS	<4.0		NA		<4.0		NA		<4.0	
30	A	31	31	NS	NA	8.2	8.1	8.7	NA	6.9	<4.0	<4.0	NA	4.2
	B	34		NS	NA		9.2		NA		<4.0		NA	
	С	27		NS	8,2		NÁ		6.9		NA		4.2	
	D*	30		NS	NS		NS		NS		NS		NS	
60	A	54	55	NS	NA	12	19	17	NA	16	6.6	5.3	NA	<4.0
	В	53		NS	NA		15		NA		4.0		NA	
	С	58		NS.	11		NA		14		NA		<4.0	
	D	53		NS	13		NA		18		NΛ		<4.0	
QC #1 F	· .	16.6		13.9	<4.0#		14.8		13.1		13.4		12.2	
15.0		(111)		(92.8)	(NA)		(98.8)		(87.1)		(89.0)		(81.4)	
OC #2		33.6		18.8° w	23.9		25.4		25.4		23.4		21.9	
30.0		(112)	5	(NS)	(79.6)		(84.5)		(84.7)		(77.9)		(72.9)	
QC #3		65.7		WORKS .	54.4		60.6		56.2		51.6		56.9	
70.0		(93.9)		(NS)	(77.7)		(86.6)		(80.3)		(73.8)		(81.3)	

^a On test day 0, the control sample consisted of a composite sample of replicates A-D.

The mean solvent control value on day 0 resulted in a measured concentration of 14 ng a.i./L, suggesting one of the solvent controls were inadvertently dose with fipronil. Therefore on day 1, all replicate solvent control samples were reanalyzed separately. For the remainder of the study, solvent control samples were removed similarly to the treatment level samples (i.e., alternating between intervals).

NS = Not Sampled.

NA = Not Analyzed. Sample taken from replicate tank and archived.

Aquarium heater failed in exposure tank and this replicate was not included in the analysis after day 0.

QC = Quality Control sample. Percent recovery of each sample is presented in the table.

QC sample #1 on test day 4 is below detection limit due to matrix difficulties with this sample.

Based on the measured concentrations, the mean measured concentration was 14 ng/L, 7.5 ng/L, and 4.3 ng/L at the nominal 60 ng/L, 30 ng/L, and 15 ng/L exposure groups, respectively.

Table 3.Concentrations of fipronil measured in sediment samples during the
28-day life-cycle exposure of mysids (Americamysis bahia) in a
water-sediment system.

Nominal Concentration		Mea	Sedi isured Concer	iment Itration (ng a.i	./kg)	н.
(ng a.i./L)	Day 0	Day 4	Day 7	Day 14	Day 21	Day 28
60	<30	140	115	78	98	<30
QC #1*	98.9	157	149	161	154	157
200	(49.5) ^b	(78.3)	(74.7)	(80.6)	(77.0)	(78.3)

^a QC = Quality Control sample. Percent recovery of each sample is presented in the table.

^b Percent recovery for this QC sample was outside of the established range (i.e., 70.0 to 120%, Appendix 3).

Table 4.Summary of endpoints for the water-sediment life-cycle exposure of mysids (Americamysis bahia) to
fipronil.

	Group 1 Means	(Standard Deviation)		Group 2 Me	ans (Standar	d Deviation)	·····		Free-ranging	g Mysids, Means	(Standard Deviation)
Nominal Concentration (ng a.i./L)	Female % Survival	# of Offspring per Reprod. Day	Female % Survival	# of Offspring per Reprod. Day	Male Length (mm)	Male Weight (mg)	Female Length (mm)	Female Weight	# of Immature Mysids	# of Mature Mysids	Population (free-ranging)
Solvent						````Z					(1100 TRUE 1000)
Contro]*	92 (14)	0.59 (0.1 4)	100 (0)	2.2 (0.31)	7.7 (0.36)	0.94 (0.14)	7.9 (0.26)	1.2 (0.14)	489 (82)	46 (10)	535 (83)
15	90 (12)	0.40 (0.15)	85 (10)	1.6 (0.22) ^a	7.6 (0.32)	0.82 (0.21)	7.9 (0.28)	1.3 (0.08)	480 (104)	31 (3)	511 (106)
30	93 (12)	0.31 (0.11) ^b	100 (0)	1.8 (0.36)	7.7 (0.42)	0.93 (0.15)	7.9 (0.40)	1.2 (0.30)	397 (143)	41 (10)	438 (151)
60	89 (13)	0.44 (0.010)	95 (10)	2.0 (0.33)	7.6 (0.26)	0.88 (0.07)	8.1 (0.20)	1.3 (0.18)	362 (71)	42 (10)	404 (61)

