To: Dennis Edwards
Product Manager 19
Registration Division (H7505C)

From: Anthony Maciorowski, Chief
Ecological Effects Branch/EFED (H7507C)

Attached, please find the EEB review of...

Reg./File #: 003125-URU
Chemical Name: NTN 33893
Type Product: Insecticide
Product Name: Imidacloprid
Company Name: Miles Inc.
Purpose: Review studies.

Action Code: 612
Date Due: 1/16/93
Reviewer: Dana Lateulere

EEB Guideline/MRID Summary Table: The review in this package contains an evaluation of the following:

<table>
<thead>
<tr>
<th>GDGN NO</th>
<th>MRID NO</th>
<th>CAT</th>
<th>GDGN NO</th>
<th>MRID NO</th>
<th>CAT</th>
<th>GDGN NO</th>
<th>MRID NO</th>
<th>CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>71-1(A)</td>
<td></td>
<td></td>
<td>72-2(A)</td>
<td>422563-03, -04</td>
<td>S, Y</td>
<td>72-7(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-1(B)</td>
<td></td>
<td></td>
<td>72-2(B)</td>
<td></td>
<td></td>
<td>72-7(B)</td>
<td>422563-06, -10</td>
<td>NR*</td>
</tr>
<tr>
<td>71-2(A)</td>
<td></td>
<td></td>
<td>72-3(A)</td>
<td></td>
<td></td>
<td>122-1(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-2(B)</td>
<td></td>
<td></td>
<td>72-3(B)</td>
<td>422563-05</td>
<td>Y</td>
<td>122-1(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-3</td>
<td></td>
<td></td>
<td>72-3(C)</td>
<td></td>
<td></td>
<td>122-2</td>
<td>422563-74</td>
<td>S</td>
</tr>
<tr>
<td>71-4(A)</td>
<td></td>
<td></td>
<td>72-3(D)</td>
<td></td>
<td></td>
<td>123-1(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-4(B)</td>
<td></td>
<td></td>
<td>72-3(E)</td>
<td></td>
<td></td>
<td>123-1(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-5(A)</td>
<td></td>
<td></td>
<td>72-3(F)</td>
<td></td>
<td></td>
<td>123-2</td>
<td>422563-75</td>
<td>N</td>
</tr>
<tr>
<td>71-5(B)</td>
<td></td>
<td></td>
<td>72-4(A)</td>
<td></td>
<td></td>
<td>124-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-1(A)</td>
<td></td>
<td></td>
<td>72-4(B)</td>
<td></td>
<td></td>
<td>124-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-1(B)</td>
<td></td>
<td></td>
<td>72-5</td>
<td></td>
<td></td>
<td>141-1</td>
<td>422730-03</td>
<td>Y</td>
</tr>
<tr>
<td>72-1(C)</td>
<td></td>
<td></td>
<td>72-6</td>
<td></td>
<td></td>
<td>141-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-1(D)</td>
<td></td>
<td></td>
<td>141-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y=Acceptable (Study satisfied Guideline)/Concur
P=Partial (Study partially fulfilled Guideline but additional information is needed)
S=Supplemental (Study provided useful information but Guideline was not satisfied)
N=Unacceptable (Study was rejected)/Nonconcur
NR* = Not reviewed at this time, will submit at a later date.
MEMORANDUM

Subject: NTN 33893 (Imidacloprid), Data Evaluation Records.

To: Dennis Edwards, PM 19
Registration Division, H7505C

From: Anthony Maciorowski, Chief
Ecological Effects Branch
Environmental Fate and Effects Division, H7507C

EEB has reviewed the studies submitted by Miles Inc. for the pending registration of NTN 33893. The following is a summary of those studies:

 The study is scientifically sound but does not meet the guideline requirements for a static acute toxicity test using freshwater invertebrates. Hyalella azteca is not a recommended guideline species; the data will be used to supplement the NTN 33839 toxicity database. The purity of the test material was not reported. The 96-hour EC50 value was determined to be 55 µg/l (mean measured concentrations), respectively. Therefore, NTN 33893 is classified as very highly toxic to H. azteca. The 96-hour NOEC value was determined to be 0.35 µg/l mean measured concentration.

 The first study is not scientifically sound because the control oyster growth was less than the minimum requirement (2 mm). The second study is scientifically sound and meets the guideline requirements for a mollusc shell deposition study. Based on the results of the second study, the 96-hour EC50 was >145 mg a.i./l (mean measured concentration) which classifies NTN 33893 as practically non-toxic to eastern oysters. The NOEC could not be determined.

In this test, only the initial 48-hour period is "core". The remainder of the test is invalid because the dilution water control and solvent control appear to have been contaminated with the test material. The 48-hour LC50 value of 68.9 µg/l (mean measured concentration) classifies NTN 33893 as highly toxic to midge larvae. The 48-hour NOEC was 1.04 µg/l mean measured concentration.

This study is scientifically sound but does not meet the guideline requirements for a Tier 1 non-target aquatic plant study. The test procedures deviated significantly from the recommended protocols. Exposure to NTN 33893 technical at a concentration of 10 mg ai/l (nominal) did not significantly reduce the growth of S. subspicatus over the 4-day test period.

This study is not scientifically sound and does not meet the guideline requirements for a Tier 2 non-target aquatic plant study. The control cultures did not grow logarithmically and light intensity was much greater than recommended.

This study is scientifically sound and fulfills the requirements for acute contact and oral studies with the honey bee. Acute contact and oral LD50 values of 0.078 and 0.0039 µg/bee, respectively, classify NTN 33893 technical as highly toxic to honey bees (Apis mellifera). The 48-hour contact and oral NOELs were 0.05 and 0.0015 µg/bee, respectively.

Note that MRID No.'s 422563-06 and 422563-10 have not been reviewed at this time. The review of these studies will take a
substantial amount of time. It was unnecessary to hold up the review and classification of the six studies noted above, as the two unreviewed studies are not needed for registration purposes. The two studies will be reviewed when time permits. For more information regarding this matter, please see memo to Dennis Edwards of 10/92, DP Barcode #D183139.

Questions regarding these reviews, contact Dana Lateulere at 308-2856.
DATA EVALUATION RECORD

1. **CHEMICAL:** NTN 33893.
 Shaughnessey No. 129059.

2. **TEST MATERIAL:** NTN 33893 technical; 1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-N-nitro-1H-imidazol-2-amine;
 CAS No. 105827-78-9; Batch No. 9030211; 95.0% active
 ingredient; a tan powder.

3. **STUDY TYPE:** 72-2. Freshwater Invertebrate Static Acute Toxicity Test. Species Tested: Midge (Chironomus tentans).

 Prepared by Mobay Corporation, Stilwell, KS. Submitted by Mobay Corporation, Kansas City, KS. EPA/MRID No. 422563-0.

5. **REVIEWED BY:**
 Louis M. Rifici, M.S.
 Associate Scientist
 KBN Engineering and Applied Sciences, Inc.

 Signature: Louis M. Rifici
 Date: 9/28/92

6. **APPROVED BY:**
 Pim Kosalwat, Ph.D.
 Senior Scientist
 KBN Engineering and Applied Sciences, Inc.

 Henry T. Craven, M.S.
 Supervisor, EEB/EFED
 USEPA

 Signature: P. Kosalwat
 Date: 9/28/92
 Signature: Henry T. Craven
 Date: 1/4/93

7. **CONCLUSIONS:** In this test, only the initial 48-hour period is "core". The remainder of the test is invalid because the dilution water control and solvent control appear to have been contaminated with the test material. The 48-hour LC$_{50}$
 value of 68.9 µg/l (mean measured concentration) classifies NTN 33893 as highly toxic to midge larvae. The 48-hour NOEC
 was 1.04 µg/l mean measured concentration.

8. **RECOMMENDATIONS:** N/A.

9. **BACKGROUND:**
10. **DISCUSSION OF INDIVIDUAL TESTS:** N/A.

11. **MATERIALS AND METHODS:**

A. **Test Animals:** Second instar (12 days post-hatch) midge larvae (*Chironomus tentans*) were obtained from in-house cultures maintained in hard blended water. The cultures were fed a suspension of Tetramin® and cereal leaves five times per week. The temperature and photoperiod during culturing were 22 ±1°C and 16 hours of light.

B. **Test System:** Vessels used in the test were 1-l glass beakers containing 900 ml of test solution. Silica sand was used to provide a substrate depth of 0.5-1 mm. The beakers were randomly positioned in a water bath under a 16-hour light/8-hour dark photoperiod. Light intensity ranged from 40-60 ft-candles. Thirty-minute dawn and dusk simulations were used.

The primary stock solution (20 g a.i./l) was prepared by dissolving 2.1048 g of NTN 33893 in 100 ml of dimethylformamide (DMF) at 22°C. Three additional stocks were prepared by serial dilution. The test solutions were prepared by mixing an appropriate volume of appropriate stock with 1 l of dilution water.

The dilution water used was hard blended water (a mixture of treated city water and spring water) with a hardness of 118 mg/l, an alkalinity of 83 mg/l, and a pH of 8.1-8.2. The chlorine content of the water was monitored continuously to assure the residual chlorine remained <3 µg/l.

C. **Dosage:** Ten-day static-renewal test. Based on a preliminary test, seven nominal concentrations (0.33, 1.0, 3.0, 10, 33, 100, and 300 µg a.i./l), a solvent control (16.5 µl DMF/l), and a dilution water control were used.

