US ERA ARCHIVE DOCUMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

JUL 20 1387

006004

OFFICE OF PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT: 7F3488. Karate³. Petition for Tolerance of PP321

on Soybeans.

Tox. Chem. No. 725C

Related Tox. Chem. No. 271F

Project No. 7-0466

TO:

George LaRocca (PM Team #15)
Registration Division (TS-767c)

FROM:

Pamela 1. Harley, Toxicologist Pamela M. Hurley

Section II, Toxicology Branch

Hazard Evaluation Division (TS-769c)

THRU:

Edwin R. Budd, Section Head Section II, Toxicology Branch

Hazard Evaluation Division (TS-769c)

William Burnam, Deputy Chief

Toxicology Branch

Hazard Evaluation Division (TS-769c)

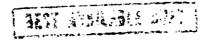
Background:

ICI Americas Inc. is requesting a permanent tolerance for PP321 on soybeans. This pesticide chemical is an ingredient of the insecticide, Karate?. PP321 is also one of two enantiomeric pairs which comprise the pesticide, cyhalothrin (PP563). The formulation, Karate? will be used with either air or ground equipment. No sore them 2.25 pounds a.i./acre/season is to be applied. The treated areas are not to be used for grazing or for harvesting for forage or hay.

ICT has provided subchronic, acute and metabolism data on both PP321 and cyhalotycha on support the use of the chronic studies that have been conducted on cyhalothrin as partially fulfilling the toxicity data required for the tolerance petition on PP321. In addition, A Market period in a chronic study on PP321 and the subchronic study on PP321 and the subchronic study.

The substance and iffraction and technical data for PP321 and Karate® are (usen in a previous Experimental Use Permit Perition (10132-EUP-UB), senorandum to George LaRocca, dated May 3, 1936.

1-57


Comments:

1. The following toxicity studies are required to be submitted in support of the tolerance petition (preceded by a (*)). Additional studies required for registration of the product are preceded by a (**) (ref. Fed. Reg. 40 CFR Part 153, October 24, 1984).

Technical Product	Required	Satisfied
**Acute oral LD50	Yes	Yes
**Acute dermal LDso	Yes	Yes
*90-day feeding studies		
rodent	Yes	Yes
nonrodent	Yes	Yes
		(comment 2)
**21-day dermal	Desirable	Pending
		(comment 3)
*Chronic feeding		
rodent	Yes	Yes
		(comment 4)
nonrodent	Zes	Yes
*Oncogenicity - rat	Yes	Yes
& mouse preferred		(comment 4)
*Teratogenicity - 2	Yes	Yes
species		(comment 4)
*Reproduction, 2	Yes	Yes
generation		(comment 4)
*Mutagenicity	17	Ÿ-a
Gene nutation	Yes	Yes Yes
Struct. chrom. abecrati		Yes
Other genotoxic effects	Yes	ies
End Use Product		
**Acute oral LD50	Yes	Yes
**Acute lecmal LD50	Yes	Yes
**Acute inheletion 7250	%≥ \$	Yes
**Primary eye incibilion	₹35	Yes
**Primacy decmal irritation	Yes	Yes
**Dermal sensitization	?es	Yes
Pure Active Ingredient		
*General Metabolism	Zes	Yes
		(comments 4,5)

2. A satisfactory chronic (1 year oral) dog study has been conducted on PP321. This study satisfies the requirement for a subchronic 90-day monrodent feeding study.

