ENVIROMENTAL FATE AND GROUND WATER BRANCH

Review Action

JUN 11 1993

To: Rebecca Cool, PM #41
Special Review and Reregistration Division (H7508W)

From: Akiva Abramovitch, Section Head
Chemistry Review Section 3
Environmental Fate & Ground Water Branch/EFED (H7507C)

Thru: Henry Jacoby, Chief
Environmental Fate & Ground Water Branch/EFED (H7507C)

Attached, please find the EFGWB review of...

<table>
<thead>
<tr>
<th>Common Name:</th>
<th>Imidacloprid</th>
<th>Trade name:</th>
<th>Confidor 2 Flowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name:</td>
<td>Miles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID #:</td>
<td>93AZ0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>EMERGENCY EXEMPTION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type Product:</th>
<th>Action Code:</th>
<th>EFGWB #(s):</th>
<th>Review Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECTICIDE</td>
<td>500</td>
<td>93-0740</td>
<td>1.0 DAYS</td>
</tr>
</tbody>
</table>

STATUS OF STUDIES IN THIS PACKAGE:

STATUS OF DATA REQUIREMENTS ADDRESSED IN THIS PACKAGE:

\[\text{Guideline} \] \[\text{MRID} \] \[\text{Status}\]

\[\text{Guideline} \] \[\text{Status}\]

\^Study Status Codes: A=Acceptable U=Upgradable C=Ancillary I=Invalid
\n\[\text{Data Requirement Status Codes: S=Satisfied P=Partially satisfied N=Not satisfied R=Reserved W=Waived.}\]
1. CHEMICAL:
Common Name: Imidacloprid

Chemical Name:
Exits as tautomer.

1-\((6\text{-Chloro-3-pyridinyl})\text{methyl})\text{-4,5-dihydro-N-nitro-1H-imidazol-2-amine.}
1-\([(6\text{-chloro-3-pyridinl})\text{methyl}]\text{-N-nitro-2-imidazolidinimine.}
Preferred tautomer.

Type of product: Insecticide

Chemical Structure:

![Chemical Structure Diagram]

Physical/Chemical Properties
Molecular formula: $\text{C}_9\text{H}_{10}\text{N}_5\text{O}_2\text{Cl.}$
Molecular weight: 255.67.
Physical state: Light yellow powder.
Density: 1.542 g/cm^3.
Vapor pressure (20 C): 6.0×10^{-7} Torr.
Solubility (20 C): 0.58 g/L water; miscible in n-hexane, methylene chloride, 2-propanol, and toluene.
Kow: 3.7 @ 21°C

2. TEST MATERIAL:
N/A

3. STUDY/ACTION TYPE:
The Arizona Department of Agriculture requests an EMERGENCY EXEMPTION (Section 18) to use Confidor 2 Flowable (21.4% ai) to control the Silverleaf (Sweetpotato) Whitefly on cotton.

4. STUDY IDENTIFICATION:
1. Letter from the Arizona Department of Agriculture dated May 11, 1993 to Rebecca Cool outlining the section 18 application.

2. Contact Persons:
Ed Minch
Arizona Department of Agriculture
1688 West Adams
Phoenix, Arizona 85007
(602) 542-0954

Dr. Theo Watson
Department of Entomology
University of Arizona
Tucson, Arizona 85721
(602) 621-1151
5. REVIEWED BY:

Kevin L. Poff, Chemist
Environmental Chemistry Review Section #3
Environmental Fate and Groundwater Branch/EFED

6. APPROVED BY:

Akiva Abramovitch, Ph.D., Chemist
Environmental Chemistry Review Section #3
Environmental Fate and Groundwater Branch/EFED

7. CONCLUSIONS:

a. Administrative Conclusions

The EFGWB can support the EMERGENCY EXEMPTION (section 18) petitioned by the Arizona Department of Agriculture to apply Imidacloprid (Confidor 2 Flowable) as a treatment for whiteflies on cotton to 300,000 acres in 6 counties (Lapaz, Maricopa, Mohave, Pima, Pinal, and Yuma) in Arizona from July 5, 1993 to October 15, 1993. However, there is potential concern for this chemical to leach to ground water and/or be transported to surface waters so care must be taken to protect these waters during use, particularly in vulnerable areas.

b. Scientific Conclusions

Although the environmental fate data for imidacloprid under a terrestrial non-food crop use is not totally complete (reviewed and acceptable according to EFGWB guidelines) at this time, we do have enough acceptable and supplemental data to grant the exemption.