Note: Female survival was adjusted for organisms lost due to impingement.

All replicate data are presented in Appendix 4.

^a Replicate B of the solvent control was excluded from analysis due to contamination.

* Statistically different compared to the solvent control, using Bonferroni T-test, however was not considered biologically relevant.

Toxicity Observations:

In addition to the endpoints presented in the preceding table, the total number of freeranging mysids were evaluated. The study report indicates that "the total number of immature mysids in the 15, 30 and 60 ng a.i./L treatment levels was 480, 397 and 362, respectively, and was not statistically different from the solvent control (489), based on Williams' test. The total number of mature mysids in the 15, 30 and 60 ng a.i./L treatment levels were 31, 41 and 42, respectively, and was not statistically different from the solvent control (46), based on Williams' test. The total free-ranging mysids in the 15, 30 and 60 ng a.i./L treatment levels were 511, 438 and 404, respectively, and was not statistically different from the solvent control (535), based on Williams' test."

MRID No.: 466191-03

Reported Statistical Results:

Most sensitive endpoint:

Endpoint	NOEC (nominal)	LOEC (nominal)
Survival	60 ng/L	>60 ng/L
Reproduction	60 ng/L	>60 ng/L
Weight	60 ng/L	>60 ng/L
Length	60 ng/L	>60 ng/L

Comments:

The time weighted average concentrations were as follows:

Nominal Concentration: 60 ng/L Mean Measured Concentration: 14 ng/L

Nominal Concentration: 30 ng/L Mean Measured Concentration: 7.5 ng/L

Nominal Concentration: 15 ng/L **Mean Measured Concentration:** 4.3 ng/L

Mean measured concentrations assumed that levels that were below the level of detection of 4 ng/L were equal to $\frac{1}{2}$ the detection limit (2 ng/L).

Given that fipronil concentrations decreased dramatically over the study duration, mean measured values were used to define toxicity endpoints from this study.

12. <u>Reviewer's Statistical Results</u>:

The reviewer performed statistical analyses using Toxstat statistical software. The reviewer's conclusions with respect to statistical significance are equivalent to the study authors' analyses. However, there was a trend of decreasing population over time (study table 4). The apparent population effect did not reach statistical significance when compared to the solvent control;

MRID No.: 466191-03

however, these results appear to be biologically relevant because there was a concentrationresponse trend and the total number of mysids was approximately 25% lower than controls at the highest mean measured concentration of 0.014 ug/L. Therefore, based on a reduction in the number of free-ranging mysids, the NOAEC appears to be between 0.004 and 0.014 ug a.i./L (4 and 14 ng a.i./L).

Attachment 1. Effects Data Tables

14 01/05/05

Daily Summary of Reproduction Data for a Mysid-Sulincent Life Cycle Definitive Study (Group #1) Test Material: Fipronii Study Number: 486.6163

Test Day:

Date:

Nominal	Rep	-		# males	#	%Female	*Female	female	s #	%	% female	теац		Females	Cum # o	f Acus	l#of	Ave#F1 per	Ave.#F1 pe	r
Conc.		Ŧ	hired	dead	mpinge	d Servival	Survival	dead	imping	ed impinged	Survival	% femaie	St.	Prod.	Offsp.	Repro	.days	Repro.day	Repr.day	SI.
(ngAJJL)		maies	lemales			pet tep.	per cone.				(adjusted)	servival (additional)	Dev.	Young	to state			(Rep.)	(Cone	Dev.
	•											(acjusted)								
60	iA	5.	4	6	4	80	80	. 1	1	100	100	89	13	4	34	é	1	-0.5374	0,4365	6.09959
	118	4	3	. 3	I	60 -		2	1	50	75			5	25	\$	7	0.4386		
	10	4	4	6	4	30		ter a	· 0	Û	80			5	39	6	4.	0.4531		
	١D	5	5	4	2	100		Û	0		190			. 5	22	7	9 -	0.3143		
30	2A	5	. 4	. 0	0	89	87	1	1	100	100	93	12	5	18	6	6	0.2727	0.3131	0.1061466
	2B	-5	5	9	4	100		0	6		100			4	30	. 7	0	0.4286		
	2C	4	4	2	2	80		1	0	0	80			4	14	6	2 .	0.2258		
•	2D	TERMIN	ATED												•					
									•											
15.	3A	4	5	. 4	2	100	80	0	0		80	90	12	4	21	7	0	0.3000	0.4000	0.1501004
	3B	2	2	4	2	40		3	3	100	100			5	32	5	5	0.5818		
•	3Ć	5	5	5	3.	100		0	0		100			3	19	7	0	0.2714		
	3D	. 4	4	5	3	80		1	0	0	80			5	32	6	3	0.4923		
Sol.Cont.	4A	ä	3	5	3	50	60	2	1	50	75	92	14	4	32	5	4	0.5926	0.5895	0.136592
•	4B [']	1	2	7	3	40		3	0	Q	40		÷.	5	9	1.3	ĥ	0.1607		
	4C	´4	3	3	1	60		2	2	100	100			4	26	5	8	0.4483		
	4D	. 4.	4	3	2	80		1	1	100	100			5 '	44	ţ	3	0.7213		
							•				•			Total					,	
					•									Young						
	¹ Con	tamination p	oresent (51 ng	L measured	I)									To Date	387		ľ.			
	exclu	led kom ca	dpoint calcula	tions.						· .										

MRID No.:

MRID No.: 466191-03

Daily Summary of Reproduction Data for a Mysid-Sedument Life Cycle Definitive Study (Group #2)-Paired mysids only Test Material: Fipronii

Study Number:	986,6163
Test Day:	28
Date:	01/19/05

Date:

Normal	Pan								÷ .												
Cone	. Acp	Pairad		# males	¥ imminun 1	%Female	%Female	female	s # -	56	% female	mean		Females	Cum.#oi	Actual #	of Ave.	íFiper,	Ave#F1 pe	ar i	
(ng A.L/L)	`	maies	Gereales	gead.	unhangen	Survivat	SEEVIVAL	dead	impinged i	repinged	i survival	% female	: SE	Prod.	Off.	Repr.	Rep	r.day	Repr.day	Standard	
r.strand		1460.02	JOHEALS			per rep.	per conc				(adjusted)	survival (dimend	Dev.	Young	to clate	days	(R	ep.)	(Conc.)	Deviation	
												(adjusted)	,								
60	łA	3	3	7	6	60	75	2	1.	50	80	95	10	5	127	53	21	967	1 0503	A 2216-172	
	1B	4	'4	. 4	4	80		1	1.1	100	100			5	108	- 65	1.4	887	8. 4 JU 2. 4	0.33402/3	
	IC	4	4	3	3	.80		8	1	100	100			4	127	63	2.0	159			
	ID	4	4	5	3	80		ŧ	1	100	100			5	120	53	1.5	355			
30	2A	-5	S	, Q	0	100	73	Ô	6		100	100	0	5	146	70	2.0	857	1.8238	0.3619854	
	28	3	-3	7	5	60		2	2	100	100			5	108	54	2.0	6000			
	20	1	3	8	8	60		2	2	100	100			5	98	69	1.4	203			
	20	LENSHAA	ED	2																	
15	2.4	,		0	7	40						<u></u>									
	38	2	. 2	6	÷ .	40	25	\$	٤	100	100	85	10	5	83	45	1.8	444	1,6295	0.2212197	
	3C	3		6	· 4	ŝ		-	1	20	8U 80			5	\$\$	58	1.5	172			
	3D	2	2	7	7	40		2	2	47	80				98	57	1.7	193			
									-	Q 7	av			,	÷.	35	1.0	423			
Sol.Cont.	4A ·	3	ŧ	4	3	20	55	4	4	100	100	100	a	5	126	٩a		200	2 1823	0 3079474	
	4B'	5	- 3	0	¢.	60	-	Z	1	50	80			4	95	39 47	2.2	213	6.1023	4.3479920	
	4C	4	3	4	3	60		2	2	100	100			5	120	63	1.9	1148			
	4D	3	4	4	4	80		1	1	100	100			5	149	68	2.1	912			
														Total							
	1										1990 - S			Young							
	CONTAIN	nation prese	nt (51 ng/L 1	measured)										To Date	1640						
	excanca	nom endpos	ai chicelation	AS.			•														
																					_
								-										1			
Finnail	28 Day M	wid I ife	Cycla (W	star Carl	imant)	Malat	an mile (C1/2		· ·										
	Lo any n	your Line	Cycle (W	auci ~90u	пненк) -	IVIARC L	engin (m	m) 984	0.010.5										t sa shi		
			<u> </u>																		
			Sorvent	Control			1	5 ng a.	1./1.			30 ng	g a.I.	ΛL.				60	ng a.L.A.		
Notice and the second		<u>A</u>	<u>B'</u>	<u> </u>	D	·	<u> </u>	3	C	D	A	В		С	D		А	B	c	D	
				··· •														·			
		7.3	7.4	7.5	8.0	7.	0 7	9	7.7	7.6	77	75		76	S		77	70	74		
		7.8	7.1	71	77	. 7	a 7	2	76	7.0	6 A	20					7.7	7.9	1.4	1.3	
		7 2	7.0	57	7.0				7.0	1.0	0.0	0.9	. 1	1.9			1.9	7.3	7.1	7.9	
		1.3	1.0	0.2	1.5		7.	.9	1.2		8.4	7.6					7.7	7.2	7.3	7.7	
			7.5	8,0							8.1							7.7	7.4	7.6	
			7.4								7.4										
																			N		
									· .• .		•.										
mean	${\bf v}_{\rm c} = {\bf v}_{\rm c}$	7.5	7.3	7.7	7.8	7	5 7	7	75	77	79	73		78			70	7 -	-		
std.dev.		0.20	0.22	0.50	015		54 P.	2.6	076	~~r \ 1.8	1.3	1.3	_				1.8	7.5	7.3	7.7	
		7.7			0.13	93	04 U,	53	0.20 (1.14	0.38	0.38	0	21			0,12	0.33	0.14	0.17	
TUNE		7.3	7.0	7.1	7.7	7.	0 7.	3	7.2	7.6	7.4	6.9		7.6			7.7	7.2	7.1	7.5	
max		7.8	7.5	8.2	8.0	7.	9 7.	9	7.7	7.8	8.4	7.6		7.9			7.9	7.9	7.4	7.9	
n		3	5	4	3	1	: 3	1	3	2	5	3		2			3	4	4	A	
cov		4%	3%	6%	2%	94	6 4	%	4%	2%	50%	504		20%			18/	. 40/	302	202	
									•70		~7.7 0	370	-	370			176	476	2%	270	
mean										÷ -									· · ·		
					4.1					1.0					7.7					7.6	
stutey.					0.36				().32				. 1	0.42					0.26	
min					7.1				•	7.0					6.9					7.1	
max										-	· ·								1		
					8.2					7.9					8.4					70	
n.					8.2 10					7.9 10					8.4 10					7.9	
n cov		•			8.2 10 5%	•				7.9 10					8.4 10					7.9	