- 3. The 21-day dermal study in cabbits was classified as core supplementary because of the possibility that the animals had coccidiosis. This petition will not be held up because of the data gap in this area. However, The Toxicology Branch has already requested additional slides from this study in a previous memorandum (EUP Petition 53218-EUP-1,2) and that the slides be submitted for evaluation.
- 4. ICI has requested that the long term studies conducted on cyhalothrin be used in partial fulfillment of the toxicity data required for the tolerance petition for PP321. PP321 consists of 2 of the 4 enantiomers of cyhalothrin. On the basis of structural considerations, metabolism and subchronic data on both PP321 and cyhalothrin, and on the fact that the data from the chronic dog study conducted on PP321 does not contradict the data from the 6-month dog study conducted on cyhalothrin, the Toxicology Branch accepts the long term data on cyhalothrin as partial fulfillment of the toxicity studies required for the tolerance petition on PP321.
- 5. Extensive metabolism studies have been conducted on the purified form of pythocharia. A comparative study between cyhalotheria and PP321 has indicated that their absorption, distribution, metabolism and excretion patterns are identical following a single 1 mg/kg dose in the male rat. Therefore, the Toxicology Branch is accepting the actabolism studies conducted on cyhalothria along with the comparison study mentioned above in fulfillment of the metabolism studies required for the colerant patition for PP321.
- 6. The inert ingredients in the product Kirate have been cleared for use under 130.1001.
- 7. The draft label (12/86) precautionary statement should be changed to reflect that the formulation is corrosive to the skin. The registrant should also include a statement that the formulation is a potential sensitizer.
- 3. A copy of the proposed tolerances (Section F) is attached.
- 9. The Toxicology Branch has no objection to granting the petition for a permanent tolerable for PP321 on soybeans, once the label has been modified. An 8-point document is attached.

SECTION F

PROPOSED TOLERANCES

It is proposed that tolerances be established for residues of $(\pm)-\alpha$ -cyano-(3-phenoxyphenyl)methyl(\pm)-cis-(Z-2-chloro-3,3,3-trifluoroprop-2-enyl)-2,2-dimethylcyclopropanecarboxylate in or on the following raw agricultural commodities:

Commodity	Parts Per Million
Soybeans Poultry, meat Poultry, fat Poultry, meat byproducts	0.01 0.01 0.01 0.01

8-Point Review

[Prepared for 7F3488, PP321 on soybeans, July, 1987]

1. Toxicity data with technical grade PP321 of with technical grade cyhalothrin (justification given in point #8 of this document) considered in support of this tolerance (selected studies).

Acute oral LD50, rats PP321

90-tay feeding, rats P9321

26-week oral, dogs Cyhalothrin

Chronic feeding, rat Cyhalothrin

Chronic oral, dog PP321

Chronic/Onco, mouse Cyhalothrin

Teratology, rabble Cyhalothela

Teratology, rat Cyhalothrin 79 mg/kg in males
56 mg/kg in females

NOEL 50 ppm, LOGE 250 ppm based on reduced body with gain

NOEL 1 mg/kg/day LOEL 2.5 mg/kg/day (liquid feces)

NOEL 50 ppm, LOEL 250 ppm (reduced body wt gain. No onco. effects)

NOEL 0.5 mg/kg/day, LOEL 3.5 mg/kg/day (clinical signs of neurotoxicity)

NOEL 100 ppm, LOEL 500 ppm (decreased body wt gain. No onco. effects)

MOSE maternal tox. 10 kg/kg/d, LOSE 30 mg/kg/d (decrease) body wt gain). MOSE fetotox. 30 mg/kg/d Not teratogenic.

NOEL maternal tox.
10 mg/kg/d, LOEL
15 mg/kg/d (reduced
body wt). NOEL embryoleth. & fetotox. 15 mg/kg/d.
Not teratogenic.

Reproduction - 3 gen., rat Cyhalothrin

Metabolism, rais Cyhalothrin and PP321

Mutagenicity - Ames Gene Mutation (PP321)

Mutagenicity - Chrom.
Aberr. in rodents (PP321)

Mutagenicity - Gene mutation in Lymphoma cells (PP321)

Mutagenicity - <u>In</u> Vitro Cytogenetics (PP321) NOEL parental tox.
10 ppm, LOEL 30 ppm
(decr. bw gain). Offspring:
NOEL 10 ppm, LOEL 30 ppm
(decreased bw gain).