The available data indicate that imidacloprid is mobile (Kd_{soil}) = 0.956, 1.02, 4.18, 4.76, 3.45 for a sand (0.4% OM), loamy sand (0.6% OM), silt loam (2.6% OM), silt loam (with sodium azide), and loam (2.0% OM), and persistent (aerobic soil t_{1/2} > 1 year in a sandy loam soil, terrestrial field dissipation t_{1/2} = 107 days to > 1 year). Therefore, imidacloprid has the potential to leach to ground water. In addition, high solubility and mobility are concerns for transport to surface water by dissolved runoff.

8. RECOMMENDATIONS:

The EMERGENCY EXEMPTION (section 18) to use imidacloprid (Confidor 2 flowable systemic insecticide) to control white flies in Arizona may be granted provided ground and surface water in the use sites are protected. Also inform the Arizona Department of Agriculture of the following label statement that was not present on the reviewed Confidor 2 flowable label: "This chemical demonstrates the properties and characteristics associated with chemicals detected in ground water. The use of this chemical in areas where soils are permeable, particularly where the water table is shallow, may result in ground-water contamination."
9. BACKGROUND:

Imidacloprid [NTN 33893; 1-((6-chloro-3-pyridinyl)methyl)-4,5-dihydro-N-nitro-1H-imidazole-2-amine] is a broad spectrum, systemic insecticide currently being developed by Miles Inc. for Terrestrial Non-food, or Residential and Commercial Outdoor: Lawns, turfgrass, and ornamentals. Also, Greenhouse Non-food or Residential and Commercial Indoor: Ornamentals. The proposed maximum use rates are 0.5 lb ai/A/year or 500-560 g/ha, greenhouse soil applications are limited to a single application per crop cycle, or once per year on crops having a production cycle of longer than one year. Single active ingredient formulations include wettable powder, flowable concentrate, and granular. Multiple active ingredient formulations include carbofuran (5% granular). Formulations include the 94% ai technical, 75% concentrate, and a 2.5% and 0.62% granular.

The submission of data required for full registration of imidacloprid on terrestrial non-food use sites is summarized below:

Satisfied:

- **Hydrolysis** (161-1); MRID #42055337, EFGWB #92-0210,-0196. Stable at pH 5, 7, some degradation at pH 9 t1/2= 355 days.

- **Photodegradation in Water** (161-2); MRID #42256376, EFGWB #92-0847,-1039/42. Half-life of approximately 1 hour (4.2 hours theoretical, under natural sunlight) in sterile aqueous buffer solutions (pH 7) that were continuously irradiated with an artificial light source (xenon lamp) for up to 2 hours at 23-24.5 C.

- **Photodegradation on Soil** (161-3); MRID #42256377, EFGWB #92-0847,-1039/42. Half-life of 39 days (171 hours, theoretical half-life under natural sunlight) on sandy loam soil that was continuously irradiated with a UV-filtered xenon light source for 15 days at 25 ± 2 C.

- **Aerobic Soil Metabolism** (162-1); MRID #42073501, EFGWB #92-0210,-0196. Calculated half-life of > 1 year in a sandy loam soil that was incubated in the dark at 22 ± 2°C and 75% of the 0.33 bar moisture. CO₂ was the major degrade.

- **Anaerobic Aquatic Metabolism** (162-3); MRID #42256378, EFGWB #92-0847,-1039/42. Half-life of 27 days in anaerobic silt loam sediment that was incubated in the dark at 22 ± 1 C for 1 year.

- **Adsorption/Desorption** (163-1); MRID #42520801, EFGWB #93-0266,93-0071. This review. Freundlich Kₐds constants and 1/N isotherms describing the adsorption of NTN 33893 on a sand (0.4% OM), loamy sand (0.6% OM), silt loam (2.6% OM), silt loam (with sodium azide), and loam (2.0% OM) were Kₐds=0.956; 1/N=0.781, Kₐds=1.02; 1/N=0.877, Kₐds=4.18; 1/N=0.775, Kₐds=4.76; 1/N=0.729, and Kₐds=3.45; 1/N=0.757.
respectively. The Freundlich K_{des} constants and $1/N$ isotherms describing the desorption of NTN 33893 on the above soils were $K_{des}=0.662$; $1/N=0.917$, $K_{des}=0.542$; $1/N=1.02$, $K_{des}=4.68$; $1/N=0.775$, $K_{des}=3.38$; $1/N=0.877$, and $K_{des}=4.40$; $1/N=0.793$ respectively.

