
US ERA ARCHIVE DOCUMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENC WASHINGTON, D.C. 20460

FEB | 6 1995

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT:

Dietary Exposure Analysis for Imidacloprid (NTN) through the Use on Fruiting Vegetables and Brassica Leafy Vegetables Crop Groups, Lettuce, Grapes, Tomato Processed Commodities; Meat. Milk, Poultry and Eggs (PP#3F4231/3H5675).

FROM:

Jennifer M. Wintersteen

Dietary Risk Evaluation Section

Science Analysis Branch/HED

TO:

Dennis Edwards, PM Team 19

Insecticide-Rodenticide Branch

Registration Division

(7505C)

THROUGH:

Elizabeth A. Doyle, Section Head

Dietary Risk Evaluation Section

SAB/Health Effects Division

Action Requested

Provide a Dietary Risk Evaluation System (DRES) analysis of the dietary exposure for imidacloprid through the proposed uses on various raw agricultural commodities (RACs). The following tolerances are being assessed in this analysis:

Fruiting Vegs Crop Group	• (٠		•			•	•	•		1.00 ppm
Brassica Vegs Crop Group	• 4	• •			•		ف د		•	•	٠	•	•	3.50 ppm
Grapes	• •				٠		•			•			•	1.00 ppm
Lettuce	. ,				•					٠	•	•	٠	3.50 ppm
Tomato paste	• •				•		•		•	•	•	•	•	6.00 ppm
Tomato puree	•)	• • •	• •,		•	• •	•	· •	•	•		. •		3.00 ppm
meat, fat and byproducts of ca	ttle	, ho	rses,	she	ep,	goats	and	hog	8			•	•	0.30 ppm
meat, fat and meat byproducts	of p	oult	ry		•				•	•	٠		•	0.05 ppm
eggs					•					•	•	•		0.02 ppm
milk														

Discussion

1. Toxicological Endpoint: The chronic analysis used a Reference Dose (RfD) of 0.057 mg/kg body weight/day, based on a no observed effect level (NOEL) of 5.7 mg/kg bwt/day and an uncertainty factor of 100. The NOEL is based on a chronic toxicity study in rats that demonstrated increased thyroid lesions in males as an endpoint effect. The HED RfD Peer Review Committee also classified imidacloprid as a Group E carcinogen (G. Ghali memo, 11/10/93).

An acute dietary assessment is required by the Toxicology Endpoint Selection Document for Imidacloprid (M. Ottley and K. Baetcke memo, 4/18/94). The endpoint for acute dietary risk assessment is 24 mg/kg/day from the rabbit developmental study. The LEL (72 mg/kg/day) was based upon decreased body weight, and increased resorptions, abortion and increased skeletal abnormalities.

2. Residue Information: Food uses evaluated in this analysis were the published tolerances listed in 40 CFR §180.472 and the proposed new uses as recommended in a CBTS memo by F. Griffith dated 1/19/95. Hops is included in this analysis as a published commodity with an expiration date of 6/28/95.

Meat and milk tolerances, 0.3 and 0.1 ppm, respectively, in imidacloprid have recently been published. These published tolerances are

equal to the proposed meat and milk tolerances in this petition.

No information has been provided for refinement of percent of crop treated or anticipated residues for either chronic or acute analyses. A summary of the residue information used in the analysis is attached as Table 1.

3. Results: A DRES chronic exposure analysis was performed using tolerance level residues and 100 percent crop treated information to estimate the Theoretical Maximum Residue Contribution (TMRC) for the general population and 22 subgroups.

Summaries of the TMRCs and their representations as percentages of the

RfD for imidacloprid are attached as Table 2.

The following table provides exposure information for the U.S. population and the most highly exposed subgroup, children one to six years old. Exposure and percent of the Reference Dose for each proposed commodity is given in the table as well.