D. **Design:** Ten midge larvae were randomly placed in each replicate chamber, two replicates per concentration. The loading was approximately 1 midge/90 ml. Test solutions were renewed every Monday, Wednesday, and Friday by siphoning the old test solutions out of the test chambers to a depth of approximately 1 cm. Fresh solutions were slowly added to avoid disturbing the test organisms. The fresh solutions were no more than 4 hours old at the time of renewal. The midges were
fed the same food used in culturing at a rate of 0.5 ml/l of test solution.

All beakers were observed once every 24 hours for mortality and abnormal effects. At the end of the test, the midges were grouped by replicate, dried at 60°C for 24 hours, and weighed. The temperature, dissolved oxygen concentration (DO), conductivity, and pH were measured in alternating replicates of the control, solvent control, and the low, middle, and high concentrations on days 0, 3, 5, 7, and 10. The temperature of a centrally-located test beaker was also monitored continuously using a data logging device.

Samples of fresh test solutions were taken on days 0 and 5 to measure actual exposure concentrations. Old test solutions were analyzed on days 3 and 10. The concentration of NTN 33893 was determined using liquid chromatography.

E. **Statistics:** Dilution water control and solvent control growth data were compared using a t-test. All data were tested for normality (chi-square test) and homogeneity of variances (Bartlett's test). Survival data were analyzed using Fisher's Exact test. Test levels with significantly lowered survival were excluded from further analyses. Growth data were analyzed using one-way analysis of variance (ANOVA) and Dunnett's test. The 24, 48, 72, 96, and 240-hour LC$_{50}$ values and associated 95% confidence intervals were determined using a computer program developed by Stephan et al. (1978).

12. **REPORTED RESULTS:** No undissolved test substance was observed in the test chambers during the test. The mean measured concentrations were 0.67, 1.24, 3.39, 10.2, 34.5, 102, and 329 μg a.i./l (Table 2, attached). These values represented 99-203% of nominal concentrations. The control solutions were contaminated with the test material on three of five occasions. The average concentration in the dilution water control and solvent control was 0.20 and 0.15 μg/l, respectively. "No biological effects were observed in the controls and possible contamination of the samples may have occurred during sample extraction."

The mortality of midge larvae are given in Table 3 (attached). The 96-hour LC$_{50}$ was 10.5 μg/l mean measured concentration (95% C.I. = 7.69-14.4 μg/l) using the probit method. The slope of the toxicity curve was 3.3. The 96-

3
hour no-observed-effect concentration (NOEC), based on the lack of abnormal effects, was 1.24 μg/l.

After 10 days, survival at 3.39 μg/l was significantly lower than pooled control survival (Table 5, attached). Growth was significantly affected at 1.24 μg/l. The NOEC, based on survival and growth after 10 days was therefore 0.67 μg/l. The 10-day LC₅₀ was 3.17 μg/l (95% C.I. = 1.24-10.2 μg/l).

On day 0 through 7, the DO ranged from 5.8 to 7.9 mg/l or 79 to 108% of saturation at 20°C. However, on day 10, DO was 2.0-4.0 mg/l "possibly due to an increased oxygen demand created by increased food in the test chambers" (Table 7, attached). The pH values ranged from 7.1 to 8.8. The temperature was 20.8-22.3°C.

13. STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:
The authors presented no conclusions.

Quality Assurance and Study Compliance Statements were included in the report, indicating that the study was conducted in accordance with FIFRA Good Laboratory Practice Standards set forth in 40 CFR Part 160.

14. REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:

A. Test Procedure: The test design differed from the SEP for freshwater invertebrate acute tests. Significant deviations are as follows:

This test was designed to gather survival and growth data, therefore, the midge larvae were fed during testing. The duration should have been 48 hours eliminating the addition of food to the vessels.

The test concentrations were approximately 30% of the next highest concentration. The SEP recommends that each nominal concentration be at least 60% of next highest.

The test solutions were as old as 4 hours at the time of renewal. The SEP states that the test solutions should be used within 30 minutes of preparation.

The DO at test termination ranged from 2.0 to 4.0 mg/l (22 to 43% of saturation at 20°C). Dissolved oxygen levels must remain above 40% of saturation during the test.
The author stated that conductivity was measured in alternating replicates of the control, solvent control, low, middle, and high concentration on days 0, 3, 5, 7, and 10. The results were not presented in the report.

B. **Statistical Analysis:** The reviewer used EPA's Toxanal program and mean measured concentrations to determine the 48, 96, and 240-hour LC₅₀ values (see attached printouts 1-3). The results were similar to those of the author's.

Growth and survival at test termination were analyzed to verify the author's 10-day NOEC. Survival at concentrations ≥3.39 μg/l was significantly lower than survival in the solvent control (see attached printout 4). Average dry weight of surviving midges at concentrations ≥1.24 μg/l was significantly lower than the solvent control (see attached printout 4). These results are the same as those of the author's.

C. **Discussion/Results:** In this test, only the initial 48-hour period is "core". The remainder of the test is invalid because the dilution water control and solvent control appear to have been contaminated with the test material. The 48-hour LC₅₀ value of 68.9 μg/l (mean measured concentration) classifies NTN 33893 as highly toxic to midge larvae. The 48-hour NOEC was 1.04 μg/l mean measured concentration.

D. **Adequacy of the Study:**

(1) **Classification:** Core for the initial 48-hour period only.

(2) **Rationale:** The remainder of the test is invalid because the dilution water control and solvent control appear to have been contaminated with the test material.

(3) **Repairability:** N/A.

15. **Completion of One-Liner for Study:** Yes, 09-16-92.
IMIDACLOPRID

Page is not included in this copy.

Pages through are not included.

The material not included contains the following type of information:

___ Identity of product inert ingredients.

___ Identity of product impurities.

___ Description of the product manufacturing process.

___ Description of quality control procedures.

___ Identity of the source of product ingredients.

___ Sales or other commercial/financial information.

___ A draft product label.

___ The product confidential statement of formula.

___ Information about a pending registration action.

X FIFRA registration data.

___ The document is a duplicate of page(s) ________.

___ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.
RIFICI NITN 33893 CHIRONOMUS TENTANS 09-16-92

<table>
<thead>
<tr>
<th>CONC</th>
<th>NUMBER EXPOSED</th>
<th>NUMBER DEAD</th>
<th>PERCENT DEAD</th>
<th>BINOMIAL PROB. (PERCENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.5</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>102.3</td>
<td>20</td>
<td>8</td>
<td>40</td>
<td>25.17223</td>
</tr>
<tr>
<td>34.3</td>
<td>20</td>
<td>7</td>
<td>35</td>
<td>13.1588</td>
</tr>
<tr>
<td>10.3</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>2.002716E-03</td>
</tr>
<tr>
<td>3.09</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>2.002716E-03</td>
</tr>
<tr>
<td>1.04</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>.54</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
</tbody>
</table>

THE BINOMIAL TEST SHOWS THAT 10.3 AND 329.5 CAN BE USED AS STATISTICALLY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS, BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 118.3196

RESULTS CALCULATED USING THE MOVING AVERAGE METHOD
SPAN G LC50 95 PERCENT CONFIDENCE LIMITS
3 6.572961E-02 68.94127 49.35569 - 78.45328
98.45378

RESULTS CALCULATED USING THE PROBIT METHOD
ITERATIONS G H GOODNESS OF FIT PROBABILITY
5 .1061265 1 7.839239E-02

SLOPE = 1.690331
95 PERCENT CONFIDENCE LIMITS = 1.139671 AND 2.240991

LC50 = 68.87281
95 PERCENT CONFIDENCE LIMITS = 44.81775 AND 111.5195

LC10 = 12.21
95 PERCENT CONFIDENCE LIMITS = 5.017858 AND 20.75928

96-hour L$_{C50}$

RIFICI NTN 33893 CHIRONOMUS TENTANS 09-16-92

<table>
<thead>
<tr>
<th>CONC.</th>
<th>NUMBER EXPOSED</th>
<th>NUMBER DEAD</th>
<th>PERCENT DEAD</th>
<th>BINOMIAL PROB. (PERCENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>329</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>102</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>34.5</td>
<td>20</td>
<td>19</td>
<td>95</td>
<td>2.002716E-03</td>
</tr>
<tr>
<td>10.2</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>58.80985</td>
</tr>
<tr>
<td>3.39</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>2.002716E-03</td>
</tr>
<tr>
<td>1.24</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>.67</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
</tbody>
</table>

The binomial test shows that 3.39 and 34.5 can be used as statistically sound conservative 95 percent confidence limits, because the actual confidence level associated with these limits is greater than 95 percent.