55% oral absorption.
Extensively metabolized when absorbed; cleavage of ester to cyclopropylcar-boxylic acid & phenoxybenzyl derivatives. Accumulation of the design and in fat you chronic administration.

Noc multiplenie

Did not induce micronuclei

Not mutagenic

Not a clastogen in human lymphocytes

- 2. Additional toxicity data considered desirable: None
- 3. Not applicable
- 4. No other tolerances have been published, although some tolerances are pending in review.
- 5. The relationship of these tolerances on the contribution to the diet and the MPI must be addressed by the Residue Chemistry Branch and the TAS system.
- 6. The 3-generation reproduction study on cyhalothrin in the rat with a safety factor of 100 was used to calculate the ADI. The NOEL was 0.5 mg/kg/day (10 ppm). The ADI is calculated to be 0.0050 mg/kg/day and the MPI is 0.3000 mg/day (69 kg).
- There are no pealing regulatory actions from the Toxicology Branch against registration of the pesticide.
- 8. The registrant has requested that the long term studies conducted on cyhalothrin be used in partial fulfillment of the toxibity but required for the tolerance political

for PP321 (Karate). PP321 consists of 2 of the 4 enantiomers of cyhalothrin. On the basis of structural considerations, metabolism and subchronic data on both PP321 and cyhalothrin, and on the Each that data from the chronic dog study conducted on PP321 does not conflict with the data from the 5-month dog study conducted on cyhalothrin, the Toxicology Branch (TB) accepts the long term data on cyhalothrin as partial fulfillment of the toxicity studies required for the tolerance petition on PP321. TB has also decided that both cyhalothrin and PP321 will be considered to be the same chemical for the purpose of establishing the ADI wil TMRC (see attached membracidum from R. Engler to Pam Harley, dated July 10, 1986). Any future tolerance petitions for either cyhalothrin, PP321 or any other mixtures of the 16 possible isomers of the chemical structure (provided that the appropriate toxicological data are provided) will be treated as if they are the same chemical and the proposed tolerances will be added to the percent ADI calculated for PP321 in this action.

JUL 1 0 1986

MEMORANDUM

DFFICE OF PESTICIDES AND TOXIC SUBSTANCES

SUBJECT:

ADI/RfD for Cyhalothrin and Karate

Caswell Nos. 271F and 725C

FROM:

Toxicology Branch ADI Committee

TO:

- 176--- 7 ----

Pam Hurley Section II, Toxicology Branch/HED (TS-769)

and

Residue Chemistry Branch/HED (TS-769)

Background:

The RfD/ADI documents for these "two" chemicals were presented to the Toxicology Branch ADI Committee. The following facts were presented to the Committee:

- Cyhalothrin and Karate are basically the same chemical, the differences are found in their stereo chemistry.
- Cyhalothrin consists of four (4) stereo isomers and Karate of two (2). The two Karate isomers are contained in Cyhalothrin, they represent 40% of Cyhalothrin.
- 3. At present, it appears that the use of Cyhalothrin focuses on using it on cattle (meat and milk tolerances) and Karate is intended for food crops (rac tolerances).
- 4. The major studies supporting an ADI/RfD were performed on Cyhalothrin, but the registrants intend to use these studies in support of either chemical.
- 5. While there might be some difference between the two "chemicals" especially with respect to efficacy, 90-day studies in rats have shown that there is no significant difference in their biological effects on mammals.
- 6. The reproduction study (3 generation) for Cyhalothrin shows the most sensitive toxicological endpoint (NOEL = 0.5 mg/kg/day).

Options: Essentially three options were discussed.