¹Excluded

466191-03

ipronil- 28 Day	y Mysid	Life Cycl	e (Water-	Sediment) - Female	Length (n	nan) 986	6163		·····		·					
		Solven	t Control			15 ng	a.I.L	-	·	30 ng :	LI.A.				60 ng	a.1./L	
	A	B'	с	D	A	В	С	D	A	В	C	D		A	B	C	D
									•								
	7.9	7.9	8.1	8.2	8.3	8.0	7.6	7.5	7.8	7.6	7.8		· 1	3.4	8.2	8.1	8.0
		8.0	7.7	8.0	7.7	7.6	8.2	8.0	8.4	7.9	7.6		Į	8.1	8.3	8.0	7.9
		8.2	7.4	7.8		8.2	8.0		8.6	7.3	8.1			7.9	7.9	7.9	8.4
				8.1		•	7.8		7.5		· .				7.8	8.1	8.3
									8.2								
						•											
nean	7.9	8.0	7.7	8.0	8.0	7.9	7.9	7.8	8.1	7.6	7.8			8.1	8,1	8.0	8,2
td.dev.		0.15	0.35	0.17	0.42	0.31	0.26	0.35	0.45	0.30	0.25		0	1.25	0.24	0.10	0.24
un -	7.9	7.9	7.4	7.8	7.7	7.6	7,6	7.5	7.5	7.3	7.6			7.9	7.8	7.9	7.9
ax	7.9	8.2	8.1	8.2	8.3	8.2	8.2	8.0	8.6	7.9	8.1			8.4	8.3	8.1	8.4
E -	1	3	3	4	2	3	4	2	5	3	3			3	4	4	4
vov	0%	2%	5%	2%	5%	4%	3%	5%	6%	4%	3%		:	3%	3%	1%	3%
rean				7.9				7.9				7.9			- N		8.1
d.dev.	•			0.26				0.28				0.40					0.2
ain				7.4				7.5				7.3					7.8
nax				. 8.2				8.3				8.6			1		8.4
1				8				- 11				11					15
OV				3%				3%				5%					3%
											s.)						
Excluded																	

MRID No.: 466191-03

		Solvent	Control			15 ng	a.I./L			30 ng a	I.I.A.			60 ng	a.I./L	
	A	B	c	D	A	В	C	D	A	В	с	D	A	B	Ċ	D
	0.92	0.92	1.22	1.05	0.96	0.49	1.15	0.81	0.77	1.13	0.99	•	0.98	0.89	0.86	0.86
	0.85	0.72	1.01	0.97	0.92	0.54	0.60	0.91	1.16	0.87	0.67		0.88	0.86	0.91	0.94
	0.83	0.93	0.79	1.02		0.99	0.83		0.91	0.97			0.83	0.69	0.82	0.95
		0.94	0.75						0.99			• ,		0.95	0.87	0.89
· •		0.89							0.82							
· ·																
mean	0.87	88.0	0.94	1.01	0.94	0.67	0.86	0.86	0.93	0.99	0.83		0.90	0.85	0.87	0.91
std.dev.	0.05	0.09	0.22	0.04	0.03	0.28	0.28	0.07	0.15	0.13	0.23		0.08	0.11	0.04	0.04
min	0.83	0.72	0.75	0.97	0.92	0.49	0.60	0.81	0.77	0.87	0.67	<u>-</u>	0.83	0.69	0.82	0.86
max	0.92	0.94	1.22	1.05	0.96	0.99	1.15	0.91	1.16	1.13	0.99		0.98	0.95	0.91	0.95
n	3	5	4	3	2	3	3	2	5	3	2		3	4	4	4
COV	5%	10%	23%	4%	3%	41%	32%	8%	17%	13%	27%		9%	13%	4%	5%
mean				0.94			•	0.82				0.93				0.80
std.dev.				0.14				0.21				0.15			÷ .	0.0
min				0.75				0.49				0.67				0.6
max			•	1.22				1.15				1.16				0.98
n				10				10				10				. 15
cov				1 5%				769%				1600				00/