An approximate L$_{C50}$ for this set of data is 10.2

RESULTS CALCULATED USING THE MOVING AVERAGE METHOD

<table>
<thead>
<tr>
<th>SPAN</th>
<th>G</th>
<th>LC$_{50}$</th>
<th>95 Percent Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5.135013E-02</td>
<td>11.43877</td>
<td>7.679475 - 17.03832</td>
</tr>
</tbody>
</table>

RESULTS CALCULATED USING THE PROBIT METHOD

<table>
<thead>
<tr>
<th>ITERS.</th>
<th>G</th>
<th>H</th>
<th>Goodness of Fit Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>.1373512</td>
<td>1</td>
<td>.9999185</td>
</tr>
</tbody>
</table>

Slope = 3.310458
95 percent confidence limits = 2.083571 and 4.537344

L$_{C50}$ = 10.45897
95 percent confidence limits = 7.686511 and 14.42776

L$_{C10}$ = 4.323704
95 percent confidence limits = 2.343523 and 6.104206
10- day LC50

RIFICI NTN 33893 CHIRONOMUS TENTANS 09-16-92
**

<table>
<thead>
<tr>
<th>CONC.</th>
<th>NUMBER EXPOSED</th>
<th>NUMBER DEAD</th>
<th>PERCENT DEAD</th>
<th>BINOMIAL PROB. (PERCENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>329</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>102</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>34.5</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>10.2</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>3.39</td>
<td>20</td>
<td>11</td>
<td>55</td>
<td>41.19014</td>
</tr>
<tr>
<td>1.24</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>.67</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
</tbody>
</table>

THE BINOMIAL TEST SHOWS THAT 1.24 AND 10.2 CAN BE USED AS STATISTICALLY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS, BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 3.172205

WHEN THERE ARE LESS THAN TWO CONCENTRATIONS AT WHICH THE PERCENT DEAD IS BETWEEN 0 AND 100, NEITHER THE MOVING AVERAGE NOR THE PROBIT METHOD CAN GIVE ANY STATISTICALLY SOUND RESULTS.

**
MIDGE SURVIVAL AFTER 10 DAYS

SUMMARY OF FISHERS EXACT TESTS

<table>
<thead>
<tr>
<th>GROUP</th>
<th>IDENTIFICATION</th>
<th>NUMBER EXPOSED</th>
<th>NUMBER DEAD</th>
<th>SIG (P=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.67 µg/l</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.24</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.39</td>
<td>20</td>
<td>11</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>10.2</td>
<td>20</td>
<td>20</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>34.5</td>
<td>20</td>
<td>20</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>20</td>
<td>20</td>
<td>*</td>
</tr>
<tr>
<td>7</td>
<td>329</td>
<td>20</td>
<td>20</td>
<td>*</td>
</tr>
</tbody>
</table>

422563-04, MTN 33393, midge dry weight

t-test of Solvent and Blank Controls
Ho: GRP1 MEAN = GRP2 MEAN

<table>
<thead>
<tr>
<th>GRP1 (SOLVENT CTRL) MEAN</th>
<th>GRP2 (BLANK CTRL) MEAN</th>
<th>CALCULATED t VALUE</th>
<th>DEGREES OF FREEDOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.210</td>
<td>2.050</td>
<td>1.5541</td>
<td>2</td>
</tr>
</tbody>
</table>

DIFFERENCE IN MEANS = 0.1600

TABLE t VALUE (0.05 (2), 2) = 4.303 NO significant difference at alpha=0.05

TABLE t VALUE (0.01 (2), 2) = 9.925 NO significant difference at alpha=0.01

Shapiro Wilks test for normality
Data PASS normality test at P=0.01 level. Continue analysis.

Bartlett's test for homogeneity of variance
Data PASS homogeneity test at 0.01 level. Continue analysis.

ANOVA TABLE

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>4</td>
<td>4.404</td>
<td>1.101</td>
<td>53.548</td>
</tr>
<tr>
<td>Within (Error)</td>
<td>5</td>
<td>0.103</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>4.507</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical F value = 5.19 (0.05,4,5)
Since F > Critical F REJECT Ho: All groups equal

DUNNETTS TEST - TABLE 1 OF 2
Ho: Control<Treatment

<table>
<thead>
<tr>
<th>GROUP</th>
<th>IDENTIFICATION</th>
<th>TRANSFORMED MEAN</th>
<th>MEAN CALCULATED IN ORIGINAL UNITS</th>
<th>T STAT</th>
<th>SIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>solvent control</td>
<td>2.210</td>
<td>2.210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>dilution ctrl</td>
<td>2.050</td>
<td>2.050</td>
<td>1.116</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.67 µg/l</td>
<td>2.060</td>
<td>2.060</td>
<td>1.046</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.24</td>
<td>1.720</td>
<td>1.720</td>
<td>3.417</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>3.39</td>
<td>0.460</td>
<td>0.460</td>
<td>12.623</td>
<td>*</td>
</tr>
</tbody>
</table>

Dunnett table value = 2.85 (1 Tailed Value, P=0.05, df=5,4)

DUNNETTS TEST - TABLE 2 OF 2
Ho: Control<Treatment

<table>
<thead>
<tr>
<th>GROUP</th>
<th>IDENTIFICATION</th>
<th>NUM OF REPS</th>
<th>Minimum Sig Diff (IN ORIG. UNITS)</th>
<th>% of CONTROL</th>
<th>DIFFERENCE FROM CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>solvent control</td>
<td>2</td>
<td>0.409</td>
<td>18.5</td>
<td>0.160</td>
</tr>
<tr>
<td>2</td>
<td>dilution ctrl</td>
<td>2</td>
<td>0.409</td>
<td>18.5</td>
<td>0.150</td>
</tr>
<tr>
<td>3</td>
<td>0.67 µg/l</td>
<td>2</td>
<td>0.409</td>
<td>18.5</td>
<td>0.490</td>
</tr>
<tr>
<td>4</td>
<td>1.24</td>
<td>2</td>
<td>0.409</td>
<td>18.5</td>
<td>1.810</td>
</tr>
<tr>
<td>5</td>
<td>3.39</td>
<td>2</td>
<td>0.409</td>
<td>18.5</td>
<td>1.810</td>
</tr>
<tr>
<td>GRP IDENTIFICATION</td>
<td>REP</td>
<td>VALUE</td>
<td>TRANS VALUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solvent control</td>
<td>1</td>
<td>2.2600</td>
<td>2.2600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solvent control</td>
<td>2</td>
<td>2.1600</td>
<td>2.1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dilution control</td>
<td>1</td>
<td>1.9600</td>
<td>1.9600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dilution control</td>
<td>2</td>
<td>2.1400</td>
<td>2.1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.67 µg/l</td>
<td>1</td>
<td>2.0800</td>
<td>2.0800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.67 µg/l</td>
<td>2</td>
<td>2.0400</td>
<td>2.0400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>1</td>
<td>1.5200</td>
<td>1.5200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>2</td>
<td>1.9200</td>
<td>1.9200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.39</td>
<td>1</td>
<td>0.4200</td>
<td>0.4200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.39</td>
<td>2</td>
<td>0.3800</td>
<td>0.3800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA EVALUATION RECORD

1. **CHEMICAL:** NTN 33893.
 Shaughnessey No. 129059.

2. **TEST MATERIAL:** NTN 33893 technical; Batch No. 1717119/89: 96.2% active ingredient; and Batch No. 17129-90: 95.8% active ingredient; a yellow-colored powder.

5. **REVIEWED BY:**

 Louis M. Rifici, M.S.
 Associate Scientist
 KBN Engineering and Applied Sciences, Inc.

 Signature: Louis M. Rifici
 Date: 9/28/92

6. **APPROVED BY:**

 Pim Kosalwat, Ph.D.
 Senior Scientist
 KBN Engineering and Applied Sciences, Inc.

 Henry T. Craven, M.S.
 Supervisor, EEB/EFED USEPA

 Signature: P. Kosalwat
 Date: 9/28/92

7. **CONCLUSIONS:** The first study is not scientifically sound because the control oyster growth was less than the minimum requirement (2 mm). The second study is scientifically sound and meets the guideline requirements for a mollusc shell deposition study. Based on the results of the second study, the 96-hour EC₅₀ was >145 mg a.i./l (mean measured concentration) which classifies NTN 33893 as practically non-toxic to eastern oysters. The NOEC could not be determined.

8. **RECOMMENDATIONS:** N/A.

9. **BACKGROUND:**
10. DISCUSSION OF INDIVIDUAL TESTS: N/A.

11. MATERIALS AND METHODS:

A. **Test Animals:** Eastern oysters (*Crassostrea virginica*) were obtained from a commercial supplier in Dennis, MA. The oysters were held in the laboratory, in natural unfiltered seawater, for 2-6 days prior to testing. At the initiation of the holding period, 2-5 mm of shell margin was ground from each oyster with a grinding wheel to provide a smooth flattened edge. The salinity of the seawater ranged from 30 to 36 parts per thousand (ppt) and the temperature was 19.9-24.4°C.

The dilution water control oysters used in the first test had an average length (umbo to distal valve edge) of 21.5 (19.2-23.7) mm and an average wet weight of 0.31 (0.21-0.41) g. The control oysters used in the second test had an average length of 24.3 (19.5-28.0) mm and an average wet weight of 0.52 (0.35-0.86) g.

B. **Test System:** The test system for the two tests were different. "In the first test, the exposure system consisted of a glass head box fitted with glass tubing calibrated to provide unfiltered saltwater to each test chamber at a rate of approximately 400 ml/minute. This flow rate was sufficient to provide a minimum of approximately 1.2 l of dilution water per oyster per hour." The primary toxicant stock solution (384,800 mg a.i./l) was prepared in dimethylformamide (DMF). The solution was stirred overnight, allowed to settle for 1 day, then filtered. The filtrate concentration was 276,500 mg a.i./l. Four additional stock solutions were prepared by serial dilution. The stock solutions were continuously delivered to glass mixing boxes, where the test solutions were prepared. The test chambers were 29-l glass aquaria designed to maintain a solution height of 13 cm and a test volume of 19 l. The flow rate provided 30 volume additions/container/day.