Adsorption/Desorption (163-1); MRID #42520802, EFGWB #93-0266, 93-0071, This review. (Supplemental adsorption/desorption data was submitted on degrade NTN 33823 generated in the anaerobic aquatic metabolism 162-3 study. NTN 33823 increased to a total maximum average of 66.0% of the applied radioactivity at 249 days posttreatment and was 64.0% at 358 days). Freundlich K_{ads} constants and $1/N$ isotherms describing the adsorption of NTN 33823 on a sand (0.4% OM), loamy sand (0.6% OM), silt loam (2.6% OM), and loam (2.0% OM) were $K_{ads}=0.761$; $1/N=1.22$, $K_{ads}=2.91$; $1/N=1.09$, $K_{ads}=14.2$; $1/N=1.02$, and $K_{ads}=10.1$; $1/N=0.819$ respectively. The Freundlich K_{des} constants and $1/N$ isotherms describing the desorption of NTN 33823 on a sand, loamy sand, silt loam, and loam were $K_{des}=0.456$; $1/N=1.41$, $K_{des}=2.45$; $1/N=1.13$, $K_{des}=16.9$; $1/N=1.03$, and $K_{des}=12.0$; $1/N=0.840$ respectively.

Soil Column Leaching (163-1); MRID #42055339, EFGWB #92-0210,-0196. (Aged) (>85% of the radioactivity was contained in the aged portion and the 0-5cm column layer). Imidacloprid was found at 48.5 ± 1.1% of the applied radioactivity in the top layer (the applied sandy loam soil). 37 ± 0.0% of the applied radioactivity was found in the 0-5 cm layer. 10.8 ± 1.4% was found in the 5-10 cm layer. 4.2 ± 0.6% was found in the 10-15 cm layer. 1.8 ± 0.1% was found in the 15-20 cm layer. 0.3 ± 0.1% was found in the 20-30 cm layer. 0.14% of the applied radioactivity was found in the total volume of leachate. About 90.4% of unchanged parent compound was found in the sandy loam soil after an aging period of 30 days.

Ancillary data (supplemental):

Adsorption/Desorption (163-1); MRID #42055338, EFGWB #92-0210,-0196. (Unaged) This study was determined to be supplemental due to an inadequate comparison of German soils to US soil. K_{ads} values on a sandy loam soil, (greenhouse Kansas), (1.4% OM), silt loam, Hofchen (1.8% OM), low humus sandy soil, (standard soil 2.1), (0.75% OM), and a silty clay, (Ranschbach), (0.64% OM) were $K_{ads}=3.59$; $1/N=0.744$, $K_{ads}=2.38$; $1/N=0.827$, $K_{ads}=1.17$; $1/N=0.777$, $K_{ads}=1.36$; $1/N=0.851$ respectively. The Freundlich K_{des} constants and $1/N$ isotherms describing the desorption of NTN 33893 on the above soils were $K_{des}=4.0$; $1/N=0.789$, $K_{des}=2.75$; $1/N=0.905$, $K_{des}=2.09$; $1/N=0.921$, $K_{des}=2.11$; $1/N=0.916$ respectively.

Terrestrial Field Dissipation (164-1); EFGWB #92-0847,-1039/42. MRID #42256379. Imidacloprid dissipated with an observed half-life of >1 year from the upper 6 inches of a bareground plot (100 x 102 feet) of loamy sand soil in Georgia following a broadcast application of imidacloprid (23.3% ai liquid suspension) at 0.5 lb ai/A on April 16, 1990.

MRID #42256380. Imidacloprid did not dissipate from the upper 6 inches of a plot (60 x 150 feet) of sandy loam soil planted to
corn in Minnesota during the 12 months following a preemergence application of imidacloprid [Bay NTN 33893 240 FS; 1-((6-chloro-3-pyridinyl)methyl)-4,5-dihydro-N-nitro-1H-imidazol-2-amine; 22.8% liquid suspension] at 0.5 lb ai/A on June 6, 1990.