- To establish an ADI for Cyhalothrin at 0.005 mg/kg/day (NOEL/100) and to establish a separate ADI for Karate at 0.002 mg/kg/day (NOEL/100/2.5) accounting for the fact that only 40% of the Cyhalothrin fed was actually Karate.
- To establish an ADI on Cyhalothrin (as option 1) and require all the long-term data on Karate to establish a separate ADI.
- To establish an ADI for Cyhalothrin/Karate based on the Cyhalothrin data (i.e., 0.005 mg/kg/day).

Consensus:

The consensus of the ADI committee was to use option 3 for the following reasons:

- (1) All information, particularly the 90 day rat studies, show that there is no significant difference in the toxicity of the different stereo isomeric mixtures of this chemical.
- (2) Establishing two ADIs for essentially the same chemical would provide the opportunity to expose the population to excessive levels of the Cyhalothrin/Karate complex, especially under the present use practices where meat and milk tolerances would be evaluated against the "Cyhalothrin ADI" and other tolerances against the "Karate ADI."
- (3) Separate tolerances for stereo-isomers of the same chemicals would be inconsistent with the practice of setting combined telerances on salts, esters and acids of the same chemical; the basic toxicological properties remain the same even though these are not identical chemicals, in the strictest sense.
- (4) To prorate the combined Cyhalothrin/Karate ADI/RfD by a factor of 0.4 was not considered necessary since comparative toxicity tests did not show differences which would support this type of amortization.
 - (5) Referral to RCB: The committee, as a result of the above consensus concluded that residue evaluations and expressions for either Cyhalothrin or Karate must include any and all stereo isomers.

Page is not included in this copy. Pages through are not included in this copy.
rages through are not included in this copy.
The material not included contains the following type of information:
Identity of product inert ingredients.
Identity of product inert impurities.
Description of the product manufacturing process.
Description of product quality control procedures.
Identity of the source of product ingredients.
Sales or other commercial/financial information.
A draft product label.
The product confidential statement of formula.
Information about a pending registration action
FIFRA registration data.
The document is a duplicate of page(s)
The document is not responsive to the request.
The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

eviewed by: Pamela Hurley ection 2 , Tox. Branch (TS-769C) econdary Reviewer: Edwin Budd ection 2 , Tox. Branch (TS-769C)

006004

DATA EVALUATION REPORT

STUDY TYPE: Chronic dog study (83-1)

TOX. CHEM. NO.: 725C

ACCESSION NUMBER: 400279-01

TEST MATERIAL: PP321

SYNONYMS: Karate

STUDY NUMBER(S): PDO583

REPORT NUMBER: CTL/P/1316

SPONSOR: ICT Americas Inc., Macclesfield, England

TESTING FACILITY: ICI, PLC Central Toxicology Laboratory, Alderly, Park,

Macclesfield, UK

TITLE OF REPORT: PP321: 1 Year Oral Dosing Study in Dogs

AUTHOR(S): Hext PM, Brammer A, Chalmers DT, Chart IS, Gore CW, Pate I, Banham PB

REPORT ISSUED: 1/22/86

IDENTIFYING VOLUME: Vols. 1 and 2

The NOEL for chronic effects is 0.5 mg/kg/day in beagle dogs, based CCMCLUSION: upon clinical signs of neurotoxicity, including ataxia, convulsions and muscle tremors. There was an increase in fluid feces in all animals at 3.5 mg/kg/day and in one animal at 0.5 mg/kg/day (the latter was not considered to be toxicologically significant). The dose levels tested were 0.1, 0.5 and 3.5 mg/kg/day.

