MEMORANDUM

FROM: Brenda Tarplee, Senior Scientist
Science Information Management Branch
Health Effects Division (7509C)

THROUGH: Jess Rowland, Co-Chair
and
Elizabeth Doyle, Co-Chair
Hazard Identification Assessment Review Committee
Health Effects Division (7509C)

TO: William Cuschin, Risk Assessor
Registration Action Branch 2
Health Effects Division (7509C)

PC Code: 128098

On January 22, 2003, the Health Effects Division (HED) Hazard Identification Assessment Review Committee (HIARC) requested FQPA requirements in response to questions posed by the Natural Resources Defense Council (NRDC). HIARC also reviewed the previous recommendation for a developmental neurotoxicity study in rats and subsequent need for a database factor to account for this data gap. No new data have been reviewed and no changes were made to the toxicology endpoints previously selected for fluazinam. This document revises the previous HIARC report dated February 13, 2001 (TXR NO. 014474).
Committee Members in Attendance

Members present were: Aysad Assaad, William Burnam, Paula Dechany, Elizabeth Doyle, Pamela Horley, John Liccione, Susan Makris, Elizabeth Mendez, David Nixon, Jen Rowland, PV Shah (for Jonathan Chen), and Brenda Tarplee (Executive Secretary).

Member(s) in absentia were: Jonathan Chen

Also in attendance were: Karen Whorby (RAB1) and Ed Zager (HED 10).

Meeting materials prepared by: Brenda Tarplee, Senior Scientist, SIMB
INTRODUCTION

On October 24, 2000, the Health Effects Division (HED) Hazard Identification Assessment Review Committee (HIARC) reviewed the recommendations of the toxicology reviewer for fluanzin and with regard to the acute and chronic Reference Doses (RfDs) and the toxicological endpoint selection for occupational/residential exposure risk assessments. The potential for increased susceptibility of infants and children from exposure to fluanzin was also evaluated in a report prepared by the Food Quality Protection Act (FQPA) of 1996.

On January 22, 2003 the Health Effects Division (HED) Hazard Identification Assessment Review Committee (HIARC) assessed FQPA requirements in response to questions posed by the Natural Resources Defense Council (NRDC). HIARC also reviewed the previous recommendation for a developmental neurotoxicity study in rats and subsequent need for a data base factor to account for the data gap. No new data have been reviewed and no changes were made to the toxicology endpoints previously selected for fluanzin. This document revises the previous HIARC report dated February 13, 2001 (TXR NO. 014474).

I. FQPA HAZARD CONSIDERATIONS

1. Adequacy of the Toxicity Data Base

The HIARC concluded that the toxicology database for fluanzin is not complete for FQPA assessment.

On October 24, 2000, the HIARC requested that a developmental neurotoxicity study in rats be conducted with fluanzin.

2. Evidence of Neurotoxicity

The HIARC concluded that there is a concern for neurotoxicity resulting from exposure to fluanzin.

2.1 Acute neurotoxicity study, rats

Executive Summary: In an acute oral neurotoxicity study (MRID 44807210), single gavage doses of 0, 50, 1000 or 2000 mg/kg fluanzin (96.8%, Lot No.: 1030/91) in 1.5% (w/v) aqueous methylcellulose were administered to groups of fasted Sprague-Dawley rats (10/sex/dose). Functional Observational Battery (FOB) and Motor Activity (MA) assessments were performed before substance administration, between 5 and 7 hours post-administration (time of peak effect) and on days 7 and 14. Body weights were measured weekly and clinical signs were recorded daily. The animals were sacrificed and grossly examined 14 days after administration of the test material. Five rats/dose/sex were perfused in situ for neuropathological evaluation.

There were no treatment-related deaths, clinical signs, or body weight effects during the study.
Treatment-related soft stools were observed in mid- and high-dose males and females, but only on the day of treatment. Treatment-related mean motor activity values were significantly decreased (23-65%) in mid- and high-dose females compared to controls (not dose-related), but only on the day of treatment. No other treatment-related effects of any kind were observed at any time during the study. No treatment-related gross effects or histopathology were observed. Since the decreased mean motor activity values were observed in one sex only (females), on one occasion only (on the day of dosing), at high doses only (≥1000 mg/kg), and were not dose-related, and were observed in one study only (not observed in the subchronic neurotoxicity study in rats, MRID 44807217, 44807218), it is likely that this treatment-related effect (decreased mean motor activity values in females only on the day of dosing only) is a manifestation of acute general systemic toxicity and not a direct neurotoxic response to the administration of the test material.

Under the conditions of this study, the acute general systemic toxicity LOAEL is 1000 mg/kg for male and female rats based on soft stools and decreased motor activity. The acute general systemic toxicity NOAEL is 50 mg/kg for male and female rats. The LOAEL for neurotoxic effects is not identified (≥2000 mg/kg). The NOAEL for neurotoxic effects is 2000 mg/kg.

This acute oral neurotoxicity study is classified Acceptable/Guideline. This study does satisfy the guideline requirement for an acute oral neurotoxicity study OPPTS 870.6200 (81-813) in rats.

2.2 Subchronic neurotoxicity study, rats

Executive Summary: In two subchronic oral neurotoxicity studies (MRID 44807217 & MRID 44807218), groups of 10 male and 10 female C57/CD BR rats were fed diets containing 0, 300, or 1000 ppm flaxazin (MRID 44807217, 96.9%, Lot No. 6109) or 0, 1000, 2000, or 3000 ppm flaxazin (MRID 44807218, 98.4%, Lot No. 9601-7) for 13 weeks. Achieved doses were 20.7, 69-74, 149, and 333 mg/kg/day for males in the 300, 1000, 2000, and 3000 ppm groups, respectively; and 23.4, 81-89, 175, and 280 mg/kg/day for females in the 300, 1000, 2000, and 3000 ppm groups, respectively. Functional Observational Battery (FOB) and Motor Activity (MA) assessments were performed prior to treatment and during weeks 4, 8, and 13 of treatment. Body weights, food consumption, and clinical signs were monitored throughout the study. At the end of the treatment period, all rats were sacrificed. The brain from all rats was removed, weighed, and measured and 5 males and 5 females from the control and high-dose groups of each study were subjected to neuropathological evaluation.

There were no treatment-related deaths or clinical signs. At the end of the study, group mean body weight gains were significantly (p<0.01) decreased in females in and above the 1000 ppm groups and in males in the 2000 and 3000 ppm groups. Similarly, cumulative food consumption was decreased in males (p<0.01) and females (p<0.05) fed 2000 and 3000 ppm flaxazin. Food efficiency was decreased in males at 2000 ppm and a dose-related decrease in food efficiency was observed in females in all treatment groups.
No treatment-related FOB or MA effects were observed. Brain weights of females in the 3000 ppm group were 8% lower (p<0.01) than controls; however, no supporting pathology was observed. No treatment-related gross effects or histopathology were observed.

Under the conditions of these studies, the neurotoxicity NOAEL is 3000 ppm for male and female rats (233 mg/kg/day for males and 280 mg/kg/day for females). A neurotoxicity LOAEL was not identified.

2.3 Evidence of neurotoxicity from other oral toxicity studies on fluoxetine

A neurotoxic lesion described as vacuolation of the white matter of the central nervous system (CNS) was observed initially in long-term (1-2 year) guideline chronic studies on mice and dogs and later, upon careful re-examination of the CNS, also in shorter-term (4-week to 90-day) guideline subchronic studies on mice and dogs. This lesion was observed during the (light) microscopic examination of several tissues of the CNS, occurring most frequently in brain (sections of cerebrum and/or sections of cerebellum, pons, medulla, midbrain) and less frequently in cervical spinal cord. Although this lesion was also observed in control animals, the increased incidence and/or severity of the lesion in test animals was clearly treatment-related and dose-related.

For more details refer to the previous IIARC report, HED DOC. NO. 014474.

3. Developmental Toxicity Study Conclusions

3.1 Range-finding developmental toxicity study in rats

Executive Summary: In a developmental range-finding toxicity study (MRID 42248612), 7 pregnant CD (Sprague-Dawley origin) rats per group were administered B-126 (98.5%; Lot No. 8383-2) by gavage in corn oil at doses of 0, 1, 10, 100, and 1000 mg/kg/day on gestation days (GD) 6-15, inclusive. On GD 20, dams were sacrificed and necropsied, and the number and location of viable and nonviable fetuses, early and late resorptions, and the number of total implantations and corpora lutea were recorded, as well as the weights of the placentas, empty uteri, and adrenal and pituitary glands. All fetuses were weighed, sexed and examined externally, and an approximately half of each litter was examined by fresh dissection then processed for skeletal examination.

Maternal toxicity was evident at 1000 mg/kg/day. Two animals were found dead on GD 13 and the remaining 5 were sacrificed in extremis between GD 12 and 14. Prior to death the high-dose animals exhibited clinical signs of stained and unsprung coats, lethargy, hunched posture, ataxia, flaccid muscles, and salivation. Postmortem findings included decreased thymus size and
gastrointestinal tract disturbances. Marked weight loss was observed at 1000 mg/kg/day after GD 7, and mean absolute body weights were 74-86% of those of controls during GD 10-13. Body weight and survival were not affected in the 1, 10, and 100 mg/kg/day groups.

There were no differences between the control group and the 1, 10, or 100 mg/kg/day groups for number of corpora lutea, number of implantation sites, live fetuses/ dam, pre- and post-implantation losses, resorptions, or fetal sex ratios. At 100 mg/kg/day, mean fetal weight was marginally decreased as compared with concurrent controls but fell within the range of historical control data. The incidence of incomplete ossification of sternebrae was increased in the 100 mg/kg/day group as compared to concurrent and historical controls (38.9% of fetuses and 7/7 litters vs. 11.8% and 3/7 litters for concurrent controls and a historical control range of 1.1-28.3%); however, there was no evidence of delayed ossification in any other bone types. The incidence rate for litters containing fetuses with additional (14th) rib(s) was 1/7, 2/7, 2/7, and 3/7 for the 0, 1, 10, and 100 mg/kg/day groups, respectively, with the percentage of affected fetuses slightly increased in all treated groups as compared with concurrent and historical controls. Treatment with B-1216 did not result in an increased incidence of fetal malformations.

Therefore, it was concluded that an appropriate high dose for the main developmental toxicity study (MRID 42248613) would be greater than 100 mg/kg/day but less than 1000 mg/kg/day. The dose levels chosen were 0, 10, 50, and 250 mg/kg/day.

This study is classified as Acceptable/Non-guideline and fulfills its intent as a range finding study for a developmental toxicity study [870.3700 (383-3a)] in rats.

3.2 Developmental toxicity study in rats

Executive Summary: In a developmental toxicity study (MRID 42248613), 20 presumed pregnant Sprague-Dawley CD rats per group were administered Flaxzanim (98.5% i.a, Lot No.: 830-2) by gavage in corn oil at doses of 0, 10, 50, and 250 mg/kg/day on gestation days (GD) 6-15, inclusive. Controls were treated with corn oil (vehicle). On GD 20, all dams were sacrificed and examined. All fetuses were weighed, sexed, and examined for external malformation and variations. Approximately half of the fetuses from each litter were examined for soft tissue effects and half were stained with Alizarin red and examined for skeletal effects.

At 250 mg/kg/day, statistically significant reductions in body weight gain during treatment (30 g vs 51 g for controls on GD 6-15; p < 0.01; most pronounced during GD 6-8), statistically significant reductions in food consumption during treatment (13 mg/kg/day vs 17 mg/kg/day for controls on GD 6-8; p <0.01), increased water consumption (during GD 6-11) and an increased incidence of urgenital staining (most pronounced during GD 6-8) were considered to be treatment-related. The maternal toxicity NOAEL is 250 mg/kg/day based on decreased body weight gain, decreased food consumption, increased water consumption, and increased urgenital staining during treatment. The maternal toxicity NOAEL is 50 mg/kg/day.
At 250 mg/kg/day, statistically significant decreased mean fetal body weights (2.81 g vs 3.19 g for controls, p <0.001, below historical control range), statistically significant decreased placental weights (0.47 g vs 0.54 g for controls, p<0.05, within historical control range), increased fetal incidence of facial/palate clefts (10 fetuses in 3 litters vs none in controls), increased fetal incidence of diaphragmatic hernia (7 fetuses in 2 litters vs none in controls), delayed ossification in a number of bone types, greenish amniotic fluid (10.5% fetal incidence vs 0.0% in controls) and possible increased late resorption/postimplantation loss (0.55 late resorptions/dam vs 0.05 late resorptions/dam for controls, within historical control range; and 11.0% postimplantation loss vs 4.2% postimplantation loss for controls, within historical control range) were considered to be treatment-related. The developmental toxicity LOAEL is 250 mg/kg/day based on decreased fetal body weights; decreased placental weights; increased fetal incidences of facial/palate clefts, diaphragmatic hernia and delayed ossification in several bone types; greenish amniotic fluid and possible increased late resorptions and postimplantation loss. The developmental toxicity NOAEL is 50 mg/kg/day.

This developmental toxicity study in rats is classified Acceptable/Guideline and satisfies the Subdivision F guideline requirement for a developmental toxicity study in rats [OPPTS 870.3700 (OFF 83-3a)]. No major deficiencies were noted in this study.

3.3 Developmental toxicity study in rabbits

Executive Summary: In a developmental toxicity study (MRID 42248616), 16-18 presumed pregnant New Zealand White rabbits per group were administered Fluazinam (95.3% a.i., Lot No.: 8412-20) by gavage in 1% w/v aqueous methyl cellulose at doses of 0, 2, 4, 7 and 12 mg/kg/day on gestation days (GD) 6-19, inclusive. Controls were treated with 1% w/v aqueous methyl cellulose (vehicle). On GD 29, all surviving does were sacrificed and necropased and all fetuses were weighed, and examined for external malformation/variations. Each fetus was examined viscero-tomically by fresh dissection and the sex determined. All carcasses were eviscerated and processed for skeletal examination.

At 12 mg/kg/day, statistically significant reductions in body weight gain during treatment (0.0 kg vs +0.25 kg for controls on GD 10-20), decreased food consumption (268 g/animal/day vs 368 g/animal/day for controls on GD 6-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were considered to be treatment-related. At 7 mg/kg/day, slightly depressed food consumption (135 g/animal/day vs 186 g/animal/day for controls on GD 13-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were also considered to be treatment-related. The maternal toxicity LOAEL is 7 mg/kg/day based on decreased food consumption and increased liver histopathology. The maternal toxicity NOAEL is 4 mg/kg/day.
At 12 mg/kg/day, an increased incidence of total litter resorptions (0, 0, 0, 1 and 5 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) was considered to be treatment-related. Several abortions were also observed (0, 0, 2, 1 and 3 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively). The total number of litters lost was such that the numbers of litters born were 15, 13, 10, 10 and 7 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively. Also at 12 mg/kg/day, there was an increased incidence of visceral anomalies (0.7, 3.2, 0.0, 0.0 and 18.2 percent fetal incidence for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) and a slight increase in some skeletal abnormalities including kinked tail tip, fused or incompletely ossified sternebrae, and abnormalities of head bones. The developmental toxicity LOAEL is 12 mg/kg/day based on an increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities. The developmental toxicity NOAEL is 7 mg/kg/day.

This developmental toxicity study in rabbits is classified Acceptable/Guideline and satisfies the Subdivision F guideline requirement for a developmental toxicity study in rabbits (OPPTS 870.3700 (OPP 83-3b)). No major deficiencies were noted in this study.

4. Reproductive Toxicity Study Conclusions

Reproductive Toxicity

Executive Summary: Technical grade flunixin (95.3 % a.i.) was administered to groups of 24 male and 24 female Sprague-Dawley rats at dietary concentrations of 0, 20, 100, or 500 ppm for two generations (MRID 42248619, 42208406, 422248618). One litter was produced in each generation. Mean prenatant doses were 1.5, 7.3, and 36.6 mg/kg/day, respectively for F1 males and 1.7, 8.1, and 42.1 mg/kg/day, respectively for F1 females. Mean prenatant doses were 1.9, 9.7, and 47.3 mg/kg/day respectively, for F2 males and 2.2, 10.6, and 53.6 mg/kg/day, respectively, for F2 females. F1 adults were chosen from the F1 pups and weaned onto the same diet as their parents. Animals were given test or control diet for 11 weeks before mating within the same dose group. All animals were continuously exposed to test material either in the diet or during gestation and lactation until sacrifice.

There were no deaths or clinical signs of toxicity that were attributable to the presence of flunixinam in the diet. Mean body weight, body weight gain, food consumption and food efficiency among all groups of F1 males and F1 females treated with 20 or 100 ppm and F2 males treated with 500 ppm were similar to the control group means. The F2 females treated with 500 ppm of the test diet had significantly decreased (82% of control value, p < 0.001) overall body weight gain and food consumption (96% of control value, p < 0.05) for the prenatant period. The F1 males and females treated with 20 or 100 ppm had mean body weights, body weight gains, food consumption, and food efficiencies that were similar to their respective control group means. The F1 animals treated with 500 ppm had significantly decreased mean body weight gain and food consumption values that were 88% and 92% (p < 0.001 and p < 0.01) and 85% and 93% (p < 0.001 and p < 0.01) of the control values for males and females, respectively for the prenatant period.
The decreased body weights continued into gestation for females treated with 500 ppm of both generations; some recovery was made during lactation. The relative liver weights of F1, males and F1 females treated with 500 ppm were significantly increased compared to the control group. Histopathological findings included an increased incidence of periacinar hepatocytic fatty changes and a decreased incidence of hepatic glycogen pallor among F1 males treated with 500 ppm compared to the control group. Males in the F1 generation treated with 100 or 500 ppm also had significantly increased incidences of periacinar hepatocytic fatty changes compared to the control groups. The NOAEL for parental toxicity is 20 ppm (1.9 mg/kg/day) and the LOAEL is 100 ppm (9.7 mg/kg/day), based on liver pathology (increased incidences of periacinar hepatocytic fatty changes) in F1 males.

The fertility index for males and females treated with 500 ppm of the test substance was slightly decreased (n.s.) for F1 parents compared to the control group. The number of implantation sites observed in F1 dams was decreased significantly (p<0.05) at 500 ppm (12.2 vs 15.3 in controls) and marginally (n.s.) at 100 ppm (13.1 vs 15.3 in controls). Mean litter size on day 1 was slightly decreased (n.s.) in the 500 ppm groups compared to the control groups in both generations. Mean litter size on day 4 was slightly decreased (n.s.) in the 500 ppm group for F1 litters, but was significantly decreased (p<0.05) in the 500 ppm group for F2 litters (5.8 ± 3.7 for 500 ppm vs 12.4 ± 3.0 for controls). Pup survival was similar between the treated and control groups for both generations. The NOAEL for reproductive toxicity is 100 ppm (10.6 mg/kg/day) and the LOAEL is 500 ppm (53.6 mg/kg/day), based on a decreased number of implantation sites and decreased litter sizes to day 4 post partum for F1 females (F1 litters).

Mean overall body weight gain during lactation was significantly decreased (10-13%), among pups in the 500 ppm groups in both generations. The most pronounced effect on pup weight gains occurred between lactation days 7-21. Absolute body weights, however, were not significantly decreased compared to the control groups at any time point during lactation. A slightly decreased developmental time for pinna unfolding, hair growth and eye opening, particularly in the F1 pups, was observed. The NOAEL for developmental toxicity is 100 ppm (8.4 mg/kg/day) and the LOAEL is 500 ppm (42.1 mg/kg/day), based on decreased body weight gain during lactation for both F1 and F2 pups.

This study is classified as Acceptable/Guideline and satisfies the requirements for a 2-generation reproduction study (OPPTS 870.3800 (883-4)) in rats. No major deficiencies were noted in this study.

5. Additional Information from Literature Sources

None.
6. Pre-and/or Postnatal Toxicity

The HIARC concluded that there is low concern for pre- and/or postnatal toxicity resulting from exposure to fluazinam.

A. Determination of Susceptibility

In the developmental toxicity study in rats, the HIARC considered the increased fetal incidences of facial/palate clefts and other rare deformities observed in this study to be qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazinam. Quantitative evidence of increased susceptibility of fetuses to fluazinam was not observed, however, in this study.

In the developmental toxicity study in rabbits, the HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazinam was observed in this study.

In the 2-generation reproduction study in rats, the HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to fluazinam was observed in this study.

B. Degree of Concern Analysis and Residual Uncertainties

Since there is qualitative evidence of increased susceptibility of the young following exposure to fluazinam in the rat developmental study, HIARC performed a Degree of Concern Analysis to: 1) determine the level of concern for the effects observed when considered in the context of all available toxicity data; and 2) identify any residual uncertainties after establishing toxicity endpoints and traditional uncertainty factors to be used in the risk assessment of this chemical. If residual uncertainties are identified, HIARC examines whether these residual uncertainties can be addressed by a special FQPA safety factor and, if so, the size of the factor needed. The results of the HIARC Degree of Concern analysis for fluazinam follow.

In the rat developmental toxicity study, qualitative susceptibility was evidenced as decreased fetal body weights, decreased placental weights, increased fetal incidences of facial/palate clefts, diaphragmatic hernia and delayed ossification in several bone types; greenish amniotic fluid and possible increased late resorptions and postimplantation loss in the presence of lesser maternal toxicity (decreased body weight gain, decreased food consumption, increased water consumption, and increased urogenital staining during treatment) at the highest dose tested. Considering the overall toxicity profile and the doses and endpoints selected for risk assessment for fluazinam, the HIARC characterized the degree of concern for the effects observed in this study as low, noting that there is a clear NOAEL for the fetal effects observed and that these effects occurred in the presence of maternal toxicity and only at the highest dose tested. No residual uncertainties were
identified. The NOAEL of 50 mg/kg/day identified in this study is 7-fold higher than that used to establish the acute Reference Dose (aRFD) for the Females 13-50 population subgroup.

C. Special FQPA Safety Factor(s):

Based upon the above-described data, no special FQPA safety factor is needed (i.e. 1X) since there are no residual uncertainties for pre and/or post natal toxicity.

The Special FQPA Safety Factor recommended by the HIARC assumes that the exposure databases (diets, food, drinking water, and residential) are complete and that the risk assessment for each potential exposure scenario includes all metabolites and/or degradates of concern and does not underestimate the potential risk for infants and children.

7. Recommendation for a Developmental Neurotoxicity Study

The HIARC concluded that there is a concern for developmental neurotoxicity resulting from exposure to fluazinam.

On October 24, 2000, HIARC recommended that a developmental neurotoxicity study in rats be conducted with fluazinam based on the following considerations:

- In a series of chronic and subchronic studies on fluazinam in rats, mice and dogs, a treatment-related neurotoxic lesion described as vacuolation of the white matter of the CNS (brain and/or cervical spinal cord) was observed when high doses of Fluazinam Technical were administered to the animals. It was determined that this lesion was caused solely by an impurity in Fluazinam technical (Impurity-5) when this impurity was present in the test material such that test animals received doses of Impurity-5 of 0.1 mg/kg/day and higher. When this impurity was present in the test material such that test animals received doses of Impurity-5 of 0.02 mg/kg/day or lower, the neurotoxic lesion was not observed.

- An age-related difference in sensitivity to vacuolation of the white matter of the CNS caused by Impurity-5 was also demonstrated in rats and mice. Increased sensitivity to this neurotoxic effect was observed in rats and mice at 10 weeks compared to 3 weeks of age.

- In the developmental toxicity study in rats (MRID 42248613) the HIARC considered the increased fetal incidences of facial/palate clefts and other rare deformities observed in this study to be qualitatively evidence of increased susceptibility of fetuses to in utero exposure to fluazinam. Quantitative evidence of increased susceptibility of fetuses to fluazinam was not observed in this study.

- In the range-finding developmental toxicity study in rats (MRID 42248612), at 1000 mg/kg/day (highest dose tested), 2 dams were found dead on GD 13 and the remaining 5 were sacrificed in extremis between GD 12 and 14. Prior to death the high dose animals exhibited clinical signs of neurotoxicity, including stained and
ungroomed coats, lethargy, hunched posture, ataxia, flaccid muscles, and salivation. These signs were not observed in the survivors at this dose level or at lower dose levels of test material in the study.

Evidence to the contrary included:

- In the acute and subchronic neurotoxicity studies on rats (MRID 44807218 and 44807217/44807218, respectively), no toxicologically significant signs of neurotoxicity were observed. The highest dose of Imiprity-5 in the subchronic neurotoxicity study, however, was only 0.03 mg/kg/day.
- In the definitive developmental toxicity studies on rats and rabbits (MRID 42248613 and MRID 42248616, respectively), treatment-related increased incidences of malformations of nervous system tissues were not observed.
- In the developmental toxicity study in rabbits (MRID 422486516). The HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazinam was observed in this study.
- In the 2-generation reproduction study in rats (MRID 422486519, 42208406, 42248618), the HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to fluazinam was observed in this study.

On January 22, 2003, based on the weight of evidence presented, the HIARC reaffirmed the previous conclusion that a developmental neurotoxicity (DNT) study conducted with fluazinam is required. HIARC determined that a 10X database uncertainty factor (UFdb) is needed to account for the lack of the DNT when assessing acute (single dose) exposure scenarios since the available (acute) data provide no basis to support reduction or removal of the default 10X factor. The following points were considered in this determination:

- It is assumed that the DNT study will be conducted at dose levels similar to those used in the rat reproduction study with fluazinam (1.9, 9.7, and 47.3 mg/kg/day mg/kg/day) wherein the offspring NOAEL/LOAEL was 9.7/47.3 mg/kg/day, respectively.
- It is possible that the results of the DNT study could impact the current selected acute regulatory doses since the NOAELs used to establish the acute Reference doses for dietary risk assessment (7 mg/kg/day for Females 13-30 and 50 mg/kg/day for the General Population) are approximately the same order of magnitude or higher than the offspring NOAEL in the rat reproduction study conducted with fluazinam (9.7 mg/kg/day).

Given these circumstances, the HIARC does not have sufficient reliable data justifying selection of an additional safety factor for the protection of infants and children lower than the default value of 10X for single dose exposure scenarios. Therefore, a UFdb of 10X will be applied to single dose exposure scenarios (i.e., acute RfD) to account for the lack of the DNT study with fluazinam.
However, HIARC further determined that for repeated dose exposure scenarios a database uncertainty factor (UF\textsubscript{db}) is not needed (1X) to account for the lack of the DNT based on the following considerations:

- As stated above, the DNT study will likely be conducted at dose levels similar to the rat reproduction study.
- The results of the DNT study are not likely to impact the current regulatory dose selected for repeated exposure scenarios since the NOAEL used for these risk assessment endpoints (i.e., 1.1 mg/kg/day for chronic RfD) is about 10-fold lower than the off-target NOAEL in the rat reproduction study conducted with flutaxam (9.7 mg/kg/day).

Therefore, a UF\textsubscript{db} is not required (1X) for repeated dose exposure scenarios (i.e., chronic RfD) to account for the lack of the DNT study with flutaxam.