MRID #42256381. Imidacloprid dissipated with a calculated half-life of 146 days (Day 0 - Day 364) from a plot of sandy loam soil planted to tomatoes in California after a preemergence application of imidacloprid (23.3% ai liquid suspension) at 0.5 lb ai/A.

MRID #42256382. Imidacloprid dissipated from turf with a calculated half-life of 107 days (data points 0 - 126 days).

MRID #42256383. Imidacloprid did not appear to dissipate from the 0- to 3- inch depth of loam soil of a bluegrass turf plot (70 x 110 feet) in Minnesota during the 4 months following a broadcast application of imidacloprid (22.8% liquid suspension) at 0.5 lb ai/A to the turf on June 19, 1990.

Not Satisfied:

-Long Term Terrestrial Field Dissipation (164-5). Two studies are required.
Option 1: One study with the granular and one study with the liquid concentrate.
Option 2: Two studies with the liquid concentrate. One of which needs to be incorporated. In addition to the two studies with the liquid concentrate, bridging data between the liquid concentrate and granular formulation are required. All studies are to be completed on a Type A or B soil with low organic matter content.

Waived:

-Laboratory studies of pesticide accumulation in fish (165-4). No data were reviewed, although data provided by the registrant indicates a very low octanol/water (Kow) partition coefficient (Kow for imidacloprid = 3.7 @ 21°C).

Reserved:

-Ground Water Monitoring:
 -Small Prospect. (166-1)
 -Small Retrospec. (166-2)

10. DISCUSSION:

a. The EFGWB has the following comments concerning this submission:

Except for field dissipation data all requirements for the terrestrial non-food use have been satisfied for imidacloprid.

The Arizona Department of Agriculture is petitioning to apply imidacloprid at a maximum of 5 times in one use season (July to October) at 0.05 lb. ai/acre with a total maximum of 0.25 lb ai/acre during this growing season. This is 1/2 the 0.5 lb ai/acre/year maximum use rate proposed by Miles Inc.
b. Description of Emergency Exemption Program:

It is estimated that 300,000 acres will be treated with 0.05 lb. ai (3 fl. oz) per acre with a maximum of 5 applications. A total of 75,000 lbs. of ai or 35,000 gallons of product will be applied (confidor 2 flowable contains 2 lbs of ai/gallon). Applications to blooming cotton will be made at night and the method of application will be ground or air. The use season will be July 5, 1993 to October 15, 1993.

11. COMPLETION OF ONE-LINER:
Attached.

12. CBI INDEX:
Not Applicable.
Environmental Fate & Effects Division
PESTICIDE ENVIRONMENTAL FATE ONE LINE SUMMARY
IMIDACLOPRID
Last Update on March 3, 1993
[V] = Validated Study [S] = Supplemental Study [U] = USDA Data

LOGOUT Reviewer: Section Head: Date:

Common Name: IMIDACLOPRID
Smiles Code:
PC Code #: 129099 CAS #: Caswell #:
Chem. Name: 1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-N-nitro-1H-imidazole-2-amine
Action Type: Insecticide
Trade Names: NTN 33893
(Formul'tn): 0.62% granular, 2.5% granular, 75% concentrate, 94% technical
Physical State: light yellow powder

Use: terrestrial nonfood uses
Patterns: Maximum commercial rate 0.560 kg ai/ha, 0.5 lb ai/A/year
(% Usage):

Empirical Form: C$_9$H$_{10}$ClN$_5$O$_2$
Molecular Wgt.: 255.67 Vapor Pressure: 6.90E-9 Torr
Melting Point: °C Boiling Point: °C
Log Kow: 0.52 pKa: @ °C
Henry's: E Atm. M3/Mol (Measured) 4.00E-12 (calc'd)

Solubility in ...
Water 5.80E 2 ppm @ 20.0 °C
Acetone E ppm @ °C
Acetonitrile E ppm @ °C
Benzene E ppm @ °C
Chloroform E ppm @ °C
Ethanol E ppm @ °C
Methanol E ppm @ °C
Toluene E ppm @ °C, miscible
Xylene E ppm @ °C
2-Propanol 1.60E 3 ppm @ 20.0 °C