The second test was performed using a glass head box fitted with glass tubing calibrated to provide a flow of dilution water of 365 ml/min. The flow of toxicant stock solution was approximately 135 ml/min giving a total flow rate of 500 ml/min (approximately 1.0 l/oyster/hour). The test containers were 11.3-l glass aquaria containing 5.4 l of solution at a depth of 6 cm. The flow rate provided 133 volume additions/container/day. The stock solution (500 mg
a.i./l) for this test was prepared by mixing 104.4 g of
NTN 33893 (Batch No. 17129-90) with 750 ml of seawater
in a high speed blender. The mixture was diluted with
199.25 l of unfiltered seawater and stirred overnight.

All test chambers were randomly positioned in a water
bath under a 16-hour light/8-hour dark photoperiod with
15-minute dawn and dusk simulations. Light intensity
during the test was 304 to 508 lux.

Natural unfiltered seawater with a salinity of 30-35
ppt was used as test dilution water.

C. Dosage: Ninety-six-hour flow-through tests. Based on
the results of a preliminary test, the first definitive
test consisted of five nominal concentrations (2.6,
4.3, 7.2, 12.0, and 19.4 mg a.i./l), a dilution water
control, and a solvent control (70 µl/l DMF). The
second definitive test consisted of a single
concentration (121.5 mg a.i./l) and a dilution water
control.

D. Design: Just prior to test initiation, oysters which
demonstrated shell growth during holding were carefully
ground to remove all new shell growth. In the first
test, the prepared oysters were impartially added, two
at a time, to the test chambers for a total of 20 per
concentration. In the second test, 30 oysters were
used per concentration. One chamber was used per
treatment in both tests. No supplemental food was
added.

Observations of mortality and test solutions were made
every 24 hours. At the end of the test, oyster growth
was measured to the nearest 0.1 mm. The dissolved
oxygen concentration (DO) and pH of the test solutions
were measured in each chamber at the beginning of the
test and at each 24-hour observation. The salinity of
the dilution water control was measured daily. The
temperature was monitored hourly in the control chamber
using a data logging device.

The test concentrations were measured using high
pressure liquid chromatography fitted with an ultra-
violet detector. During test 1, the solutions were
measured at test initiation and termination. During
test 2, the solutions were measured daily.

E. Statistics: Dilution water control and solvent control
growth were compared using a t-test. Exposed oyster
responses were compared to the pooled control using analysis of variance (ANOVA) and Dunnett's test. In the second test, the growth of exposed oysters were compared to that of the dilution water control using a t-test.

12. **REPORTED RESULTS:** The test systems functioned properly during the exposures. During the first test, the mean measured concentrations were 2.93, 5.14, 8.19, 14.2, and 23.3 mg a.i./l (Table 1, attached). These values ranged from 113 to 120% of nominal concentrations. Undissolved test material was observed in the two highest exposure levels throughout the exposure period. One observation of undissolved material was made in the 8.19 mg a.i./l concentration. In the single exposure test, the mean measured concentration was 145 mg a.i./l which was 119% of nominal concentration (Table 8, attached).

Mean new shell growth for the dilution water control and solvent control during the first test was 1.52 and 1.76 mm, respectively (Table 3, attached), and were not significantly different. Exposure to concentrations up to 23.3 mg a.i./l had no effect on new shell deposition, therefore the 96-hour EC₅₀ for the first test was >23.3 mg a.i./l. The no-observed-effect concentration (NOEC) was 23.3 mg a.i./l.

In the single concentration test using 145 mg a.i./l, new shell growth was reduced by 22% compared to the dilution water control (Table 10, attached). This difference was statistically significant using the t-test. Mean new shell growth in the dilution water control was 2.89 mm. The 96-hour EC₅₀ was >145 mg a.i./l and the NOEC could not be calculated. There was no mortality during either test.

Dissolved oxygen concentrations were at least 70% of saturation during both tests. The salinity during the first test was 32-35 ppt and 30 ppt during the second test. The pH values ranged from 7.6 to 8.1. The temperature during the first test was 20.1-22.5°C and 21.7-25.4°C during the second test.

13. **STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:**
The author presented no conclusions.

A Good laboratory practice statement was included in the report, indicating that the study was conducted in accordance with Good Laboratory Practice Standards set forth in 40 CFR Part 160. The dates and types of quality assurance audits were also included.
14. REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:

A. **Test Procedure:** The test procedures were generally in accordance with the SEP, except for the following:

An amendment to the SEP states that control oysters must deposit a minimum of 2 mm of new shell in 96 hours. At the end of the first test, the control and solvent control oysters deposited an average of 1.52 and 1.76 mm.

In this study, the flow rate of the test solution was about 1.0-1.2 l/oyster/hour. According to the protocols recommended by the SEP (APHA, 1981 and Anonymous, 1976), each oyster should receive a minimum of 5 L of flow-through test solution per hour.

As the authors stated, the oysters were held in the laboratory for less than the required 10 days.

The oysters should be arranged in the test aquaria with the cupped-valve down and the anterior hinged ends oriented in one direction. The authors did not describe the positioning of the oysters.

B. **Statistical Analysis:** The raw new shell deposition data from both tests were analyzed to determine the NOEC. The data from the first test did not meet the assumptions of normality and homogeneity of variances. The data were analyzed using the Kruskal-Wallis test. Average growth for several exposure groups were significantly higher than dilution water control and solvent control oysters (see attached printout 1). The NOEC for this test was 23.3 mg a.i./l. Growth inhibition >50% was not observed in this test, therefore EC_{50} calculations were not possible.

The data from the second test were analyzed using Student's t-test. Mean new shell growth in the exposure group was significantly lower than the control growth (see attached printout 1) therefore an NOEC could not be determined in this test. As above, an EC_{50} calculation was not possible.

C. **Discussion/Results:** Average new shell growth in control oysters (1.52 and 1.76 mm) at the conclusion of test 1 was lower than required (2.0 mm) in an amendment to the SEP. However, average growth in the control oysters during the second test was 2.89 mm. The test material could be considered practically non-toxic.
Page___ is not included in this copy.
Pages 24 through 27 are not included.

The material not included contains the following type of information:

___ Identity of product inert ingredients.
___ Identity of product impurities.
___ Description of the product manufacturing process.
___ Description of quality control procedures.
___ Identity of the source of product ingredients.
___ Sales or other commercial/financial information.
___ A draft product label.
___ The product confidential statement of formula.
___ Information about a pending registration action.

X___ FIFRA registration data.
___ The document is a duplicate of page(s) ________.
___ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.
t-test of Solvent and Blank Controls
Ho: GRP1 MEAN = GRP2 MEAN

<table>
<thead>
<tr>
<th>GROUP</th>
<th>IDENTIFICATION</th>
<th>TRANSFORMED MEAN</th>
<th>MEAN IN ORIGINAL UNITS</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>solvent control</td>
<td>1.755</td>
<td>1.755</td>
<td>1104.000</td>
</tr>
<tr>
<td>2</td>
<td>dilution control</td>
<td>1.520</td>
<td>1.520</td>
<td>802.000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.93</td>
<td>1.715</td>
<td>1078.000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5.14</td>
<td>1.940</td>
<td>1455.000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8.19</td>
<td>2.540</td>
<td>2065.500</td>
</tr>
<tr>
<td>6</td>
<td>14.2</td>
<td>2.170</td>
<td>2.170</td>
<td>1727.500</td>
</tr>
<tr>
<td>7</td>
<td>23.3</td>
<td>2.110</td>
<td>2.110</td>
<td>1638.000</td>
</tr>
</tbody>
</table>

Calculated H Value = 36.089
Critical H Value Table = 12.590
Since Calc H > Crit H REJECT Ho: All groups are equal.

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2 (p=0.05)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>IDENTIFICATION</th>
<th>TRANSFORMED MEAN</th>
<th>ORIGINAL UNITS</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>dilution control</td>
<td>1.520</td>
<td>2.110</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.93</td>
<td>2.110</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>solvent control</td>
<td>1.755</td>
<td>2.110</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5.14</td>
<td>2.110</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>14.2</td>
<td>2.170</td>
<td>2.110</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8.19</td>
<td>2.540</td>
<td>-</td>
</tr>
</tbody>
</table>

* = significant difference (p=0.05)
= no significant difference

Table q value (0.05,7) = 3.038
SE = 12.804

Test 2 Statistical Evaluation - descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MEAN</th>
<th>MEDIAN</th>
<th>TMEAN</th>
<th>StDev</th>
<th>SEMEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>30</td>
<td>2.890</td>
<td>2.750</td>
<td>2.873</td>
<td>0.775</td>
<td>0.142</td>
</tr>
<tr>
<td>145 mg/L</td>
<td>30</td>
<td>2.237</td>
<td>2.200</td>
<td>2.258</td>
<td>0.959</td>
<td>0.175</td>
</tr>
<tr>
<td>MIN MAX Q1 Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.000</td>
<td>4.900</td>
<td>2.475</td>
<td>3.525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145 mg/L</td>
<td>0.000</td>
<td>4.000</td>
<td>1.575</td>
<td>3.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TwoSample T FOR control VS 145 mg/L

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MEAN</th>
<th>StDev</th>
<th>SEMEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>30</td>
<td>2.890</td>
<td>0.775</td>
<td>0.14</td>
</tr>
<tr>
<td>145 mg/L</td>
<td>30</td>
<td>2.237</td>
<td>0.959</td>
<td>0.18</td>
</tr>
</tbody>
</table>

95 PCT CI FOR MU control - MU 145 mg/L: (0.20, 1.10)

W = 1090.0

Test of ETA1 = ETA2 versus ETA1 n.e. ETA2 is significant at 0.0099

The test is significant at 0.0009 (adjusted for ties)
<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>145 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>3.7</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>3.6</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>3.6</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>9</td>
<td>4.9</td>
<td>3.3</td>
</tr>
<tr>
<td>10</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>11</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>12</td>
<td>2.9</td>
<td>2.2</td>
</tr>
<tr>
<td>13</td>
<td>2.6</td>
<td>1.7</td>
</tr>
<tr>
<td>14</td>
<td>3.1</td>
<td>3.6</td>
</tr>
<tr>
<td>15</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>16</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>17</td>
<td>3.5</td>
<td>1.6</td>
</tr>
<tr>
<td>18</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>19</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>20</td>
<td>4.2</td>
<td>2.2</td>
</tr>
<tr>
<td>21</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>22</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>23</td>
<td>2.6</td>
<td>2.3</td>
</tr>
<tr>
<td>24</td>
<td>3.7</td>
<td>1.8</td>
</tr>
<tr>
<td>25</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>2.8</td>
<td>0.8</td>
</tr>
<tr>
<td>27</td>
<td>2.4</td>
<td>3.5</td>
</tr>
<tr>
<td>28</td>
<td>3.0</td>
<td>0.9</td>
</tr>
<tr>
<td>29</td>
<td>3.3</td>
<td>3.0</td>
</tr>
<tr>
<td>30</td>
<td>1.9</td>
<td>3.0</td>
</tr>
</tbody>
</table>
DATA EVALUATION RECORD

1. **CHEMICAL:** NTN 33893.
 Shaughnessey No. 129059.