II. HAZARD IDENTIFICATION

1. Acute Reference Dose (RfD) - Females 13-50

Study Selected: Developmental toxicity study in rabbits

MRID No.: 42248616

Executive Summary: In a developmental toxicity study (MRID 42248616), 16-18 presumed pregnant New Zealand White rabbits per group were administered Flutaxam (95.3% w/w, Lot No.: 8412-20) by gavage in 1% w/v aqueous methyl cellulose at doses of 0, 3, 4, 7 and 12 mg/kg/day on gestation days (GD) 6-19, inclusive. Controls were treated with 1% w/v aqueous methyl cellulose (vehicle). On GD 29, all surviving doses were sacrificed and necropsied and all fetuses were weighed, and examined for external malformation/variation. Each fetus was examined viscerally by fresh dissection and the sex determined. All carcasses were eviscerated and processed for skeletal examination.

At 12 mg/kg/day, statistically significant reductions in body weight gain during treatment (0.0 kg vs 0.25 kg for controls on GD 10-20), decreased food consumption (268 g/animal/day vs 368 g/animal/day for controls on GD 6-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were considered to be treatment-related. At 7 mg/kg/day, slightly decreased food consumption (139 g/animal/day vs 186 g/animal day for controls on GD 13-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were also considered to be treatment-related. The maternal toxicity LOAEL is 7 mg/kg/day based on decreased food consumption and increased liver histopathology. The maternal toxicity NOAEL is 4 mg/kg/day.
At 12 mg/kg/day, an increased incidence of total litter resorptions (0, 0, 0, 1 and 5 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) was considered to be treatment-related. Several abortions were also observed (0, 0, 2, and 1 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively). The total number of litters lost was such that the numbers of litters lost were 15, 23, 10, and 7 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively. Also at 12 mg/kg/day, there was an increased incidence of placental anomalies (0.7, 3.2, 0.0, 0.0 and 8.2 percent fetal incidence for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) and a slight increase in some skeletal abnormalities including kinked tail tip, fused or incompletely ossified sternum, and abnormalities of head bones. The developmental toxicity NOAEL is 12 mg/kg/day based on an increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities. The developmental toxicity NOAEL is 7 mg/kg/day.

This developmental toxicity study in rabbits is classified Acceptable/Guideline and satisfies the Subdivision F guideline requirement for a developmental toxicity study in rabbits [OPP 178 870.3700 (OPP 83-3b)] . No major deficiencies were noted in this study.

Dose and Endpoint for Establishing 28D: Developmental toxicity NOAEL = 7 mg/kg/day based on increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities (including kinked tail tip, fused or incompletely ossified sternum, and abnormalities of head bones) at 12 mg/kg/day (LOAEL).

Uncertainty Factor (UF): 1000 (10x for interspecies extrapolation, 10x for interspecies variations, and an additional 10X database uncertainty factor for the lack of the DNT study).

Concerns about Study: In the original DER for this study (HED Doc. No. 009688, 7/13/92), this study was classified as Core-Minimum. However, when the HED R&D/Peer Review Committee met on 8/6/92, the study was downgraded to Core Supplementary because the committee felt that there were inadequate litter numbers at the highest 3 doses and that the NOEL therefore could not be determined. In addition, the committee generally questioned the conduct of the study noting the relatively large number of animals which died prior to or during the study, the presence of significant lung infections, and evidence of general liver alterations which might impact on the metabolism of the test material. The committee required that a new study be performed by the registrant using the same dose levels but with enough animals at the highest 3 doses to ensure at least 12 litters per dose (HED Doc. No. 009727, 9/7/92). Subsequently, at the request of Toxicology Branch (TB1), the HED R&D/Peer Review Committee met again on 11/19/92 to reconsider its prior position on this study. In support of its request, TB1 submitted a memorandum (dated 11/4/92, copy in HED Doc. No. 013551) providing a rationale as to why, in the opinion of TB1, there was insufficient justification for repeating the study and that a second study would provide little additional information. The following is quoted from the report of the R&D/Peer Review Committee on its second meeting (HED Doc. No. 013551, 3/16/93):

After thorough consideration of all the issues involved, the Committee felt that although the study was deficient, it was marginally acceptable for regulatory purposes. The Committee noted that an additional dose level, beyond that required by the Guidelines, was included in this study.
Furthermore, when the preliminary (range finding) and main studies were considered together, maternal deaths appeared to be randomly distributed between groups.

Therefore, the Committee considered that the repeat of the study at this time was unlikely to provide additional useful information, and the "no-observable effect level" for maternal toxicity (4 mg/kg/day) and for developmental and fetal toxicity (7 mg/kg/day) were unlikely to change in a new study.

Comments about Endpoint/Incidentary Factor: The Committee considered the developmental toxicity effects observed at the LOAEL in this study (increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities, including kinked tail tip, fused or incompletely ossified sternum, and abnormalities of head bones) to be effects that could occur after a single dose of fluazinam. Also, with respect to developmental toxicity effects, the rabbit is more sensitive than the rat. The NOAEL for developmental toxicity effects in the developmental toxicity study in rats (MRID 42240613) was 50 mg/kg/day and the LOAEL was 250 mg/kg/day.

<table>
<thead>
<tr>
<th>Acute RfD (Females 13-50)</th>
<th>NOAEL: 7 mg/kg/day</th>
<th>0.007 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UF: 1000</td>
<td></td>
</tr>
</tbody>
</table>

2. Acute Reference Dose (RfD) - General Population

Study Selected: Acute neurotoxicity study in rats

MRID No.: 44807210

Executive Summary: In an acute oral neurotoxicity study (MRID 44807210), single gavage doses of 0, 50, 1000 or 2000 mg/kg fluazinam (96.8%, Lot No.: 1030/91) in 1.5% (v/v) aqueous methylcellulose were administered to groups of fasted Sprague-Dawley rats (10/sex/dose). Functional Observational Battery (FOB) and Motor Activity (MA) assessments were performed before test substance administration, between 5 and 7 hours post-administration (time of peak effect) and on days 7 and 14. Body weights were measured weekly and clinical signs were recorded daily. The animals were sacrificed and grossly examined 14 days after administration of the test material. Five rats/dose/sex were perfused in situ for neuropathological evaluation.

There were no treatment-related deaths, clinical signs, or body weight effects during the study. Treatment-related soft stools were observed in mid- and high-dose males and females, but only on the day of treatment. Treatment-related mean motor activity values were significantly decreased (22-67%) in mid- and high-dose females compared to controls (not dose-related), but only on the day of treatment. No other treatment-related effects of any kind were observed at any time during the study. No treatment-related gross effects or histopathology were observed. Since the decreased mean motor activity values were observed in one sex only (females), on one occasion only (on the day of dosing), at high doses only (≥1000 mg/kg), and were not dose-related, and
were observed in one study only (not observed is the subchronic neurotoxicity study in rats, MRID 44807217, 44807218), it is likely that this treatment-related effect (decreased mean motor activity values in females only on the day of dosing only) is a manifestation of acute general systemic toxicity and not a direct neurotoxic response to the administration of the test material.

Under the conditions of this study, the acute general systemic toxicity LOAEL is 1000 mg/kg for male and female rats based on soft stools and decreased motor activity. The acute general systemic toxicity NOAEL is 50 mg/kg for male and female rats. The LOAEL for neurotoxic effects is not identified (> 2000 mg/kg). The NOAEL for neurotoxic effects is 2000 mg/kg.

This acute oral neurotoxicity study is classified Acceptable/Guideline. This study does satisfy the guideline requirement for an acute oral neurotoxicity study (OPPTS 870.6200 (81-88a)) in rats.

Dose and Endpoint for Establishing RD: NOAEL = 50 mg/kg based on soft stools and decreased motor activity at 1000 mg/kg (LOAEL).

Uncertainty Factors: 1000 (10x for interspecies extrapolation, 10x for intraspecies variations, and an additional 10X database uncertainty factor for the lack of the DNT study).

Comments about Study/Endpoint/Uncertainty Factor: Due to the large dose spread in this study between the NOAEL (50 mg/kg) and the LOAEL (1000 mg/kg), the true NOAEL in this study is probably much higher than 50 mg/kg. This study, however, provides the best data available for determining an acute RD for the general population (including infants and children).

<table>
<thead>
<tr>
<th>Acute RD (General Population)</th>
<th>NOAEL: 50 mg/kg</th>
<th>0.05 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF: 1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Chronic Reference Dose (cRfD)

Study Selected: 2-Year carcinogenicity study in mice (co-critical study #1) $870.4200

MRID No.: 42008405, 44807220, 44807212

Executive Summary: In an oncogenicity study (MRID 42208405, 4807220, 44807212), Fluoxazin (95.3% a.i., lot no. 8412-20) was administered to groups of 52 male and 52 female CD8-1 mice in the diet at concentrations of 0, 0.1, 1, 10, 100, or 1000 ppm. There were 2 control groups. The test diets were given for 104 weeks. These concentrations resulted in mean daily compound intakes of 0.12, 1.12, 10.72, and 107 mg/kg/day for 1 ppm, 10 ppm, 100 ppm, and 1000 ppm, respectively, for males and 0.11, 1.16, 11.72, and 117 mg/kg/day, respectively, for females. Additional microscopic review of brain and spinal cord was presented in MRID.
44807220. A four-week-range finding study (MRID 44807212) using 0, 10, 50, 250, or 300 ppm in the diet was also conducted.

Treatment with Fluazinam did not result in treatment-related changes in survival, clinical signs, body weights, body weight gains, food consumption or hematology parameters. The group means, liver weights adjusted for body weight were increased in males and females by 45% and 30%, respectively, at 1000 ppm compared to the controls, and by 15% in females at 100 ppm after 104 weeks of treatment (p<0.01). Microscopic examination showed increased incidences of liver cells containing basophilic hepatocytes (controls, 12%; 1000 ppm, 38%, p<0.01) and/or eosinophilic vacuolated hepatocytes (controls, 1%; 100 ppm, 8%, p<0.05; 1000 ppm 19%, p<0.01) in treated males compared to the controls. Increased incidences of granulomatous hepatitis of minimal severity were seen in high-dose males (controls, 11%; 1000 ppm, 25%, p<0.01) and females (controls, 11%; 1000 ppm, 21%, p<0.01). Higher incidences of aggregates of brown pigmented macrophages were seen in the livers of treated males (controls, 13%; 100 ppm, 27%, p<0.05; 1000 ppm, 62%, p<0.01) and females (controls, 15%; 1 ppm, 40%, p<0.01; 10 ppm, 21%, NS; 100 ppm, 38%; 1000 ppm, 59%, p<0.01). Granulomatous hepatitis and brown pigmented macrophage aggregates were most commonly seen in mice that survived until the end of the study. The only effects that were not associated with the liver were an increased incidence of thymic hyperplasia in high-dose females (controls, 5%; 1000 ppm, 21%, p<0.01), and increased incidences of cystic thyroid follicles in high-dose males (controls, 23%; 1000 ppm, 52%, p<0.01) and high-dose females (controls, 16%; 1000 ppm, 33%, p<0.01).

The central nervous systems of the animals were re-examined and the results reported in an addendum to the main study (MRID 44807220). Treatment-related increases in the incidences and severity of vacuolation of white matter occurred in the brains of males at 1000 ppm and increased severity of white matter vacuolation was seen in the brains of females at 1000 ppm compared to the control groups. No clear effect of treatment on the incidence or severity of white matter vacuolation in the spinal cord was seen in either sex, and no treatment-related effects were seen at 1, 10, or 100 ppm.

The LOAEL is 100 ppm in the diet (10.72 mg/kg/day for males; 11.72 mg/kg/day for females), based on increased incidences of brown pigmented macrophages in the liver of both sexes, increased incidences of eosinophilic vacuolated hepatocytes in males, and increased liver weights in females. The NOAEL was 10 ppm (1.12 mg/kg/day for males; 1.16 mg/kg/day for females).

Treatment of CD-1 mice for up to 104 weeks resulted in a significant increase in the hepatocellular adenoma incidence in high-dose males under the conditions of this study (controls, 14%; 1000 ppm 35%, p<0.05). The incidence of hepatocellular carcinoma was also increased in high-dose males, but the increase was not statistically significant by the tests applied by the study authors (controls, 17%; 1000 ppm, 33%, NS). No increases in hepatocellular tumor incidences were seen in treated females compared to the controls. Historical control data supplied
with the study showed the hepatocellular adenoma incidence in males ranged from about 4% to 7% in mouse studies of similar duration, and the hepatocellular carcinoma incidence ranged from 17% to 38%. The incidence for hepatocellular adenomas for high-dose males in this study (33%) slightly exceeded the upper range of historic controls (17%). The dosing was adequate for an oncogenicity study based on the liver and brain toxicity at 1000 ppm.

This oncogenicity study in the mouse is Acceptable/Guideline and does satisfy the guideline requirement for an oncogenicity study (OPPTS 870.4200 (83-2b)) in mice. An additional study has been done following this study with higher concentrations of flunixin (see MRID 44807222).

Study Selected: 1-Year chronic oral study in dogs (co-critical study #2) § 870.4100
MRID No. 42270603, 44807219

Executive Summary: In a chronic oral toxicity study (MRIDs 42270603, main study and 44807219, addendum), flunixin (Lot No. 8412-20, 95.3% purity) was administered to groups of six male and six female beagle dogs/dose for 52 weeks at doses of 0, 1, 10, or 50 mg/kg/day in gelatin capsules.

No animals died as a result of treatment. The most notable clinical signs were increased incidence of salivation and nasal dryness, mainly in the high-dose dogs but nasal dryness was also slightly increased in females at 10 mg/kg/day. Body weight was mildly decreased at high dose (4%, males and 9%, females; not analyzed statistically), and total body weight gain was significantly reduced (29%, p<0.05; -17% when calculated as a percentage of initial body weight) only in females but was also lower in males (-19%, -9% as a percentage of initial body weight). Hematocrit, hemoglobin, and RBC counts of high-dose dogs were consistently lower (8-17%; p<0.05, 0.01, or 0.001) than controls throughout the treatment period, and WBC counts were elevated (12-64%; p<0.05 or 0.001) at study end (these findings considered treatment-related but not biologically significant). Alkaline phosphatase was significantly increased (32-183%; p<0.05, 0.01, or 0.001) in high-dose dogs throughout the treatment period.

Absolute liver weight (males, 37%; females, 16%; p<0.05) and the liver/body weight ratio (males, 45%; females, 47%; p<0.01) were increased in high-dose dogs. In the reexamination of brain and spinal cord tissues, incidence of vacuolization of white matter in the brain was increased in both sexes at the high dose (6/6 animals/sex affected vs. 2-4%, controls), along with increased severity (1.5-2.17 vs. 1.0, controls). In addition, vacuolation of the white matter of the spinal cord was seen in high-dose females (4/6 affected vs. 0, controls). An increase in liquefied GI tract contents and incidence/severity of stomach mucosal lymphoid hyperplasia was seen in mid- and high-dose dogs of both sexes, although in females, neither incidence nor mean severity of the hyperplasia at these dose levels showed a dose-related increase.

18
The LOAEL (threshold) is 10 mg/kg/day for both male and female dogs, based on marginal increases in the incidence of nasal dryness in females and the incidence/severity of gastric lymphoid hyperplasia in both sexes. The NOAEL is 1 mg/kg/day.

This chronic toxicity study is classified as Acceptable/guideline and satisfies the guideline requirement for a chronic oral study (OPPTS 870.4100 ($83-1b)) in dogs. No major deficiencies were noted in this study.

Dose and Endpoint for Establishing RFD: NOAEL = 1.1 mg/kg/day, based on increased incidences of brown pigmented macrophages in the liver of both sexes, increased incidences of eosinophilic vacuolated hepatocytes in males, and increased liver weights in females at 10.72 mg/kg/day (LOAEL).

Uncertainty Factor(s): 100 (10X for interspecies variation and 10X for interspecies extrapolation)

Committee on Studies/Endpoints/Uncertainty Factor: This 2-year carcinogenicity study in mice, rather than the 1-year chronic oral study in dogs, was used to establish the RFD because the treatment-related effects at the LOAEL in the mouse study were related to liver toxicity (the regularly observed target organ for fluazinam in many studies), whereas the effects at the LOAEL in the dog study (increased incidence of nasal dryness in females and increased incidence/severity of gastric lymphoid hyperplasia in males and females) were unrelated to liver toxicity. It was noted by the committee that the NOAELs in the mouse study (1.12 mg/kg/day in males and 1.16 mg/kg/day in females) and in the dog study (1 mg/kg/day in males and females) and the LOAELs in the mouse study (10.72 mg/kg/day in males and 11.72 mg/kg/day in females) and in the dog study (10 mg/kg/day in males and females) were quite similar.

In addition, the committee observed that a treatment-related neurotoxic lesion described as vacuolation of the white matter of the central nervous system (CNS) was observed in both the 2-year carcinogenicity study in mice (at 10/7/1.7 mg/kg/day, but not at 10/7/1.72 mg/kg/day in M/F) and in the 1-year chronic oral study in dogs (at 50 mg/kg/day, but not at 10 mg/kg/day in M/F). The committee particularly noted that the dose level at which vacuolation of the CNS was not observed in the 2-year mouse study (neurotoxic NOAEL) was 10.72/11.72 mg/kg/day in M/F and was 10 fold higher than the NOAEL of 1.12/1.16 mg/kg/day in M/F for general systemic toxicity in the same study. Similarly, the dose level at which vacuolation of the CNS was not observed in the 1-year dog study (neurotoxic NOAEL) was 10 mg/kg/day in M/F and was also 10 fold higher than the NOAEL of 1 mg/kg/day in M/F for general systemic toxicity in the same study. It was later determined in a series of special mechanistic studies that this CNS lesion was induced solely by an impurity (Impurity-5) in technical grade fluazinam and not by fluazinam per se. Impurity-5 was present in the various lots of technical grade fluazinam used in toxicity studies at highly variable concentrations up to 0.20%. In the 2-year carcinogenicity study in mice (M/RID...
The committee also noted that a 2-year chronic feeding/carcinogenicity study in rats (MRID 42248620, 44807223) is available which has an NOAEL of 0.38 mg/kg/day for males and 0.47 mg/kg/day for females, which is lower than the NOAEL (1.1 mg/kg/day) selected for establishing the chronic RFD. The reason for not selecting the NOAEL from this study to establish the chronic RFD is that the next highest dose level tested in this study was 3.8 mg/kg/day in males and 4.9 mg/kg/day in females (a 10-fold higher dose); that a second 2-year chronic feeding/carcinogenicity study in rats (MRID 44839001, 44807213) subsequently was performed with 2 dose levels intermediate between the dose levels of 0.38/0.47 mg/kg/day and 3.8/4.9 mg/kg/day used in the first study; and that the NOAEL observed in the second study was 1.9 mg/kg/day for males and 4.9 mg/kg/day for females, which is higher than the NOAEL (1.1 mg/kg/day) selected for establishing the chronic RFD.

Chronic RFD = \(\frac{\text{NOAEL} \times \text{UF}}{\text{UF}} \) = \(\frac{1.1 \text{ mg/kg/day} \times 100}{100} \) = 0.11 mg/kg/day

4. Incidental Oral Exposure: Short-Term (1-30 days)

Study Selected: Developmental toxicity study in rabbits

MRID No.: 4224616

Executive Summary: See Executive Summary for Acute Reference Dose (RFD), Females 13-50 Years.

Dose for Drinking Water for Risk Assessment: Maternal toxicity NOAEL = 4 mg/kg/day, based on decreased food consumption and an increased incidence of liver histopathological lesions
(cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition and apoptosis) at 7 mg/kg/day (LOAEL).

Comments about Study/Endpoint: There are no residential uses for fluazinam proposed at this time. This endpoint was selected for future uses as may be needed. The endpoints of concern are appropriate for this exposure scenario and population of concern (children).

5. Incidental Oral Exposure: Intermediate-Term (1 - 6 Months)

Study Selected: Developmental toxicity study in rabbits (co-critical study #1) § 870.3700

MRID No.: 42248616

Executive Summary: See Executive Summary for Acute Reference Dose (RfD), Females 13-50 Years.

Dose and Endpoint for Risk Assessment: Maternal toxicity NOAEL = 4 mg/kg/day, based on decreased food consumption and an increased incidence of liver histopathological lesions (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition and apoptosis) at 7 mg/kg/day (LOAEL).

Comments about Study/Endpoint: There are no residential uses for fluazinam proposed at this time. This endpoint was selected for future uses as may be needed. The endpoints of concern are appropriate for this exposure scenario and population of concern (children).

Results from the following study are considered to be co-critical for the dose and endpoint selected above for intermediate-term incidental oral exposure.

Study Selected: 90-Day feeding study in rats (co-critical study #2) § 870.3100

MRID No.: 42248610, 44807214

Executive Summary: In a subchronic oral toxicity study (MRID 422486/0, 44807214), technical grade fluazinam (98.5% a.i.) was administered in the diet to 10 CD (remote Sprague-Dawley strain) rats/sex/dose level at dose levels of 0, 2, 10, 50, or 500 ppm for 13 weeks (0, 0.12, 0.77, 3.8, or 38 mg/kg/day for males; 0, 0.17, 0.86, 4.3, or 44 mg/kg/day for females). Slides of brain and cervical spinal cord from all control and 500 ppm rats were later re-examined to assess for vacuolization of the white matter in the central nervous system (MRID 44807214).

No treatment-related mortalities, clinical signs of toxicity, changes in body weights or body weight gains, differences in food or water consumptions, or ophthalmological findings were
observed. No treatment-related effects in hematology, clinical chemistry, or urinalyses parameters were noted. Gross necropsies were negative. At termination, statistically significant treatment-related increases were observed in the liver of 500 ppm males (absolute weights increased 8% (not significant) and relative liver/body weight ratios increased 11% in comparison to controls), in the lungs of 500 ppm females (absolute weights increased 18% and relative lung/body weight ratios increased 25% in comparison to controls), and in the uterus of 500 ppm females (absolute weights increased 36% and relative uterus/body weight ratios increased 43% in comparison to controls). Statistically significant compound-related histopathological lesions were observed in the livers of 500 ppm males (increased incidences of periacinar hepatocyte hypertrophy and sinusoidal chronic inflammation). There was no effect of treatment on the incidence or severity of vacuolization of the white matter of the brain or cervical spinal cord in the 500 ppm rats as compared with the controls.

The NOAEL in this study is 50 ppm (3.8 mg/kg/day in males and 4.3 mg/kg/day in females). The LOAEL is 500 ppm (38 mg/kg/day in males and 44 mg/kg/day in females), based on increases in absolute and relative liver weights in males, increases in absolute and relative lung and uterus weights in females, and increases in histopathology in the liver of males (increased incidences of periacinar hepatocyte hypertrophy and sinusoidal chronic inflammation).

This subchronic oral toxicity study in rats is classified Acceptable/guideline and satisfies the Subdivision F guideline requirement for a subchronic oral toxicity study (OPPTS 870.1100 §82-1a) in rats. No major deficiencies were noted in this study.

Dose and Endpoint: NOAEL = 3.8 mg/kg/day based on increases in absolute and relative liver weights in males, increases in absolute and relative lung and uterus weights in females, and increases in histopathology in the liver of males (increased incidences of periacinar hepatocyte hypertrophy and sinusoidal chronic inflammation) at the LOAEL of 38 mg/kg/day.

5. Dermal Absorption

Dermal Absorption Factor: 25%

There is no dermal absorption study available on fluazinam. A dermal absorption factor was estimated by comparing the LOAEL from a 21-day dermal toxicity study in rats to the LOAEL from a 4-week range-finding feeding study in rats based on a common endpoint (Liver toxicity).

21-Day dermal toxicity study in rats

MRID No.: 4227602

Systemic NOAEL = 10 mg/kg/day
Systemic LOAEL = 100 mg/kg/day, based on increased aspartate aminotransferase (AST) and increased cholesterol levels in males
4-Week range-finding feeding study in rats

MRID No.: 44807213

NOAEL = 5.1 mg/kg/day (males)
 5.3 mg/kg/day (females)

LOAEL = 26.4 mg/kg/day (males)
 25.9 mg/kg/day (females), based on decreased body weight gain and decreased food consumption in females, increased serum phospholipids in females, increased total cholesterol in males and females, increased relative liver weights in females, and liver histopathological effects (periportal hypertrophy) in males

Estimated Dermal Absorption Factor = \frac{\text{Oral LOAEL} \times 100}{\text{Dermal LOAEL}} = \frac{25 \text{ mg/kg/day} \times 100}{100 \text{ mg/kg/day}} = 25\%

6. Dermal Exposure: Short-Term (1–30 days) and Intermediate-Term (1–6 Months)

Study Selected: 21-Day dermal toxicity study in rats

MRID No.: 42270602

Executive Summary: In a 21-day repeated dose dermal toxicity study (MRID: 42270602), groups of 10 male and 10 female CD (Sprague-Dawley) rats were treated with Fluazinam technical (98.9% a.i.; lot no. 8303-2) in 0.5% methylcellulose in distilled water at doses of 0, 10, 100 or 1000 mg/kg/day. Animals were treated by dermal occlusion for 6 hours per day, 7 days per week, for 3 weeks.

No treatment-related mortalities occurred. At 1000 mg/kg/day, decreased body weight gain in males (19% compared to controls, p < 0.05) was observed. Liver damage in both males and females was also evident at 1000 mg/kg/day as demonstrated by increased absolute liver weights (17-26%), increased relative liver/body weight ratios (27-30%), statistically significant increases in aspartate aminotransferase (AST) and cholesterol levels, and highly increased incidences of periportal hepatocellular hypertrophy in males and females. At 100 mg/kg/day, statistically significant increases in AST and cholesterol levels were observed in males. The LOAEL for systemic toxicity is 100 mg/kg/day based on increased AST and increased cholesterol levels in males. The NOAEL for systemic toxicity is 10 mg/kg/day.

At 1000 mg/kg/day, slight to severe erythema and oedema were observed after 11-13 days and crusting and/or staining at 21 days in males and females. At 100 mg/kg/day, slight erythema was observed after 14 days in males and females and crusting and/or staining at 21 days in females. At 10 mg/kg/day, slight erythema was noted after 13 days in one male. Histologically, at 1000 mg/kg/day and 100 mg/kg/day_C and 10 mg/kg/day, scabbing and ulceration were noted in males and females. At 10 mg/kg/day, scabbing and dermatitis were observed in males and
females. At 10 mg/kg/day, the test material was considered to be a very mild irritant. The LOAEL for dermal toxicity is ≤10 mg/kg/day based on erythema, edema, and dermatitis in males and/or females. No NOAEL for dermal toxicity was determined in this study (< 10 mg/kg/day).

This 21-day dermal toxicity study in rats is classified Acceptable/Guideline and satisfies the Subdivision F guideline requirement for a 21/28-day dermal toxicity study [OPPTS 870.3200 (OPP 82-2)]. No major deficiencies were noted in this study.

Dose and Endpoint for Risk Assessment: NOAEL = 10 mg/kg/day, based on increased aspartate aminotransferase (AST) and increased cholesterol levels in males at 100 mg/kg/day (LOAEL).

Comments about Study/Endpoint: The hazard identified is from a dermal study which is appropriate for this exposure (dermal) and duration of contact. Also, the developmental effects in rats were seen at a higher dose (at 250 mg/kg/day) compared to the systemic toxicity seen via the dermal route (at 1000 mg/kg/day).