Hydrolysis (161-1)
[V] pH 5.0: Stable in dark at 25C
[V] pH 7.0: Stable in dark at 25C
[V] pH 9.0: Degraded slightly with a half-life of 355 days.
[] pH :
[] pH :
[] pH :
Photolysis (161-2, -3, -4)
[V] Water: 1 hour pH 7 Xenon lamp

[V] Soil: t1/2 = 39 days on a sandy loam soil under a Xenon light source

Aerobic Soil Metabolism (162-1)
[V] In sandy loam in dark, degraded with a calculated half-life of > 1 year at 22°C. CO2 was the major degrade at 7.4% of the applied.
[S] t1/2 = 248+/−50 days, silt loam
[S] t1/2 = 341+/−153 days, silt loam
[S] t1/2 = 188+/−25 days, silt loam (see also comments section)

Anaerobic Soil Metabolism (162-2)
See anaerobic aquatic metabolism study.

Anaerobic Aquatic Metabolism (162-3)
[V] t1/2 = 27 days in a silt loam sediment.

Aerobic Aquatic Metabolism (162-4)
Environmental Fate & Effects Division
PESTICIDE ENVIRONMENTAL FATE ONE LINE SUMMARY
IMIDACLOPRID
Last Update on March 3, 1993
[V] = Validated Study [S] = Supplemental Study [U] = USDA Data

Soil Partition Coefficient (Kd) (163-1)

[V] Soil Type Kads 1/N Kdes 1/N %OM
[] sand 0.956 .781 .662 .917 0.4%
[] lmyso 1.02 .877 .542 1.02 0.6%
[] Stlm 4.18 .775 4.68 .775 2.6% See
[] loam 3.45 .757 4.4 .793 2.0% Comments Section
[] Stlm(w/NaNO3) 4.76 .729 3.38 .877 2.6%

Soil Rf Factors (163-1)
[V] sandy loam soil; 49% of applied was found in the aged sandy loam
[] layer. 37% in the 0-5 cm layer. 11% in the 5-10cm layer. 4.2% in
[] the 10-15cm layer. 1.8% was found in the 15-20cm layer. 0.3% in
[] the 20-30cm layer. 0.14% was found in the leachate. CO2 was 1.7%
[] of applied after 30 days.
[]

Laboratory Volatility (163-2)
[]
[]

Field Volatility (163-3)
[]
[]

Terrestrial Field Dissipation (164-1)
[S] observed t1/2= >1 year loamy sand soil in Georgia with an app.
[] rate of 0.5lb/ai/A of liquid suspension.
[S] did not dissipate in the upper 6 inches of sandy loam soil in
[] MN at 0.5lb/ai/A of liquid suspension.
[S] t1/2=146 days in a sandy loam soil in CA at 0.5lb/ai/A of liquid
[] suspension.
[S] t1/2=107 days on turf Georgia at 0.5lb/ai/A.
[S] did not dissipate on a turf plot in MN. at 0.5lb/ai/A.
[]
[]

Aquatic Dissipation (164-2)
[]
[]
[]
[]
[]

Forestry Dissipation (164-3)
[]
[]
Long-Term Soil Dissipation (164-5)
[]
[]

Accumulation in Rotational Crops, Confined (165-1)
[]
[]

Accumulation in Rotational Crops, Field (165-2)
[]
[]

Accumulation in Irrigated Crops (165-3)
[]
[]

Bioaccumulation in Fish (165-4)
[]
[]

Bioaccumulation in Non-Target Organisms (165-5)
[]
[]

Ground Water Monitoring, Prospective (166-1)
[]
[]
[]

Ground Water Monitoring, Small Scale Retrospective (166-2)
[]
[]
[]

Ground Water Monitoring, Large Scale Retrospective (166-3)
[]
[]
[]

Ground Water Monitoring, Miscellaneous Data (158.75)
[]
[]
Environmental Fate & Effects Division
PESTICIDE ENVIRONMENTAL FATE ONE LINE SUMMARY
IMIDACLOPRID
Last Update on March 3, 1993
[V] = Validated Study [S] = Supplemental Study [U] = USDA Data

Field Runoff (167-1)
[]
[]
[]
[]