TM	RC Exposure	Estimates fo	or Imidacloprid	, , , , , , , , , , , , , , , , , , ,
Commodity Type	U.S. Popula (TMRC) (μg/kg/day)	(%RfD)	Children (1-6) (TMRC) (µg/kg/day)	rs) (%RfD)
Published Uses - hops - meat - milk - cottonseed - potatoes - apples - sorghum - TOTAL	2.594130	5	6.577375	12
Proposed Uses - Fruiting Vegs - Brassica Vegs - Grapes - Poultry - Eggs - Tomato paste/purce! - Lettuce	3.682286 0.718137 0.265345 0.025334 0.011607 2.964333 0.790699	6 1 0.5 0.04 0.02 5	7.797148 0.887115 0.772070 0.051560 0.025999 6.619601 0.623376	14 2 1 0.09 0.05 12
Total	8.087994	14	16.734728	29

¹ Tomatoes are part of the Fruiting Vegetables Crop Group. The exposure due to tomato paste and puree listed here is also reflected in the exposure from this crop group. Total exposure was calculated with tomato commodities included only once.

Acute Exposure

The DRES detailed acute exposure analysis evaluates individual food consumption as reported by respondents in the USDA 77-78 Nationwide Food Consumption Survey (NFCS) and estimates the distribution of single day exposures through the diet for the U.S. population and certain subgroups. The analysis assumes uniform distribution of imidacloprid in the commodity supply. Since the toxicological effect to which high end exposure is being compared in this analysis is developmental toxicity, the DRES subgroup of concern is females (13+ years) which approximates women of child-bearing age.

The Margin of Exposure (MOE) is a measure of how closely the high end exposure comes to the NOEL (the highest dose at which no effects were observed in the laboratory study), and is calculated as the ratio of the NOEL to the exposure (NOEL/exposure = MOE). For substances whose acute NOEL is based on animal studies, the Agency is not generally concerned unless the MOE is below 100.

In the analysis, tolerance level residues were used to calculate the high-end exposure for the females (13+ years) subgroup. Although the analysis considered only those individuals who consumed any of the commodities in the DRES data file for imidacloprid, the consuming population represents approximately 99% of the surveyed individuals. High end exposure was compared to the NOEL of 24 mg/kg bwt/day from the rabbit developmental study to get a high end Margin of Exposure. The MOE for females was calculated in the attached table and the results are as follows:

Females (13+ years) High End Exposure = 0.048 mg/kg/day NOEL/Exposure = 24 mg/kg/day ÷ 0.048 mg/kg/day = 500

Using the given endpoints, the MOE is not of concern for the subgroup females (13+ years) with an estimated MOE above 100. See attached Table 3 for a distribution of acute exposure.

Discussion

To the extent that this analysis used tolerance level residues and 100 percent-crop-treated assumptions, it is considered a "worst-case" picture of the dietary risk from imidacloprid. The chronic dietary risk from exposure of imidacloprid appears to be of minimal concern, with all DRES subgroups having TMRC values well below the Reference Dose.

The acute dietary analysis of imidacloprid is not of concern for females of child-bearing age considering the proposed tolerances.

There appears to be no dietary concern for the tolerances on the recommended commodities found on page 1 of this memo.

Attachments

cc: DRES Caswell #497E Tox I (M. Ottley), CBTS (Griffith)

9
CHEMICAL
INFORMATION
₽ P
CASWELL
NUMBER
497E

DATE: 02/13/95

PAGE:

14013AA 14013AB 14013AC 14013DA 14013HA 24006AA 27003OA 27003UA 43058AA	13007AA 13008AA 13009AA 13010AA 13011AA 13012AA 13013AA 13020AA 13021AA 13021AA	11005AA 11005JA 11005RA 11005RA 11005UA 13005AA 13006AA	06007AA 08020AA 11001AA 11003AA 11003AB	01013AA 01014DA 01014JA 04001AA 04001DA
POTATO POTATO POTATO POTATO POTATO SORGHI COTTOI COTTOI VINE	CABBAGE- CAULIFLO COLLARDS CABBAGE- KALE KOHLRABI LETTUCE- LETTUCE- MUSTARD LETTUCE-	TOMATOES- TOMATOES- TOMATOES- TOMATOES- TOMATOES- TOMATOES- BROCCOLI BRUSSEL S	HOPS EGGPLANT PEPPERS CHILI PE PEPPERS	GRAPES GRAPES GRAPES APPLES APPLES
POTATOES(WHITE) POTATOES(WHITE) POTATOES(WHITE) POTATOES(WHITE) POTATOES(WHITE) POTATOES(WHITE) SORGHUM (INCLUD COTTONSEED-OIL COTTONSEED-MEAL WINE AND SHERRY	CABBAGE-GREEN CAULIFLOWER COLLARDS CABBAGE-CHINES KALE KOHLRABI LETTUCE-LEAFY LETTUCE-UNSPEC MUSTARD GREENS LETTUCE-HEAD V	TOMATOES - JUICE TOMATOES - JUICE TOMATOES - PUREE TOMATOES - PASTE TOMATOES - CATSUP BROCCOLI BRUSSEL SPROUTS	MANGOES HOPS EGGPLANT PEPPERS, SWEET CHILI PEPPERS PEPPERS-OTHER DIMITERIOS	FOOD NAME GRAPES-FRESH GRAPES-FAISINS GRAPES-JUICE APPLES-FRESH APPLES-DRIED APPLES-DRIED
POTATOES(WHITE)-WHOLE POTATOES(WHITE)-PEELED POTATOES(WHITE)-PEELED POTATOES(WHITE)-PEEL ONLY POTATOES(WHITE)-PEEL ONLY SORGHUM (INCLUDING MILO) COTTONSEED-OIL COTTONSEED-MEAL WINE AND SHERRY	CABBAGE-GREEN AND RED CAULIFLOWER COLLARDS CABBAGE-CHINESE/CELERY, INC. BOK CHOY KALE KOHLRABI KOHLRABI LETTUCE-LEAFY VARIETIES LETTUCE-UNSPECIFIED MUSTARD GREENS LETTUCE-HEAD VARIETIES	SUP CE CE	MANGOES HOPS EGGPLANT PEPPERS, SWEET, GARDEN CHILI PEPPERS PEPPERS-OTHER DIMINISTRA	NS.
MILO) MILO) MILO)	LERY, I		Z	
	NC. BO			
	к сноу			
3F4169 3F4169 3F4169 3F4169 3F4169 4F4337 4F4169 4F4169 3F4231	3F4231 3F4231 3F4231 3F4231 3F4231 3F4231 3F4231 3F4231 3F4231	3F423 3F423 3F423 3F423 3F423 3F423 3F423	4F4285 300343 3F4231 3F4231 3F4231 3F4231	3F4231 3F4231 3F4231 3F4231 3F4169 3F4169 3F4169
) 	ب ها ها. :	، همه همي هم هم <u>هم هم هم</u> د	W W	400 X
		1 W W O W		
1.000000	3.500000 3.500000 3.500000 3.500000 3.500000	3.500000 3.5000000	.000000	1.000000 1.000000
		,000000		
			0.200000	THOLING
	•			0.5
0.30000 0.30000 0.30000 0.30000 0.30000 0.05000 0.05000 9.00000		•	3.000000	0.500000 0.500000
				1
•		•	¥	
•				
•	•		•	
•				

CFX NO.	A.I. CODE: 129099	CAS No. 105827-78-9	Casual #497E	Inidectorid CHEMICAL	CHEMICAL
ONCO: E (RfD/PR Committee) ity in rats or mice.	LEL= 16.9000 mg/kg		NOEL= 5.7000 mg/kg	2vr feeding- ret	STIMY TYPE
ity in rats or mice.	No evidence of oncogenic-	thyroid colloid.	3	nce of	EFFECTS
		EPA RfD= 0.000000	OPP RfD= 0.057000	ADI UF 100	REFERENCE DOSES
			-	No data gaps.	DATA GAPS/COMMENTS
				RfD/PR reviewed 04/22/93	SUAINS