7. **Dermal Exposure: Long-Term (> 6 Months)**

The 2-year carcinogenicity study in mice and the 1-year chronic oral study in dogs, co-critical studies used to determine the chronic RfD, were recommended to evaluate the long-term dermal hazard of fluazinam.

Study Selected: 2-Year carcinogenicity study in mice (co-critical study #1) § 870.4200

MRID No.: 42208405, 44807220, 44807212

Executive Summary: See Chronic RfD

Study Selected: 1-Year chronic oral study in dogs (co-critical study #2) § 870.4100

MRID No.: 42706093, 44807219

Executive Summary: See Chronic RfD

Dose and Endpoint for Risk Assessment: NOAEL = 1.1 mg/kg/day, based on increased incidences of brown pigmented macrophages in the liver of both sexes, increased incidences of eosinophilic vacuolated hepatocytes in males, and increased liver weights in females at 10.72 mg/kg/day (LOAEL).

Comments about Study/Endpoint: See Chronic RfD

8. **Inhalation Exposure: All Durations**

24
Study Selected: 7-Day range-finding inhalation study in rats

(test material: Frowncide® WP, containing 51.9% fluzzanim)

MRID No.: 42248621

Executive Summary: In a 7-day range-finding inhalation toxicity study (MRID 42248621), groups of five male and five female young adult CD rats were exposed nose-only to Frowncide® WP (51.9% Fluzzanim, a.i., Batch No. 004) for two 1-hour periods per day for 7 days at concentrations of 0, 0.003, 0.011, 0.032, or 0.110 mg/L. The estimated achieved dosages of Frowncide® WP over the 7 days of treatment were calculated to be 0.72, 2.76, 7.93 and 27.43 mg/kg/day for males and 0.75, 2.97, 8.30 and 29.23 mg/kg/day for females for the concentrations of 0, 0.003, 0.011, 0.032, and 0.110 mg/L, respectively. The mass median aerodynamic diameter (MMAD) was estimated to be 3.22-3.98 μm and the geometric standard deviation was 2.04-2.69 μm. Approximately 60-70% of particles had an aerodynamic diameter < 6.0 μm. The animals were observed daily. Hematology, clinical chemistries and urinalyses were performed. All animals were necropsied after completion of exposure, but no histopathology was performed.

No rats died during the study. No clinical signs of toxicity were noted from any rat. The body weight changes of all groups were similar to that of the control group. No toxicologically significant effects of the test material were noted on food consumption, water consumption, food efficiency, hematology, clinical chemistries, or urinalyses. At 0.110 mg/L, slightly increased lung weights (males and females), slightly increased testes weights (males), and slightly increased liver weights (females) were observed. At 0.032 mg/L, slightly increased testes weights (males), and slightly increased liver weights (females) were also observed. No microscopic changes attributed to treatment with test material were noted at necropsy. Histopathological examination of tissues was not performed.

The LOAEL is 0.032 mg/L (7.93 mg/kg/day in males and 8.50 mg/kg/day in females), based on slightly increased testes weights (males) and slightly increased liver weights (females). The NOAEL is 0.011 mg/L (2.76 mg/kg/day in males and 2.97 mg/kg/day in females).

This inhalation study is classified as Acceptable/Non-guideline. It does not satisfy the subdivision F guideline requirements for a repeated dose inhalation study in the rat because histopathological examination of tissues was not performed. The study was conducted as a range-finding study (for a four-week inhalation study with Frowncide® WP in rats) and is acceptable for that purpose.

Dose and Endpoint for Risk Assessment: NOAEL = 1.38 mg/kg/day, based on slightly increased testes weights (males) and slightly increased liver weights (females) at the LOAEL of 0.032 mg/L (7.93 mg/kg/day in males and 8.50 mg/kg/day in females).

Comments about Study/Endpoint: The inhalation dose of 1.38 mg/kg/day selected to evaluate the inhalation risks of fluzzanim is protective of developmental effects, where the NOAEL for
developmental toxicity was 7 mg/kg/day in the developmental toxicity study in rabbits (MRID 42248616). When feasible, the inhalation route of exposure is the most appropriate route to use for evaluating inhalation risk. Finally, it is noted that the target organ is the 7-day range-finding inhalation study (liver) and in many other studies on fluazinam consistently is the liver.

The adjustment to the NOAEL in this study is appropriate in order to determine the dose for evaluating the inhalation hazard of fluazinam. Since the test material in this study was not technical grade fluazinam, but rather was Frowincide® WP (approximately 50% fluazinam), the NOAEL from this study (0.011 mg/L or 2.76 mg/kg/day in males and 2.97 mg/kg/day in females) should be reduced by half to account for this (i.e. adjusted NOAEL = 1.38 mg/kg/day for males and 1.48 mg/kg/day for females). Also, it should be recalled that no histopathology was performed in this study and therefore the true NOAEL may be lower than that demonstrated in the study.

For evaluation of short-term (1-7 days) inhalation exposure, an extra factor of 3X should be applied to the conventional uncertainty factor of 100X to account for the lack of histopathology in the inhalation study. MOE = 300.

For evaluation of intermediate-term (7 days to several months) and long-term (several months to life-time) inhalation exposure, an extra factor of 10X should be applied to the conventional uncertainty factor of 100X to account for the lack of histopathology and the use of a short-term (7 days) study to evaluate intermediate-term and long-term inhalation exposure. MOE = 1000.

The HIARC determined that a 28-day inhalation study in rats is a data gap and should be required to support the registration of fluazinam.

9. Margins of Exposure

Summary of target Margins of Exposure (MOEs) for risk assessment.

<table>
<thead>
<tr>
<th>Route</th>
<th>Short-Term (1-30 Days)</th>
<th>Intermediate-Term (1 - 6 Months)</th>
<th>Long-Term (> 6 Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Inhalation</td>
<td>300</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Residential (Non-Dietary) Exposure</td>
<td>oral</td>
<td>100</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Dermal</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
There are no residential uses for fluazinam at the present time (Not Applicable - NA).

For short-term and intermediate-term incidental oral exposure risk assessments, a MOE of 100 is required. This is based on the conventional uncertainty factor of 190X (10X for intraspecies extrapolation and 10X for interspecies variation).

For all dermal exposure risk assessments, a MOE of 100 is required. This is based on the conventional uncertainty factor of 10X (10X for intraspecies extrapolation and 10X for interspecies variation).

For short-term inhalation exposure risk assessments, a MOE of 300 is required. An extra factor of 3X should be applied to the conventional uncertainty factor of 100X to account for the lack of histopathology in the 7-day range-finding inhalation study in rats.

For intermediate-term and long-term inhalation exposure risk assessments, a MOE of 1000 is required. An extra factor of 10X should be applied to the conventional uncertainty factor of 100X to account for the lack of histopathology in the 7-day range-finding inhalation study in rats and the use of a short-term (7 days) study to evaluate intermediate-term and long-term inhalation exposure.

10. Recommendation for Aggregate Exposure Risk Assessments

There are no proposed residential home owner uses or other uses that will result in post-application residential exposure. Therefore, aggregate exposure risk assessment is not required.

III. CLASSIFICATION OF CARCINOGENIC POTENTIAL

1. Combined Chronic Toxicity/Carcinogenicity Study in Rats § 870.4300

MRID No.: 42248620, 44807223, 45150201

Discussion of Tumor Data: In a combined chronic toxicity/oncogenicity study (MRID 42248620 and MRID 44807223), B-1216 (fluazinam technical, 95.3% a.i., lot number 8412-20) was administered to groups of 60 male and 60 female Sprague-Dawley rats at dietary concentrations of 0, 1, 10, 100, or 1000 ppm (0, 0.04, 0.38, 3.82, or 40 mg/kg/day for males and 0, 0.05, 0.47, 4.87, or 53 mg/kg/day for females) for up to 104 weeks. Groups of 10 rats of each sex per dose group were sacrificed at 52 weeks for interim evaluations.

A slightly increased incidence of thyroid gland follicular cell adenomas, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 100
ppm and 1000 ppm. The incidence was 8%, 6%, 10%, 14% and 14% for the 0, 1, 19, 100 and 1000 ppm groups, respectively. The range of the historical control data (20 comparable studies at the same testing laboratory) was 0 to 13% and the mean was 6.5%. Also, a slightly increased incidence of thyroid gland follicular cell adenocarcinomas, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 1000 ppm. The incidence was 0%, 0%, 9%, 3% and 6% for the 0, 1, 10, 100 and 1000 ppm groups, respectively. The range of the historical control data (20 comparable studies at the same testing laboratory) was 0 to 5% and the mean was 1.4%. In addition, slightly increased incidences of pancreatic islet cell adenomas were also observed in the treated male rats, but these incidences were not dose-related and did not exceed the upper range of historical control data for the same tumor type (20 comparable studies at the same testing laboratory). Further, this type of tumor in this strain of rats is a common spontaneously occurring neoplasm. Therefore, the increased incidence of pancreatic islet cell adenomas observed in the treated male rats in this study was considered not likely to be related to treatment with the test material. High incidences of pituitary gland adenomas in males and females and of mammary gland fibroadenomas in females were also observed in all groups, including controls. These neoplasms are not considered to be treatment-related. A noteworthy increase of tumors was not observed in any other tissues in the treated male or female rats in this study.

Adequacy of the Dose Levels Tested: The animals were adequately dosed as evidenced by decreased body weight gain at the 1000-ppm dose and microscopic lesions at the 100- and 1000-ppm doses. Males receiving the 1000-ppm diet weighed 6-16% (p<0.01) less than controls from week 8 to study termination, gained 15% less weight overall, and consumed ≤8% less food than controls at each weekly interval. Females receiving the 1000-ppm diet weighed 7-24% (p<0.01) less than controls from week 2 to termination, gained 35% less weight overall, and consumed ≤18% less food than controls at each weekly interval. The food utilization factor or the food efficiency suggested that reduced body weight gain was due in part to toxicity of the test material.

Treatment related microscopic findings showed that the test material was toxic to the following organs: liver, pancreas, lungs, and possibly thyroid gland in both sexes, kidneys and testes in males, and lymph nodes in females, but the primary target appeared to be the liver. Liver toxicity was manifested by increased organ weight and increased incidences of gross and microscopic lesions. Absolute liver weights were increased by at least 7-27% and relative weights by 17-63% in both sexes at 1000 ppm. Gross lesions in the liver consisted of pale, swollen or accentuated markings on the livers at 1000 ppm in males and enlarged, pitted, or mottled livers at 1000 ppm in females. Treatment-related microscopic liver lesions at 100 ppm consisted of eosinophilic hepatocytes in 24% of females (8% in controls), centrilobular hepatocyte rarefaction and vacuolation in 8% of each sex (0% for controls), centrilobular uniodinal dilatation in 10% of males and 18% of females (0% for male and 2% for female control), and pericholangitis in 18% of males and 14% of females (4% for male and 2% for female controls). Additional treatment-related liver lesions at 1000 ppm in main study group consisted of centrilobular hepatocyte vacuolation in males, centrilobular hepatocyte necrosis in females, and centrilobular fat and bile duct hyperplasia in both sexes. Centrilobular hepatocyte vacuolation and centrilobular fat was also seen in 1000-ppm group male and female rats at interim sacrifice.

28
The incidences of exocrine atrophy of the pancreas in both sexes and acinar epithelial vacuolation or fat accumulation in females were increased at 1000; the incidence of exocrine atrophy was also increased at 100 ppm in females compared with that of control rats. The incidence of exocrine degeneration was increased in 1000-ppm group female rats at interim sacrifice but not in the main study. An increased incidence of thyroid follicular hyperplasia was observed in males at 1000 ppm (9% vs 2% for controls) and in females at 1000 ppm (10% vs 2% in controls). This finding may possibly be related to treatment with the test material. In male rats, the incidence of cortical tubular basophilia in the kidney was increased at 1000 ppm compared with that of the controls. Other treatment-related lesions included pneumonitis, alveolar adenomatosis, and alveolar epithelialization in 1000-ppm group males, alveolar epithelialization and alveolar macrophages aggregates in 1000-ppm group females, testicular atrophy in 100- and 1000-ppm group males, and spermatocyte granuloma also in 1000-ppm males. The incidence of sinus histiocytosis in the lymph nodes was increased in 1000-ppm group females. Histopathologic assessment of the brain and spinal cord of rats in the control and 1000-ppm dose groups showed no treatment-related effect on vacuolation of white matter.

2. Carcinogenicity Studies in Mice

Study #1:

MRID No.: 42208405, 44072220, 44807212

Discussion of Tumor Data: In an oncogenicity study (MRID 42208405, 48072220, 44807212), Fluorine (95.3% a.i., lot no. 8412-20) was administered to groups of 52 male and 52 female CDB-1 mice in the diet at concentrations of 0, 0.1, 10, 100, or 1000 ppm. There were 2 control groups. The test diets were given for 104 weeks. The concentrations resulted in mean daily compound intakes of 0.12, 1.12, 10.72, and 107 mg/kg/day for 1 ppm, 10 ppm, 100 ppm, and 1000 ppm, respectively, for males and 0.11, 1.16, 11.72, and 117 mg/kg/day, respectively, for females. Additional microscopic review of brain and spinal cord was presented in MRID 44807220.

Treatment of CDB-1 mice for up to 104 weeks resulted in a significant increase in the hepatocellular adenoma incidence in high-dose males under the conditions of this study (controls, 14%; 1000 ppm 33%, p<0.05). The incidence of hepatocellular carcinoma was also increased in high-dose males, but the increase was not statistically significant by the tests applied by the study authors (controls, 17%; 1000 ppm, 37%, NS). No increases in hepatocellular tumor incidences were seen in treated females compared to the controls. Historical control data supplied with the study showed the hepatocellular adenoma incidence in males ranged from about 4% to 27% in mouse studies of similar duration, and the hepatocellular carcinoma incidence ranged from 12% to 38%. The incidence for hepatocellular adenomas for high-dose males in this study (33%) slightly exceeded the upper range of historic controls (27%).

Adenoma of the Dose Levels Tested: The dosing was adequate for an oncogenicity study based on the liver and brain toxicity at 1000 ppm. The group mean liver weights adjusted for body
weights were increased in males and females by 45% and 30%, respectively, at 1000 ppm compared to the controls, and by 15% in females at 100 ppm after 104 weeks of treatment (p<0.01). Microscopic examination showed increased incidences of liver areas containing basophilic hepatocytes (controls, 12%; 1000 ppm, 38%, p<0.01) and/or eosinophilic vacuolated hepatocytes (controls, 1%; 100 ppm, 8%, p<0.05; 1000 ppm 19%, p=0.01) in treated males compared to the controls. Increased incidences of granulomatous hepatitis of minimal severity were seen in high-dose males (controls, 11%; 1000 ppm, 25%, p<0.01) and females (controls, 11%; 1000 ppm, 21%, p<0.01). Higher incidences of aggregates of brown pigmented macrophages were seen in the livers of treated males (controls, 13%; 100 ppm, 27%, p<0.05; 1000 ppm, 62%, p<0.01) and females (controls, 15%; 1 ppm, 40%, p<0.01; 10 ppm, 21%, NS; 100 ppm, 38%; 1000 ppm, 50%, p<0.01). Granulomatous hepatitis and brown pigmented macrophage aggregates were most commonly seen in mice that survived until the end of the study.

The central nervous systems of the animals were re-examined and the results reported in an addendum to the main study (MRID 44807220). Treatment-related increases in the incidences and severity of vacuolation of white matter occurred in the brains of males at 1000 ppm and increased severity of white matter vacuolation was seen in the brains of females at 1000 ppm compared to the control groups. No clear effect of treatment on the incidence or severity of white matter vacuolation in the spinal cord was seen in either sex, and no treatment-related effects were seen at 1, 10, or 100 ppm.

An additional carcinogenicity study in mice (MRID 44807222, 44807221, 44807211) was performed subsequent to this study with higher dose levels of fluazinum (see below).

Study #2:

MRID No.: 44807222, 44807221, 44807211, 45201301

Discussion of Tumor Data: In an oncogenicity study (MRID 44807222, 44807221, 44807211), technical grade fluazinum (97.0% a.i.) was administered to groups of 50 male and 50 female Crl:CD-1 mice in the diet at concentrations of 0, 1000, 3000, or 7000 ppm. The test diets were given for 97 weeks to females and for 104 weeks to males. These concentrations resulted in mean daily compound intakes of 126, 377, and 964 mg/kg/day for males and 162, 453, and 1185 mg/kg/day for females for 1000 ppm, 3000 ppm, and 7000 ppm, respectively. Twenty mice were added to the control and 7000 ppm groups for a satellite study in which the mice were killed and necropsied after treatment for 78 weeks.

The following incidences of hepatocellular tumors and historical control data were taken from a Pathology Working Group (PWG) report dated August 24, 2000 (MRID 45201301), which was submitted after the original study report which was dated December 19, 1996.

Increased incidences of hepatocellular adenomas and of combined hepatocellular...
adenomas/carcinomas were observed in the treated male mice in this study. The percentage incidences of hepatocellular adenomas were 14%, 26%, 38% and 26% for the 0, 1000 ppm, 3000 ppm and 7000 ppm male groups, respectively. The increase in the 3000 ppm group was statistically significant (p < 0.01), whereas the increases at 1000 ppm and 7000 ppm were not statistically significant. The percentage incidences of hepatocellular carcinomas observed in the treated male mice in this study were 2%, 4%, 8% (not statistically significant) and 8% (not statistically significant) for the 0, 1000 ppm, 3000 ppm and 7000 ppm male groups, respectively. The percentage incidences of combined hepatocellular adenomas/carcinomas were 16%, 36%, 46% and 34% for the 0, 1000 ppm, 3000 ppm and 7000 ppm male groups, respectively. The increases in the 3000 ppm group (p < 0.01) and in the 7000 ppm group (p < 0.05) were statistically significant, whereas the increase at 1000 ppm was not statistically significant. No increases in hepatocellular tumor incidences were seen in the treated females compared to the controls. Historical control data provided in the PWG report (12 studies of 80 to 96 weeks duration at the same testing laboratory) showed the hepatocellular adenoma incidence in males ranged from 8% to 34% and the hepatocellular carcinoma incidence ranged from 2% to 10%. Historical control data was not provided for combined hepatocellular adenomas/carcinomas. The percentage incidence for hepatocellular adenomas for the 3000 ppm males in this study (38%) slightly exceeded the upper range of historic controls (34%).

Adequacy of the Dose Levels Tested: The highest dose level tested in this study (7000 ppm) is equivalent to the limit dose in the § 870.4200 guidelines. In addition, the dosing was adequate for an oncogenicity study based on increased mortality in females, decreased body weights in males and females, and liver and brain toxicity in males and females at 7000 ppm. Treatment with Fluazinam resulted in a significant decrease in survival in females at 7000 ppm (control, 58%; 7000 ppm, 26%, p < 0.01). All females were terminated after 97 weeks of treatment because of low survival at the high-dose. At 7000 ppm, body weight gain was decreased in males during weeks 4-36 by 32% (p < 0.01) and food conversion ratios over weeks 9-13 were increased by 86% compared to the controls indicating decreased efficiency of food utilization. At termination, relative liver/body weight ratios were increased in males by 54%, 113% and 182% and in females by 21%, 45%, and 109% at 1000, 3000, and 7000 ppm, respectively, compared to the controls (p < 0.01). Microscopic examination showed increased incidences of altered hepatocyte nuclei at all concentration levels in males and in high-dose females (males: control, 12/50; 1000 ppm 24/50, p < 0.05; 3000 ppm, 36/50; 7000 ppm, 33/50, p < 0.01; females: control, 3/50; 7000 ppm 15/50, p < 0.01). Incidences of hepatocyte enlargement, pale or vacuolated hepatocyte cytoplasm, and brown pigmented macrophage aggregates were increased in all treated males and females compared to the control groups (p < 0.01). The pigmented macrophage aggregates also increased in severity from 0-22% of lesions in the controls to 41-58% of lesions at 7000 ppm graded “moderate” or “marked.” Incidences of brown pigmented centrilobular hepatocytes and parenchymal inflammatory cells increased in males at 3000 ppm (both 6/50, p < 0.05) and 7000 ppm (11/16/50, p < 0.01) compared to the controls (0-1/50). Males were more sensitive to the hepatotoxic effects of fluazinam than females. Incidences of vacuolation of white matter in the brains of all treated animals were increased compared to the controls (p < 0.01). Vacuolation of white matter was also increased in the cerebral spinal cord of males at 3000 and 7000 ppm (control, 18/50; 3000 ppm,
37/50, p<0.05; 7000 ppm, 46/50, p=0.01) and marginally in females (control, 37/50; 3000 and 7000 ppm, 45/50, NS). The severity of the vacuolation of white matter in the brain and spinal cord increased with increasing dose from 0% graded “moderate” or “marked” in the controls to 33-60% of lesions at 7000 ppm.

Classification of Carcinogenic Potential: Combined results from two carcinogenicity studies in mice indicated that treatment of Crl:CDB-1 mice for up to 104 weeks resulted in statistically significant increases in the incidence of hepatocellular adenoma in male mice at 1000 and 3000 ppm. These increased incidences slightly exceeded the upper range of the historic control incidences. The hepatocellular carcinoma incidence was also increased in male mice at these same dose levels, but was not statistically significant and was within the range of historic control incidences. The incidences of combined hepatocellular adenoma and/or carcinoma were also increased in male mice at 1000 ppm, 3000 ppm (p <0.01) and 7000 ppm (p < 0.05). The increased incidence of hepatocellular adenomas and of combined hepatocellular adenomas and/or carcinomas observed in male mice at 1000, 3000 and 7000 ppm are considered to be treatment-related. No significant increases in liver tumors were seen in treated female mice compared to controls.

The HIARC recommends that the results of these studies and all other pertinent data pertaining to the classification of carcinogenic potential of fluazinam be submitted to the HED Carcinogenicity Assessment Review Committee for review and evaluation.

IV MUTAGENICITY

There are 5 available mutagenicity studies on technical grade fluazinam. Results in all 5 studies were negative for mutagenic potential. One study (differential killing/growth inhibition assay in bacteria, MRID 42270607) was unacceptable because only one plate per dose, rather than 2 plates per dose, were used. The other 4 studies were acceptable.

There is a data gap for an in vitro forward gene mutation study in mammalian cells according to the post 1991 mutagenicity study requirements. An acceptable study of this type has not yet been submitted to the Agency. To satisfy this requirement, the applicant has already been asked to perform and submit either of the 2 following studies: mouse lymphoma assay, or Chinese Hamster Ovary (CHO) hgpt assay. In response to the Agency’s request, the applicant has informed the Agency that it intends to perform and submit a new mouse lymphoma study by November, 2000.

Update: The applicant has recently submitted 2 additional mutagenicity studies which are presently under review. Preliminary evaluation of the studies indicated the following:

1) Autoradiographic-DNA Repair Test on Rat Hepatoctyes for CGA-143268 (also known as Fluazinam); 1984, MRID 45156901; this is not the type of study that would satisfy the data gap; study has several serious deficiencies and will be classified as an unacceptable study; study was negative for mutagenic potential.
2) L5178Y/TK +/− Mouse Lymphoma Mutagenicity Test; CGA-143268 (also known as Fluazinam); 1986; MRID 4515692; this μg the type of study that would satisfy the data gap; but the study apparently was not done in replicate and therefore will be classified as an unacceptable study; study was negative for mutagenic potential.

Study #1

Executive Summary: In a reverse gene mutation assay in bacteria (MRID 42270605), strains TA98, TA100, TA1535 and TA1537 of S. typhimurium and strain WP2(uvrA) of E. coli were exposed to Fluazinam technical (Lot No. 841220, 95.3% a.i.) in DMSO. In the absence of mammalian metabolic activation (S9-mix), the TA-strains were exposed to Fluazinam concentrations of 0.0625, 0.125, 0.25, 0.5, 1.0 and 2.0 μg/plate and WP2(uvrA) was exposed to concentrations of 15.6, 31.3, 62.5, 125 and 250 μg/plate. In the presence of S9-mix, the TA-strains were exposed to Fluazinam concentrations of 3.13, 6.25, 12.5, 25, 50 and 100 μg/plate and WP2(uvrA) was exposed to concentrations of 31.3, 62.5, 125, 250 and 500 μg/plate. All plateings were in duplicate. The S9-fraction was obtained from phenobarbital + 5,6-benzofurazan induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. In the absence of S9-mix, complete growth inhibition (0 revertants/plate) was seen at 2 μg/plate in all TA strains and also at 1 μg/plate in TA1535 and TA1537. Less severe growth inhibition was seen at 1 μg/plate in TA100 (mean of 17 revertants/plate compared to a mean of 96 revertants/plate in the solvent control). In WP2(uvrA) the number of revertants per plate was reduced at 250 μg/plate to 4 revertants/plate compared to 30 revertants/plate in the solvent control. In the presence of S9-mix, complete growth inhibition (0 revertants/plate) was seen in all four TA-strains at 100 μg/plate and in TA98, TA1535 and 1537 at 50 μg/plate. The mean number of revertants per plate in TA100 at 50 μg/plate was 23 compared to the solvent control value of 120. In WP2(uvrA) the number of revertants per plate at 500 μg/plate was reduced to 13 revertants/plate compared to 44 revertants/plate for the solvent control. No significant increase in the mutagen frequency was seen. The number of revertants/plate was similar to the solvent control value at all Fluazinam concentrations, with or without S9-mix, in all tester strains. The solvent and positive controls induced the appropriate responses in the corresponding strains. There was no evidence of induced mutant colonies over background.

This study is classified as Acceptable/guideline. It satisfies the requirement for FIFRA Test Guideline (OPPTS 870.5265 (§54.7)) for in vitro mutagenicity (bacterial reverse gene mutation) data.

Study #2

Executive Summary: In a reverse gene mutation assay in bacteria (MRID 42270604), strains...
TA98, TA100, TA1535 and TA1537 of *S. typhimurium* and strain WP2(uvrA) of *E. coli* were exposed to Fluazinam technical (Lot No. 109, 95.3% a.i.) in DMSO. In the absence of mammalian metabolic activation (S9-mix), the TA-strains were exposed to Fluazinam concentrations of 0.0513, 0.0625, 0.125, 0.25, 0.5 and 1.0 μg/plate and WP2(uvrA) was exposed to concentrations of 15.6, 31.3, 62.5, 125 and 250 μg/plate. In the presence of S9-mix, the TA-strains were exposed to Fluazinam concentrations of 31.3, 62.5, 125, 250 and 500 μg/plate. All plateings were in duplicate. The S9-fraction was obtained from phenobarbital + 5,6-benzo[a]pyrene induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. In the absence of S9-mix, growth inhibition was seen at 1 μg/plate in TA100 (0 revertants/plate), TA1535 (0 revertants/plate) and TA98 (8 revertants/plate compared to 24 revertants/plate in solvent control). In the presence of S9-mix, growth inhibition (0 revertants/plate) was seen in all four TA-strains at 30 μg/plate and in the three TA-strains evaluated at 100 μg/plate. The number of revertants/plate was similar to the solvent control value at all Fluazinam concentrations, with or without S9-mix, in all tester strains. The solvent and positive controls induced the appropriate responses in the corresponding strains. There was no evidence of induced mutant colonies over background.