Surface Water Monitoring (167-2)
[]
[]
[]
[]

Spray Drift, Droplet Spectrum (201-1)
[]
[]
[]
[]

Spray Drift, Field Evaluation (202-1)
[]
[]
[]
[]

 Degradation Products
NTN 33519; Photoproduct
NTN 38014; Photoproduct
WAK 4103; Photoproduct
CPAcid; Photoproduct
WAK 3839; Photoproduct
NTN 33823
Comments

An aerobic soil metabolism study was completed w/ground cover. Mat. balances were not established although it appears that NTN degrades at an excellerated rate w/ground cover/fertilizers. 10% of applied was taken up by the ground cover (study was supplemental). An ad/des on NTN 33823 (major degradate in 162-3 study) showed mobility on soils of low %OM, <1%.

References: Mobay Studies
Writer : KLP
CASE/SUBMISSION INFORMATION

CASE TYPE: EMERGENCY EXESEP
ACTION: 500 SECT18 SPC EXE NC F/F USE
CHEMICALS: 129099 Imidacloprid

ID#: 93AZ0003
COMPANY:
PRODUCT MANAGER: 41 REBECCA COOL 703-308-8417 ROOM: CS1
PM TEAM REVIEWER: ANDREA BEARD 703-308-8791 ROOM: CS1
RECEIVED DATE: 05/12/93 DUE OUT DATE: 07/01/93

DATA PACKAGE INFORMATION

DP BARCODE: 191406 EXPEDITE: N DATE SENT: 05/18/93 DATE RET.: / /
CHEMICAL: 129099 Imidacloprid
DP TYPE: 001 Submission Related Data Package
ADMIN DUE DATE: 06/07/93 CSF: N LABEL: Y
ASSIGNED TO DATE IN DATE OUT
DIV : EFED 5/12/93 / /
BRAN: EFGB / / / /
SECT: / / / /
REVR: / / / /
CONTR: / / / /

DATA REVIEW INSTRUCTIONS

Please provide a review of the attached request for a specific exemption from AZ for use of imidacloprid (new chemical) on cotton for control of whiteflies. Please indicate whether existing data submitted by the registrant (PP#s 3F4169 & 3H5655) supports this emergency use, and whether there are groundwater concerns expected. Thanks.

Andrea Beard

ADDITIONAL DATA PACKAGES FOR THIS SUBMISSION

<table>
<thead>
<tr>
<th>DP BC</th>
<th>BRANCH/SECTION</th>
<th>DATE OUT</th>
<th>DUE BACK</th>
<th>INS</th>
<th>CSF</th>
<th>LABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>191402</td>
<td>BAB</td>
<td>05/18/93</td>
<td>06/07/93</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>191403</td>
<td>EAB</td>
<td>05/18/93</td>
<td>06/07/93</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>191404</td>
<td>TB-1</td>
<td>05/18/93</td>
<td>06/07/93</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>191405</td>
<td>TSCB</td>
<td>05/18/93</td>
<td>06/07/93</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>191407</td>
<td>EEB</td>
<td>05/18/93</td>
<td>06/07/93</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
May 11, 1993

Ms. Rebecca Cool (H7505W)
Emergency Response and Minor Use Section
Registration Support Branch
Registration Division/OPP
U. S. Environmental Protection Agency
Room 52, 6th Floor
2800 Jefferson Davis Highway
Arlington, Virginia 22202

Dear Ms. Cool:

We would like to apply for a specific exemption under the provision of Section 18 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended, as indicated in the attached request. Please contact me if there are any questions.

The following supporting documents are included:

1. Proposed label (p. 4-7).
2. List of alternative pesticides (p. 8).
4. Efficacy studies (p. 21-58).
5. List of Endangered Species by county (p. 59-63).
6. Letter from the product registrant (p. 64).
7. Table of economic data (p. 65-66).
8. Letter from Dr. Theo Watson, Department of Entomology, University of Arizona (p. 67).

Sincerely yours,

Edwin W. Minch
Environmental Specialist
ALTERNATIVE METHODS OF CONTROL (166.20(a)(4))

Alternative Pesticides: See attached sheet (p. 8).

Other Alternative Practices:

Please see publication, "Sweetpotato Whitefly in Arizona" and "1993 Insect Pest Management for Cotton" (p. 9-20).