55014AB 55014AC	55013LA 55013MA	55008MC 550138A	55008MB	55008LA	55008BA	53006LA	53006KA	53006FA	530068B	53006BA	53005LA	53005KA	53005FA	53005BA	53003AA	53002MA	53002LA	53002FA	530028B	53002BA	53001MA	53001LA	53001KA	53001FA	5300100	530018A	50000SA	50000FA	CODE
EGGS-WHOLE EGGS-WHITE ONLY	POULTRY,	TURKEY-U	TURKEY-F	TURKEY-G	TURKEY-BY	PORK ORG	PORK (ORG	PORK (BON	PORK (ORG	PORK-MEA	SHEEP (OR	SHEEP (OR	SHEEP (BO	SHEEP-ME	HORSE	GOAT (BON	GOAT (ORG	GOAT (BUN	GOAT (ORG	GOAT-MEA	BEEF(BON	BEEF ORG	BEEF (ORG	BEEF (BON	DEET ONGAN	BEEL MEN	MILK SUG	MILK-FAT SOLIDS	FOOD NAME
EGGS-WHOLE ONLY	POULTRY, OTHER-GIBLETS(LIVER) POULTRY, OTHER-FLESH (+SKIN, N/O BONES)	TURKEY-UNSPECIFIED POULTRY,OTHER-BYPRODUCTS	TURKEY-FLESH(+SKIN, H/O	TURKEY-GIBLETS (LIVER)	TURKEY-BYPRODUCTS	PORK(ORGAN MEATS)-LIVER	PORK(ORGAN MEATS)-KIDNEY	PORK(BONELESS)-FAT (INCLUDING LARD)	PORK(ORGAN MEATS)-OTHER	PORK-MEAT BYPRODUCTS	SHEEP(ORGAN MEATS)-LIVER	SHEEP (ORGAN MEATS)-KIDNEY	SHEEP (BONELESS) - FAT	SHEED-MEAT SYPRODUCTS		GOAT(BONELESS)-LEAN (W/O REMOVEABLE FAT)	GOAT(ORGAN MEATS)-LIVER	GOAT(ORGAN MEATS)-KIDNEY	GOAT (ORGAN MEATS) - OTHER	GOAT-MEAT BYPRODUCTS	BEEF(BONELESS)-LEAN (W/O	BEEF (ORGAN MEATS)-LIVER	BEEF (ORGAN MEATS)-KIDNEY	BEEF(BONELESS)-FAT (BEEF	BEEF-ORIED	BEEF OBCAL BITACOUCTS	MILK SUGAR (LACTOSE)	SOL 10S	NAME
,	BLETS(LIV	PRODUCTS	_		S)-LIVER)-KIDNEY	AT (INCLU)-OTHER	UCTS	S)-LIVER	S)-KIDNEY	FAT	S)-OTHER		EAN (W/O)-LIVER)-KIDNEY)-OTHER	UCTS	0)-LIVER)-KIDNEY	AT (BEEF	, C)-OTHER	OSE)		
	/ER) IN,W/O BC		BONES)	U/O ROWEST				JDING LAR		SERVED	BENOVE					REMOVEAB					REMOVEABLE FAT)			TALLOW					
)NES)							Õ		ָבָר ר בי	DICEAT					LE' FAT)		,			LE FAT)				٠				
3F423 3F423	3F423 3F423	3F423 3F423	3F423	3F423	3F4231	4F4169	4F4169	4F4169	4F4169	. 4F4169	454169	464169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	454169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	NUMBER
1999	222	33	31	3	31 9	8 8	8	\$	8	9	8 8	8	8	& &	9 S	8.8	8	\$	6 ¥	S &	8	8	8	æ.	æ:	S :	8 <u>4</u>		2 2
0.020000	000		0.05	0.050000	0.050000				•			•				*													NEW
0.020000	0.050000 0.050000	0.050000	0.050000		000																								
			•						•																				PENDING
,	•	`							_	_						:						_			_				PUBL
						0.300000		0.300000	0.300000	0.300000	0.300000		0.300000	0.300000		0.300000	0.300000	0.300000	3,30000		0.300000	0.300000	0.300000	0.300000	0.300000		0.30000		3L I SHED
													· ·																
e.	-																												
																				•					Ž.				
																						•							