Classification: CORE GUIDELINE

MATERIALS AND METHODS:

1. Test Compound(s):

Chemical Name: (\underline{Z}) - $(\underline{IR}, \underline{3R})$, S-ester and (\underline{Z}) - $(\underline{IS}, \underline{3S})$, R-ester of alphacyano-3-phenoxybenzyl, 3-(2-chloro-3, 3, 3-trifluoroprop-1-enyl)-2, 2dimethylcyclopropane carboxylate

Description: buff-colored powder

Batch #(s), Other #(s): batch ref. Pl3, CTL Ref. Y02537/001/005

Purity: 96.5% w/w PP321 Source: ICI, PLC, Plant Protection Div., Jealotts Hill, Berkshire, UK

Wehicle (if applicable): corn oil

2. Test Animals and/or Other Test System (if applicable):

Species and Strain (sexes): male and female beagle dogs Me: 16-21 weeks (20-25 weeks at start) Source(s): ICI, PLC, Alderly Park, Macclesfield, UK

3. Procedure:

a. Dosing Preparation: Animals administered the compound orally via gelatin capsule. Quantities corrected for purity and dissolved in corn oil. 0.25 ml/kg administered daily. Animals fed standard laboratory diet.

Frequency of preparation: 5 week intervals

Storage conditions: In the dark at room temperature Stability Analyses: Stability studies done in previous studies; stable over a period of 6-7 weeks

Concentration Analyses: all solutions analyzed for PP321 content prior to use in study

- b. Basis For Selection of Cosage Levels: Based upon a six-week dose-cange finding study. Clinical signs of neurotoxicity and fluid feces seen at 2.5 mg/kg/day and above.
- c. Animal Assignment and Dose Levels:

T:st Group	Dose Admin- istered mg/kg/day	Main Study 12 months male femal	.e
Contr.	0	6 6	
1	0.1	6 6	
2	0.5	6 5	
3	3.5	ნ ნ	

- d. Clirical Observations and Mortality: All animals observed routinely 3 times daily during the week and 2 times daily on weekends and holidays. Full clinical exams at pre-study and at 3-monthly intervals. Exams included cardiac and pulmonary auscultation and indirect ophthalmoscopy.
- e. Body Weight Determinations: Weekly
- f. Food and/or Water Consumption: Daily
- g. Ophthalmological Examinations (if applicable): 3-monthly intervals

h. Clinical Pathology: (*) recommended by Guidelines

1) Hematology:

Collection times for blood (including # of animals): prestudy, weeks 4, 13, 26, 39 and 52

The following CHECKED (X) parameters were examined:

	X		X
x x x	Hemoglobin (HGB)* Leukocyte count (WBC)*	x x x	Mean corpustular HGB (MCH) Mean corpustular HGB conc.(MCHC) Mean corpustular volume (MCV)
X	Erythrocyte count (RBC)*	X	Kaolin—cephalin
x	Total plasma protein (TP)	×	Prothrombin times
x	Leukocyte differential count*		

2) Clinical Chemistry:

The following CHECKED (X) parameters were examined:

x x x	Chloride* Magnesium* Phosphorus* Potassium* Sodium* Cnzymes:	X	Albumin* Blood creatinine* Blood urea nitrogen* Cholesterol* Globulins Glucose* Total bilirubin* Total protein* Triglycerides
x x x			

3) Urinalysis:

Collection times for urine (including # of animals): pre-experimentally and weeks 25 and 51

The following CHECKED (X) parameters were examined:

Х		X
1	Appearance*	x Glucose*
	Volume*	x Ketones*
x	Specific gravity*	x Bilirubin*
x	1 T_	x Blood*
x	Sediment (microscopic)*	Nitrate
x		x Urobilinogen

i. Gross Necropsy:

Animals (groups) which died or were sacrificed in moribund condition and/or were sacrificed as part of an interim group prior to end of exposure period and were subjected to complete gross pathological examinations:

All

Animals (groups) sacrificed at the end of the treatment/observation period which were subjected to complete gross pathological examinations:

A11

j. Histopathology:

Animals (groups) which died or were sacrificed in moribund condition and/or were sacrificed as part of an interim group prior to the end of the exposure period and were subjected to microscopic examination:

A11

Animals (groups) which were sacrificed at the end of the treatment/observation period and were subjected to microscopic examination:

A11

CHECKED (x) tissues were preserved for histopathological examination and (xx) tissues were weighed upon cemoval from the animal. The (*) tissues were recommended by the Guidelines.