This study is classified as Acceptable/guideline. It satisfies the requirement for FIFRA Test Guideline 84-2 for in vitro mutagenicity (bacterial reverse gene mutation) data.

Study #3

Executive Summary: In a differential killing/growth inhibition assay in bacteria (MRID 42270677), strains H17 (rec+) and M45 (rec-) of *B. subtilis* were exposed to Fluazinam technical (Lot No. 109, 95.3% a.i.) in DMSO on paper disks at concentrations of 0.003, 0.01, 0.03, 0.1, and 0.3 μg/disk in the absence of metabolic activation (S9-mix) and at concentrations of 0.3, 1, 3, 10, and 30 μg/disk in the presence of S9-mix. The S9-fraction (purchased from Kikkoman Kenkusho) was obtained from phenobarbital + 5,6-benzo[a]pyrene induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. A preliminary cytotoxicity assay showed that the growth of both bacterial strains was inhibited at concentrations of 14 μg/disk and higher with S9-mix and at concentrations of 0.032 μg/disk and higher without S9-mix. In the differential killing assay, the growth of both bacterial strains was equally inhibited at Fluazinam technical concentrations of 0.03 μg/disk and above without S9-mix and at concentration of 0.1 μg/disk and above in the presence of S9-mix. There was no significantly greater growth inhibition or killing of the repair deficient M45 strain over that of the repair proficient H17 strain at any test material concentration, with or without S9-mix. In the absence of S9-mix, the diameter of the zone of inhibition around the disk at the maximum test material concentration was 8.7 mm with M45 and 7.4 mm with H17. Comparable values in the presence of S9-mix were 2.6 mm with

34
M45 and 2.5 mm with H17. The negative, solvent and positive controls induced the appropriate responses in the corresponding strains. There was no evidence of greater growth inhibition or cell killing in repair-defective strains compared to repair competent strains.

This study is classified as Unacceptable/Guideline. It does not satisfy the requirement for FIFRA Test Guideline [OPPTS 870.5500 (§84)]-2 for in vitro mutagenicity [bacterial DNA damage/repair] data because only one plate per dose was used in the differential killing assay and the guidelines require two or more plates per dose for a plate diffusion assay.

Study #4

Executive Summary: In a mammalian cell cytogenetics assay (chromosomal aberrations) (MRID 42270606), Chinese hamster lung fibroblast (CHL) cell cultures were exposed to Fluazinam technical (Lot No. 109, 95.3% a.i.) in DMEM, at concentrations of 1, 2 and 4 μg/mL in the absence of metabolic activation (S9-mix) and at concentrations of 2.375, 4.75 and 9.5 μg/mL in the presence of S9-mix. Cells were harvested at 24 and 48 hours after start of treatment in nonactivated studies and at 24 hours after start of treatment in activated studies. The S9-fraction was obtained from phenobarbital and 5,6-benzoflavone induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. In a preliminary cytotoxicity assay, the IC50 in CHL cells was determined to be approximately 3.8 μg/mL and 3.0 μg/mL at 24 and 48 hours, respectively, in the absence of S9-mix and about 8.0 μg/mL in the presence of S9-mix. Cells were harvested at 24 and 48 hours in the nonactivated study. Treatment times were 24 and 48 hours in the nonactivated assay and 6 hours in the activated assay. Two-hundred cells (100 per culture) per dose were evaluated. In the absence of S9-mix, the percentage of cells with structural aberrations (excluding gaps) at the 24 hour harvest time was 0.5%, 0.5% and 1.0% at 1, 2 and 4 μg/mL, respectively, compared to the solvent control value of 0.0% and the positive control value of 38%. Comparable values at the 48 hour harvest time were 0.0%, 0.0% and 1.0% at 1, 2 and 4 μg/mL, respectively, compared to the solvent control value of 0.5% and the positive control value of 29%. No polyplody was seen at either harvest time. In the presence of S9-mix, the percentage of cells with structural aberrations (excluding gaps) were 1.0%, 0.0% and 2.0% at 2.375, 4.75 and 9.5 μg/mL, respectively, compared to the solvent control value of 1.0% and the positive control value of 50.3%. No polyplody was seen. As a control for the metabolic activation assay, cultures were exposed to the same test material doses and exposure time as used in the presence of S9-mix but in its absence. The percentage of cells with structural aberrations in this assay (excluding gaps) were 0.0%, 3.5% and 3.0% at 2.375, 4.75 and 9.5 μg/mL, respectively, compared to the solvent control value of 0.5% and the positive control value of 0.0% (expected for cyclophosphamide which requires activation). Solvent and positive controls induced the appropriate response. There was no evidence of chromosomal aberrations induced over background.

35
This study is classified as Acceptable/guideline. It satisfies the requirement for FIFRA Test Guideline OPP78.5375 (§84)-2 for *in vitro* cytogenetic mutagenicity data.

Study #5

Executive Summary: In an ICR (Crl:CD-1) mouse bone marrow micronucleus assay (MRID 44807224), five mice/sex/dose were treated once via oral gavage with IKF-1216 technical (Lot No. 8412-20, 95.6% a.i.) in olive oil at a dose of 2000 mg/kg in an initial micronucleus test and at doses of 500, 1000 and 2000 mg/kg in a second micronucleus test. Bone marrow cells were harvested at 24, 48 and 72 hours post-treatment in the first test and at 24 hours post-treatment in the second test. IKF-1216 technical was tested to a limit concentration of 2000 mg/kg. The maximum tolerated dose was determined to be 3000 mg/kg in a preliminary toxicity assay (3/3 male mice died at 4000 mg/kg and 1/3 died at 5000 mg/kg). There were few signs of toxicity during the micronucleus studies. No deaths occurred in either the first or second micronucleus study. The only clinical signs seen in the first study were decreased spontaneous motor activity and piloerection at 2000 mg/kg in one IKF-1216 treated male. In the second study, two males each from the 500, 1000 and 2000 mg/kg dose groups showed loose stools at 5 hours post-treatment and one male from the 2000 mg/kg dose group showed loose stools at 24 hours post-treatment. One female from the 1000 mg/kg group showed loose stools at 5 hours post-treatment and one male each from the 1000 and 2000 mg/kg groups showed soiled fur around the genital region at 24 hours post-treatment. No adverse clinical signs were seen in the solvent or positive controls in either study. There was no statistically significant increase in the frequency of micronucleated PCEs over solvent control values at any IKF-1216 technical concentration or harvest time in either sex. The solvent and positive controls induced the appropriate response. There was no significant increase in the frequency of micronucleated polychromatic erythrocytes in bone marrow at any IKF-1216 concentration or treatment time used in this study.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline OPP78.5995(§ 84)-2 for *in vivo* cytogenetic mutagenicity data.

II. HAZARD CHARACTERIZATION

Technical grade fluazinam (lot #109, 95.3% purity) had an acute oral LD50 in rats of 4100-4500 mg/kg (Toxicity Category III), whereas two other lots of technical grade fluazinam (lot #8412-20, 95.3% purity and lot #1/81, 97.9% purity) had acute oral LD50s in rats of >5000 mg/kg (Toxicity Category IV). The acute dermal LD50 of technical grade fluazinam in rats was >2000 mg/kg (Toxicity Category III) and the acute inhalation LC50 in rats was 0.463-0.476 mg/L (Toxicity Category II). Technical grade fluazinam was extremely irritating in a primary eye irritation study in rabbits (Toxicity Category I) and slightly irritating in a primary skin irritation study in rabbits (Toxicity Category IV). In dermal sensitization
studies in guinea pigs, technical grade fluazinam (96.7% purity) was positive, but ultra-purified fluazinam (100% purity) was negative for dermal sensitization.

In a battery of acute toxicity studies applicable to Omega 506F (EPA file symbol 71512-R, a flowable liquid concentrate of fluazinam containing 40% active ingredient), the acute oral LD50 in rats was >5000 mg/kg (Toxicity Category IV); the acute dermal LD50 in rats was >2000 mg/kg (Toxicity Category III) and the acute inhalation LC50 in rats was 3.0-3.4 mg/L (Toxicity Category IV). In a primary eye irritation study in rabbits, it was slightly irritant (Toxicity Category III); in a primary skin irritation study in rabbits, it was moderately irritating (Toxicity Category II) and in a dermal sensitization study in guinea pigs, it was positive for dermal sensitization.

In subchronic and chronic oral, dermal and inhalation studies in rats, dogs and/or mice, the liver appeared to be the primary target organ. Signs of liver toxicity were consistently observed at or slightly above the LOAEL in all three species. These signs frequently included changes in clinical chemistries indicative of liver toxicity (e.g. increased serum alkaline phosphatase), increased absolute and/or relative liver weights, increased incidences of macroscopic liver lesions (e.g. pale, enlarged, pitted, ectopic, accentuated markings) and increased incidences of a variety of microscopic liver lesions. Microscopic liver lesions included eosinophilic or basophilic hepatocytes, rarefied or vacuolated hepatocytes, altered hepatocytic foot, hepatocytic single cell necrosis, hepatocytic hypertrophy, hepatocellular fatty changes, increased brown pigmented macrophages, sinusoidal chronic inflammation, pericholangitis, and bile duct hyperplasia.

Treatment-related effects were also observed in other organs in subchronic and chronic oral, dermal and inhalation studies in rats, dogs and/or mice, but these effects were not regularly noted in all three species or in all studies in a given species. In rats, these effects included decreased body weight gain, decreased food consumption, mild anemia, increased serum cholesterol, increased serum phospholipid, increased serum aspartate aminotransferase, testicular atrophy, slightly increased testes weights (inhalation study), pancreatic exocrine atrophy, increased heart weights, increased alveolar adenomatosis, epithelialization and macrophages, thyroid follicular cell hyperplasia, and possibly increased thyroid follicular cell adenomas and adenocarcinomas in males (but not females). In dogs, these effects included increased salivation, increased nasal dryness, gray motility of the retina, mild anemia, increased serum alkaline phosphatase and gastric lymphoid hyperplasia. In mice, these effects included increased mortality (at high doses), decreased body weight gain, increased serum glucose, increased kidney weight, cystic thyroid follicules, and increased hepatocellular adenomas and possibly hepatocellular carcinomas in males (but not in females).

In an acute oral neurotoxicity study in rats, the acute general systemic toxicity LOAEL was 1000 mg/kg based on soft stools and decreased motor activity on the day of dosing. These effects were considered to be a manifestation of acute general systemic toxicity and not a direct neurotoxic response to the administration of the test material. The acute general systemic toxicity NOAEL was 50 mg/kg. The LOAEL for neurotoxic effects was not identified (>2000 mg/kg). The NOAEL for neurotoxic effects was 2000 mg/kg.
Of particular concern was a neurotoxic lesion described as vacuolation of the white matter of the central nervous system (CNS) which was observed initially in long-term (1-2 year) chronic studies on mice and dogs and later, upon careful re-examination of the CNS, also in shorter-term (4-week to 90-day) subchronic studies on mice and dogs. This lesion was observed during the (light) microscopic examination of several tissues of the CNS and occurred most frequently in brain (sections of cerebrum,pons, medulla, midbrain) and less frequently in cervical spinal cord.

Although this lesion was also observed in control animals, the increased incidence and/or severity of the lesion in test animals was clearly treatment-related and dose-related. Further investigation of this lesion in a series of special studies demonstrated the same lesion could also be induced in rats. In the special studies, the following was also determined:

Fluazinam, per se, was not responsible for the induction of this lesion. An analysis of the effects of impurities present in technical grade fluazinam revealed that one single impurity, Impurity-5, was solely responsible for the appearance of white matter vacuolation.

No significant differences in susceptibility or in incidence or severity of vacuolation of the white matter of the CNS were observed between species (mice, dogs, or rats). Similarly, no significant differences were attributed to sex.

White matter vacuolation in the CNS was reversible. Electron microscopy of the white matter (cerebellum) of mice treated with technical grade fluazinam indicated that treatment-related effects were confined to the myelin sheaths. Large vacuoles were observed in the intramyelin sheaths due to the accumulation of fluid between the sheaths. The nucleus and mitochondria in myelinated oligodendroglia were observed to remain intact, suggesting no damage to these cells. The myelin sheaths appeared to recover completely during a recovery period of up to 56 days.

There appears to be a non-linear dose-response with a clear threshold below which no effect occurs. It was concluded that a LOAEL of 0.1 mg/kg/day and a NOAEL of 0.02 mg/kg/day for CNS effects could be established for Impurity-5.

Based on a consideration of all the available data and information relating to this treatment-related neurotoxic lesion, it was concluded that the chronic RfD of 0.011 mg/kg/day for the general population (including infants and children) is protective of the CNS effects caused by Impurity-5 present in technical grade fluazinam.

Combined results from two carcinogenicity studies in mice indicated that treatment of mice for up to 104 weeks resulted in statistically significant increases in the incidence of hepatocellular adenoma in male mice at 1000 and 3000 ppm. These increased incidences slightly exceeded the upper range of the historic control incidences. The hepatocellular carcinoma incidence was also increased in male mice at these same dose levels, but was not statistically significant and was within the range of historic control incidences. The incidences of combined hepatocellular adenoma and/or carcinoma were also increased in male mice at 1000 ppm, 3000 ppm (p <0.01) and 7000 ppm (p <0.05). No significant increases in liver
tumors were seen in treated female mice compared to controls. In a combined chronic toxicity/carcinogenicity study in rats, a slightly increased incidence of thyroid gland follicular cell adenomas, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 100 ppm and 1000 ppm. Also, a slightly increased incidence of thyroid gland follicular cell adenocarcinomas, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 1000 ppm. In a battery of mutagenicity studies on technical grade fluazinam, results in all studies were negative for mutagenic potential.

In a developmental toxicity study in rats, the maternal toxicity LOAEL was 250 mg/kg/day based on decreased body weight gain, decreased food consumption, increased water consumption, and increased urogenital staining during treatment. The maternal toxicity NOAEL was 50 mg/kg/day. The developmental toxicity LOAEL was 250 mg/kg/day based on decreased fetal body weights; decreased placental weights; increased fetal incidences of facial/palate clefts, diaphragmatic hernia and delayed ossification in several bone types; greenish amniotic fluid and possible increased late resorptions and postimplantation loss. The developmental toxicity NOAEL was 50 mg/kg/day. Although quantitative evidence of increased susceptibility of fetuses to fluazinam was not observed, the increased fetal incidences of facial/palate clefts and other rare deformities observed in this study were considered to be qualitative evidence of increased susceptibility of fetuses to fluazinam.

In a developmental toxicity study in rabbits. The maternal toxicity LOAEL was 7 mg/kg/day based on decreased food consumption and increased liver histopathology. The maternal toxicity NOAEL was 4 mg/kg/day. The developmental toxicity LOAEL was 12 mg/kg/day based on an increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities including kinked tail tip, fused or incompletely ossified sternebrae, and abnormalities of heart bones. The developmental toxicity NOAEL was 7 mg/kg/day. It was determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazinam was observed in this study.

In a 2-generation reproduction study in rats, The NOAEL for parental toxicity was 20 ppm (1.9 mg/kg/day) and the LOAEL was 100 ppm (9.7 mg/kg/day), based on liver pathology (increased incidences of periportal hepatocytic fatty changes) in F1 males. The NOAEL for reproductive toxicity was 100 ppm (10.6 mg/kg/day) and the LOAEL was 500 ppm (53.6 mg/kg/day), based on a decreased number of implantation sites and decreased litter sizes to day 4 post partum for F1 females (F2 litters). The NOAEL for developmental toxicity was 100 ppm (8.4 mg/kg/day) and the LOAEL was 500 ppm (42.1 mg/kg/day), based on decreased body weight gain during lactation for both F1 and F2 pups. It was determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to fluazinam was observed in this study.

In a metabolism study in rats, only 33-40% of the administered dose of radiolabeled fluazinam was absorbed. Most of the administered dose was recovered in the feces (>89%). Identified fecal metabolites represented only 11-68% of the administered dose. Unabsorbed parent compound represented most of the identified radioactivity in the feces. Most of the remaining fecal metabolites appeared in unextractable components in the post-extraction solid. Excretion via the urine was minor (<4%). Total
biliary radioactivity, however, represented 25-34% of the administered dose, indicating considerable enterohepatic circulation. Analysis of chromatograms indicated that numerous metabolites were present in the bile. Metabolite profiles from administration of different label positions (pyridyl and phenyl) indicated that there was no metabolic cleavage of the ring structures in parent fluazinam.

III. DATA GAPS / REQUIREMENTS

Mutagenicity Study: Mouse Lymphoma Assay § 870.5300
The applicant has informed the Agency that it intends to perform and submit a new mouse lymphoma assay by November, 2000.

78-Day Inhalation Study in Rats See § 870.3465

Developmental neurotoxicity study, rats § 870.6300

Test Material: to be technical grade fluazinam containing maximum level of Impurity-5 permitted in specification for technical grade fluazinam (currently 0.3%, but may be reduced to 0.1%. See letter from Gary L. Ehrlich, Vice President, Regulatory Affairs, ISK Biosciences Corporation to Mr. Jim Jones, Director, RD, OPP, dated August 3, 2000).

Proposed Protocol: to include full neurohistopathological examination of dams. Protocol to be submitted to EPA for comment prior to commencement of study.

Based on a consideration of the results in the developmental neurotoxicity study in rats required above, HIARC will subsequently determine whether a repeat of the subchronic neurotoxicity study in rats (§ 870.6200) will also be required to support the registration of fluazinam.

Subchronic neurotoxicity study, rats § 870.6200
Requirement: reserved; to be determined at a later time (see above).
VII. ACUTE TOXICITY

Acute Toxicity of Technical Grade Fluorone

<table>
<thead>
<tr>
<th>ODIN</th>
<th>Study Type</th>
<th>MRID</th>
<th>Results</th>
<th>Test Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-1</td>
<td>Acute Oral</td>
<td>42248603</td>
<td>M: LD₅₀ = 4500 mg/kg
F: LD₅₀ = 4100 mg/kg</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # 109 (95.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-1</td>
<td>Acute Oral</td>
<td>42248602</td>
<td>M: LD₅₀ > 5000 mg/kg
F: LD₅₀ > 5000 mg/kg</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot #8442-20 (95.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-1</td>
<td>Acute Oral</td>
<td>42248604</td>
<td>M: LD₅₀ = 5000 mg/kg
F: LD₅₀ > 5000 mg/kg</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot #187 (97.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-2</td>
<td>Acute Dermal</td>
<td>42248605</td>
<td>M: LD₅₀ > 2000 mg/kg
F: LD₅₀ > 2000 mg/kg</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Raw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot #3303-2 (96.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-3</td>
<td>Acute Inhalation</td>
<td>42270601</td>
<td>M: LC₅₀ = 0.465 mg/L
F: LC₅₀ = 0.476 mg/L</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # 109 (95.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-4</td>
<td>Primary Eye Irritation</td>
<td>42248606</td>
<td>Extremely irritating. Corneal opacity did not reverse in 21 days</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Rabbits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # SNPE B-3216, No. 1006 (97.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-5</td>
<td>Primary Skin Irritation</td>
<td>42248607</td>
<td>Slight dermal irritant</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Rabbits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # SNPC B-3216, No. 1006 (97.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-6</td>
<td>Dermal Sensitization</td>
<td>42274401</td>
<td>POSITIVE for dermal sensitization</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Guinea Pigs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot #533091 (96.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-5</td>
<td>Dermal Sensitization</td>
<td>42248608</td>
<td>NEGATIVE for dermal sensitization</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Guinea Pigs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ultra-purified Fluorone (100% purity #529406)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acute Toxicity of Formulated Product (Omega 500F)

All studies conducted on Omega 500F (EPA file symbol 71512-8), 40% fluazinam, yellow liquid.

<table>
<thead>
<tr>
<th>GDIN</th>
<th>Study Type</th>
<th>MRID</th>
<th>Results</th>
<th>Tier Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-1</td>
<td>Acute Oral - Rat</td>
<td>42974987</td>
<td>M: LD₅₀ > 5000 mg/kg F: LD₅₀ > 5000 mg/kg</td>
<td>IV</td>
</tr>
<tr>
<td>B1-2</td>
<td>Acute Dermal - Rabbit</td>
<td>42974908</td>
<td>M: LD₅₀ > 2000 mg/kg F: LD₅₀ > 2000 mg/kg</td>
<td>III</td>
</tr>
<tr>
<td>B1-3</td>
<td>Acute Inhalation - Rat</td>
<td>42311001</td>
<td>M: LC₅₀ = 3.0 mg/L F: LC₅₀ = 3.4 mg/L</td>
<td>IV*</td>
</tr>
<tr>
<td>B1-4</td>
<td>Primary Eye Irritation-Rabbit</td>
<td>42974910</td>
<td>Slightly irritating</td>
<td>III</td>
</tr>
<tr>
<td>B1-5</td>
<td>Primary Skin Irritation-Rabbit</td>
<td>4574911</td>
<td>Moderately irritating</td>
<td>II</td>
</tr>
<tr>
<td>B1-6</td>
<td>Dermal Sensitization - Guinea Pigs</td>
<td>42974912</td>
<td>POSITIVE for dermal sensitization</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* IV. Based on results of acute inhalation toxicity study on rats on Fluazinam 50% WP (51.3% Fluazinam (MRID: 42311001)) in which LC₅₀ = 3.0 mg/L for males and LC₅₀ = 3.4 mg/L for females. Toxicity Category IV. See memorandum by Byron T. Backett, Technical Review Branch, RD, dated April 3, 2000, for more detailed information and rationale.
VIII. SUMMARY OF TOXICOLOGY ENDPOINT SELECTION

Summary of Toxicology Endpoint Selection for Finoxamine

<table>
<thead>
<tr>
<th>Exposure Scenario</th>
<th>Dose Used in Risk Assessment, UF</th>
<th>Special FQPA SF* and Level of Concern for Risk Assessment</th>
<th>Study and Toxicological Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Dietary (Females 13-50)</td>
<td>NOAEL = 7 mg a/kg, UF = 1000</td>
<td>FQPA SF = 1X aPAD = acute RfD FQPA SF = 0.007 mg/kg/day</td>
<td>Rabbit developmental study. Increased incidence of total litter resorptions and possibly increased incidence of fetal skeletal abnormalities at the LOAEL of 14 mg/kg/day.</td>
</tr>
<tr>
<td>Acute Dietary (General Population including infants and children)</td>
<td>NOAEL = 50 mg a/kg, UF = 1000</td>
<td>FQPA SF = 1X aPAD = acute RfD FQPA SF = 0.05 mg/kg/day</td>
<td>Acute neurotoxicity study - rats. Decreased motor activity and soft stools on day of dosing at the LOAEL of 1000 mg/kg.</td>
</tr>
<tr>
<td>Chronic Dietary (All population)</td>
<td>NOAEL = 1.1 mg a/kg/day, UF = 100</td>
<td>FQPA SF = 1X cPAD = chronic RfD FQPA SF = 0.011 mg/kg/day</td>
<td>Carcinogenicity - mice. Liver histopathology and increased liver weight at the LOAEL of 10.72 mg/kg/day.</td>
</tr>
<tr>
<td>Short-Term (1-30 days) and Intermediate-Term (1-6 months) Incidental Oral</td>
<td>Maternal NOAEL = 4 mg a/kg/day</td>
<td>Residential MOE = 1000 Occupational = NA</td>
<td>Rabbit developmental study. Liver histopathology and decreased food consumption at the LOAEL of 7 mg/kg/day.</td>
</tr>
<tr>
<td>Short-Term (6 months) and Intermediate-Dermal (1-6 months)</td>
<td>Systemic NOAEL = 10 mg a/kg/day</td>
<td>Residential MOE = NA Occupational MOE = 100</td>
<td>21-day Rat dermal study. Increased cholesterol, increased aspartate aminotransferase (target organ: liver) at the LOAEL of 100 mg/kg/day.</td>
</tr>
<tr>
<td>Exposure Scenario</td>
<td>Dose Used in Risk Assessment, UF</td>
<td>Special FQPA SF* and Level of Concern for Risk Assessment</td>
<td>Study and Toxicological Effects</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| Long-Term Dermal (≥6 months) | Oral NOAEL = 1.1 mg ai/kg/day* | Residential MOE = NA
Occupational MOE = 100 | Carcinogenicity - mice
Liver histopathology and increased liver weight at the LOAEL of 10.72 mg/kg/day |
| Short-Term (1 - 39 days) Inhalation | NOAEL = 1.38 (NOAEL adjusted for 51.9% a.i.) | Residential MOE = NA
Occupational MOE = 300 | 7-Day inhalation-rats
(Test material: Fosvenicid WP containing 51.5% a.i.)
Increased liver weights, increased testes weights |
| Intermediate-Term (1 - 6 months) and Long-Term (≥6 months) Inhalation | NOAEL = 1.38 (NOAEL adjusted for 51.9% a.i.) | Residential MOE = NA
Occupational MOE = 1000 | 7-Day inhalation-rats
(Test material: Fosvenicid WP containing 51.5% a.i.)
Increased liver weights, increased testes weights |

*UF = uncertainty factor, FQPA SF = Special FQPA safety factor, NOAEL = no observed adverse effect level, LOAEL = lowest observed adverse effect level, PAD = population adjusted dose (a = adult, c = chronic) RFD = reference dose, MOE = megas of exposure, LOC = level of concern, NA = Not Applicable

NOTE: The Special FQPA Safety Factor recommended by the HIARC assumes that the exposure databases (dietary food, drinking water, and residential) are complete and that the risk assessment for each potential exposure scenario includes all metabolites and/or degradation of concern and does not underestimate the potential risk for infants and children.
MEMORANDUM

FROM: Brenda Tarplee, Senior Scientific Information Management Branch
 Health Effects Division (7509C)

THROUGH: Jess Rowland, Co-Chair
 and
 Elizabeth Doyle, Co-Chair
 Hazard Identification Assessment Review Committee
 Health Effects Division (7509C)

TO: William Cutchin, Risk Assessor
 Registration Action Branch 2
 Health Effects Division (7509C)

FC Code: 120998

On January 22, 2003 the Health Effects Division (HED) Hazard Identification Assessment Review Committee (HIARC) reassessed FQPA requirements in response to questions posed by the Natural Resources Defense Council (NRDC). HIARC also reviewed the previous recommendation for a developmental neurotoxicity study in rats and subsequent need for a data base factor to account for this data gap. No new data have been reviewed and no changes were made to the toxicology endpoints previously selected for fluazinam. This document revises the previous HIARC report dated February 13, 2001 (TXR NO. 014474).
Committee Members in Attendance

Members present were: Ayaad Assaad, William Bumsam, Paula Deschamp, Elizabeth Doyle, Pamela Hurley, John Liccione, Susan Makris, Elizabeth Mender, David Nixon, Jess Rowland, PV Shah (for Jonathan Chen), and Brenda Tarplee (Executive Secretary).

Member(s) in absentia were: Jonathan Chen

Also in attendance were: Karen Whitby (RAB1) and Ed Zager (HED 10).