DATE: 02/13/95

PAGE:

CHEMICAL STUDY TYPE EFFECTS Imidacloprid Caswell #497E 2yr feeding- rat CAS No. 105827-78-9 CFR No. CFR No. CAS No. 105027-78-9 CFR No. CAS No. C
CHEMICAL STUDY TYPE #4.97E
CHEMICAL STUDY TYPE 2yr feeding- rat #497E NOEL= 5.7000 mg
CHEMICAL STUDY TYPE 2yr feeding- rat #497E NOEL= 5.7000 mg
CHEMICAL STUDY TYPE
CHEMICAL INFORM

55015LA 55015MA 55015MB

CHICKEN-GIBLETS(LIVER)
CHICKEN-FLESH(W/O SKIN,W/O BONES)
CHICKEN-FLESH(+SKIN,W/O BONES)

3F4231 3F4231 3F4231

0.050000 0.050000 0.050000

Table 2: Imidacloprid on Petition 3F4231/3H5675

EFFECTS

REFERENCE DOSES

DATA GAPS/COMMENTS

CHEMICAL INFORMATION

STUDY TYPE

idacloprid Caswell #497E	2yr feeding- rat NOEL= 5.7000 mg/kg	Increased incidence of mineralized particles in thyroid colloid.		DI UF>100 NO OPP RfD= 0.057000	No data gaps.	RfD/PR reviewed 04/22/93	ed 04/22/93
A.I. CODE: 129099 CFR No.	LEL= 16.9000 mg/kg 300.00 ppm ONCO: E (RfD/PR Committee)	No evidence of oncogenic) ity in rats or mice.	ncogenic- ice.				
POPULATION SUBGROUP		. TOTAL TMRC (MG/KG BODY WEJGHT/DAY) CURRENT TMRC* NEW TMRC**	BODY WEJGHT/DAY) NEW TMRC**	NEW TMRC AS PERCENT OF RFD	DIFFERENCE AS PERCENT OF RFD	EFFECT OF ANTICIPATED RESIDUES ARC %RFD	ED RESIDUES %RFD
U.S. POPULATION - 48	48 STATES	0.002594	0.008088	14.189463	9.638358	•	
U.S. POPULATION - SPI U.S. POPULATION - SU U.S. POPULATION - FA U.S. POPULATION - WI	SPRING SEASON SUMMER SEASON FALL SEASON UINTER SEASON	0.002430 0.002499 0.002744 0.002699	0.007688 0.007728 0.008459 0.008457	13.487042 13.557321 14.840837 14.836598	9.223460 9.173293 10.027309 10.101014		
NORTHEAST REGION NORTH CENTRAL REGION SOUTHERN REGION WESTERN REGION		0.002722 0.002667 0.002332 0.002764	0.008410 0.008291 0.007284 0.008722	14.754535 14.545756 12.779346 15.301900	9.978268 9.867340 8.688951 10.452581		
HISPANICS NON-HISPANIC WHITES NON-HISPANIC BLACKS NON-HISPANIC OTHERS		0.003044 0.002609 0.002271 0.002667	0.008528 0.008210 0.006994 0.008576	14.961621 14.403633 12.270568 15.046021	9.621442 9.827302 8.286121 10.367528		
NURSING INFANTS (< 1 YEAR OLD) NON-NURSING INFANTS (< 1 YEAR FEMALES (13+ YEARS, PREGNANT) FEMALES 13+ YEARS, NURSING	1 YEAR OLD) (<1 YEAR OLD) PREGNANT) NURSING	0.004831 0.011653 0.001790 0.002142 0.006577	0.005485 0.014746 0.006714 0.00632 0.0076332	9.623265 25.870911 11.778432 13.388868 29.359172	1.146958 5.427146 8.637902 9.630498 17.819918		•
CHILDREN (1-6 YEARS OLD) CHILDREN (7-12 YEARS OLD) MALES (13-19 YEARS OLD) FEMALES (13-19 YEARS OLD)	OLD) LD) OLD, NOT PREG. OR NURSING)	0.004040 0.002675 0.002151	0.012404 0.008391 0.007105	21.760947 14.721891 12.464561	14.673144 10.028779 8.691330		
MALES (20 YEARS AND OLDER) FEMALES (20 YEARS AND OLDER,	OLDER, NOT PREG. OR NURS)	0.001790	0.005993	10.514782	7.824637		