X	•	X		<u>X</u>	
_D	igestive system		Cardiovasc./Hemat.	N	Leurologic
1 1	Tongue	X	Aorta*	xx	Brain*
x	Salivary glands*	ХX	Heart*	X	Periph. nerve*
x	Esophagus*	х	Bone marrow*	x	E
x	Stomach*	x	Lymph nodes*	$ \mathbf{x} $	•
x	Duodenum*	х	Spleen*	x	Eyes (optic n.)*
$ \mathbf{x} $	Jejunum*	х	Thymus*	C	Glandular
x	Ileum*		Urogenital	xx	Adrenals*
x	Cecum*	хx	Kidneys*		Lacrimal gland
x	Colon*	х	Urinary bladder*	x	Mammary gland*
x	Recturn*	ХX	Testes*	X	Parathyroids*
xx	Liver*		Epididymides	xx	Thyroids*
x	Gall bladder*	х	Prostate	C	other
1 ::	Pancreas*		Seminal vesicle	X	Bone*
	espiratory	хx	Ovaries	X	Skeletal muscle*
x	Trachea*	x	Uterus*	x	Skin
x	Lung*	•		X	All gross lesions
' '	· ·				and masses
	•			x	Bone marrow smears
	•			x	
	•			x	'Tibia/femur (stifle joint)

k. Statistical Analyses: Body weight gains were considered by analysis of variance. Hematological and biochemical data were considered by analysis of covariance on pre-experimental values. Organ weights were considered by analysis of variance and analysis of covariance on final body weight. Student's t-test was also used.

B. RESULTS:

- 1. Dosing Preparation: 11 samples were analyzed for PP321 concentration. The mean values were as follows: for the 0.4 mg/ml concentration, the mean concentration range was 0.37-0.43 mg/ml; for the 2.0 mg/ml concentration, the mean concentration range was 1.85-2.08 mg/ml and for the 14.0 mg/ml concentration, the mean concentration range was 12.6-15.2 mg/ml. The concentrations were within 10% of nominal for all preparations. The mean concentrations of dosing solutions administered over the whole of the study were within 5% of the intended concentrations.
- 2. Clinical Observations and Mortality: In week 46, 1 male from the highest dose level (3.5 mg/kg/day) was killed because of severe ataxia and convulsions which persisted over a period of 2 days, even though dosage was withheld during this period. No other animals either died or were killed in extremis during the study.
 - At 3.5 mg/kg/day, the principal clinical observations following dosing were neurological effects. These included ataxia, muscle tremors and convulsions (see attached table). Subdued behavior was also observed in many of these animals. For individual animals, usually on single days only, dosing at this level was suspended to allow recovery from the neurotoxic effects. Worn, broken or bleeding claws were observed in 3 dogs, and on 3 occasions appeared to be associated with the signs of neurotoxicity. On 3 other occasions with 1 female dog, it was unknown whether or not this accompanied neurotoxic effects. Regurgitation of food was seen occasionally during the first 2 weeks of the study from 7/12 dogs. Thereafter, there was only a moderate incidence in this group. An increased incidence in Stuid feces was observed in all the dogs from this dose group thoughout the study.

At 0.5 mg/kg/day, 2 dogs were observed to have gait abnormalities (2 times in 1 animal and 4 times in the other animal). Convulsions were observed in 2 other dogs (both males); the convulsions appeared to be precipitated by the stress of handling or noise. Blood stains on the pen floor with no obvious cause were seen in 2 dogs. The frequency of fluid feces was clearly increased in 1 dog at this dose level and the overall incidence in this group suggested a slight treatment-related effect.

On a single occasion, limite losed at the lowest dose level, 0.1 mg/kg/day had slight ataxia. Blood stains on the pen floor with no obvious cause was seen with 1 female dog in week 27. The incidence of vomiting in this dose group was comparable to controls and there was no increase in either the frequency or incidence in fluid feces over the control values.