2. **TEST MATERIAL:** NTN 33893 technical (Imidacloprid); 1-[(6-chloro-3-pyrididyl)methyl]-4,S-dihydro-N-nitro-1H-imidazol-2-amine; Batch No. 890315 ELB 01; 99.8% active ingredient; a colorless crystal.

3. **STUDY TYPE:** Acute Contact LD₅₀ and Oral LD₅₀ Tests. Species Tested: Honey Bee (Apis mellifera). [#1](#)

5. **REVIEWED BY:**
 Mark A. Mossler, M.S.
 Associate Scientist
 KBN Engineering and Applied Sciences, Inc.

6. **APPROVED BY:**
 Pim Kosalwat, Ph.D.
 Senior Scientist
 KBN Engineering and Applied Sciences, Inc.

 Henry T. Craven, M.S.
 Supervisor, EEB/EFED
 USEPA

 Signature:
 Date: 10/5/92

 Signature:
 Date: 7/14/92

7. **CONCLUSIONS:** This study is scientifically sound and fulfills the requirements for acute contact and oral studies with the honey bee. Acute contact and oral LD₅₀ values of 0.078 and 0.0039 µg/bee, respectively, classify NTN 33893 technical as highly toxic to honey bees (Apis mellifera). The 48-hour contact and oral NOELs were 0.05 and 0.0015 µg/bee, respectively.

8. **RECOMMENDATIONS:** N/A.
9. **BACKGROUND:**

10. **DISCUSSION OF INDIVIDUAL TESTS:** N/A.

11. **MATERIALS AND METHODS:**

 A. **Test Animals:** Worker honey bees (*Apis mellifera*) were collected from the hives of Mr. R. Baker, Cambridgeshire, UK, within 3 to 4 hours prior to testing.

 B. **Test System:** Bees were contained in cylindrical wire mesh cages (115 mm long and 40 mm in diameter). A glass feeding tube was inserted through the top of the cage and projected a 1.5 mm feeding hole. The bees were fed a 20% sugar/water solution. This food source was available *ad libitum* throughout the test (except during oral dosing). The cages were kept in a darkness and maintained at 25 ±1°C.

 C. **Dosage:** Forty-eight hour acute contact and oral studies. Doses selected were based on preliminary rangefinding tests. For the contact study, the doses applied were 0.025, 0.05, 0.10, 0.20, and 0.40 µg/bee.

 For the oral study, the doses that the bees ingested were 0.0015, 0.0031, 0.0063, 0.0125, and 0.025 µg/bee.

 D. **Design:** The tests consisted of 5 treatment levels and a solvent control (contact) or sugar water control (oral). Two replicates of 10 bees each were used for each treatment and control.

 For the contact study, bees were immobilized with carbon dioxide and dosed individually on the ventral side of the thorax with 1 µl of the appropriate test solution. Control bees were treated with 1 µl of dimethylformamide.

 Oral exposure was accomplished by dissolving the test material in a 20% sugar/water solution. Feeding was done by supplying 0.2 ml of the test solutions in the feeding tube for the ten bees per cage to feed upon. Control bees were given a 20% sucrose solution. When all the test solution had been ingested (about 4 hours), the feeding tubes were replaced by tubes containing 20% sucrose solution.

 Mortalities were recorded at 24 and 48 hours after treatment.
E. **Statistics:** The LD₅₀ values and 95% confidence limits were calculated using probit analysis. Adjustments were made for control mortality with Abbott's correction.

12. **Reported Results:** Percentage mortality for both tests is presented in the Table of Results (attached). The 48-hour LD₅₀ for acute contact was determined to be 0.0081 µg/bee with a 95% confidence interval of 0.0055-0.0119 µg/bee. The 48-hour LD₅₀ for oral ingestion was determined to be 0.0037 µg/bee with a 95% confidence interval of 0.0026-0.0053 µg/bee.

13. **Study Author's Conclusions/Quality Assurance Measures:**
 The author concluded that MTN 33893 is highly toxic to bees.
 Quality Assurance and Good Laboratory Practice statements were included in the report indicating that the study was in compliance with the requirements of 40 CFR Part 160.

14. **Reviewer's Discussion and Interpretation of Study Results:**

 A. **Test Procedure:** The test procedures generally follow the protocols recommended by the SEP and Subdivision L guidelines, except for the following:

 The age of the bees was not given and it is not known whether all test bees were at a uniform age.

 No negative control group was included in the design for the contact study.

 Observations of sublethal effects (if any) were not presented in the report.

 B. **Statistical Analysis:** The reviewer calculated the LD₅₀ values using probit analysis and obtained similar results for the oral study. For the contact study, the reviewer's LD value is 10 times greater than the author's. Therefore, the author probably made a typographical error in the results and summary sections since the data indicated only 20% mortality at the lowest dose (0.025 µg/bee). However, either the reviewer's value (0.078 µg/bee) or the author's value (0.0081 µg/bee) would classify the test substance as highly toxic to the bees.

 Using EPA's Dunnett's test program, the reviewer determined that the no-observed-effect levels (NOEL) for
the oral and contact studies were 0.0015 and 0.05 μg/bee, respectively (see attached printouts).

C. Discussion/Results: This study is scientifically sound and fulfills the requirements for acute contact and oral studies with the honey bee. Acute contact and oral LD₅₀ values of 0.078 and 0.0039 μg/bee, respectively, classify NTN 33893 technical as highly toxic to honey bees (Apis mellifera). The contact and oral NOELs were 0.05 and 0.0015 μg/bee, respectively.

D. Adequacy of the Study:

(1) Classification: Core.

(2) Rationale: N/A.

(3) Repairability: N/A.

Page 34 is not included in this copy.
Pages ___ through ___ are not included.

The material not included contains the following type of information:

___ Identity of product inert ingredients.
___ Identity of product impurities.
___ Description of the product manufacturing process.
___ Description of quality control procedures.
___ Identity of the source of product ingredients.
___ Sales or other commercial/financial information.
___ A draft product label.
___ The product confidential statement of formula.
___ Information about a pending registration action.

✗ FIFRA registration data.
___ The document is a duplicate of page(s) ________.
___ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.
Summary Statistics and ANOVA

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (mg/sec)</th>
<th>Mean</th>
<th>s.d.</th>
<th>cv%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = control</td>
<td>2</td>
<td>10.000</td>
<td>.0000</td>
<td>.0</td>
</tr>
<tr>
<td>2 a.25</td>
<td>2</td>
<td>8.0000</td>
<td>2.8284</td>
<td>35.4</td>
</tr>
<tr>
<td>3 a.5</td>
<td>2</td>
<td>7.0000</td>
<td>.0000</td>
<td>.0</td>
</tr>
<tr>
<td>4 x 0.1</td>
<td>2</td>
<td>4.5000</td>
<td>2.1213</td>
<td>47.1</td>
</tr>
<tr>
<td>5 x 0.2</td>
<td>2</td>
<td>2.0000</td>
<td>1.4142</td>
<td>70.7</td>
</tr>
<tr>
<td>6 x 0.5</td>
<td>2</td>
<td>.5000</td>
<td>.7071</td>
<td>141.4</td>
</tr>
</tbody>
</table>

*) the mean for this group is significantly less than the control mean at alpha = 0.05 (1-sided) by Dunnett's test

Minimum detectable difference for Dunnett's test = -4.474623
This difference corresponds to -44.75 percent of control

Between groups sum of squares = 133.666667 with 5 degrees of freedom.
Error mean square = 2.500000 with 6 degrees of freedom.