Meeting materials prepared by: Brenda Tarplee, Senior Scientist, SIMB
INTRODUCTION

On October 24, 2000, the Health Effects Division (HED) Hazard Identification Assessment Review Committee (HIARC) reviewed the recommendations of the toxicology reviewer for fluzinam with regard to the acute and chronic Reference Doses (RfDs) and the toxicological endpoint selection for occupational/residential exposure risk assessments. The potential for increased susceptibility of infants and children from exposure to fluzinam was also evaluated as required by the Food Quality Protection Act (FQPA) of 1996.

On January 22, 2003 the Health Effects Division (HED) Hazard Identification Assessment Review Committee (HIARC) reassessed FQPA requirements in response to questions posed by the Natural Resources Defense Council (NRDC). HIARC also reviewed the previous recommendation for a developmental neurotoxicity study in rats and subsequent need for a data base factor to account for this data gap. No new data have been reviewed and no changes were made to the toxicology endpoints previously selected for fluzinam. This document revises the previous HIARC report dated February 13, 2001 (TXR NO. 014474).

I. FQPA HAZARD CONSIDERATIONS

1. Adequacy of the Toxicity Data Base

The HIARC concluded that the toxicology database for fluzinam is not complete for FQPA assessment.

On October 24, 2000, the HIARC requested that a developmental neurotoxicity study in rats be conducted with fluzinam.

2. Evidence of Neurotoxicity

The HIARC concluded that there is a concern for neurotoxicity resulting from exposure to fluzinam.

2.1 Acute neurotoxicity study, rats

$870.6200, MRID 44807210

Executive Summary: In an acute oral neurotoxicity study (MRID 44807210), single gavage doses of 0, 50, 1000 or 2000 mg/kg fluzinam (96.8%, Lot No.: 103091) in 1.5% (w/v) aqueous methylcellulose were administered to groups of fasted Sprague-Dawley rats (10/sex/dose). Functional Observational Battery (FOB) and Motor Activity (MA) assessments were performed before test substance administration, between 5 and 7 hours post-administration (time of peak effect) and on days 7 and 14. Body weights were measured weekly and clinical signs were recorded daily. The animals were sacrificed and grossly examined 14 days after administration of the test material. Five rats/dose/sex were perfused in situ for neuropathological evaluation.

There were no treatment-related deaths, clinical signs, or body weight effects during the study.
Treatment-related soft stools were observed in mid- and high-dose males and females, but only on the day of treatment. Treatment-related mean motor activity values were significantly decreased (23-65%) in mid- and high-dose females compared to controls (not dose-related), but only on the day of treatment. No other treatment-related effects of any kind were observed at any time during the study. No treatment-related gross effects or histopathology were observed. Since the decreased mean motor activity values were observed in one sex only (females), on one occasion only (on the day of dosing), at high doses only (≥1000 mg/kg), and were not dose-related, and were observed in one study only (not observed in the subchronic neurotoxicity study in rats, MRID 44807217, 44807218), it is likely that this treatment-related effect (decreased mean motor activity values in females only on the day of dosing only) is a manifestation of acute general systemic toxicity and not a direct neurotoxic response to the administration of the test material.

Under the conditions of this study, the acute general systemic toxicity LOAEL is 1000 mg/kg for male and female rats based on soft stools and decreased motor activity. The acute general systemic toxicity NOAEL is 50 mg/kg for male and female rats. The LOAEL for neurotoxic effects is not identified (> 2000 mg/kg). The NOAEL for neurotoxic effects is 2000 mg/kg.

This acute oral neurotoxicity study is classified Acceptable/ Guideline. This study does satisfy the guideline requirement for an acute oral neurotoxicity study [OPPTS 870.6200 (81-85a)] in rats.

2.2 Subchronic neurotoxicity study, rats

Executive Summary: In two subchronic oral neurotoxicity studies (MRID 44807217 & MRID 44807218), groups of 10 male and 10 female Crl:CD BR rats were fed diets containing 0, 300, or 1000 ppm fluazinam (MRID 44807217, 96.9%, Lot No. 6109) or 0, 1000, 2000, or 7000 ppm fluazinam (MRID 44807218, 96.4%, Lot No. 9601-2) for 13 weeks. Achieved doses were 20,7, 69-74, 149, and 233 mg/kg/day for males in the 300, 1000, 2000, and 3000 ppm groups, respectively; and 23.4, 81-89, 175, and 280 mg/kg/day for females in the 300, 1000, 2000, and 3000 ppm groups, respectively. Functional Observational Battery (FOB) and Motor Activity (MA) assessments were performed prior to treatment and during weeks 4, 8, and 13 of treatment. Body weights, food consumption, and clinical signs were monitored throughout the study. At the end of the treatment period, all rats were perfused in situ. The brain from all rats was removed, weighed, and measured and 5 males and 5 females from the control and high-dose groups of each study were subjected to neuropathological evaluation.

There were no treatment-related deaths or clinical signs. At the end of the study, group mean body weight gains were significantly (p<0.01) decreased in females in and above the 1000 ppm groups and in males in the 2000 and 3000 ppm groups. Similarly, cumulative food consumption was decreased in males (p<0.01) and females (p<0.05) fed 2000 and 3000 ppm fluazinam. Food efficiency was decreased in males at 3000 ppm and a dose-related decrease in food efficiency was observed in females in all treatment groups.
No treatment-related FOB or MA effects were observed. Brain weights of females in the 3000 ppm group were 8% lower (p<0.01) than controls; however, no supporting pathology was observed. No treatment-related gross effects or histopathology were observed.

Under the conditions of these studies, the neurotoxicity NOAEL is 3000 ppm for male and female rats (233 mg/kg/day for males and 280 mg/kg/day for females). A neurotoxicity LOAEL was not identified.

2.3 Evidence of neurotoxicity from other oral toxicity studies on *H. sapiens*

A neurotoxic lesion described as vacuolation of the white matter of the central nervous system (CNS) was observed initially in long-term (1-2 year) guideline chronic studies on mice and dogs and later, upon careful re-examination of the CNS, also in shorter-term (4-week to 90-day) guideline subchronic studies on mice and dogs. This lesion was observed during the (light) microscopic examination of several tissues of the CNS, occurring most frequently in brain (sections of cerebellum and/or sections of cerebellum,pons,medulla,medulla) and less frequently in cervical spinal cord. Although this lesion was also observed in control animals, the increased incidence and/or severity of the lesion in test animals was clearly treatment-related and dose-related.

For more details refer to the previous NIEHS report, HED DOC. NO. 014474.

3. Developmental Toxicity Study Conclusions

3.1 Range-finding developmental toxicity: study in rats

Executive Summary: In a developmental range-finding toxicity study (MRID 42248612), 7 pregnant CD (Sprague-Dawley origin) rats per group were administered B-1216 (98.5%; Lot No. 8903-2) by gavage in corn oil at doses of 0, 1, 10, 100, and 1000 mg/kg/day on gestation days (GD) 6-15, inclusive. On GD 20, dams were sacrificed and necropsied, and the number and location of viable and nonviable fetuses, early and late resorptions, and the number of total implantations and corpora lutea were recorded, as well as the weights of the ovaries, empty uteruses, and adrenal and pituitary glands. All fetuses were weighed, sexed and examined externally, and approximately half of each litter was processed for visceral examination, and the remaining half of each litter was examined by fresh dissection then processed for skeletal examination.

Maternal toxicity was evident at 1000 mg/kg/day. Two animals were found dead on GD 13 and the remaining 5 were sacrificed in extremis between GD 12 and 14. Prior to death the high-dose animals exhibited clinical signs of stunned and ungunroomed coats, lethargy, hunched posture, ataxia, flaccid muscles, and salivation. Post mortem findings included decreased thymus size and
gastrointestinal tract disturbances. Marked weight loss was observed at 1000 mg/kg/day after GD 7, and mean absolute body weights were 74-86% of those of controls during GD 10-13. Body weight and survival were not affected in the 1, 10, and 100 mg/kg/day groups.

There were no differences between the control group and the 1, 10, or 100 mg/kg/day groups for number of corpora lutea, number of implantation sites, live fetuses/fetuses, pre- and post-implantation losses, resorptions, or fetal sex ratios. At 100 mg/kg/day, mean fetal weight was marginally decreased as compared with concurrent controls but fell within the range of historical control data. The incidence of incomplete ossification of sternbrae was increased in the 100 mg/kg/day group as compared to concurrent and historical controls (38.9% of fetuses and 7/7 litters vs. 11.6% and 3/7 litters for concurrent controls and a historical control range of 1.1-28.3%); however, there was no evidence of delayed ossification in any other bone types. The incidence rate for litters containing fetuses with additional (14th) rib(s) was 1/7, 2/7, 2/7, and 3/7 for the 0, 1, 10, and 100 mg/kg/day groups, respectively, with the percentage of affected fetuses slightly increased in all treated groups as compared with concurrent and historical controls. Treatment with B-1216 did not result in an increased incidence of fetal malformations.

Therefore, it was concluded that an appropriate high dose for the main developmental toxicity study (MRID: 42248613) would be greater than 100 mg/kg/day but less than 1000 mg/kg/day. The dose levels chosen were 0, 10, 50, and 250 mg/kg/day.

This study is classified as Acceptable/Non-guideline and fulfills its intent as a range finding study for a developmental toxicity study (870.3700 [83-3a]) in rats.

3.2 Developmental toxicity study in rats

[§ 870.3700, MRID: 42248613]

Executive Summary: In a developmental toxicity study (MRID: 42248613), 20 pregnant Sprague-Dawley CD rats per group were administered Fluazinate (94.5% a.i., Lot No.: 8303-2) by gavage in corn oil at doses of 0, 10, 50 and 250 mg/kg/day on gestation days (GD) 6-15, inclusive. Controls were treated with corn oil (vehicle). On GD 20, all dams were sacrificed and examined. All fetuses were weighed, sexed and examined for external malformations and variations. Approximately half of the fetuses from each litter were examined for soft tissue effects and half were stained with Alizarin red S and examined for skeletal effects.

At 250 mg/kg/day, statistically significant reductions in body weight gain during treatment (50 g vs 51 g for controls on GD 6-15; p < 0.01; most pronounced during GD 6-8), statistically significant reductions in food consumption during treatment (13 mg/kg/day vs 17 mg/kg/day for controls on GD 6-8; p < 0.01), increased water consumption (during GD 6-11) and an increased incidence of urogenital staining (most pronounced during GD 6-8) were considered to be treatment-related. The maternal toxicity LOAEL is 250 mg/kg/day based on decreased body weight gain, decreased food consumption, increased water consumption, and increased urogenital staining during treatment. The maternal toxicity NOAEL is 50 mg/kg/day.
At 250 mg/kg/day, statistically significant decreased mean fetal body weights (2.81 gm vs 2.19 gm for controls, p < 0.001, below historical control range), statistically significant decreased placental weights (0.47 gm vs 0.54 gm for controls, p < 0.05, within historical control range), increased fetal incidence of facial/palate clefts (10 fetuses in 3 litters vs none in controls), increased fetal incidence of diaphragmatic hernia (7 fetuses in 2 litters vs none in controls), delayed ossification in a number of bone types, greenish amniotic fluid (10.5% fetal incidence vs 0.0% in controls) and possible increased late resorption/postimplantation loss (0.55 late resorptions/dam vs 0.05 late resorptions/dam for controls, within historical control range; and 11.0% postimplantation loss vs 4.2% postimplantation loss for controls, within historical control range) were considered to be treatment-related. The developmental toxicity LOAEL is 250 mg/kg/day based on decreased fetal body weights; decreased placental weights; increased fetal incidences of facial/palate clefts, diaphragmatic hernia and delayed ossification in several bone types; greenish amniotic fluid and possible increased late resorptions and postimplantation loss. The developmental toxicity NOAEL is 50 mg/kg/day.

This developmental toxicity study in rats is classified Acceptable/Guideline and satisfies the Subdivision P guideline requirement for a developmental toxicity study in rats (OPPTS 870.3700 (OPP 83-3a)). No major deficiencies were noted in this study.

3.3 Developmental toxicity study in rabbits

Executive Summary: In a developmental toxicity study (MRID 42248616), 16-18 presumed pregnant New Zealand White rabbits per group were administered Flunitrazepam (95.2% a.s., Lot No.: 8412-20) by gavage in 1% w/v aqueous methyl cellulose at doses of 0, 2, 4, 7 and 12 mg/kg/day on gestation days (GD) 6-19, inclusive. Controls were treated with 1% w/v aqueous methyl cellulose (vehicle). On GD 29, all surviving does were sacrificed and necropsied and all fetuses were weighed, and examined for external malformation/variations. Each fetus was examined visually by fresh dissection and the sex determined. All carcasses were eviscerated and processed for skeletal examination.

At 12 mg/kg/day, statistically significant reductions in body weight gain during treatment (0.0 kg vs +0.25 kg for controls on GD 10-20), decreased food consumption (268 g/animal/day vs 368 g/animal/day for controls on GD 6-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were considered to be treatment-related. At 7 mg/kg/day, slightly depressed food consumption (119 g/animal/day vs 186 g/animal/day for controls on GD 13-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were also considered to be treatment-related. The maternal toxicity LOAEL is 7 mg/kg/day based on decreased food consumption and increased liver histopathology. The maternal toxicity NOAEL is 4 mg/kg/day.
At 12 mg/kg/day, an increased incidence of total litter resorptions (0, 0, 0, 1 and 5 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) was considered to be treatment-related. Several abortions were also observed (0, 0, 2, 2 and 1 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively). The total number of litters lost was such that the numbers of litters born were 15, 13, 10, 10 and 7 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively. Also at 12 mg/kg/day, there was an increased incidence of placental anomalies (0.7, 3.2, 0.0, 0.0 and 18.2 percent fetal incidence for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) and a slight increase in some skeletal abnormalities including kinked tail tip, fused or incompletely ossified sternebrae, and abnormalities of head bones. The developmental toxicity LOAEL is 12 mg/kg/day based on an increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities. The developmental toxicity NOAEL is 7 mg/kg/day.

This developmental toxicity study in rabbits is classified Acceptable/Guideline and satisfies the Subdivision F guideline requirement for a developmental toxicity study in rabbits [OPPTS 870.3700 (OPP 83-36)]. No major deficiencies were noted in this study.

4. Reproductive Toxicity Study Conclusions

Reproductive Toxicity

Executive Summary: Technical grade fluanizin (95.3 % a.i.) was administered to groups of 24 male and 24 female Sprague-Dawley rats at dietary concentrations of 0, 20, 100, or 500 ppm for two generations (MRID 42248619, 42208406, 422248618). One litter was produced in each generation. Mean premating doses were 1.5, 7.3, and 36.6 mg/kg/day, respectively for F1 males and 1.7, 8.4, and 42.1 mg/kg/day, respectively for F1 females. Mean premating doses were 1.9, 9.7, and 47.3 mg/kg/day, respectively, for F1 males and 2.2, 10.6, and 53.6 mg/kg/day, respectively, for F1 females. F1 adults were chosen from the F1 pups and weaned onto the same diet as their parents. Animals were given test or control diet for 11 weeks before mating within the same dose group. All animals were continuously exposed to test material either in the diet or during gestation and lactation until sacrifice.

There were no deaths or clinical signs of toxicity that were attributable to the presence of fluanizin in the diet. Mean body weight, body weight gain, food consumption and food efficiency among all groups of F1 males and F1 females treated with 20 or 100 ppm and F2 males treated with 500 ppm were similar to the control group means. The F1 females treated with 500 ppm of the test diet had significantly decreased (82% of control value, p<0.001) overall body weight gain and food consumption (96% of control value, p<0.05) for the premating period. The F2 males and females treated with 20 or 100 ppm had mean body weights, body weight gains, food consumption, and food efficiencies that were similar to their respective control group means. The F1 animals treated with 500 ppm had significantly decreased mean body weight gain and food consumption values that were 88% and 92% (p<0.001 and p<0.01) and 85% and 55% (p<0.001 and p=0.01) of the control values for males and females, respectively for the premating period.
The decreased body weights continued into gestation for females treated with 500 ppm of both generations; some recovery was made during lactation. The relative liver weights of F₀ and F₁ males and F₁ females treated with 500 ppm were significantly increased compared to the control group. Histopathological findings included an increased incidence of perisinusoidal hepatic foci changes and a decreased incidence of hepatic glycogen pallor among F₀ males treated with 500 ppm compared to the control group. Males in the F₁ generation treated with 100 or 500 ppm also had significantly increased incidences of perisinusoidal hepatic foci changes compared to the control groups. The NOAEL for parental toxicity is 20 ppm (1.9 mg/kg/day) and the LOAEL is 100 ppm (9.7 mg/kg/day), based on liver pathology (increased incidences of perisinusoidal hepatic foci changes) in F₁ males.

The fertility index for males and females treated with 500 ppm of the test substance was slightly decreased (a.s.) for F₁ parents compared to the control group. The number of implantation sites observed in F₁ dams was decreased significantly (p<0.05) at 500 ppm (12.2 vs 15.3 in controls) and marginally (a.s.) at 100 ppm (13.1 vs 15.3 in controls). Mean litter size on day 1 was slightly decreased (a.s.) in the 500 ppm groups compared to the control groups in both generations. Mean litter size on day 4 was slightly decreased (a.s.) in the 500 ppm group for F₁ litters, but was significantly decreased (p<0.05) in the 500 ppm group for F₂ litters (9.8 ± 3.7 for 500 ppm vs 12.4 ± 3.0 for controls). Pup survival was similar between the treated and control groups for both generations. The NOAEL for reproductive toxicity is 100 ppm (10.6 mg/kg/day) and the LOAEL is 500 ppm (53.6 mg/kg/day), based on a decreased number of implantation sites and decreased litter sizes to day 4 post partum for F₁ females (F₂ litters).

Mean overall body weight gain during lactation was significantly decreased (10-13%), among pups in the 500 ppm groups in both generations. The most pronounced effect on pup weight gains occurred between lactation days 7-21. Absolute body weights, however, were not significantly decreased compared to the control groups at any time point during lactation. A slightly decreased developmental time for pinnas unfolding, hair growth and eye opening, particularly in the F₂ pups, was observed. The NOAEL for developmental toxicity is 100 ppm (8.4 mg/kg/day) and the LOAEL is 500 ppm (42.1 mg/kg/day), based on decreased body weight gain during lactation for both F₁ and F₂ pups.

This study is classified as Acceptable/Guide line and satisfies the requirements for a 2-generation reproduction study [OPPTS 870.3300 (§83-4)] in rats. No major deficiencies were noted in this study.

5. Additional Information from Literature Sources

None.
6. Pre-and/or Postnatal Toxicity

The HIARC concluded that there is low concern for pre- and/or postnatal toxicity resulting from exposure to fluazinam.

A. Determination of Susceptibility

In the developmental toxicity study in rats, the HIARC considered the increased fetal incidences of facial/palate clefts and other max deformities observed in this study to be qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazinam. Quantitative evidence of increased susceptibility of fetuses to fluazinam was not observed, however, in this study.

In the developmental toxicity study in rabbits, the HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazinam was observed in this study.

In the 2-generation reproduction study in rats, the HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to fluazinam was observed in this study.

B. Degree of Concern Analysis and Residual Uncertainties

Since there is qualitative evidence of increased susceptibility of the young following exposure to fluazinam in the rat developmental study, HIARC performed a Degree of Concern Analysis to: 1) determine the level of concern for the effects observed when considered in the context of all available toxicity data; and 2) identify any residual uncertainties after establishing toxicity endpoints and traditional uncertainty factors to be used in the risk assessment of this chemical. If residual uncertainties are identified, HIARC examines whether these residual uncertainties can be addressed by a special FQPA safety factor and, if so, the size of the factor needed. The results of the HIARC Degree of Concern analysis for fluazinam follow.

In the rat developmental toxicity study, qualitative susceptibility was evidenced as decreased fetal body weights; decreased placental weights; increased fetal incidences of facial/palate clefts, diaphragmatic hernia and delayed ossification in several bone types; greenish amniotic fluid and possible increased late resorptions and postimplantation loss in the presence of lesser maternal toxicity (decreased body weight gain, decreased food consumption, increased water consumption, and increased urachal sinusizing during treatment) at the highest dose tested. Considering the overall toxicity profile and the doses and endpoints selected for risk assessment for fluazinam, the HIARC characterized the degree of concern for the effects observed in this study as low, noting that there is a clear NOAEL for the fetal effects observed and that these effects occurred in the presence of maternal toxicity and only at the highest dose tested. No residual uncertainties were
identified. The NOAEL of 50 mg/kg/day identified in this study is 7-fold higher than that used to establish the acute Reference Dose (ARID) for the Female 13-50 population subgroup.

C. Special FQPA Safety Factor(s):

Based upon the above-described data, no special FQPA safety factor is needed (i.e. 1X) since there are no residual uncertainties for pre and/or post natal toxicity.

The Special FQPA Safety Factor recommended by the HIARC assumes that the exposure databases (dietary food, drinking water, and residential) are complete and that the risk assessment for each potential exposure scenario includes all metabolites and/or degradates of concern and does not underestimate the potential risk for infants and children.

7. Recommendation for a Developmental Neurotoxicity Study

The HIARC concluded that there is a concern for developmental neurotoxicity resulting from exposure to flunazam.

On October 24, 2000, HIARC recommended that a developmental neurotoxicity study in rats be conducted with flunazam based on the following considerations:

• In a series of chronic and subchronic studies on flunazam in rats, mice and dogs, a treatment-related neurotoxic lesion described as vacuolation of the white matter of the CNS (brain and/or cervical spinal cord) was observed when high doses of Flunazam Technical were administered to the animals. It was determined that this lesion was caused solely by an impurity in Flunazam technical (Impurity-5) when this impurity was present in the test material such that test animals received doses of Impurity-5 of 0.1 mg/kg/day or higher. When this impurity was present in the test material such that test animals received doses of Impurity-5 of 0.02 mg/kg/day or lower, the neurotoxic lesion was not observed.

• An age-related difference in sensitivity to vacuolation of the white matter of the CNS caused by Impurity-5 was also demonstrated in rats and mice. Increased sensitivity to this neurotoxic effect was observed in rats and mice at 10 weeks compared to 3 weeks of age.

• In the developmental toxicity study in rats (MRID 42248613) the HIARC considered the increased fetal incidences of facial/palate clefts and other rare deformities observed in this study to be qualitative evidence of increased susceptibility of fetuses to in utero exposure to flunazam. Quantitative evidence of increased susceptibility of fetuses to flunazam was not observed in this same study.

• In the range-finding developmental toxicity study in rats (MRID 42248612), at 1000 mg/kg/day (highest dose tested), 2 dams were found dead on GD 13 and the remaining 5 were sacrificed in extremis between GD 12 and 14. Prior to death the high-dose animals exhibited clinical signs of neurotoxicity, including stained and

11
unexplainable coats, leghorn, husched posture, ataxia, flaccid muscles, and salivation. These signs were not observed in the survivors at this dose level or at lower dose levels of test material in the study.

Evidence to the contrary included:

- In the acute and subchronic neurotoxicity studies on rats (MRID 44807210 and 44807217/44807218, respectively), no toxicologically significant signs of neurotoxicity were observed. The highest dose of Impurity-5 in the subchronic neurotoxicity study, however, was only 0.03 mg/kg/day.

- In the definite developmental toxicity studies on rats and rabbits (MRID 42248613 and MRID 42248616, respectively), treatment-related increased incidences of malformations of nervous system tissues were not observed.

- In the developmental toxicity study in rabbits (MRID 422486516), the HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazinam was observed in this study.

- In the 2-generation reproduction study in rats (MRID 422486519, 42208406, 42248618), the HIARC determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to fluazinam was observed in this study.

On January 22, 2003, based on the weight of evidence presented, the HIARC reaffirmed the previous conclusion that a developmental neurotoxicity (DNT) study conducted with fluazinam is required. HIARC determined that a 10X database uncertainty factor (UFdb) is needed to account for the lack of the DNT when assessing acute (single dose) exposure scenarios since the available (acute) data provide no basis to support reduction or removal of the default 10X factor. The following points were considered in this determination:

- It is assumed that the DNT study will be conducted at dose levels similar to those used in the rat reproduction study with fluazinam (1.9, 9.7, and 47.3 mg/kg/day mg/kg/day) wherein the offspring NOAEL / LOAEL was 9.7 / 47.3 mg/kg/day, respectively.

- It is possible that the results of the DNT study could impact the current selected acute regoratory doses since the NOAELs used to establish the acute Reference doses for dietary risk assessment (7 mg/kg/day for Females 13-50 and 50 mg/kg/day for the General Population) are approximately the same order of magnitude or higher than the offspring NOAEL in the rat reproduction study conducted with fluazinam (9.7 mg/kg/day).

Given these circumstances, HIARC does not have sufficient reliable data justifying selection of an additional safety factor for the protection of infants and children lower than the default value of 10X for single dose exposure scenarios. Therefore, a UFdb of 10X will be applied to single dose exposure scenarios (i.e., acute RDF) to account for the lack of the DNT study with fluazinam.
However, HIARC further determined that for repeated-dose exposure scenarios a database uncertainty factor (UFwa) is not needed (1X) to account for the lack of the DNT based on the following considerations:

- As stated above, the DNT study will likely be conducted at dose levels similar to the rat reproduction study.
- The results of the DNT study are unlikely to impact the current regulatory dose selected for repeated exposure scenarios since the NOAEL used for these risk assessment endpoints (i.e., 1.1 mg/kg/day for chronic RfD) is about 10-fold lower than the offspring NOAEL in the rat reproduction study conducted with fluazinam (9.7 mg/kg/day).

Therefore, a UFwa is not required (1X) for repeated-dose exposure scenarios (i.e., chronic RfD) to account for the lack of the DNT study with fluazinam.

II. HAZARD IDENTIFICATION

1. Acute Reference Dose (RfD) - Females 13-50

Study Selected: Developmental toxicity study in rabbits

MRID No.: 42248616

Executive Summary: In a developmental toxicity study (MRID 42248616), 16-18 presumed pregnant New Zealand White rabbits per group were administered fluazinam (95.3% a.i., Lot No.: 8412-20) by gavage in 1% w/v aqueous methyl cellosolve at doses of 0, 2, 4, 7 and 12 mg/kg/day on gestation days (GD) 6-19, inclusive. Controls were treated with 1% w/v aqueous methyl cellosolve (vehicle). On GD 29, all surviving does were sacrificed and necropsied and all fetuses were weighed, and examined for external malformation/variability. Each fetus was examined visceraally by fresh dissection and the sex determined. All carcases were eviscerated and processed for skeletal examination.

At 12 mg/kg/day, statistically significant reductions in body weight gain during treatment (0.0 kg vs 0.25 kg for controls on GD 10-20), decreased food consumption (368 g/animal/day vs 368 g/animal/day for controls on GD 6-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were considered to be treatment-related. At 7 mg/kg/day, slightly depressed food consumption (199 g/animal/day vs 186 g/animal/day for controls on GD 13-19) and an increased incidence of liver histopathology (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition, apoptosis) were also considered to be treatment-related. The maternal toxicity LOAEL is 7 mg/kg/day based on decreased food consumption and increased liver histopathology. The maternal toxicity NOAEL is 4 mg/kg/day.
A: 12 mg/kg/day, an increased incidence of total litter resorptions (0, 0, 0, 1 and 5 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) was considered to be treatment-related. Several abortions were also observed (0, 0, 2 and 1 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively). The total number of litters lost was such that the numbers of litters born were 15, 13, 10, 19 and 7 for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively. Also at 12 mg/kg/day, there was an increased incidence of placental anomalies (0.7, 3.2, 0.0, 0.0 and 18.2 percent fetal incidence for the 0, 2, 4, 7 and 12 mg/kg/day groups respectively) and a slight increase is some skeletal abnormalities including kinked tail tip, fused or incompletely ossified sternum, and abnormalities of head bones. The developmental toxicity LOAEL is 12 mg/kg/day based on an increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities. The developmental toxicity NOAEL is 7 mg/kg/day.