EFFICACY OF PROPOSED USE (166.20(a)(5))

Please see attached studies (p. 21-53).

FOOD RESIDUES (166.20(a)(6))

Data has been submitted by Miles - Pesticide Petition Number 3F4169 and Food Additive Petition Number 3H5655.

RISK INFORMATION (166.20(a)(7))

Description of Application Sites: Use is requested for LaPaz, Maricopa, Mohave, Pima, Pinal and Yuma Counties.

Possible Risks Posed by Use: Product is generally environmentally safe, but may pose a risk to bees.

Proposals To Mitigate Risks: Applications to blooming cotton will be made at night.

COORDINATION WITH OTHER AGENCIES (166.20(a)(8))

Please see separate sheet for list of endangered of threatened species (p. 59-63).

NOTIFICATION OF REGISTRANT (166.20(a)(9))

Please see attached letter (p. 64).

ENFORCEMENT PROGRAM (166.20(a)(10))

The Arizona Department of Agriculture is the lead agency in the state for enforcement of pesticide use within the state except for structural use (ARS 3-361 et. seq.).

REPEAT USES (166.20(a)(11))

Has a final report from the previous exemption been submitted? N/A

PROGRESS TOWARDS REGISTRATION (166.25(b)(2)(ii))

Section 3 application pending at EPA for use on cotton.
CONFIDOR 2 Flowable
Systemic Insecticide

FOR CONTROL OF CERTAIN INSECTS INFESTING COTTON

ACTIVE INGREDIENT:
Imidacloprid, 1-[(8-Chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine

INERT INGREDIENTS

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Inert Ingredients</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4%</td>
<td>78.6%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Contains 2 pounds of imidacloprid per gallon

EPA File Symbol No. 3126-UR1 Net Contents: Gallons

STOP - READ THE LABEL BEFORE USE
Keep Out Of Reach of Children

CAUTION

(See Rear Panel for Statements of Practical Treatment and Other Precautionary Statements)

SHAKE WELL BEFORE USING

AVISO

PRECAUCION AL USUARIO: Si usted no puede leer o entender inglés, no use este producto hasta que la etiqueta le haya sido explicada ampliamente.

(MILES)
CONIFOR 2 Flowable may also be used with other pesticides and/or fertilizer solutions as recommended under specific crop use directions (see NOTE below). When tank mixtures of CONIFOR 2 Flowable and other pesticides are involved, prepare the tank mixture as recommended above. When pesticide mixtures are needed, add wettable powders first, CONIFOR 2 Flowable, or other flowables second, and emulsifiable concentrates last. Ensure good agitation as each component is added. Do not add the second component in the mixture until the tank contains at least 1/2 of desired amount of water. If a fertilizer solution is added, a fertilizer pesticide compatibility agent may be needed. Maintain constant agitation during both mixing and application to ensure uniformity of spray mixture.

NOTE: Test compatibility of the intended tank mixture before adding CONIFOR 2 Flowable to the spray or mix tank. Add proportionate amounts of each ingredient in the appropriate order, to a pint or quart jar, cap, shake for 5 minutes, and let set for 5 minutes. Poor mixing or formation of precipitates that do not readily redisperse indicates an incompatible mixture that should not be used. For further information, contact your local Miles representative.

<table>
<thead>
<tr>
<th>CROP</th>
<th>PEST</th>
<th>RATE PER APPLICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>Whiteflies (including silverleaf or sweet potato)</td>
<td>Foliar Application 3.0 fl oz per acre</td>
<td>Apply specified dosage per acre as a foliar-spray when whiteflies reach treatable levels. Repeat application every 7 days. Thorough coverage of the plant canopy is essential for optimal control. The preferred method of application is by ground using a minimum of 20 gallons of spray volume per acre. If applied by air, utilize a minimum of 10 gallons of spray volume per acre. This product may be tank mixed with other pesticides as recommended for control of other pests or for improved control of whitefly. A spray adjuvant may be tank mixed with CONIFOR 2 Flowable to improve coverage.</td>
</tr>
</tbody>
</table>

CONIFOR 2 Flowable will not knock down heavy whitefly populations. If the whitefly population is well established, use CONIFOR 2 Flowable only in combination with another recommended pesticide or apply sequential applications of CONIFOR 2 Flowable following a minimum of 2 sequential applications of a pyrethroid-organophosphate tank mix. After a maximum of 5 applications of CONIFOR 2 Flowable, use alternative pesticides to maintain control. Regardless of the number of CONIFOR 2 Flowable applications made, a minimum of two applications of alternative pesticide must be utilized as the final whitefly treatments of the season.