* Warning - the test for equality of variances could not be computed as 1 or more of the variances is zero.

bee contact

Estimated EC Values and Confidence Limits

<table>
<thead>
<tr>
<th>Point</th>
<th>Conc.</th>
<th>Lower 95% Confidence Limits</th>
<th>Upper 95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 1.00</td>
<td>0.0058</td>
<td>0.0034</td>
<td>0.0086</td>
</tr>
<tr>
<td>EC 5.00</td>
<td>0.0124</td>
<td>0.0083</td>
<td>0.0168</td>
</tr>
<tr>
<td>EC10.00</td>
<td>0.0186</td>
<td>0.0133</td>
<td>0.0240</td>
</tr>
<tr>
<td>EC15.00</td>
<td>0.0245</td>
<td>0.0183</td>
<td>0.0306</td>
</tr>
<tr>
<td>EC50.00</td>
<td>0.0783</td>
<td>0.0675</td>
<td>0.0901</td>
</tr>
<tr>
<td>EC85.00</td>
<td>0.2498</td>
<td>0.2056</td>
<td>0.3205</td>
</tr>
<tr>
<td>EC90.00</td>
<td>0.3287</td>
<td>0.2628</td>
<td>0.4406</td>
</tr>
<tr>
<td>EC95.00</td>
<td>0.4937</td>
<td>0.3765</td>
<td>0.7090</td>
</tr>
<tr>
<td>EC99.00</td>
<td>1.0590</td>
<td>0.7337</td>
<td>1.7427</td>
</tr>
</tbody>
</table>

\[y = 7.28 + 2.06(x) \]

\[y = \text{probit \% inhibition} \]

\[x = \log(C_{90}) \]
Bee oral ingestion

Summary Statistics and ANOVA

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean</th>
<th>s.d.</th>
<th>cv%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2</td>
<td>9.5000</td>
<td>.7071</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8.0000</td>
<td>1.4142</td>
<td>17.7</td>
</tr>
<tr>
<td>3*</td>
<td>2</td>
<td>5.0000</td>
<td>1.4142</td>
<td>28.3</td>
</tr>
<tr>
<td>4*</td>
<td>2</td>
<td>3.5000</td>
<td>2.1213</td>
<td>60.6</td>
</tr>
<tr>
<td>5*</td>
<td>2</td>
<td>1.0000</td>
<td>1.4142</td>
<td>141.4</td>
</tr>
<tr>
<td>6*</td>
<td>2</td>
<td>.0000</td>
<td>.0000</td>
<td>.0</td>
</tr>
</tbody>
</table>

*) the mean for this group is significantly less than the control mean at alpha = 0.05 (1-sided) by Dunnett's test

NOEL = 0.0015 mg/bee

Minimum detectable difference for Dunnett's test = -3.831838
This difference corresponds to -40.34 percent of control

Between groups sum of squares = 142.000000 with 5 degrees of freedom.

Error mean square = 1.833333 with 6 degrees of freedom.
NOTE: BECAUSE THERE WAS CONTROL MORTALITY, AND NONE OF THE LOWER CONCENTRATIONS PRODUCED ZERO MORTALITY, THE DATA HAS BEEN SUBJECTED TO ABBOTT'S CORRECTION.

MOSSLER NTN 33893 APIS MELLIFERA 9-23-92

**

<table>
<thead>
<tr>
<th>CONC.</th>
<th>NUMBER EXPOSED</th>
<th>NUMBER DEAD</th>
<th>PERCENT DEAD</th>
<th>BINOMIAL PROB. (PERCENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.025</td>
<td>19</td>
<td>19</td>
<td>100</td>
<td>1.907348E-04</td>
</tr>
<tr>
<td>.0125</td>
<td>19</td>
<td>17</td>
<td>89.4737</td>
<td>3.643036E-02</td>
</tr>
<tr>
<td>.0063</td>
<td>19</td>
<td>12</td>
<td>63.1579</td>
<td>17.96417</td>
</tr>
<tr>
<td>.0031</td>
<td>19</td>
<td>9</td>
<td>47.3684</td>
<td>50</td>
</tr>
<tr>
<td>.0015</td>
<td>19</td>
<td>3</td>
<td>15.7895</td>
<td>.2212524</td>
</tr>
</tbody>
</table>

THE BINOMIAL TEST SHOWS THAT .0015 AND .0125 CAN BE USED AS STATISTICALLY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS, BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 3.485379E-03

RESULTS CALCULATED USING THE MOVING AVERAGE METHOD

<table>
<thead>
<tr>
<th>SPAN</th>
<th>G</th>
<th>LC50</th>
<th>95 PERCENT CONFIDENCE LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.1617395</td>
<td>3.877385E-03</td>
<td>2.662001E-03 5.383747E-03</td>
</tr>
</tbody>
</table>

RESULTS CALCULATED USING THE PROBIT METHOD

<table>
<thead>
<tr>
<th>ITERATIONS</th>
<th>G</th>
<th>H</th>
<th>GOODNESS OF FIT PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>.1244218</td>
<td>1</td>
<td>.745034</td>
</tr>
</tbody>
</table>

SLOPE = 2.481616
95 PERCENT CONFIDENCE LIMITS = 1.606264 AND 3.356968

LC50 = 3.779504E-03 = 0.003
95 PERCENT CONFIDENCE LIMITS = 2.678746E-03 AND 5.051707E-03

LC10 = 1.163246E-03
95 PERCENT CONFIDENCE LIMITS = 5.092623E-04 AND 1.800759E-03

**
DATA EVALUATION RECORD

1. CHEMICAL: NTN 33893. Shaughnessey No. 129059.

2. TEST MATERIAL: NTN 33893 technical; 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone; CAS No. 43121-43-3; Batch No. 9030211; 95% active ingredient; a tan powder.

5. REVIEWED BY:
Mark A. Mossler, M.S.
Agronomist
KBN Engineering and Applied Sciences, Inc.

Signature: [Signature]
Date: 10/1/92

6. APPROVED BY:
Louis M. Rifific, M.S.
Associate Scientist
KBN Engineering and Applied Sciences, Inc.

Signature: [Signature]
Date: 10/5/92

Henry T. Craven, M.S.
Supervisor, EEB/EFED USEPA

Signature: [Signature]
Date: 11/4/92

7. CONCLUSIONS: This study is not scientifically sound and does not meet the guideline requirements for a Tier 2 non-target aquatic plant study. The control cultures did not grow logarithmically and light intensity was much greater than recommended.

8. RECOMMENDATIONS: N/A.

9. BACKGROUND:

10. DISCUSSION OF INDIVIDUAL TESTS: N/A.
11. MATERIALS AND METHODS:

A. Test Species: The alga used in the test, Selenastrum capricornutum, came from laboratory stock cultures originally obtained from Carolina Biological Supply, Burlington, NC. Stock cultures were maintained in algal nutrient medium under 18 hours of light/day.

B. Test System: Test vessels used were sterile glass 125-ml flasks fitted with steel caps. The test medium was the same as that used for culturing.

The test vessels were randomly placed on a shaker table (102 rpm) in an environmental chamber. Continuous cool-white illumination (800-900 footcandles) was provided and the temperature was monitored in a centrally located flask filled with medium.

A 240 g active ingredient (ai)/l stock was prepared by diluting 12.6374 g of the test material to 50 ml with dimethylformamide (DMF). Test solutions were created by addition of appropriate volumes of the stock to nutrient medium. The solvent control contained 0.5 ml of DMF/l of nutrient medium.

C. Dosage: Five-day growth and reproduction test. Based on the results of a preliminary test, five nominal concentrations of 15.6, 25.9, 43.2, 72, and 120 mg ai/l, and a solvent and medium control were selected for the definitive test.

D. Test Design: Fifty ml of the appropriate test or control solution were placed into each of three replicate flasks (3 per treatment level and the controls).

An inoculum of cells calculated to provide 10,000 cells/ml was introduced into each flask. Cell counts were performed using a microscope and hemocytometer on each test day. Each replicate was counted twice each day and eight fields were enumerated.

Samples were taken at test initiation and termination for analysis of the test material by high-performance liquid chromatography.

E. Statistics: All calculations were based on mean measured concentrations. Control data were pooled. The no-observed-effect concentration (NOEC) was
estimated using analysis of variance (ANOVA) and Dunnett's test. The level of significance was p< 0.05.

12. REPORTED RESULTS: The mean measured concentrations ranged from 90 to 99% of nominal (Table 3, attached). The mean measured concentrations were 14.1, 24.1, 41.4, 69.5, and 119 mg ai/l. No undissolved test material was observed in the test solutions.

Cell counts and percent inhibition for each concentration after five days are given in Table 5 (attached). Both the 5-day EC_{50} and NOEC were determined to be >119 mg ai/l.

Temperature ranged from 23.8 to 25.6°C during the study. Although the pH and conductivity of the solutions were not measured due to laboratory error, these parameters are usually 6.6 and 428 μmhos, respectively.

13. STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:
No conclusions were made by the authors.

Good Laboratory Practice and Quality Assurance statements were included in the report indicating compliance with EPA Good Laboratory Practice Standards, 40 CFR Part 160.

14. REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:

A. Test Procedure: The test procedure and the report did not follow the SEP and Subdivision J guidelines, and the following deviations were noted:

The age of the inoculum was not reported.

The light intensity (8.6–9.7 klux) was higher than recommended (4 klux).

The amount of cellular inoculum (10,000 cells/ml) was greater than recommended (3000 cells/ml).

B. Statistical Analysis: Using the EPA's Dunnett's test program, the reviewer confirmed that all test concentrations did not significantly effect the growth of S. capricornutum (see attached printout).

C. Discussion/Results: Cellular growth of the pooled control only increased by five-fold. This may have been an indication that the light intensity was damaging to the cultures or that the culture used as
inoculum was old or damaged. Average cell growth over a 5-day period is often 100-fold the original density.

This study is not scientifically sound and does not meet the guideline requirements for a Tier 2 non-target aquatic plant study.

D. Adequacy of the Study:

(1) Classification: Invalid.

(2) Rationale: The control cultures did not grow logarithmically and and light intensity was much greater than recommended.