This developmental toxicity study in rabbits is classified Acceptable/Guideline and satisfies the Subdivision F guideline requirement for a developmental toxicity study in rabbits [OPPTS 870.3700 (RPP 83-30)]. No major deficiencies were noted in this study.

Dose and Endpoint for Establishing RD: Developmental toxicity NOAEL = 7 mg/kg/day based on increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities (including kinked tail tip, fused or incompletely ossified sternum, and abnormalities of head bones) at 12 mg/kg/day (LOAEL).

Uncertainty Factor (UF): 1000 (10x for interspecies extrapolation, 10x for intraspecies variations, and an additional 10x database uncertainty factor for the lack of the DNT study).

Comments about Study: In the original DER for this study (HED Doc. No. 309608, 7/13/92), this study was classified as Core-Minimum. However, when the HED RD/Peer Review Committee met on 8/6/92, the study was downgraded to Core Supplementary because the committee felt that there were inadequate litter numbers at the highest 3 doses and that the NOEL therefore could not be determined. In addition, the committee generally questioned the conduct of the study noting the relatively large number of animals which died prior to or during the study, the presence of significant lung infections, and evidence of general liver abnormalities which might impact on the metabolism of the test material. The committee required that a new study be performed by the registrant using the same dose levels but with enough animals at the highest 3 doses to ensure at least 12 litters per dose (HED Doc. No. 009727, 9/14/92). Subsequently, at the request of Toxicology Branch 1 (TBI), the HED RD/Peer Review Committee met again on 11/19/92 to reconsider its prior position on this study. In support of its request, TBI submitted a memorandum (dated 11/4/92, copy in HED Doc. No. 013551) providing a rationale as to why, in the opinion of TBI, there was insufficient justification for repeating the study and that a second study would provide little additional information. The following is quoted from the report of the RD/Peer Review Committee on its second meeting (HED Doc. No. 013551, 3/16/93):

After thorough consideration of all the issues involved, the Committee felt that although the study was deficient, it was marginally acceptable for regulatory purposes. The Committee noted that an additional dose level, beyond that required by the Guidelines, was included in this study.

14
Furthermore, when the preliminary (range finding) and main studies were considered together, maternal deaths appeared to be randomly distributed between groups. Therefore, the Committee considered that the repeat of the study at this time was unlikely to provide additional useful information, and the "no-observable effect level" for maternal toxicity (4 mg/kg/day) and for developmental and feto-toxicity (7 mg/kg/day) were unlikely to change in a new study.

Comments about Endpoint/Uncertainty Factor: The committee considered the developmental toxicity effects observed at the LOAEL in this study (increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities, including kinked tail tip, fused or incompletely ossified sterna/bras, and abnormalities of head bones) to be effects that could occur after a single-dose of fluazinam. Also, with respect to developmental toxicity effects, the rabbit is more sensitive than the rat. The NOAEL for developmental toxicity effects in the developmental toxicity study in rats (MRID 42248613) was 50 mg/kg/day and the LOAEL was 250 mg/kg/day.

Acute RfD (Females 13-50) = NOAEL; 7 mg/kg/day \[\text{UP: 1000}\]

\[\text{Acute RfD (Females 13-50)} = \text{NOAEL; 7 mg/kg/day}\]

\[\text{UP: 1000}\]

\[\text{Acute RfD (Females 13-50)} = \text{NOAEL; 7 mg/kg/day} = 0.007 \text{mg/kg}\]

2. **Acute Reference Dose (RfD) - General Population**

Study Selected: Acute neurotoxicity study in rat

§ 870.6200

MRID No.: 44807210

Executive Summary: In an acute oral neurotoxicity study (MRID 44807210), single gavage doses of 0, 50, 1000 or 2000 mg/kg fluazinam (96.8%, Lot No.: 1030/91) in 1.5% (w/v) aqueous methylecelulose were administered to groups of fasted Sprague-Dawley rats (10/sex/dose). Functional Observational Battery (FOB) and Motor Activity (MA) assessments were performed before substance administration, between 5 and 7 hours post-administration (time of peak effect) and on days 7 and 14. Body weights were measured weekly and clinical signs were recorded daily. The animals were sacrificed and grossly examined 14 days after administration of the test material. Five rats/dose/sex were perfused in situ for neuropathological evaluation.

There were no treatment-related deaths, clinical signs, or body weight effects during the study. Treatment-related soft stools were observed in mid- and high-dose males and females, but only on the day of treatment. Treatment-related mean motor activity values were significantly decreased (23-65%) in mid- and high-dose females compared to controls (not dose-related), but only on the day of treatment. No other treatment-related effects of any kind were observed at any time during the study. No treatment-related gross effects or histopathology were observed. Since the decreased mean motor activity values were observed in one sex only (females), on one occasion only (on the day of dosing), at high doses only (≥1000 mg/kg), and were not dose-related, and
were observed in one study only (not observed in the subchronic neurotoxicity study in rats, MRID 44807217, 44807218), it is likely that this treatment-related effect (decreased mean motor activity values in females only on the day of dosing only) is a manifestation of acute general systemic toxicity and not a direct neurotoxic response to the administration of the test material.

Under the conditions of this study, the acute general systemic toxicity LOAEL is 1000 mg/kg for male and female rats based on soft stool and decreased motor activity. The acute general systemic toxicity NOAEL is 50 mg/kg for male and female rats. The LOAEL for neurotoxic effects is not identified (> 2000 mg/kg). The NOAEL for neurotoxic effects is 2000 mg/kg.

This acute oral neurotoxicity study is classified Acceptable/ Guideline. This study does satisfy the guideline requirement for an acute oral neurotoxicity study [OPPTS 870.6200 (81-89)] in rats.

Dose and Endpoint for Establishing RID: NOAEL = 50 mg/kg based on soft stools and decreased motor activity at 1000 mg/kg (LOAEL).

Uncertainty Factor: 1000 (10x for interspecies extrapolation, 10x for intraspecies variations, and an additional 10x database uncertainty factor for the lack of the DNT study).

Comments about Study/Endpoint/Uncertainty Factor: Due to the large dose spread in this study between the NOAEL (50 mg/kg) and the LOAEL (1000 mg/kg), the true NOAEL in this study is probably much higher than 50 mg/kg. This study, however, provides the best data available for determining an acute RID for the general population (including infants and children).

Acute RID (General Population) = NOAEL (mg/kg) x UF : 50mg/kg x 1000 = 0.05 mg/kg

3. Chronic Reference Dose (cRFD)

Study Selected: 2-Year carcinogenicity study in mice (co-critical study #1) $870.4200

MRID No: 42208405, 44807220, 44807212

Executive Summary: In an oncogenicity study (MRID 42208405, 4807220, 44807212), Fluazinam (95.3% a.i., lot no. 8412-20) was administered to groups of 52 male and 52 female C57B1 mice in the diet at concentrations of 0, 0.1, 1.0, 10.0, or 100.0 ppm. There were 2 control groups. The test diets were given for 104 weeks. These concentrations resulted in mean daily compound intakes of 0.12, 1.12, 10.72, and 107 mg/kg/day for 1 ppm, 10 ppm, 100 ppm, and 1000 ppm, respectively, for males and 0.11, 1.16, 11.72, and 117 mg/kg/day, respectively, for females. Additional microscopic review of brain and spinal cord was presented in MRID 16.
A four-week-range finding study (MRID 44807212) using 9, 10, 50, 250, or 3000 ppm in the diet was also conducted. Treatment with Fluazinam did not result in treatment-related changes in survival, clinical signs, body weights, body weight gains, food consumption or hematological parameters. The group mean liver weights adjusted for body weight were increased in males and females by 45% and 32%, respectively, at 1000 ppm compared to the controls, and by 15% in females at 100 ppm after 104 weeks of treatment (p<0.01). Microscopic examination showed increased incidences of liver areas containing basophilic hepatocytes (controls, 12%; 1000 ppm, 38%; p<0.01) and eosinophilic vacuolated hepatocytes (controls, 1%; 100 ppm, 8%; p<0.05; 1000 ppm 19%, p<0.01) in treated males compared to the controls. Increased incidences of granulomatous hepatitis of minimal severity were seen in high-dose males (controls, 11%; 1000 ppm, 25%; p<0.01) and females (controls, 11%; 1000 ppm, 21%; p<0.01). Higher incidences of aggregates of brown pigmented macrophages were seen in the livers of treated males (controls, 13%; 100 ppm, 27%; p<0.05; 1000 ppm, 62%; p<0.01) and females (controls, 15%; 1 ppm, 40%; p<0.01; 10 ppm, 21%; NS; 100 ppm, 38%; 1000 ppm, 56%, p<0.01). Granulomatous hepatitis and brown pigmented macrophage aggregates were most commonly seen in mice that survived until the end of the study. The only effects that were not associated with the liver were an increased incidence of thymic hyperplasia in high-dose females (controls, 5%; 1000 ppm, 21%, p<0.01), and increased incidences of cystic thyroid follicles in high-dose males (controls, 23%; 1000 ppm, 52%, p<0.01) and high-dose females (controls, 16%; 1000 ppm, 33%, p<0.01).

The central nervous systems of the animals were re-examined and the results reported in an addendum to the main study (MRID 44807220). Treatment-related increases in the incidences and severity of vacuolation of white matter occurred in the brains of males at 1000 ppm and increased severity of white matter vacuolation was seen in the brains of females at 1000 ppm compared to the control groups. No clear effect of treatment on the incidence or severity of white matter vacuolation in the spinal cord was seen in either sex, and no treatment-related effects were seen at 1, 10, or 100 ppm.

The LOAEL is 100 ppm in the diet (10.72 mg/kg/day for males; 11.72 mg/kg/day for females), based on increased incidences of brown pigmented macrophages in the liver of both sexes, increased incidences of eosinophilic vacuolated hepatocytes in males, and increased liver weights in females. The NOAEL was 10 ppm (1.12 mg/kg/day for males; 1.16 mg/kg/day for females).

Treatment of CDF-1 mice for up to 194 weeks resulted in a significant increase in the hepatocellular adenoma incidence in high-dose males under the conditions of this study (controls, 14%; 1000 ppm 35%, p<0.05). The incidence of hepatocellular carcinoma was also increased in high-dose males, but the increase was not statistically significant by the tests applied by the study authors (controls, 1%; 1000 ppm, 33%, NS). No increases in hepatocellular tumor incidences were seen in treated females compared to the controls. Historical control data supplied
with the study showed the hepatocellular adenoma incidence in males ranged from about 4% to 27% in mouse studies of similar duration, and the hepatocellular carcinoma incidence ranged from 12% to 38%. The incidence for hepatocellular adenomas for high-dose males in this study (33%) slightly exceeded the upper range of historic controls (27%). The dosing was adequate for an oncogenicity study based on the liver and brain toxicity at 1000 ppm.

This oncogenicity study in the mouse is AcceptableGuideline and does satisfy the guideline requirement for an oncogenicity study (OPPTS 870.4200 (83-2b)) in mice. An additional study has been done following this study with higher concentrations of flutaxiznm (see MRID 4487222).

Study Selected: 1-Year chronic oral study in dogs (co-critical study #2) § 870.4100

MRID No.: 42270603, 44807219

Executive Summary: In a chronic oral toxicity study (MRIDs 42270603, main study and 44807219, addendum), Flutaxiznm (Lot No. 8412-20, 95.3% purity) was administered to groups of six male and six female beagle dogs/dose for 52 weeks at doses of 0, 1, 15, or 50 mg/kg/day in gelatin capsules.

No animals died as a result of treatment. The most notable clinical signs were increased incidence of salivation and nasal dryness, mainly in the high-dose dogs but nasal dryness was also slightly increased in females at 10 mg/kg/day. Body weight was mildly decreased at high dose (-4%, males and -9%, females; not analyzed statistically), and total body weight gain was significantly reduced (25%, p<0.05; -13% when calculated as a percentage of initial body weight) only in females but was also lower in males (-19%, -9% as a percentage of initial body weight). Hematocrit, hemoglobin, and RBC counts of high-dose dogs were consistently lower (R-1%, p<0.05, 0.01, or 0.001) than controls throughout the treatment period, and WBC counts were elevated (32-64%, p<0.05 or 0.001) at study end (these findings considered treatment-related but not biologically significant). Alkaline phosphatase was significantly increased (52-183%; p<0.05, 0.05, or 0.001) in high-dose dogs throughout the treatment period.

Absolute liver weight (males, 37%; females, 16%; p<0.05) and the liver/body weight ratio (males, 45%; females, 47%; p<0.01) were increased in high-dose dogs. In the reexamination of brain and spinal cord tissues, incidence of vacuolation of white matter in the brain was increased in both sexes at the high dose (6% animals/sex affected vs. 2-4/6, controls), along with increased severity (1.5-2.17 vs. 1.0, controls). In addition, vacuolation of the white matter of the spinal cord was seen in high-dose females (4/6 affected vs. 0, controls). An increase is liquefied Gi tract contents and incidence/severity of stomach mucosal lymphoid hyperplasia was seen in mid- and high-dose dogs of both sexes, although in females, neither incidence nor mean severity of the hyperplasia at these dose levels showed a dose-related increase.

18
The LOAEL (threshold) is 10 mg/kg/day for both male and female dogs, based on marginal increases in the incidence of nasal dryness in females and the incidence/severity of gastric lymphoid hyperplasia in both sexes. The NOAEL is 1 mg/kg/day.

This chronic toxicity study is classified as Acceptable/guideline and satisfies the guideline requirement for a chronic oral study [OPPTS 870.1400 (§83-1b)] in dogs. No major deficiencies were noted in this study.

Dose and Endpoint for Establishing RfD: NOAEL = 1.1 mg/kg/day, based on increased incidences of brown pigmented macrophages in the liver of both sexes, increased incidences of eosinophilic vacuolated hepatocytes in males, and increased liver weights in females at 10.72 mg/kg/day (LOAEL).

Uncertainty Factor(s): 100 (OX for intraspecies variation and 10X for interspecies extrapolation)

Comments about Studies/Endpoints/Uncertainty Factor: This 2-year carcinogenicity study in mice, rather than the 1-year chronic oral study in dogs, was used to establish the RfD because the treatment-related effects at the LOAEL in the mouse study were related to liver toxicity (the regularly observed target organ for fluazinam in many studies), whereas the effects at the LOAEL in the dog study (increased incidence of nasal dryness in females and increased incidence/severity of gastric lymphoid hyperplasia in males and females) were unrelated to liver toxicity. It was noted by the committee that the NOAELs in the mouse study (1.12 mg/kg/day in males and 1.16 mg/kg/day in females) and in the dog study (1 mg/kg/day in males and females) and the LOAELs in the mouse study (10.72 mg/kg/day in males and 11.72 mg/kg/day in females) and in the dog study (10 mg/kg/day in males and females) were quite similar.

In addition, the committee observed that a treatment-related neurotoxic lesion described as vacuolation of the white matter of the central nervous system (CNS) was observed in both the 2-year carcinogenicity study in mice (at 107/117 mg/kg/day, but not at 10.72/11.72 mg/kg/day in M/F) and in the 1-year chronic oral study in dogs (at 50 mg/kg/day, but not at 10 mg/kg/day in M/F). The committee particularly noted that the dose level at which vacuolation of the CNS was not observed in the 2-year mouse study (neurotoxic NOAEL) was 10.72/11.72 mg/kg/day in M/F and was 10 fold higher than the NOAEL of 1.12/1.16 mg/kg/day in M/F for general systemic toxicity in the same study. Similarly, the dose level at which vacuolation of the CNS was not observed in the 1-year dog study (neurotoxic NOAEL) was 10 mg/kg/day in M/F and was also 10 fold higher than the NOAEL of 1 mg/kg/day in M/F for general systemic toxicity in the same study. It was later determined in a series of special metachronic studies that this CNS lesion was induced solely by an impurity (Impurity-5) in technical grade fluazinam and not by fluazinam per se. Impurity-5 was present in the various lots of technical grade fluazinam used in toxicity studies at highly variable concentrations up to 0.20%. In the 2-year carcinogenicity study in mice (MRD)
42208405, 44807220, 44807212), the calculated intake of impurity-5 at the dose level of 107/117 mg/kg/day in M/F was 0.22 mg/kg/day, at which level vacuolation of the CNS was observed in this study. In this same study, the calculated intake of Impurity-5 at the dose level of 107/117.72 mg/kg/day in M/F was 0.022 mg/kg/day, at which level vacuolation of the CNS was not observed in this study. In the 1-year chronic oral study in dogs (MRID 42297601, 44807219), the calculated intake of Impurity-5 at the dose level of 50 mg/kg/day in M/F was 0.1 mg/kg/day, at which level vacuolation of the CNS was observed in this study. In this same study, the calculated intake of Impurity-5 at the dose level of 18 mg/kg/day in M/F was 0.02 mg/kg/day, at which level vacuolation of the CNS was not observed in this study. The similar dose levels of Impurity-5 at which vacuolation of the CNS was observed (and not observed) in these mouse and dog studies also supports these studies being co-critical with one another with respect to determining the chronic RfD for fluazinam. See the discussion under 5.2 Neurotoxicity later in this document for a more detailed and complete discussion of vacuolation of the CNS observed in some of the toxicity studies on fluazinam.

The committee also noted that a 2-year chronic feeding/carcinogenicity study in rats (MRID 42248620, 44807223) is available which has an NOAEL of 8.38 mg/kg/day for males and of 0.47 mg/kg/day for females, which is lower than the NOAEL (1.1 mg/kg/day) selected for establishing the chronic RfD. The reason for not selecting the NOAEL from this study to establish the chronic RfD is that the next highest dose level tested in this study was 3.8 mg/kg/day in males and 4.9 mg/kg/day in females (a 10 fold higher dose); that a second 2-year chronic feeding/carcinogenicity study in rats (MRID 44839901, 44807213) subsequently was performed with 2 dose levels intermediate between the dose levels of 0.38/0.47 mg/kg/day and 3.8/4.9 mg/kg/day used in the first study; and that the NOAEL observed in the second study was 1.9 mg/kg/day for males and 4.9 mg/kg/day for females, which is higher than the NOAEL (1.1 mg/kg/day) selected for establishing the chronic RfD.

\[
\text{Chronic RfD} = \frac{\text{NOAEL}}{\text{UF}} = \frac{1.1 \text{ mg/kg/day}}{100} = 0.011 \text{ mg/kg/day}
\]

4. Incidental Oral Exposure: Short-Term (1-30 days)

Study Selected: Developmental toxicity study in rabbits

MRID No.: 42248616

Executive Summary: See Executive Summary for Acute Reference Dose (RfD), Females 13-50 Years.

Dose and Endpoint for Risk Assessment: Maternal toxicity NOAEL = 4 mg/kg/day, based on decreased food consumption and an increased incidence of liver histopathological lesions

$70.3700
(cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition and apoptosis) at 7 mg/kg/day (LOAEL).

Comments about Study/Endpoint: There are no residential uses for fluzinam proposed at this time. This endpoint was selected for future use as may be needed. The endpoints of concern are appropriate for this exposure scenario and population of concern (children).

5. Incidental Oral Exposure; Intermediate-Term (1-6 Months)

Study Selected: Developmental toxicity study in rabbits (co-critical study #1) \(\$870.3700 \)

MRID No.: 42248616

Executive Summary: See Executive Summary for Acute Reference Dose (RfD), Females 13-50 Years.

Dose and Endpoint for Risk Assessment: Maternal toxicity NOAEL = 4 mg/kg/day, based on decreased food consumption and an increased incidence of liver histopathological lesions (cellular hypertrophy, single cell necrosis, binucleate hepatocytes, increased brown pigment deposition and apoptosis) at 7 mg/kg/day (LOAEL).

Comments about Study/Endpoint: There are no residential uses for fluzinam proposed at this time. This endpoint was selected for future use as may be needed. The endpoints of concern are appropriate for this exposure scenario and population of concern (children).

Results from the following study are considered to be co-critical for the dose and endpoint selected above for intermediate-term incidental oral exposure.

Study Selected: 90-Day feeding study in rats (co-critical study #2) \(\$870.3100 \)

MRID No.: 42248610, 44807214

Executive Summary: In a subchronic oral toxicity study (MRID 42248610, 44807214), technical grade fluzinam (98.5% a.i.) was administered in the diet to 10 CD (remote Sprague-Dawley strain) rats/sex/dose level at dose levels of 0, 2, 10, 50, or 500 ppm for 13 weeks (0, 0.15, 0.77, 3.8, or 38 mg/kg/day for males; 0, 0.17, 0.86, 4.3, or 44 mg/kg/day for females). Slides of brain and cervical spinal cord from all control and 500 ppm rats were later re-examined to assess for vacuolation of the white matter in the central nervous system (MRID 44807214).

No treatment-related mortalities, clinical signs of toxicity, changes in body weights or body weight gains, differences in food or water consumption, or ophthalmological findings were
observed. No treatment-related effects in hematology, clinical chemistry, or urinalyses parameters were noted. Gross necropsies were negative. At termination, statistically significant treatment-related increases were observed in the liver of 300 ppm males (absolute weights increased 8% not significant) and relative liver/body weight ratios increased 11% in comparison to controls), in the lung of 500 ppm females (absolute weights increased 18% and relative lung/body weight ratios increased 25% in comparison to controls), and in the uterus of 500 ppm females (absolute weights increased 36% and relative uterus/body weight ratios increased 43% in comparison to controls). Statistically significant compound-related histopathological lesions were observed in the livers of 500 ppm males (increased incidences of periacinar hepatocyte hypertrophy and sinusoidal chronic inflammation). There was no effect of treatment on the incidence or severity of vacuolation of the white matter of the brain or cervical spinal cord in the 500 ppm rats as compared with the controls.

The NOAEL in this study is 50 ppm (3.8 mg/kg/day in males and 4.3 mg/kg/day in females). The LOAEL is 590 ppm (38 mg/kg/day in males and 44 mg/kg/day in females), based on increases in absolute and relative liver weights in males, increases in absolute and relative lung and uterus weights in females, and increases in histopathology in the liver of males (increased incidences of periacinar hepatocyte hypertrophy and sinusoidal chronic inflammation).

This subchronic oral toxicity study in rats is classified Acceptable/guideline and satisfies the Subdivision F guideline requirement for a subchronic oral toxicity study (OPPTS 870.100 (§82-1a) in rats. No major deficiencies were noted in this study.

Dose and Endpoint: NOAEL = 3.8 mg/kg/day based on increases in absolute and relative liver weights in males, increases in absolute and relative lung and uterus weights in females, and increases in histopathology in the liver of males (increased incidences of periacinar hepatocyte hypertrophy and sinusoidal chronic inflammation) at the LOAEL of 38 mg/kg/day.

5. Dermal Absorption

Dermal Absorption Factor: 29%

There is no dermal absorption study available on 3,3azinam. A dermal absorption factor was estimated by comparing the LOAEL from a 21-day dermal toxicity study in rats to the LOAEL from a 4-week range-finding feeding study in rats based on a common endpoint (liver toxicity).

21-Day dermal toxicity study in rats § 870.3200

MRID No.: 42270602

Systemic NOAEL = 10 mg/kg/day
Systemic LOAEL = 100 mg/kg/day, based on increased aspartate aminotransferase (AST) and increased cholesterol levels in males

22
4-Week range-finding feeding study in rats

NOAEL = 5.1 mg/kg/day (males)

5.3 mg/kg/day (females)

LOAEL = 26.4 mg/kg/day (males)

25.9 mg/kg/day (females), based on decreased body weight gain and decreased food consumption in females, increased serum phospholipids in females, increased total cholesterol in males and females, increased relative liver weights in females, and liver histopathological effects (periportal hypertrophy) in males.

Estimated Dermal Absorption Factor

Oral LOAEL x 100 = 25 mg/kg/day x 100 = 25%

Dermal LOAEL = 100 mg/kg/day

6. Dermal Exposure: Short-Term (1-30 days) and Intermediate-Term (1-6 Months)

Study Selected: 21-Day dermal toxicity study in rats

MRID No.: 42270602

Executive Summary: In a 21-day repeated dose dermal toxicity study (MRID 42270602), groups of 19 male and 10 female CD (Sprague-Dawley) rats were treated with Fluazinam technical (98.0% a.i.; lot no. 8303-2) in 0.5% methylcellulose in distilled water at doses of 0, 10, 100 or 1000 mg/kg/day. Animals were treated by dermal occlusion for 6 hours per day, 7 days per week, for 3 weeks.

No treatment-related mortalities occurred. At 1000 mg/kg/day, decreased body weight gain in males (19% compared to controls, p < 0.05) was observed. Liver damage in both males and females was also evident at 1000 mg/kg/day as demonstrated by increased absolute liver weights (17-26%), increased relative liver/body weight ratios (27-30%), statistically significant increases in aspartate aminotransferase (AST) and cholesterol levels, and highly increased incidences of periportal hepatocellular hypertrophy in males and females. At 100 mg/kg/day, statistically significant increases in AST and cholesterol levels were observed in males. The LOAEL for systemic toxicity is 100 mg/kg/day based on increased AST and increased cholesterol levels in males. The NOAEL for systemic toxicity is 10 mg/kg/day.

At 1000 mg/kg/day, slight to severe erythema and alopecia were observed after 11-13 days and exudation and/or staining at 21 days in males and females. At 100 mg/kg/day, slight erythema was observed after 14 days in males and females and exudation and/or staining at 21 days in females. At 10 mg/kg/day, slight erythema was noted after 13 days in one male. Histologically, at 1000 mg/kg/day and 100 mg/kg/day, acanthosis, dermatitis, scabbing, and ulceration were noted in males and females. At 10 mg/kg/day, acanthosis and dermatitis were observed in males and
females. At 10 mg/kg/day, the test material was considered to be a very mild irritant. The LOAEL for dermal toxicity is ≤10 mg/kg/day based on erythema, acanthosis and dermatitis in males and/or females. No NOAEL for dermal toxicity was determined in this study (< 10 mg/kg/day).

This 21-day dermal toxicity study in rats is classified Acceptable/Guideline and satisfies the Subdivision F guideline requirement for a 21/28-day dermal toxicity study [OPPTS 870.3200 (OPP 82-2)]. No major deficiencies were noted in this study.

Dose and Endpoint for Risk Assessment: NOAEL = 10 mg/kg/day, based on increased aspartate aminotransferase (AST) and increased cholesterol levels in males at 100 mg/kg/day (LOAEL).

Comments about Study/Endpoint: The hazard identified is from a dermal study which is appropriate for this exposure (dermal) and duration of concern. Also, the developmental effects in rats were seen at a higher dose (at 250 mg/kg/day) compared to the systemic toxicity seen via the dermal route (at 1000 mg/kg/day).