^{*}Current TMRC does not include new or pending tolerances.
**New TMRC includes new, pending, and published tolerances.

OLERANCES:	ESTIMATES BASED ON PROTOCES: ANTICIPATED RESIDUES: ES:	FEMALES(13+ YRS)	**CAS NO: 12909-90-0 SHAUGHNESSY NO: 129099 B **CAS NO: 12909-90-0 SHAUGHNESSY NO: 129099 B **TATUS CODES: **TATUS CODES: **PDV INFO: The LD value used in this analysis is 0.0024 MG/KG of BODY WEIGHT/DAY **FILE INFO: No Tolerance Data Are UsedWithout User Modifications. ************************************	10 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PERSON DAYS THAT ARE USER-DAYS MG/KG BODY WEIGHT/DAY AS PERCENT OF 0.00 0.000000 0.00 0.00 0.00 0.000000 0.006277 261.53 ESTIMATED % OF POPULATION USER-DAYS WITH RESIDUE CONTRIBUTION EXCEEDING X TI 0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 3	ESTIMATED % OF POTENTIAL	y NO: 1: in this Are Use	NG AR*S:
80	7S THAT 0.00 99.82 % OF POP	% OF	29099 anal	ALL S
80	AT ARE	POTEN	Wsis i	L STATI
80	USER-	TIAL	s 0.(STICS B
30	DAYS JSER-DA	•	0024 Modific	BASED ON L
6 %	MG/K	MEAN	MG/ ******	OR USE
60	G BODY 0.00 0.00 H RESI 1.2	DAIL	*****	RS' D/
240	MG/KG BODY WEIGHT/DAY 0.000000 0.006277 0.006277 WITH RESIDUE CONTRIB 1 1.2 1.4 1.6	RESI	BODY	SII TLY CO
0 0	HT/DAY	ONE CON	MG/KG of BODY WEIGHT/DAY	DY TYP
450	1.8 1.8	TRIBU	/DAY	E SI
0.2	AS PERCENT OF 0.00 261.53 EXCEEDING X T	MEAN DAILY RESIDUE CONTRIBUTION PER USER	* * * * * *	20m4 3\$r
27	CENT 0 0.00 1.53 NG X T	R USER	AR	10:35 FI
700	F RDV	-DAY	DATA:	riday,
10	RDV		** ** ** ** ** ** ** ** ** **	10:35 Friday, February 10, 1995 9 **********************************
4.0	T FOR		RAN MOC	RADE
*	_ ¥		* 1	2 1 3
- 0	√ 1		* 0	76. 76.
00	20		ons 1	NO * 9
-			<i>स स स</i> र र	4 4 4

Exposure = RDV x $X = 0.0074 \times 20 = 0.048 \text{ mg/kg/day}$ NOEL / Exposure = 24 mg/kg/day / 0.048 mg/kg/day = 500