(3) Repairability: No.

IMIDACLOPRID

Page ___ is not included in this copy.
Pages 43 through 44 are not included.

The material not included contains the following type of information:

___ Identity of product inert ingredients.
___ Identity of product impurities.
___ Description of the product manufacturing process.
___ Description of quality control procedures.
___ Identity of the source of product ingredients.
___ Sales or other commercial/financial information.
___ A draft product label.
___ The product confidential statement of formula.
___ Information about a pending registration action.
X FIFRA registration data.
___ The document is a duplicate of page(s) ________.
___ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.
Selenastrum cell density

Summary Statistics and ANOVA

Transformation = None

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean</th>
<th>s.d.</th>
<th>cv%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>48333.3333</td>
<td>7814.5164</td>
<td>16.2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>53000.0000</td>
<td>2645.7513</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>53666.6667</td>
<td>3214.5503</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>51666.6667</td>
<td>1527.5252</td>
<td>3.0</td>
</tr>
<tr>
<td>5.5/7</td>
<td>3</td>
<td>54333.3333</td>
<td>3511.8846</td>
<td>6.5</td>
</tr>
<tr>
<td>66/7</td>
<td>3</td>
<td>53666.6667</td>
<td>4932.8829</td>
<td>9.2</td>
</tr>
</tbody>
</table>

*) the mean for this group is significantly less than the control mean at alpha = 0.05 (1-sided) by a t-test with Bonferroni adjustment of alpha level.

Minumum detectable difference for t-tests with Bonferroni adjustment = -7933.526637
This difference corresponds to -16.41 percent of control

* Note - the above value for the minimum detectable difference is approximate as the sample sizes are not the same for all of the groups.

Between groups sum of squares =116571428.571429 with 5 degrees of freedom.
Error mean square = 27866666.666667 with 15 degrees of freedom.
Bartlett's test p-value for equality of variances = .251
1. **CHEMICAL:** NTN 33893. Shaughnessey No. 129059.

2. **TEST MATERIAL:** NTN 33893 technical; Batch No. 2/86; 92.8% active ingredient; a white powder.

3. **STUDY TYPE:** 122-2. Growth and Reproduction of Aquatic Plants - Tier 1. Species Tested: *Scenedesmus subspicatus*.

5. **REVIEWED BY:**
 - Mark A. Mossler, M.S.
 - Agronomist
 - KBN Engineering and Applied Sciences, Inc.
 - Signature: [Signature]
 - Date: 10/5/92

6. **APPROVED BY:**
 - Louis M. Rifici, M.S.
 - Associate Scientist
 - KBN Engineering and Applied Sciences, Inc.
 - Henry T. Craven, M.S.
 - Supervisor, EEB/EFED USEPA
 - Signature: [Signature]
 - Date: 12/14/92

7. **CONCLUSIONS:** This study is scientifically sound but does not meet the guideline requirements for a Tier 1 non-target aquatic plant study. The test procedures deviated significantly from the recommended protocols. Exposure to NTN 33893 technical at a concentration of 10 mg ai/l (nominal) did not significantly reduce the growth of *S. subspicatus* over the 4-day test period.

8. **RECOMMENDATIONS:** N/A.

9. **BACKGROUND:**

10. **DISCUSSION OF INDIVIDUAL TESTS:** N/A.
11. MATERIALS AND METHODS:

A. Test Species: The alga used in the test, *Scenedesmus subspicatus*, came from laboratory stock cultures. Stock cultures were maintained in algal medium under 16-hours of illumination per day at 20°C. Transfers were made weekly to maintain active growth. The culture used as inoculum had been transferred to fresh medium three days before test initiation.

B. Test System: Test vessels used were 300-ml Erlenmeyer flasks. Each exposure flask was prepared by the addition of a stock solution prepared in deionized water and 10X algal medium.

The test vessels were kept in an incubator which provided 8000 lux illumination supplied by fluorescent lights. The temperature was 23 ±1°C and the vessels were agitated to suspend the algae.

C. Dosage: Four-day growth and reproduction test. Based on a preliminary test, one nominal concentration of 10 mg active ingredient (ai)/l and a medium control were selected for the definitive test.

D. Test Design: The exposure and control treatments were replicated three times. One-hundred milliliters of the appropriate test solution were placed into each flask. An inoculum of *Scenedesmus subspicatus* cells calculated to provide 10,000 cells/ml was aseptically introduced into each flask. A model was used to relate spectrophotometric absorbance with cell number and counts were performed on test days 1, 2, 3, and 4. Cells were also microscopically examined for any alterations in cell size or morphology. Growth rate and area under the growth curve were also determined.

Test temperature was recorded at test termination. The pH was measured daily.

E. Statistics: No statistical procedures were conducted on the data.

12. REPORTED RESULTS: No morphological abnormalities were observed for the exposed cells. The mean cell densities for the control and 10 mg ai/l treatment were 289 and 284 x10^4 cells/ml, respectively, after 96 hours (Table 3, attached). The growth rates for the control and 10 mg ai/l treatment were 5.90 and 5.88, respectively, after 96 hours. The areas
under the growth curves for the control and 10 mg ai/l treatment were 6188 and 5809, respectively, after 96 hours. The EC₅₀ (based on both area under the growth curve and biomass) was determined to be >10 mg ai/l and the no-observed-effect concentration (NOEC) was 10 mg ai/l.

The pH at initiation and termination ranged from 8.23 to 8.38 and from 8.07 to 8.15, respectively, in the test solutions and the controls. The temperature at test termination was 22.8°C.

13. **STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:**

No conclusions other than those stated were made by the author.

Approximately 75 days prior to test initiation, a reference toxicant test under the same conditions used here was performed using potassium dichromate. The results were in agreement with a collaborative study.

Quality Assurance and Good Laboratory Practice statements were included in the report indicating compliance with EPA Good Laboratory Practice Standards, 40 CFR Part 160.

14. **REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:**

A. **Test Procedure:** The test procedure and the report did not meet the requirements of the SEP and Subdivision J guidelines. The following are deviations:

Light intensity during the test was 8 klux. The recommended light intensity is 4 klux.

It was not stated if the illumination was cool or warm. Guidelines recommend cool illumination.

The test was conducted for 4 days rather than the recommended 5 days.

The initial cell inoculum (10,000 cells/ml) was higher than recommended (3000 cells/ml).

The test temperature was not monitored during the study.

No justification was given as to why the author used *Scenedesmus subspicatus* rather than *Selenastrum capricornutum*.
B. **Statistical Analysis:** Upon review of the cell density data, it is apparent that the test substance had little effect on cellular growth (2% inhibition).

C. **Discussion/Results:** This study is scientifically sound but does not meet the guideline requirements for a Tier 1 non-target aquatic plant study. Exposure to NTN 33893 technical at a concentration of 10 mg ai/l (nominal) did not significantly reduce the growth of *S. subspicatus* over the 4-day test period.

D. **Adequacy of the Study:**

(1) **Classification:** Supplemental.

(2) **Rationale:** The test procedures deviated significantly from the recommended protocols.

(3) **Repairability:** No.

15. **COMPLETION OF ONE-LINER:** Yes, 9-22-92.
IMIDACLOPRID

Page 50 is not included in this copy.
Pages ____ through ____ are not included.

The material not included contains the following type of information:

___ Identity of product inert ingredients.
___ Identity of product impurities.
___ Description of the product manufacturing process.
___ Description of quality control procedures.
___ Identity of the source of product ingredients.
___ Sales or other commercial/financial information.
___ A draft product label.
___ The product confidential statement of formula.
___ Information about a pending registration action.
X___ FIFRA registration data.
___ The document is a duplicate of page(s) ________.
___ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.
DATA EVALUATION RECORD

1. **CHEMICAL:** NTN 33893.
 Shaughnessey No. 129059.

2. **TEST MATERIAL:** NTN 33893 technical; ABC Reference No. TS-4204; a light yellow powder.

3. **STUDY TYPE:** 72-2. Freshwater Invertebrate Static Acute Toxicity Test. Species Tested: *Hyalella azteca.*

5. **REVIEWED BY:**
 Louis M. Rifici, M.S.
 Associate Scientist
 KBN Engineering and Applied Sciences, Inc.

 Signature: Louis M. Rifici
 Date: 9/28/92

6. **APPROVED BY:**
 Pim Kosalwat, Ph.D.
 Senior Scientist
 KBN Engineering and Applied Sciences, Inc.

 Signature: P. Kosalwat
 Date: 9/28/92

 Henry T. Craven, M.S.
 Supervisor, EEB/EFED USEPA

 Signature:
 Date:

7. **CONCLUSIONS:** The study is scientifically sound but does not meet the guideline requirements for a static acute toxicity test using freshwater invertebrates. *Hyalella azteca* is not a recommended species in the SEP. The authors do not provide any justification for its use. In addition, the purity of the test material was not reported. The 48- and 96-hour EC_{50} values were 115.3 μg/l and 55 μg/l (mean measured concentrations), respectively. Therefore NTN 33893 is classified as highly toxic or very highly toxic to *H. azteca* depending on which LC_{50} is used. The 48- and 96-hour NOEC values were 0.97 μg/l and 0.35 μg/l mean measured concentrations.

8. **RECOMMENDATIONS:** The registrant should provide justification for using *H. azteca,* the registrant must also
provide the lot/batch number and percentage active ingredient for the test material and the age of the test organisms used. Justification is not necessary for using H. azteca, the information will be used as supplemental data.