7. Dermal Exposure: Long-Term (> 6 Months)

The 2-year carcinogenicity study in mice and the 1-year chronic oral study in dogs, co-critical studies used to determine the chronic RfD, were recommended to evaluate the long-term dermal hazard of flanixin.

Study Selected: 2-Year carcinogenicity study in mice (co-critical study #1) § 870.4206
MRID No.: 42008465, 44807220, 44807212
Executive Summary: See Chronic RfD

Study Selected: 1-Year chronic oral study in dogs (co-critical study #2) § 870.4100
MRID No.: 42290603, 44807219
Executive Summary: See Chronic RfD

Dose and Endpoint for Risk Assessment: NOAEL = 1.1 mg/kg/day, based on increased incidences of brown pigmented macrophages in the liver of both sexes, increased incidences of eosinophilic vacuolated hepatocytes in males, and increased liver weights in females at 10.72 mg/kg/day (LOAEL).

Comments about Study/Endpoint: See Chronic RfD

8. Inhalation Exposure: All Durations

24
Study Selected: 7-Day range-finding inhalation study in rats

Test material: Frownicide® WP, containing 51.9% fluazinam

MRID No.: 42248621

Executive Summary: In a 7-day range-finding inhalation toxicity study (MRID 42248621), groups of five male and five female young adult CD rats were exposed nose-only to Frownicide® WP (51.9% Fluazinam, a.i., Batch No. 084) for two 3-hour periods per day for 7 days at concentrations of 0, 0.003, 0.011, 0.032, or 0.110 mg/L. The estimated achieved dosages of Frownicide® WP over the 7 days of treatment were calculated to be 0.72, 2.76, 7.95, and 27.43 mg/kg/day for males and 0.75, 2.97, 8.50 and 29.23 mg/kg/day for females at the concentrations of 0, 0.003, 0.011, 0.032, and 0.110 mg/L, respectively. The mean median aerodynamic diameter (MMAD) was estimated to be 3.23-3.52 μm and the geometric standard deviation was 2.04-2.69 μm. Approximately 60-70% of particle had an aerodynamic diameter < 6.0 μm. The animals were observed daily. Hematology, clinical chemistries, and urinalyses were performed. All animals were necropsied after completion of exposure, but no histopathology was performed.

No rats died during the study. No clinical signs of toxicity were noted from any rat. The body weight changes of all groups were similar to that of the control group. No toxicologically significant effects of the test material were noted on food consumption, water consumption, food efficiency, hematology, clinical chemistries, or urinalyses. At 0.110 mg/L, slightly increased lung weights (males and females), slightly increased testes weights (males), and slightly increased liver weights (females) were observed. At 0.032 mg/L, slightly increased testes weights (males), and slightly increased liver weights (females) were also observed. No macroscopic changes attributed to treatment with test material were noted at necropsy. Histopathological examination of tissues was not performed.

The LOAEL is 0.032 mg/L (7.93 mg/kg/day in males and 8.50 mg/kg/day in females), based on slightly increased testes weights (males) and slightly increased liver weights (females). The NOAEL is 0.011 mg/L (2.5% mg/kg/day in males and 2.97 mg/kg/day in females).

This inhalation study is classified as Acceptable/Non-guideline. It does not satisfy the subdivision F guideline requirements for a repeated dose inhalation study in the rat because histopathological examination of tissues was not performed. The study was conducted as a range-finding study (for a four-week inhalation study with Frownicide® WP in rats) and is acceptable for that purpose.

Dose and Endpoint for Risk Assessment: NOAEL = 1.38 mg/kg/day, based on slightly increased testes weights (males) and slightly increased liver weights (females) at the LOAEL of 0.032 mg/L (7.93 mg/kg/day in males and 8.50 mg/kg/day in females).

Comments about Study/Endpoint: The inhalation dose of 1.38 mg/kg/day selected to evaluate the inhalation risks of fluazinam is protective of developmental effects, where the NOAEL for
developmental toxicity was 7 mg/kg/day in the developmental toxicity study in rabbits (MRID 42248616). When feasible, the inhalation route of exposure is the most appropriate route to use for evaluating inhalation risk. Finally, it is noted that the target organ in the 7-day range-finding inhalation study (liver) and in many other studies on fluazinam consistently is the liver.

The adjustment to the NOAEL in this study is appropriate in order to determine the dose for evaluating the inhalation hazard of fluazinam. Since the test material in this study was not technical grade fluazinam, but rather was Crownside® 94P (approximately 50% fluazinam), the NOAEL from this study (0.011 mg/L or 2.76 mg/kg/day in males and 2.97 mg/kg/day in females) should be reduced by half to account for this (i.e. adjusted NOAEL = 1.38 mg/kg/day for males and 1.48 mg/kg/day for females). Also, it should be recalled that no histopathology was performed in this study and therefore the true NOAEL may be lower than that demonstrated in the study.

For evaluation of short-term (1-7 days) inhalation exposure, an extra factor of 3X should be applied to the conventional uncertainty factor of 10X to account for the lack of histopathology in the inhalation study. MOE = 300.

For evaluation of intermediate-term (7 days to several months) and long-term (several months to life-time) inhalation exposure, an extra factor of 10X should be applied to the conventional uncertainty factor of 10X to account for the lack of histopathology and the use of a short-term (7 days) study to evaluate intermediate-term and long-term inhalation exposure. MOE = 1000.

The HIARC determined that a 28-day inhalation study in rats is a data gap and should be required to support the registration of fluazinam.

9. Margins of Exposure

Summary of target Margins of Exposure (MOEs) for risk assessment.

<table>
<thead>
<tr>
<th>Route</th>
<th>Short-Term (1-30 Days)</th>
<th>Intermediate-Term (1-6 Months)</th>
<th>Long-Term (>6 Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational (Worker) Exposure</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dermal</td>
<td>300</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Inhalation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential (Non-Dietary) Exposure</td>
<td>100</td>
<td>100</td>
<td>NA</td>
</tr>
<tr>
<td>Oral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

26
There are no residential uses for fluazinam at the present time (Not Applicable - NA).

For short-term and intermediate-term incidental oral exposure risk assessments, a MOE of 100 is required. This is based on the conventional uncertainty factor of 100X (10X for inraspecies extrapolation and 10X for interspecies variation).

For all dermal exposure risk assessments, a MOE of 100 is required. This is based on the conventional uncertainty factor of 100X (10X for inraspecies extrapolation and 10X for interspecies variation).

For short-term inhalation exposure risk assessments, a MOE of 300 is required. An extra factor of 10X should be applied to the conventional uncertainty factor of 100X to account for the lack of histopathology in the 7-day range-finding inhalation study in rats.

For intermediate-term and long-term inhalation exposure risk assessments, a MOE of 1000 is required. An extra factor of 10X should be applied to the conventional uncertainty factor of 100X to account for the lack of histopathology in the 7-day range-finding inhalation study in rats and the use of a short-term (7 days) study to evaluate intermediate-term and long-term inhalation exposure.

10. Recommendation for Aggregate Exposure Risk Assessments
There are no proposed residential home owner uses or other uses that will result in post-application residential exposure. Therefore, aggregate exposure risk assessment is not required.

III. CLASSIFICATION OF CARCINOGENIC POTENTIAL

1. Combined Chronic Toxicity/Carcinogenicity Study in Rats

Discussion of Tumor Data: In a combined chronic toxicity/carcinogenicity study (MRID 4224620 and MRID 44807223, B-1216 (Fluazinam technical, 95.3% a.i., lot number 8412-20) was administered to groups of 60 male and 60 female Sprague-Dawley rats at dietary concentrations of 0, 1, 10, 100, or 1000 ppm (0, 0.04, 0.38, 3.82, or 40 mg/kg/day for males and 0, 0.05, 0.47, 4.87, or 53 mg/kg/day for females) for up to 104 weeks. Groups of 10 rats of each sex per dose group were sacrificed at 52 weeks for interim evaluations.

A slightly increased incidence of thyroid gland follicular cell adenomas, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 100
ppm, and 1000 ppm. The incidence was 8%, 6%, 10%, 14% and 14% for the 0, 1, 10, 100 and 1000 ppm groups, respectively. The range of the historical control data (20 comparable studies at the same testing laboratory) was 0 to 13% and the mean was 6.5%. Also, a slightly increased incidence of thyroid gland follicular cell adenocarcinomas, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 1000 ppm. The incidence was 0%, 0%, 0%, 3% and 6% for the 0, 1, 10, 100 and 1000 ppm groups, respectively. The range of the historical control data (20 comparable studies at the same testing laboratory) was 0 to 5% and the mean was 1.4%. In addition, slightly increased incidences of pancreatic islet cell adenomas were also observed in the treated male rats, but these incidences were not dose-related and did not exceed the upper range of historical control data for the same tumor type (20 comparable studies at the same testing laboratory). Further, this type of tumor in this strain of rats is a common spontaneously occurring neoplasm. Therefore, the increased incidence of pancreatic islet cell adenomas observed in the treated male rats in this study was considered not likely to be related to treatment with the test material. High incidences of pituitary gland adenomas in males and females and of mammary gland fibroadenomas in females were also observed in all groups, including controls. These neoplasms are not considered to be treatment-related. A noteworthy increase of tumors was not observed in any other tissues in the treated male or female rats in this study.

Adequacy of the Dose Levels Tested: The animals were adequately dosed as evidenced by decreased body weight gain at the 1000-ppm dose and microscopic lesions at the 100- and 1000-ppm doses. Males receiving the 1000-ppm diet weighed 6-16% (p<0.01) less than controls from week 8 to study termination, gained 15% less weight overall, and consumed ≤8% less food than controls at each weekly interval. Females receiving the 1000-ppm diet weighed 7-24% (p<0.01) less than controls from week 2 to termination, gained 35% less weight overall, and consumed ≤18% less food than controls at each weekly interval. The food utilization factor or the food efficiency suggested that reduced body weight gain was due in part to toxicity of the test material.

Treatment related microscopic findings showed that the test material was toxic to the following organs: liver, pancreas, lungs, and possibly thyroid glands in both sexes, kidneys and testes in males, and lymph nodes in females, but the primary target appeared to be the liver. Liver toxicity was manifested by increased organ weight and increased incidences of gross and microscopic lesions. Absolute liver weights were increased by at least 7-27% and relative weights by 17-63% in both sexes at 1000 ppm. Gross lesions in the liver consisted of pale, swollen or accentuated markings on the livers at 1000 ppm in males and enlarged, pitted, or mottled livers at 1000 ppm in females. Treatment-related microscopic liver lesions at 1000 ppm consisted of eosinophilic hepatocytes in 22% of females (8% in controls), centrilobular hepatic cytomegaly and vacuolation in 8% of each sex (0% for controls), centrilobular sinusoidal dilatation in 10% of males and 18% of females (0% for male and 2% for female control), and pericholangitis in 18% of males and 14% of females (4% for male and 2% for female controls). Additional treatment-related liver lesions at 1000 ppm in main study group consisted of centrilobular hepatocyte vacuolation in males, centrilobular hepatocyte necrosis in females, and centrilobular fat and bile duct hyperplasia in both sexes. Centrilobular hepatocyte vacuolation and centrilobular fat was also seen in 1000-ppm group male and female rats at interim sacrifice.

28
The incidences of exocrine atrophy of the pancreas in both sexes and acinar epithelial vacuolization or fat accumulation in females were increased at 1000 ppm; the incidence of exocrine atrophy was also increased at 100 ppm in females compared with that of control rats. The incidence of exocrine degeneration was increased in 1000-ppm group females rats at interim sacrifice but not in the main study. An increased incidence of thyroid follicular hyperplasia was observed in males at 1000 ppm (8% vs 2% for controls) and in females at 1000 ppm (10% vs 2% in controls). This finding may possibly be related to treatment with the test material. In male rats, the incidence of cortical tubular basophilis in the kidney was increased at 1000 ppm compared with that of the controls. Other treatment-related lesions included pneumonitis, alveolar adenomatosis, and alveolar epithelialization in 1000-ppm group males, alveolar epithelialization and alveolar macrophage aggregates in 1000-ppm group females, testicular atrophy in 100- and 1000-ppm group males, and spermatocole granuloma also in 1000-ppm males. The incidence of sinus histiocytosis in the lymph nodes was increased in 1000-ppm group females. Histopathologic assessment of the brain and spinal cord of rats in the control and 1000-ppm dose groups showed no treatment-related effect on vacuolization of white matter.

2. Carcinogenicity Studies in Mice

§ 870.4200

Study #1:

MRID No.: 42208405, 44807220, 44807212

Discussion of Tumor Data: In an oncogenicity study (MRID 42208405, 4807220, 44807212), Fluazinam (95.3% a.i., lot no. 8472-20) was administered to groups of 52 male and 52 female CD8-1 mice in the diet at concentrations of 0, 0.1, 1, 10, 100, or 1000 ppm. There were 2 control groups. The test diets were given for 104 weeks. These concentrations resulted in mean daily compound intakes of 0.12, 1.12, 10.72, and 107 mg/kg/day for 1 ppm, 10 ppm, 100 ppm, and 1000 ppm, respectively, for males and 0.11, 1.16, 11.7, and 117 mg/kg/day, respectively, for females. Additional microscopic review of brain and spinal cord was presented in MRID 44807220.

Treatment of CD8-1 mice for up to 104 weeks resulted in a significant increase in the hepatocellular adenoma incidence in high-dose males under the conditions of this study (controls, 14%; 1000 ppm 33%, p<0.05). The incidence of hepatocellular carcinoma was also increased in high-dose males, but the increase was not statistically significant by the tests applied by the study authors (controls, 17%; 1000 ppm, 33%, p<0.05). No increases in hepatocellular tumor incidences were seen in treated females compared to the controls. Historical control data supplied with the study showed the hepatocellular adenoma incidence in males ranged from about 4% to 27% in mice studies of similar duration, and the hepatocellular carcinomas incidence ranged from 12% to 38%. The incidence for hepatocellular adenomas for high-dose males in this study (33%) slightly exceeded the upper range of historic controls (27%).

Adequacy of the Dose Levels Tested: The dosing was adequate for an oncogenicity study based on the liver and brain toxicity at 1000 ppm. The group mean liver weights adjusted for body
weight were increased in males and females by 45% and 30%, respectively, at 1000 ppm compared to the controls, and by 15% in females at 100 ppm after 104 weeks of treatment (p<0.01). Microscopic examination showed increased incidences of liver areas containing basophilic hepatocytes (controls, 12%; 1000 ppm, 38%; p<0.01) and/or eosinophilic vacuolated hepatocytes (controls, 1%; 100 ppm, 8%; p<0.05; 1000 ppm, 19%, p<0.01) in treated males compared to the controls. Increased incidences of granulomatous hepatitis of minimal severity were seen in high-dose males (controls, 11%; 1000 ppm, 25%, p<0.01) and females (controls, 11%; 1000 ppm, 21%, p<0.01). Higher incidences of aggregates of brown pigmented macrophages were seen in the livers of treated males (controls, 13%; 100 ppm, 27%, p<0.05; 1000 ppm, 62%, p<0.01) and females (controls, 15%; 1 ppm, 40%, p<0.01; 10 ppm, 21%, NS; 100 ppm, 38%; 1000 ppm, 50%, p<0.01). Granulomatous hepatitis and brown pigmented macrophage aggregates were most commonly seen in mice that survived until the end of the study.

The central nervous systems of the animals were re-examined and the results reported in an addendum to the main study (MRID 44807220). Treatment-related increases in the incidences and severity of vacuolation of white matter occurred in the brains of males at 1000 ppm and increased severity of white matter vacuolation was seen in the brains of females at 1000 ppm compared to the control groups. No clear effect of treatment on the incidence or severity of white matter vacuolation in the spinal cord was seen in either sex, and no treatment-related effects were seen at 1, 10, or 100 ppm.

An additional carcinogenicity study in mice (MRID 44807222, 44807221, 44807211) was performed subsequent to this study with higher dose levels of fluazinam (see below).

Study #2:

MRID No: 44807222, 44807221, 44807211, 45201301

Discussion of Tumor Data: In an oncogenicity study (MRID 44807222, 44807221, 44807211), technical grade Fluazinam (97.0% a.i.) was administered to groups of 50 male and 50 female Crl:CD®-1 mice in the diet at concentrations of 0, 1000, 3000, or 7000 ppm. The test diets were given for 97 weeks to females and for 104 weeks to males. These concentrations resulted in mean daily compound intake of 126, 377, and 964 mg/kg/day for males and 162, 453, and 1185 mg/kg/day for females for 1000 ppm, 3000 ppm, and 7000 ppm, respectively. Twenty mice were added to the control and 7000 ppm groups for a satellite study in which the mice were killed and necropsied after treatment for 78 weeks.

The following incidences of hepatocellular tumors and historical control data were taken from a Pathology Working Group (PWG) report dated August 24, 2000 (MRID 45201301), which was submitted after the original study report which was dated December 19, 1996.

Increased incidences of hepatocellular adenomas and of combined hepatocellular

30
adenomas/carcinomas were observed in the treated male mice in this study. The percentage incidences of hepatocellular adenomas were 14%, 26%, 38% and 26% for the 0, 1000 ppm, 3000 ppm and 7000 ppm male groups, respectively. The increase in the 3000 ppm group was statistically significant (p < 0.01), whereas the increases at 1000 ppm and 7000 ppm were not statistically significant. The percentage incidences of hepatocellular carcinomas observed in the treated male mice in this study were 2%, 4%, 8% (not statistically significant) and 8% (not statistically significant) for the 0, 1000 ppm, 3000 ppm and 7000 ppm male groups, respectively. The percentage incidences of combined hepatocellular adenomas/carcinomas were 16%, 36%, 46% and 34% for the 0, 1000 ppm, 3000 ppm and 7000 ppm male groups, respectively. The increases in the 3000 ppm group (p < 0.01) and in the 7000 ppm group (p < 0.05) were statistically significant, whereas the increase at 1000 ppm was not statistically significant. No increases in hepatocellular tumor incidences were seen in the treated females compared to the controls. Historical control data provided in the PWG report (12 studies of 80 to 96 weeks duration at the same testing laboratory) showed the hepatocellular adenoma incidence in males ranged from 8% to 34% and the hepatocellular carcinoma incidence ranged from 2% to 16%. Historical control data was not provided for combined hepatocellular adenomas/carcinomas. The percentage incidence for hepatocellular adenomas for the 3000 ppm males in this study (38%) slightly exceeded the upper range of historic controls (34%).

Adequacy of the Dose Levels Tested: The highest dose level tested in this study (7000 ppm) is equivalent to the limit dose in the § 870.4200 guidelines. In addition, theesting was adequate for an oncogenicity study based on increased mortality in males and females, decreased body weights in males and females, and liver and brain toxicity in males and females at 7000 ppm. Treatment with Fluazinam resulted in a significant decrease in survival in males at 7000 ppm (control, 58%; 7000 ppm, 26%, p < 0.01). All females were terminated after 97 weeks of treatment because of low survival at the high-dose. At 7000 ppm, body-weight gain was decreased in males during weeks 4-6 by 32% (p < 0.01) and food conversion ratios over weeks 9-13 were increased by 86% compared to the controls indicating decreased efficiency of food utilization. At termination, relative liver/body weight ratios were increased in males by 54%, 113% and 182% and in females by 21%, 45%, and 109% at 1000, 3000, and 7000 ppm, respectively, compared to the controls (p < 0.01). Microscopic examination showed increased incidences of altered hepatocyte foci at all concentration levels in males and in high-dose females (males: control, 12/50; 1000 ppm 24/50, p < 0.05; 3000 ppm, 36/50; 7000 ppm, 33/50, p < 0.01; females: control, 3/50; 7000 ppm 19/50, p < 0.01). Incidences of hepatocytenucleus enlargement, pale or vacuolated hepatocyte cytoplasm, and brown pigmented macrophage aggregates were increased in all treated males and females compared to the control groups (p < 0.01). The pigmented macrophage aggregates also increased in severity from 0-22% of lesions in the controls to 41-58% of lesions at 7000 ppm graded "moderate" or "marked." Incidences of brown pigmented centrifibular hepatocytes and parenchymal inflammatory cells increased in males at 3000 ppm (both 6/50, p < 0.05) and 7000 ppm (11-16/50, p < 0.01) compared to the controls (0-1/50). Males were more sensitive to the hepatotoxic effects of fluazinam than females. Incidences of vacuolation of white matter in the brains of all treated animals were increased compared to the controls (p < 0.01). Vaoulation of white matter was also increased in the caudal spinal cord of males at 3000 and 7000 ppm (control, 18/50; 300 ppm,
37/50, p<0.05; 7000 ppm, 46/50, p<0.01) and marginally in females (control, 37/50; 3000 and 7000 ppm, 45/50, NS). The severity of the vacuolation of white matter in the brain and spinal cord increased with increasing dose from 0% graded “moderate” or “marked” in the controls to 33-60% of lesions at 7000 ppm.

Classification of Carcinogenic Potential: Combined results from two carcinogenicity studies in mice indicated that treatment of C57CD-1 mice for up to 104 weeks resulted in statistically significant increases in the incidence of hepatocellular adenoma in male mice at 1000 and 3000 ppm. These increased incidences slightly exceeded the upper range of the historic control incidences. The hepatocellular carcinoma incidence was also increased in male mice at these same dose levels, but was not statistically significant and was within the range of historic control incidences. The incidences of combined hepatocellular adenoma and/or carcinoma were also increased in male mice at 1000 ppm, 3000 ppm (p<0.01) and 7000 ppm (p<0.05). The increased incidence of hepatocellular adenomas and of combined hepatocellular adenomas and/or carcinomas observed in male mice at 1000, 3000 and 7000 ppm are considered to be treatment-related. No significant increases in liver tumors were seen in treated female mice compared to controls.

The HIARC recommends that the results of these studies and all other pertinent data pertaining to the classification of carcinogenic potential of fluzinam be submitted to the HED Carcinogenicity Assessment Review Committee for review and evaluation.

MUTAGENICITY

There are 5 available mutagenicity studies on technical grade fluzinam. Results in all 5 studies were negative for mutagenic potential. One study (differential killing/growth inhibition assay in bacteria, MRID 42270607) was unacceptable because only one plate per dose, rather than 2 plates per dose, were used. The other 4 studies were acceptable.

There is a data gap for an in vitro forward gene mutation study in mammalian cells according to the post 1991 mutagenicity study requirements. An acceptable study of this type has not yet been submitted to the Agency. To satisfy this requirement, the applicant has already been asked to perform and submit one of the 2 following studies: mouse lymphoma assay, or Chinese Hamster Ovary (CHO) hprt assay. In response to the Agency’s request, the applicant has informed the Agency that it intends to perform and submit a new mouse lymphoma study by November, 2000.

Update: The applicant has recently submitted 2 additional mutagenicity studies which are presently under review. Preliminary evaluation of the studies indicated the following:

1) Autoradiographic DNA Repair Test on Rat Hepatocytes for CGA-143268 (also known as Fluzinam): 1984, MRID 45156901; this is not the type of study that would satisfy the data gap; study has several serious deficiencies and will be classified as an unacceptable study; study was negative for mutagenic potential.
2) L5178Y/TG +/- Mouse Lymphoma Mutagenicity Test; CGA-143268 (also known as Fluazinam); 1986; MRID 45156902; this is the type of study that would satisfy the data gap; but the study apparently was not done in replicate and therefore will be classified as an unacceptable study; study was negative for mutagenic potential.

Study #1

Executive Summary: In a reverse gene mutation assay in bacteria (MRID 42270605), strains TA98, TA100, TA1535 and TA1537 of S. typhimurium and strain WP2(uvrA) of E. coli were exposed to Fluazinam technical (Lot No. 8412-20, 95.3% a.i.) in DMSO. In the absence of mammalian metabolic activation (S9-mix), the TA-strains were exposed to Fluazinam concentrations of 0.0625, 0.125, 0.25, 0.5, 1.0 and 2.0 μg/plate and WP2(uvrA) was exposed to concentrations of 15.6, 31.3, 62.5, 125 and 250 μg/plate. In the presence of S9-mix, the TA-strains were exposed to Fluazinam concentrations of 3.13, 6.25, 12.5, 25, 50 and 100 μg/plate and WP2(uvrA) was exposed to concentrations of 31.3, 62.5, 125, 250 and 500 μg/plate. All plates were in duplicate. The S9-fraction was obtained from phenobarbital + 5,6-benzofurafon induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. In the absence of S9-mix, complete growth inhibition (0 revertants/plate) was seen at 2 μg/plate in all TA strains and also at 1 μg/plate in TA1535 and TA1537. Less severe growth inhibition was seen at 1 μg/plate in TA100 (mean of 17 revertants/plate compared to a mean of 96 revertants/plate in the solvent control). In WP2(uvrA) the number of revertants per plate was reduced at 250 μg/plate to 4 revertants/plate compared to 30 revertants/plate for the solvent control. In the presence of S9-mix, complete growth inhibition (0 revertants/plate) was seen in all four TA-strains at 100 μg/plate and in TA98, TA1535 and TA1537 at 50 μg/plate. The mean number of revertants per plate in TA100 at 50 μg/plate was 23 compared to the solvent control value of 120. In WP2(uvrA) the number of revertants per plate at 500 μg/plate was reduced to 13 revertants/plate compared to 44 revertants/plate for the solvent control. No significant increase in the mutant frequency was seen. The number of revertants/plate was similar to the solvent control value at all Fluazinam concentrations, with or without S9-mix, in all tester strains. The solvent and positive controls induced the appropriate responses in the corresponding strains. There was no evidence of induced mutant colonies over background.

This study is classified as Acceptable/guideline. It satisfies the requirement for FIFRA Test Guideline (OPPTS 870.5265 (§4-2)) for *in vitro* mutagenicity (bacterial reverse gene mutation) data.

Study #2

Executive Summary: In a reverse gene mutation assay in bacteria (MRID 42270604), strains...
TA98, TA100, TA1535 and TA1537 of S. typhimurium and strain WP2uvrA of E. coli were exposed to Fluazinam technical (Lot No. 109, 95.3% a.i.) in DMSO. In the absence of mammalian metabolic activation (S9-mix), the TA-strains were exposed to Fluazinam concentrations of 0.0131, 0.0625, 0.125, 0.25, 0.5 and 1.0 μg/plate and WP2(uvrA) was exposed to concentrations of 15.6, 31.3, 62.5, 125 and 250 μg/plate. In the presence of S9-mix, the TA-strains were exposed to Fluazinam concentrations of 31.3, 62.5, 125, 250 and 500 μg/plate and WP2(uvrA) was exposed to concentrations of 31.3, 62.5, 125, 250 and 500 μg/plate. All plate sets were in duplicate. The S9-fraction was obtained from phenobarbital + 5,6-benzofurazan induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. In the absence of S9-mix, growth inhibition was seen at 1 μg/plate in TA100 (0 revertants/plate), TA1535 (0 revertants/plate) and TA98 (8 revertants/plate compared to 24 revertants/plate in solvent control). In the presence of S9-mix, growth inhibition (0 revertants/plate) was seen in all four TA-strains at 50 μg/plate and in the three TA-strains evaluated at 100 μg/plate. The number of revertants/plate was similar to the solvent control value at all Fluazinam concentrations, with or without S9-mix, in all tester strains. The solvent and positive controls induced the appropriate responses in the corresponding strains. There was no evidence of induced mutant colonies over background.