Other clinical findings in all dose groups when considered to be inclidental.

- 3. Body Weight Determinations: There was no evidence of any treatment-related effects on body weight gain in either sex.
- 4. Food and/or Water Consumption: 5/12 dogs at the highest dose level showed a slight reduction in food intake on a very small number of occasions. Since reduction in food intake, particularly for males, was a rarity for the testing laboratory, this reduction was considered to be due to PP321. There was no apparent correlation with the occurrence of neurological effects. A total of 2 dogs in the remaining 3 groups (including controls) left food uneaten.
- 5. Ochthalmological Examinations: No treatment-related effects were observed.
- 6. Hematology: Statistically significant differences im various parameters were observed during the treatment period. The majority of the findings were noted in the highest dose group. The authors considered these observations to be minor and not to be of biological or toxicological significance.
- 7. Clinical Chemistry: There was evidence of slightly increased plasma triglycerides accompanied by a slight decrease in plasma cholesterol in the high dose animals throughout the dosing period. Other observed changes were considered to be incidental.
- 8. Urinalysis: No treatment-related effects were observed.
- 9. Gross Pathology: No treatment-related lesions were observed.
- 10. Organ Weights: In the highest dose group, mean testes weights were slightly reduced after adjustment for final body weight. This was particularly evident in 2 logs. There were also slight dose-related increases in mean liver weights at this dose level for both sexes and evidence of increased kidney weights in males, although this was mainly due to lanimal.

11. Histopathology:

- a. Nonneoplastic lesions: No treatment-related lesions were observed.
- b. Neoplastic lesions: No treatment-related lesions were observed.
- 12. Quality Assurance Measures: Appropriate inspections were conducted and reports were written. As could be reasonably established, the methods described and the results given in the report accurately reflect the data produced during the study.

C. DISCUSSION:

This study appears to have been properly conducted according to the EPA Guidelines. The only significant signs of toxicity that were observed were the clinical signs of neurotoxicity and liquid feces at the highest dose level. These signs were not supported by any microscopic indications. The clinical signs of neurotoxicity were especially evident at the highest dose level, 3.5 mg/kg/day. At 0.5 mg/kg/day, the clinical signs could not be clearly attributed to neurotoxicity. Four of twelve dogs at this dose level showed some signs possibly relating to neurotoxic effects. Of the four, two animals showed slight ataxia (one time for one dog and four times during one week for another dog). The signs were so slight that little description was written of them in the individual animal data. The other two animals displayed convulsions of short duration (lasting 30 seconds to 3 minutes), one quine for one animal and two times for the other animal. These convulsions occurred while the animals were either being carried or being placed in a metabolism cage. No other clinical signs of this type were observed either in these animals or in any of the other animals at this dose level throughout the duration of the study. From the clinical observation data, the NOEL for neurotoxic effects is probably very close to 0.5 mg/kg/day. The authors of the report used this dose level as the NOEL for the study. Since the data do not indicate a clear effect, 0.5 mg/kg/day is accepted as the NOEL for neurotoxic effects in dogs. The study is classified as CCRE GUIDELINE.