		Solven	t Control			15 ng	a [/].			30 00	» I Л				60	~ T /r	
			- 	-						Joing	a.1./1.				on ug	3.1./L	
	<u>A</u>	3.	<u>. c</u>	<u>D</u>	A	8	<u> </u>	D	A	<u>B</u>	<u> </u>	<u>D</u>	·	<u>A</u>	<u>B</u>	<u> </u>	D
	1.29	1.65	0.94	0.96	1.22	1.28	1.38	1.25	1.03	1.36	1.49			1.18	1.26	1.23	1.41
	١.	1.08	1.19	1.27	1.29	1.08	1.28	1.27	1.48	0.70	1.13		· .	1.26	1.51	1.42	0.80
		0.96	1.03	1.26		1.38	1.22		1.61	1.31	0.73			1.47	1.31	1.12	1.21
				1.22			1,31		1.16		· .				1.23	1.54	1,35
÷.					•				1.23							•	
										•				-			
mean	1.29	1.23	1.05	1.18	1.26	1.25	1.30	1.26	1.30	1.12	1.12			1.30	1.33	1.33	1.19
std.dev.		0.37	0.13	0.15	0.05	0.15	0.07	0.01	0.24	0.37	0.38		·	0.15	0.13	0.19	0.27
min	1.29	0.96	0.94	0.96	1.22	1.08	1.22	1.25	1.03	0.70	0.73			1.18	1.23	1.12	0.80
max	1.29	1.65	1.19	1.27	1.29	1.38	1.38	1.27	1.61	1.36	1,49			1.47	1.51	1.54	1.41
11	1	3	3.	4	2	3	4	2	5	3	3			3	4	4	4
cov	0%	30%	12%	12%	4%	12%	5%	1%	18%	33%	34%		•	11%	9%	14%	23%
mean				1.15				1.27			•	1.20					1.29
std.dev.				0.14				0.08				0.30					0 18
min				0.94				1.08				0.70					0.80
max				1.29				1.38		* .		1.61					1.54
n.				8				11				11					. 15
cov				13%				6%				258/					1.492
	· ·							₩7₽			·	2.3 /6					1470
¹ Excluded		e e e	-		· .												

MRID No.: 466191-03

Population census of free-ranging mysids at termination of the 28-day sediment water hite-cycle exposure to Fipronil.

rep	Total	# of Mature Males	# of Mature Females	Total	Population
	Immature			Mature	Total
A	568	18	35	53	621
					1
<u>B*</u>	269	20	35	55	324
С	494	9	25	34	528
D	405	17	33	50	455
Mean	489			AC	
Std Dev	82			10	83
Á	492	5	25	30	522
В	344	10	19	29	373
с	597	11	24	35	632
D	486	6	23	20	
					
Mean Std Day	480		· + +	31	511
Std Dev	104			3	106
	rep A B* C D Mean Std Dev A B C D D Mean Std Dev	rep Tetal Immature Immature A 568 B* 269 C 494 D 405 Mean 489 Std Dev 82 D 445 Mean 489 Std Dev 82 Mean 485 Mean 485 Mean 568 Std Dev 104	rep Total # of Mature Males Immature Immature A 568 18 B* 269 20 C 494 9 C 494 9 D 405 17 Mean 489 10 A 492 5 B 344 10 C 597 11 D 486 6 Mean 480 104	rep Total # of Mature Males # of Mature Females Immature	rep Fotal # of Mature Males # of Mature Females Total Immature Mature Mature Mature A 568 18 35 53 B* 269 20 35 55 C 494 9 25 34 D 405 17 33 50 Mean 489 17 33 50 Mean 489 10 10 10 C 597 11 24 35 D 486 6 23 29 Mean 489 10 19 29 Mean 489 10 19 29 Mean 486 6 23 29 Mean 486 6 31 31 Mean 480 31 31 31

Concentration	rep	Total	# of Mature Males	# of Mature Females	Total	Ponulation
(ng a.i./L)		Immature			Mature	Total
30	A	375	12	21	33	408
	B	550		34	S2 ·	602
				11		
	C	266	15	24	39	305
	D**					
			· · · · · · · · · · · · · · · · · · ·			
	Меня	397			41	438
	Std Dev.	143			10	151
60		410		70	2£	446
						440
	B	256	19	38	57	313
· · · · · · · · · · · · · · · · · · ·		388	12			
				+++	30	*24
	D	395	12	25	37	432
	Мезл	367		+++		
	Std Dev	71		+++	42	404

* Note: Solvent control replicate B was excluded from statistical analyses due to contamination present on day 0.

** Replicate D of the 30 ng/L treatment level was lost due to a broken heater.

EPA ARCHIVE DOCUME