This study is classified as Acceptable/guideline. It satisfies the requirement for FIFRA Test Guideline B4-2 for in vitro mutagenicity (bacterial reverse gene mutation) data.

Study #3

Executive Summary: In a differential killing/growth inhibition assay in bacteria (MRID:42279007), strains H17 (rec-) and M45 (rec-) of B. subtilis were exposed to Fluazinam technical (Lot No. 109, 95.3% a.i.) in DMSO on paper disks at concentrations of 0.003, 0.01, 0.03, 0.1, and 0.3 μg/disk in the absence of metabolic activation (S9-mix) and at concentrations of 0.3, 1, 3, 10, and 30 μg/disk in the presence of S9-mix. The S9-fraction (purchased from Kikkoman Kenkyusho) was obtained from phenobarbital + 5,6-benzofurazan induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. A preliminary cytotoxicity assay showed that the growth of both bacterial strains was inhibited at concentrations of 4 μg/disk and higher with S9-mix and at concentrations of 0.032 μg/disk and higher without S9-mix. In the differential killing assay, the growth of both bacterial strains was equally inhibited at Fluazinam technical concentrations of 0.03 μg/disk and above without S9-mix and at concentrations of 1 μg/disk and above in the presence of S9-mix. There was no significantly greater growth inhibition or killing of the repair deficient M45 strain over that of the repair proficient H17 strain at any test material concentration, with or without S9-mix. In the absence of S9-mix, the diameter of the zone of inhibition around the disk at the maximum test material concentration was 8.7 mm with M45 and 7.4 mm with H17. Comparable values in the presence of S9-mix were 2.6 mm with

34
M45 and 2.5 mm with H17. The negative, solvent and positive controls induced the appropriate responses in the corresponding strains. There was no evidence of greater growth inhibition or cell killing in repair-defective strains compared to repair competent strains.

This study is classified as Unacceptable/Guideline. It does not satisfy the requirement for FIFRA Test Guideline (OPPTS 870.5500 (6341)-2 for in vitro mutagenicity [bacterial DNA damage/repair] data because only one plate per dose was used in the differential killing assay and the guidelines require two or more plates per dose for a plate diffusion assay.

Study #4

Executive Summary: In a mammalian cell cytogenetics assay (chromosomal aberrations) (MRID 42270604), Chinese hamster lung fibroblast (CHL) cell cultures were exposed to Fluazinam technical (Lot No. 109, 95.3% a.i.) in DMSO, at concentrations of 1, 2 and 4 μg/mL in the absence of metabolic activation (S9-mix) and at concentrations of 2.375, 4.75 and 9.3 μg/mL in the presence of S9-mix. Cells were harvested at 24 and 48 hours after start of treatment in nonactivated studies and at 24 hours after start of treatment in activated studies. The S9-fraction was obtained from phenobarbital and 3,5-dibenzoflavone induced male Sprague-Dawley rat liver.

Fluazinam technical was tested up to cytotoxic concentrations. In a preliminary cytotoxicity assay, the IC_{50} in CHL cells was determined to be approximately 3.8 μg/mL and 3.9 μg/mL at 24 and 48 hours, respectively, in the absence of S9-mix and about 8.0 μg/mL in the presence of S9-mix. Cells were harvested at 24 and 48 hours in the nonactivated study. Treatment times were 24 and 48 hours in the nonactivated assay and 6 hours in the activated assay. Two-hundred cells (100 per culture) per dose were evaluated. In the absence of S9-mix, the percentage of cells with structural aberrations (excluding gaps) at the 24 hour harvest time was 0.5%, 0.5% and 1.0% at 1, 2 and 4 μg/mL, respectively, compared to the solvent control value of 0.0% and the positive control value of 58%. Comparable values at the 48 hour harvest time were 0.0%, 0.0% and 1.0% at 1, 2 and 4 μg/mL, respectively, compared to the solvent control value of 0.5% and the positive control value of 29%. No polyploidy was seen at either harvest time. In the presence of S9-mix, the percentage of cells with structural aberrations (excluding gaps) were 1.0%, 0.0% and 2.0% at 2.375, 4.75 and 9.5 μg/mL, respectively, compared to the solvent control value of 1.0% and the positive control value of 50.5%. No polyploidy was seen. As a control for the metabolic activation assay, cultures were exposed to the same test material doses and exposure time as used in the presence of S9-mix but in its absence. The percentage of cells with structural aberrations in this assay (excluding gaps) were 0.0%, 3.5% and 3.0% at 2.375, 4.75 and 9.5 μg/mL, respectively, compared to the solvent control value of 0.5% and the positive control value of 0.0% (expected for cyclophosphamide which requires activation). Solvent and positive controls induced the appropriate response. There was no evidence of chromosomal aberrations induced over background.

35
This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline (OPPTS 870.5375 (§84))-2 for in vitro cytogenetic mutagenicity data.

Study #5

Executive Summary: In an ICR (Crl:CD-1) mouse bone marrow micronucleus assay (MRID 448077224), five mice/sex/dose were treated once via oral gavage with IKF-1216 technical (Lot No. #412-20, 95.6% a.i.) in olive oil at a dose of 2000 mg/kg in an initial micronucleus test and at doses of 500, 1000 and 2000 mg/kg in a second micronucleus test. Bone marrow cells were harvested at 24, 48 and 72 hours post-treatment in the first test and at 24 hours post-treatment in the second test.

IKF-1216 technical was tested to a limit concentration of 2000 mg/kg. The maximum tolerated dose was determined to be 3000 mg/kg in a preliminary toxicity assay (3/3 male mice died at 4000 mg/kg and 1/3 died at 5000 mg/kg). There were few signs of toxicity during the micronucleus studies. No deaths occurred in either the first or second micronucleus study. The only clinical signs seen in the first study were decreased spontaneous motor activity and piloerection at 2000 mg/kg in one IKF-1216 treated male. In the second study, two males each from the 500, 1000 and 2000 mg/kg dose groups showed loose stools at 5 hours post-treatment and one male from the 2000 mg/kg dose group showed loose stools at 24 hours post-treatment. One female from the 1000 mg/kg group showed loose stools at 5 hours post-treatment and one male each from the 1000 and 2000 mg/kg groups showed scalded fur around the genital region at 24 hours post-treatment. No adverse clinical signs were seen in the solvent or positive controls in either study. There was no statistically significant increase in the frequency of micronucleated PCEs over solvent control values at any IKF-1216 technical concentration or harvest time in either sex. The solvent and positive controls induced the appropriate response. There was no significant increase in the frequency of micronucleated polychromatic erythrocytes in bone marrow at any IKF-1216 concentration or treatment time used in this study.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline OPP#S 870.5395(§ 84-2) for in vivo cytogenetic mutagenicity data.

II. HAZARD CHARACTERIZATION

Technical grade fluazinam (lot #109, 95.3% purity) had an acute oral LD50 in rats of 4100-4500 mg/kg (Toxicity Category III), whereas two other lots of technical grade fluazinam (lot #412-20, 95.3% purity and lot #187, 97.9% purity) had acute oral LD50s in rats of >5000 mg/kg (Toxicity Category IV). The acute dermal LD50 of technical grade fluazinam in rats was >2000 mg/kg (Toxicity Category III) and the acute inhalation LC50 in rats was 0.463-6.476 mg/L (Toxicity Category II). Technical grade fluazinam was extremely irritating in a primary eye irritation study in rabbits (Toxicity Category I) and slightly irritating in a primary skin irritation study in rabbits (Toxicity Category IV). In dermal sensitization
studies in guinea pigs, technical grade fluanxam (96.7% purity) was positive, but ultra-purified fluanxam (100% purity) was negative for dermal sensitization.

In a battery of acute toxicity studies applicable to Omega 50F (EPA file symbol 71512-K, a flowable liquid concentrate of fluanxam containing 40% active ingredient), the acute oral LD50 in rats was >5000 mg/kg (Toxicity Category II); the acute dermal LD50 in rabbits was >2000 mg/kg (Toxicity Category II) and the acute inhalation LC50 in rats was 3.0-3.4 mg/L (Toxicity Category IV). In a primary eye irritation study in rabbits, it was slightly irritating (Toxicity Category III); in a primary skin irritation study in rabbits, it was moderately irritating (Toxicity Category II) and in a dermal sensitization study in guinea pigs, it was positive for dermal sensitization.

In subchronic and chronic oral, dermal and inhalation studies in rats, dogs and/or mice, the liver appeared to be the primary target organ. Signs of liver toxicity were consistently observed at or slightly above the LOAEL in all three species. These signs frequently included changes in clinical chemistries indicative of liver toxicity (e.g. increased serum alkaline phosphatase), increased absolute and/or relative liver weights, increased incidences of macroscopic liver lesions (e.g. pale, enlarged, friable, monilial, necrotic lesions) and increased incidences of a variety of microscopic liver lesions. Microscopic liver lesions included eosinophilic or basophilic hepatocytes, rarefied or vacuolated hepatocytes, altered hepatocytic nuclei, hepatocytic single cell necrosis, hepatocytic hypertrophy, hepatocellular fatty changes, increased brown pigmented macrophages, sinusoidal chronic inflammation, pericholangitis, and bile duct hyperplasia.

Treatment-related effects were also observed in other organs in subchronic and chronic oral, dermal and inhalation studies in rats, dogs and/or mice, but these effects were not regularly noted in all three species or in all studies in a given species. In rats, these effects included decreased body weight gain, decreased food consumption, mild anemia, increased serum cholesterol, increased serum phospholipid, increased serum aspartate aminotransferase, testicular atrophy, slightly increased testes weights (inhalation study), pancreatic exocrine atrophy, increased lung weights, increased alveolar adenomatosis, epithelialization and macrophages, thyroid follicular cell hyperplasia, and possibly increased thyroid follicular cell adenomas and adenocarcinomas in males (but not in females). In dogs, these effects included increased salivation, increased nasal dryness, grey motting of the retina, mild anemia, increased serum alkaline phosphatase and gastric lymphoid hyperplasia. In mice, these effects included increased mortality (at high doses), decreased body weight gain, increased serum glucose, increased kidney weights, cystic thyroid follicles, and increased hepatocellular adenomas and possibly hepatocellular carcinomas in males (but not in females).

In an acute oral neurotoxicity study in rats, the acute general systemic toxicity LOAEL was 1000 mg/kg based on soft stools and decreased motor activity on the day of dosing. These effects were considered to be a manifestation of acute general systemic toxicity and not a direct neurotoxic response to the administration of the test material. The acute general systemic toxicity NOAEL was 50 mg/kg. The LOAEL for neurotoxic effects was not identified (>2000 mg/kg). The NOAEL for neurotoxic effects was 500 mg/kg.
Of particular concern was a neurotoxic lesion described as vacuolation of the white matter of the central nervous system (CNS) which was observed initially in long-term (1-2 year) chronic studies on mice and dogs and later, upon careful re-examination of the CNS, also in shorter-term (4-week to 90-day) subchronic studies on mice and dogs. This lesion was observed during the (light) microscopic examination of several tissues of the CNS and occurred most frequently in brain (sections of cerebrum and/or sections of cerebellum, brain, medulla, midbrain) and less frequently in spinal spinal cord. Although this lesion was also observed in control animals, the increased incidence and/or severity of the lesion in test animals was clearly treatment-related and dose-related. Further investigation of this lesion in a series of special studies demonstrated the same lesion could also be induced in rats. In the special studies, the following was also determined.

Fluazinam, per se, was not responsible for the induction of this lesion. An analysis of the effects of impurities present in technical grade fluazinam revealed that one single impurity, Impurity-S, was solely responsible for the appearance of white matter vacuolation.

No significant differences in susceptibility or in incidence or severity of vacuolation of the white matter of the CNS were observed between species (mice, dogs, or rats). Similarly, no significant differences were attributed to sex.

White matter vacuolation in the CNS was reversible. Electron microscopy of the white matter (cerebellum) of mice treated with technical grade fluazinam indicated that treatment-related effects were confined to the myelin sheaths. Large vacuoles were observed in the intramyelin sheaths due to the accumulation of fluid between the sheaths. The nucleus and mitochondria in oligodendroglia were observed to remain intact, suggesting no damage to these cells. The myelin sheaths appeared to recover completely during a recovery period of up to 56 days.

There appears to be no non-linear dose-response with a clear threshold below which no effect occurs. It was concluded that a LOAEL of 0.1 mg/kg/day and a NOAEL of 0.02 mg/kg/day for CNS effects could be established for Impurity-S.

Based on a consideration of all the available data and information relating to this treatment-related neurotoxic lesion, it was concluded that the chronic 2xLOD of 0.01 mg/kg/day for the general population (including infants and children) is protective of the CNS effects caused by Impurity-S present in technical grade fluazinam.

Combined results from two carcinogenicity studies in mice indicated that treatment of mice for up to 104 weeks resulted in statistically significant increases in the incidence of hepatocellular adenoma in male mice at 1000 and 3000 ppm. These increased incidences slightly exceeded the upper range of the historic control incidences. The hepatocellular carcinoma incidence was also increased in male mice at these same dose levels, but was not statistically significant and was within the range of historic control incidences. The incidences of combined hepatocellular adenomas and/or carcinomas were also increased in male mice at 1000 ppm, 3000 ppm (p < 0.01) and 7000 ppm (p = 0.05). No significant increases in liver
tumors were seen in treated female mice compared to controls. In a combined chronic toxicity/sarcoma/growth study in rats, a slightly increased incidence of thyroid gland follicular cell adenomas, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 100 ppm and 1000 ppm. Also, a slightly increased incidence of thyroid gland follicular cell adenomas was observed, which exceeded the upper range of historical control data for the same tumor type, was observed in male rats at 1000 ppm. A battery of mutagenicity studies on technical grade fluazifluor, results in all studies were negative for mutagenic potential.

In a developmental toxicity study in rats, the maternal toxicity LOAEL was 250 mg/kg/day based on decreased body weight gain, decreased food consumption, increased water consumption, and increased urogenital staining during treatment. The maternal toxicity NOAEL was 50 mg/kg/day. The developmental toxicity LOAEL was 250 mg/kg/day based on decreased fetal body weights; decreased placental weights; increased fetal incidences of facial/palate clefts, diaphragmatic hernia and delayed ossification in several bone types; greenish amniotic fluid and possible increased late resorptions and postimplantation loss. The developmental toxicity NOAEL was 50 mg/kg/day. Although quantitative evidence of increased susceptibility of fetuses to fluazifluor was not observed, the increased fetal incidences of facial/palate clefts and other rare deformities observed in this study were considered to be qualitative evidence of increased susceptibility of fetuses to fluazifluor.

In a developmental toxicity study in rabbits, The maternal toxicity LOAEL was 7 mg/kg/day based on decreased food consumption and increased liver histopathology. The maternal toxicity NOAEL was 4 mg/kg/day. The developmental toxicity LOAEL was 12 mg/kg/day based on an increased incidence of total litter resorptions and a possibly increased incidence of fetal skeletal abnormalities including kinked tail tip, fused or incompletely ossified sternal bones, and abnormalities of head bones. The developmental toxicity NOAEL was 3 mg/kg/day. It was determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to in utero exposure to fluazifluor was observed in this study.

In a 2-generation reproduction study in rats, The NOAEL for parental toxicity was 20 ppm (1.9 mg/kg/day) and the LOAEL was 100 ppm (9.7 mg/kg/day), based on liver pathology (increased incidences of pericellular hepatocytic fatty changes) in F1 males. The NOAEL for reproductive toxicity was 100 ppm (10.6 mg/kg/day) and the LOAEL was 500 ppm (53.6 mg/kg/day), based on a decreased number of implantation sites and decreased litter sizes to day 4 postpartum for F2 females (F2 litters). The NOAEL for developmental toxicity was 100 ppm (8.4 mg/kg/day) and the LOAEL was 500 ppm (42.1 mg/kg/day), based on decreased body weight gain during lactation for both F1 and F2 pups. It was determined that neither quantitative nor qualitative evidence of increased susceptibility of fetuses to fluazifluor was observed in this study.

In a metabolism study in rats, only 33-49% of the administered dose of radiolabeled fluazifluor was absorbed. Most of the administered dose was recovered in the feces (>89%). Identified fecal metabolites represented only 11-68% of the administered dose. Unabsorbed parent compound represented most of the identified radioactivity in the feces. Most of the remaining fecal metabolites appeared in unextractable components in the post-extraction solid. Excretion via the urine was minor (<4%). Total
biliary radioactivity, however, represented 25.34% of the administered dose, indicating considerable enterohepatic circulation. Analysis of chromatograms indicated that numerous metabolites were present in the bile. Metabolite profiles from administration of different label positions (pyridyl and phenyl) indicated that there was no metabolic cleavage of the ring structures in parent fluzinam.

DATA GAPS / REQUIREMENTS

Mutagenicity Study: Mouse Lymphoma Assay

$870.5300

The applicant has informed the Agency that it intends to perform and submit a new mouse lymphoma assay by November, 2000.

28-Day Inhalation Study in Rats

See $870.3465

Developmental neurotoxicity study, rats

$870.6300

Test Material: to be technical grade fluzinam containing maximum level of Impurity-5 permitted in specification for technical grade fluzinam (currently 0.3%, but may be reduced to 0.1%. See letter from Gary L. Elzich, Vice President, Regulatory Affairs, ISK Biosciences Corporation to Mr. Jim Jones, Director, RD, OPP, dated August 3, 2000).

Proposed Protocol to include full neurohistopathological examination of dams. Protocol to be submitted to EPA for comment prior to commencement of study.

Based on consideration of the results in the developmental neurotoxicity study in rats required above, NIARC will subsequently determine whether a repeat of the subchronic neurotoxicity study in rats ($870.6200) will also be required to support the registration of fluzinam.

Subchronic neurotoxicity study, rats

$870.6200

Requirement: reserved; to be determined at a later time (see above).

40
VII. ACUTE TOXICITY

Acute Toxicity of Technical Grade Fluszinam

<table>
<thead>
<tr>
<th>GD LN</th>
<th>Study Type</th>
<th>M&ID</th>
<th>Result</th>
<th>Test Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-1</td>
<td>Acute Oral Rats</td>
<td>42248003</td>
<td>M: LD₅₀ > 4500 mg/kg F: LD₅₀ > 4100 mg/kg</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Lot # 109 (95.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-3</td>
<td>Acute Oral Rats</td>
<td>42248002</td>
<td>M: LD₅₀ > 5000 mg/kg F: LD₅₀ > 2000 mg/kg</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Lot # 8412-20 (95.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-4</td>
<td>Acute Oral Rats</td>
<td>42248004</td>
<td>M: LD₅₀ > 5000 mg/kg F: LD₅₀ > 2000 mg/kg</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Lot # 81/97 (97.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-5</td>
<td>Acute Dermal Rats</td>
<td>42248005</td>
<td>M: LD₅₀ > 2000 mg/kg F: LD₅₀ > 2000 mg/kg</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Lot # 83013-2 (98.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-6</td>
<td>Acute Inhalation</td>
<td>42248006</td>
<td>M: LC₅₀ = 0.49 mg/L F: LC₅₀ = 0.47 mg/L</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Rabbits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # 109 (95.3%)</td>
<td></td>
<td>Extremely irritating. Corneal opacity did not reverse in 21 days</td>
<td></td>
</tr>
<tr>
<td>81-7</td>
<td>Primary Eye Irritation</td>
<td>42248007</td>
<td>Slight dermal irritant</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Rabbits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # SNPE B-1216, No. 1006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-8</td>
<td>Primary Skin Irritation</td>
<td>42248001</td>
<td>POSITIVE for dermal sensitization</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Rabbits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # SNPE B-1216, No. 1006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-9</td>
<td>Dermal Sensitization</td>
<td>42248003</td>
<td>NEGATIVE for dermal sensitization</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Guinea Pigs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot # 30391 (96.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-10</td>
<td>Dermal Sensitization</td>
<td>42248008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guinea Pigs</td>
<td></td>
<td>Ultra-purified fluszinam 100% soln.VV970401</td>
<td></td>
</tr>
</tbody>
</table>

41
Acute Toxicity of Formulated Product (Omega 500F)

All studies conducted on Omega 500F (EPA file symbol 71512-R), 40% fluzoxfan, yellow liquid.

<table>
<thead>
<tr>
<th>GUID</th>
<th>Study Type</th>
<th>MRID</th>
<th>Results</th>
<th>Test Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-1</td>
<td>Acute Oral Rats</td>
<td>42974907</td>
<td>M: LC₅₀ > 5000 mg/kg</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F: LD₅₀ > 5000 mg/kg</td>
<td></td>
</tr>
<tr>
<td>81-2</td>
<td>Acute Dermal Rabbit</td>
<td>42974908</td>
<td>M: LD₅₀ > 2000 mg/kg</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F: LD₅₀ > 2000 mg/kg</td>
<td></td>
</tr>
<tr>
<td>81-3</td>
<td>Acute Inhalation Rat</td>
<td>42311001</td>
<td>M: LC₅₀ = 3.0 mg/L</td>
<td>IV*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F: LC₅₀ = 3.4 mg/L</td>
<td></td>
</tr>
<tr>
<td>81-4</td>
<td>Primary Eye Irritation Rabbit</td>
<td>42974910</td>
<td>Slightly irritating</td>
<td>III</td>
</tr>
<tr>
<td>81-5</td>
<td>Primary Skin Irritation Rabbit</td>
<td>42979011</td>
<td>Moderately irritating</td>
<td>II</td>
</tr>
<tr>
<td>81-6</td>
<td>Dermal Sensitization Guinea Pig</td>
<td>42974912</td>
<td>POSITIVE for dermal sensitization</td>
<td>N/A</td>
</tr>
</tbody>
</table>

IV. Based on results of acute inhalation toxicity study on rats on fluzoxfan 50% WP (31.3% fluzoxfan) (MRID 42311001) in which LC₅₀ = 3.0 mg/L for males and LC₅₀ = 3.4 mg/L for females. Toxicity Category IV. See memorandum by Byron T. Backus, Technical Review Branch, RD, dated April 3, 2000, for more detailed information and rationale.
VIII. SUMMARY OF TOXICOLOGY ENDPOINT SELECTION

Summary of Toxicology Endpoint Selection for Fluazinam

<table>
<thead>
<tr>
<th>Exposure Scenario</th>
<th>Dose Used in Risk Assessment, UF</th>
<th>Special FQPA SF* and Level of Concern for Risk Assessment</th>
<th>Study and Toxicological Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Dietary (Females 13-50)</td>
<td>NOAEL = 7 mg ai/kg, UF =1000 Acute RfD = 0.007 mg/kg/day</td>
<td>FQPA SF = 1X aPAD = acute RfD tQPA SF = 0.007 mg/kg/day</td>
<td>Rabbit developmental study. Increased incidence of total litter resorption and possibly increased incidence of fetal skeletal abnormalities at the LOAEL of 1N mg/kg/day.</td>
</tr>
<tr>
<td>Acute Dietary (General Population including infants and children)</td>
<td>NOAEL = 50 mg ai/kg, UF =1000 Acute RfD = 0.05 mg/kg/day</td>
<td>FQPA SF = 1X aPAD = acute RfD tQPA SF = 0.05 mg/kg/day</td>
<td>Acute neurotoxicity study - rats. Decreased motor activity and soft stools on day of dosing at the LOAEL of 1000 mg/kg.</td>
</tr>
<tr>
<td>Chronic Dietary (All populations)</td>
<td>NOAEL = 1.1 mg ai/kg/day, UF = 100 Chronic RfD = 0.011 mg/kg/any</td>
<td>FQPA SF = 1X aPAD = chronic RfD tQPA SF = 0.011 mg/kg/day</td>
<td>Carcinogenicity - mice Liver histopathology and increased liver weight at the LOAEL of 10.72 mg/kg/day.</td>
</tr>
<tr>
<td>Short-Term (1-36 days) and Intermediate-Term (1 - 6 months) Incidental Oral</td>
<td>Maternal NOAEL = 4 mg ai/kg/day</td>
<td>FQPA SF = 1X aPAD = chronic RfD tQPA SF = 0.011 mg/kg/day</td>
<td>Rabbit developmental study. Liver histopathology and decreased food consumption at the LOAEL of 7 mg/kg/day.</td>
</tr>
<tr>
<td>Short-Term (1 - 30 days) and Intermediate-Term Dermal (1 - 6 months)</td>
<td>Systemic NOAEL = 10 mg ai/kg/day</td>
<td>FQPA SF = 1X aPAD = chronic RfD tQPA SF = 0.011 mg/kg/day</td>
<td>21-day Rat dermal study. Increased cholesterol, increased aspartate aminotransferase (target organ: liver) at the LOAEL of 100 mg/kg/day.</td>
</tr>
</tbody>
</table>

FQPA SF, aPAD, chronic RfD, tQPA SF, chronic RfD = special FQPA scaling factor, acute Pad, chronic RfD, time to QPA scaling factor, chronic RfD
<table>
<thead>
<tr>
<th>Exposure Scenario</th>
<th>Dose Used in Risk Assessment, UF</th>
<th>Special FQPA SF* and Level of Concern for Risk Assessment</th>
<th>Study and Toxicological Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term Dermal (>6 months)</td>
<td>Oral NOAEL = 1.1 mg a.i/kg/day*</td>
<td>Residential MOE = NA</td>
<td>Carcinogenicity - mice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occupational MOE = 100</td>
<td>Liver histopathology and increased liver weight at the LOAEL of 10.72 mg/kg/day</td>
</tr>
<tr>
<td>Short-Term (1 - 30 days) Inhalation</td>
<td>NOAEL = 1.38 (NOAEL adjusted for 51.9% a.i.)</td>
<td>Residential MOE = NA</td>
<td>7-Day inhalation rats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occupational MOE = 300</td>
<td>(Test material: Frownicide WP containing 51.9% a.i.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased liver weights, increased testes weights</td>
</tr>
<tr>
<td>Intermediate-Term (1 - 6 months)</td>
<td>NOAEL = 1.38 (NOAEL adjusted for 51.9% a.i.)</td>
<td>Residential MOE = NA</td>
<td>7-Day inhalation rats</td>
</tr>
<tr>
<td>and Long-Term (>6 months) Inhalation</td>
<td></td>
<td>Occupational MOE = 1000</td>
<td>(Test material: Frownicide WP containing 51.9% a.i.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased liver weights, increased testes weights</td>
</tr>
</tbody>
</table>

a = To evaluate the long-term dermal risk, a dermal absorption factor of 25% should be applied to the NOAEL of 1.1 mg/kg/day.

UF = uncertainty factor, FQPA SF = Special FQPA safety factor, NOAEL = no observed adverse effect level, LOAEL = lowest observed adverse effect level, PAD = population adjusted dose (a = acute, c = chronic) R/D = reference dose, MOE = margin of exposure, LOC = level of concern, NA = Not Applicable

*NOTE: The Special FQPA Safety Factor recommended by the IRARC assumes that the exposure databases (dietary food, drinking water, and residential) are complete and that the risk assessment for each potential exposure scenario includes all metabolites and/or degradates of concern and does not underestimate the potential risk for infants and children.