9. BACKGROUND:

10. DISCUSSION OF INDIVIDUAL TESTS: N/A.

11. MATERIALS AND METHODS:

A. Test Animals: Juvenile Hyalella azteca (2-3 mm long) used in the test were obtained from in-house cultures. Adults were acclimated to the hard blended test water over a period of several days. The culture vessels were 1-gallon glass jars containing hard maple leaves as a primary food/substrate. A supplement of fish food, cereal leaves, and yeast was added 2-3 times weekly. The temperature was 20°C and the photoperiod was 16 hours of light.

B. Test System: Vessels used in the test were glass beakers containing 1000 ml of test solution. A 2" by 6" piece of nylon screen was placed in each test vessel as a substrate for the test animals. The beakers were placed in a water bath maintained at 20 ±2.0°C. Lighting was the same as that used in culturing.

Blended hard water (a well water and reverse-osmosis water mixture) with a hardness of 180 mg/l as CaCO₃, an alkalinity of 194 mg/l as CaCO₃, a pH of 8.3, and a conductivity of 430 μhmhos/cm, was used as dilution water.

Two stock solutions (0.0001 mg/ml and 0.10 mg/ml) were prepared.

C. Dosage: Ninety-six-hour, static test. Based on preliminary testing, nine nominal concentrations (0.33, 1.0, 3.3, 10, 33, 100, 330, 1000, and 3000 μg/l) and a dilution water control were used.

D. Design: Ten H. azteca were impartially distributed to each test beaker. Two beakers were used per test level. The loading was approximately one organism per 100 ml of solution. All beakers were observed once daily to determine survival and abnormal effects.

The temperature, dissolved oxygen concentration (DO), and pH were measured in one replicate of the control, low, two middle, and high test concentrations daily.
The temperature of the water bath was continuously monitored using a data logger.

Measured concentrations of NTN 33893 in the test solutions were determined at test initiation and termination using high performance liquid chromatography.

E. **Statistics:** The LC$_{50}$ values and associated confidence intervals were determined using a computer program developed by Stephan et al. (1977).

12. **REPORTED RESULTS:** The mean measured concentrations were 0.35, 0.97, 3.5, 10, 34, 100, 340, 1000, and 3100 μg/l and averaged 102% of nominal concentrations (Table 5, attached). "The test material appeared to be stable in the system based on information supplied by the study sponsor and the consistent measurements at 0 and 96 hours."

The 48-hour LC$_{50}$ value could not be determined due to insufficient mortality (Table 6, attached). The 96-hour LC$_{50}$ was 526 μg/l (95% C.I. = 194-1263 μg/l) using the moving average method. The 48 and 96-hour EC$_{50}$ values were 129 (95% C.I. = 85-193 μg/l) and 55 μg/l (95% C.I. = 34-93 μg/l), respectively (Table 7, attached). The 96-hour no-observed-effect concentration (NOEC) was 0.35 μg/l, based on the lack of mortality and abnormal effects at this level (Table 3, attached).

During the test, the temperature remained constant at 20°C. Dissolved oxygen concentrations ranged from 5.2 to 8.2 mg/l (60 to 94% of saturation at 20°C). The pH was 8.0-8.4.

13. **STUDY AUTHOR’S CONCLUSIONS/QUALITY ASSURANCE MEASURES:** The authors did not present any conclusions.

Quality assurance and study compliance statements were included in the report, indicating that the study was conducted in accordance with USEPA Good Laboratory Practice Standards set forth in 40 CFR Part 160.

14. **REVIEWER’S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:**

A. **Test Procedure:** The test procedures were in accordance with the SEP, except for the following:

Hyalella azteca is not a recommended species. The authors present no justification for using this species. In addition, the age and developmental stage of the organisms were not reported. It is possible
that 2 or more instars were present in the test population.

The test material was not adequately described. No lot or batch number or percentage active ingredient was provided in the report.

The recommended test temperature for amphipods is 17°C. The temperature during this test was 20°C.

The procedures used to prepare the test solutions and the time between test solution preparation and test initiation were not reported.

Fifteen to 30-minute dawn and dusk simulation periods are recommended in the SEP. These simulations were not used during the test.

The test concentrations were approximately 30% of the next highest concentration. The SEP recommends that each nominal concentration be at least 60% of next highest.

The dimensions of the test vessels were not reported.

B. **Statistical Analysis:** The reviewer calculated the 48 and 96-hour EC₅₀ values using EPA's Toxanal computer program. The results were similar to those of the authors' (see attached printouts 1 and 2).

C. **Discussion/Results:** The study is scientifically sound but does not meet the guideline requirements for a static acute toxicity test using freshwater invertebrates. *Hyalella azteca* is not a recommended species in the SEP. The authors do not provide any justification for its use. In addition, the purity of the test material was not reported. The 48- and 96-hour EC₅₀ values were 115.3 μg/l and 55 μg/l (mean measured concentrations), respectively. Therefore NTN 33893 is classified as highly toxic or very highly toxic to *H. azteca* depending on which LC₅₀ is used. The 48- and 96-hour NOEC values were 0.97 μg/l and 0.35 μg/l mean measured concentrations.

D. **Adequacy of the Study:**

1. **Classification:** Supplemental.

2. **Rationale:** The test species used is not recommended in the SEP. The authors do not
provide any justification for its use. In addition, the percent active ingredient of the test material was not reported.

(3) Repairability: No.

15. COMPLETION OF ONE-LINER FOR STUDY: Yes, 09-16-92.
IMIDACLOPRID

Page____ is not included in this copy.
Pages 56 through 60 are not included.

The material not included contains the following type of information:

___ Identity of product inert ingredients.
___ Identity of product impurities.
___ Description of the product manufacturing process.
___ Description of quality control procedures.
___ Identity of the source of product ingredients.
___ Sales or other commercial/financial information.
___ A draft product label.
___ The product confidential statement of formula.
___ Information about a pending registration action.
___ FIFRA registration data.
___ The document is a duplicate of page(s) _________.
___ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.
RIFICI. NTN 33893 HYALELLA AZTECA 09-16-92

<table>
<thead>
<tr>
<th>CONC.</th>
<th>NUMBER EXPOSED</th>
<th>NUMBER DEAD</th>
<th>PERCENT DEAD</th>
<th>BINOMIAL PROB. (PERCENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3100</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>1000</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>340</td>
<td>20</td>
<td>13</td>
<td>65</td>
<td>13.1588</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>58.80985</td>
</tr>
<tr>
<td>34</td>
<td>20</td>
<td>2</td>
<td>10</td>
<td>2.012253E-02</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>2.002716E-03</td>
</tr>
<tr>
<td>3.5</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>.97</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
<tr>
<td>.35</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>9.536742E-05</td>
</tr>
</tbody>
</table>

THE BINOMIAL TEST SHOWS THAT 34 AND 1000 CAN BE USED AS STATISTICALY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS, BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 99.99999

RESULTS CALCULATED USING THE MOVING AVERAGE METHOD

<table>
<thead>
<tr>
<th>SPAN</th>
<th>G</th>
<th>LC50</th>
<th>95 PERCENT CONFIDENCE LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>.0513501</td>
<td>115.2767</td>
<td>74.90048 - 179.5673</td>
</tr>
</tbody>
</table>

RESULTS CALCULATED USING THE PROBIT METHOD

<table>
<thead>
<tr>
<th>ITERATIONS</th>
<th>G</th>
<th>H</th>
<th>GOODNESS OF FIT PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>.0796061</td>
<td>1</td>
<td>.6815431</td>
</tr>
</tbody>
</table>

SLOPE = 1.821192
95 PERCENT CONFIDENCE LIMITS = 1.307351 AND 2.335033

LC50 = 127.7236
95 PERCENT CONFIDENCE LIMITS = 84.80026 AND 192.385

LC10 = 25.64045
95 PERCENT CONFIDENCE LIMITS = 11.76405 AND 42.33426

RIFICI NTN 33893 HYALELLA AZTECA 09-16-92

** CONC. ** NUMBER ** NUMBER ** PERCENT ** BINOMIAL (PERCENT)
** EXPOSED ** DEAD ** DEAD ** PROB. (PERCENT)
3100 20 20 100 9.536742E-05
1000 20 20 100 9.536742E-05
340 20 19 95 2.002716E-03
100 20 8 40 25.17223
34 20 6 30 5.765915
10 20 1 5 2.002716E-03
3.5 20 1 5 2.002716E-03
.97 20 1 5 2.002716E-03
.35 20 0 0 9.536742E-05

THE BINOMIAL TEST SHOWS THAT 10 AND 340 CAN BE USED AS STATISTICALLY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS, BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 121.054

RESULTS CALCULATED USING THE MOVING AVERAGE METHOD
SPAN G LC50 95 PERCENT CONFIDENCE LIMITS
8 5.135013E-02 56.56807 34.35538 - 98.5572
98.85121

RESULTS CALCULATED USING THE PROBIT METHOD
ITERATIONS G H GOODNESS OF FIT PROBABILITY
5 .2847988 2.965891 4.14002E-03

SINCE THE PROBABILITY IS LESS THAN 0.05, RESULTS CALCULATED USING THE PROBIT METHOD PROBABLY SHOULD NOT BE USED.

SLOPE = 1.479745
95 PERCENT CONFIDENCE LIMITS = .690056 AND 2.269433

LC50 = 67.48288
95 PERCENT CONFIDENCE LIMITS = 23.19101 AND 198.031

LC10 = 9.352712
95 PERCENT CONFIDENCE LIMITS = .6949445 AND 26.30639