Application of CONIFOR 2 Flowable made for control of whiteflies will also control aphids and plant bugs.

Do not apply more than 15 fluid ounces [0.25 lb active ingredient] of CONIFOR 2 Flowable per acre per season. Allow at least 14 days between last application and harvest.

Resistance: Some insects are known to develop resistance to insecticides after repeated use. As with any insecticide, the use of this product should conform to resistance management strategies established for the use area. Consult your agricultural advisor for resistance management strategies and recommended pest management practices for your area.
May 5, 1993

Dr. Edwin Minch, Environmental Specialist
Arizona Department of Agriculture
1688 West Adams
Phoenix, Arizona 85006

Re: CONFIDOR 2 Flowable (imidacloprid; NTN 33893)
Letter of Support / Cotton

Dear Dr. Minch:

It is our understanding that the Arizona Cotton Growers Association is pursuing an Emergency Exemption for the use of CONFIDOR 2 Flowable systemic insecticide (EPA File Symbol No. 3125-URI) to control whitefly on cotton.

This letter is to inform the Department of our support of the proposed Section 18 in Arizona, and to update the Department regarding our pursuit of a Section 3 registration for the use of CONFIDOR 2 Flowable on cotton. As you are aware, we have a Section 3 application pending with the U.S. EPA for use on cotton (Pesticide Petition No. 3F4169, Food Additive Petition No. 3H5655). Furthermore, we have recently received the U.S. EPA acceptance of our proposed Experimental Use Permit (EPA EUP No. 3125-EUP-204) for the use of imidacloprid (PREMISE) as a termiticide; this EUP has just recently been submitted for your review.

Since we are actively pursuing this Section 3 use of CONFIDOR 2 Flowable on cotton, we gladly support any Section 18 requested by the cotton growers in your state. We also hereby authorize the Arizona Department of Agriculture to refer to any research and test data which may become a part of the Department's files on our active ingredient imidacloprid, in support of this specific action.

Yours very truly,

MILES INC.
AGRICULTURE DIVISION

Douglas A. Spilker, Ph.D.
Regulatory Affairs Specialist
Registrations Department

DAS/jcm
DAS93133
cc: Mr. Robert Barkley, President
 Arizona Cotton Growers Association
 Mr. Rick Lavis, Executive Vice President
 Arizona Cotton Growers Association
 Dr. Andy Jordan, National Cotton Council
EMERGENCY EXEMPTION FINAL REPORT (92-AZ-02)

Total Acreage Treated Under Exemption: 158,808 acres permitted.

Total Quantity of Pesticide Used:
- Total Amount of Active Ingredient: 11,895 pounds
- Total Amount of Product: 7,930 gallons

Discussion of the Effectiveness of the Pesticide Used:

I have discussed the value of this material in control of the whitefly on cotton with a number of growers who used it this past crop season. There is considerable disagreement as to the effectiveness of the product. Some growers felt that it was of little value, others indicated that it had helped. In general I feel that if the product was applied in a timely fashion and used several times that it did increase the control above that which would have been achieved without it. Ovasyn cannot provide the spectacular control of whiteflies that I have seen accomplished by other chemicals when used in different pest situations.

Discussion of Any Unexpected Adverse Effects Which Resulted from This Use: None

Results of Any Compliance Monitoring Required and/or Carried Out Under This Exemption: None

Discussion of Any Enforcement Actions Taken in Connection With the Exemption: We issued grower use permits to cover 158,808 acres of cotton.

Method of Disposition of Food Crop, if Required to be Destroyed Under the Exemption: N/A

Any Other Information Requested by the EPA in Connection With the Exemption: None

Was a Crisis Also Declared? No

Does this Report Cover Both a Specific or Quarantine, and a Crisis Exemption? No

Explanation Why there was a Need to Utilize Crisis Provisions, if a Crisis was Declared: N/A