006004

INCIDENCE AND SEVERITY OF ATAXIA (INDIVIDUAL ANIMALS) PP321: 1 YEAR ORAL DOSING STUDY IN DOGS TABLE 3

						3	Duration (Weeks)	eks)			
Treatment (mo PF121/kg/Day)	ž	Antas		1-4			#.s			21-6	
			S IGHT	MUDERATE	SEVERE	2 164	MODERATE	SEVERE	S IGHI	MODERATE	SEVERE
0.1	Male	=	•	o	0	7	0	0	9	9	0
		92	9	9	9	0	9	0	0	0	0
9.0	Male	2	•	•	•	0	•	0	0	0	ö
		92	-	0	•	9	9	0	0	0	9
	Fossie	ž	0	0	9	0	9	0	•	9	0
		7	-	9	9	~	2	0	1	0	0
		33	0	•	0	2	•	9	•	-	0
		2	=	-	0	=	2	9	6	1	1
	36.6	3	-	-	•		9	7	21	8	•
	J.	=	~	0	0	•	0	0	9	1	0
		24	^	0	_	•	-	9	•	0	9
e.		\$	=	٠	-	•	•	•	0	0	0
		3	•	9	0	2	0	0	-	0	0
		\$	-	0	•	-	9	0	-	9	9
		2	~	•	0	0	0	9	-	•	9
		\$	^	2	0	0	0	-	0	9	o
		92	-	0	0	9	0	•	0	0	•
A				-							

expressed as number of observations/4 weeks

Unsteady gait Incoordinated gait Straddied gait/recumbency Slight Moderate Severe There was no incidence of ataxia in control animals

PP321: 1 YEAR ORAL DOSING STUDY IN DOGS TABLE 3 - continued INCIDENCE AND SEVERITY OF ATAXIA (INDIVIDUAL AN:MALS)

						3	Duration (Weeks)	eks)			
Irestment (mg PP321/kg/Day)	ž	An ima:		13-16			17-20		1	21-24	
			2 191	MODERATE	SEVERE	S IGHT	MODERATE	SEVERE	24.1GHT	MODERATE	SEVERE
1.0	Male	=	9	0	0	•	0	•	0	0	0
		92	0	0	0	•	0	0	0	9	0
9.0	Male	12	•	0	9	•	•	•	9	9	0
-	~.	92	9	0	0	0	•	0	0	9	9
	Fenale	ኋ	9	0	0	0	•	9	0	9	0
•	3	î	-	0	0	2		0	2	٥	0
		23	^	9	0	^	•	0		9	٥
	2	39	39	1	0	=	0	-	11	e	0
	į	04	~	2	l	13	-	1	6	0	£
	1	7	0	0	0	9	0	0	0	0	0
		2	-	0	0	•	9	0	-		0
;		;	•	9	0	2	-	0	•	0	0
		*	0	0 .	0	ſ	0	0	-	0	0
	f cont.	\$\$	0	0	0	9	0 -	0	1 =	0	0
		\$	-	0	9	-	9	9	2	0	0
		/*	2	0	0	2	0	0	-	0	0
		8	•	0	0	9	0	0	-	0	0

expressed as number of observations/4 weeks

Slight Moderate Severe

Unsteady gait Incoordinated gait Straddled gait/recumbency

There was no incidence of ataxia in control animals

006004

PP321: 1 YEAR ORAL DOSING STUDY IN DOGS
TABLE 3 - CONTINUED
INCIDENCE AND SEVERITY OF ATAXIA (INDIVIDUAL ANIHALS)

						3	Uuration (Heeks)	eks)			:
(mg PP321/kg/bay)	ž	Antmat		82-52			28-32		1	33-36	
			1891 ×	MULHATE	SEVENE	Z 1651	MUDERATE	SEVENE	351.7	MUDERATE	SEVENE
0.1	Male	=	0	9	9	0	0	0	0	0	9
		*	0	9	0	0	0	•	0	0	9
6.0	Male	æ	0	9	0	0	9	0	9	o	•
		82	•	•	0	0	0	0	0	•	0
	female	ጃ	a	0	•	0	9	•	0	0	•
		ñ	•	0	9	•	0	9	~	•	•
		23	•	9	0	~	0	0	0	0	•
	3	£	\$1		9	21	2	9	•		9
	į	0\$	IJ		1	6	1	þ	œ	1	1
	í	#	m.	9	0	0	9	0	9	0	0
		42	1	9	0	ᅄ	0	0	92	0	0
9		7	7	o	0	e	0	0	9	0	0
		¥	0	0	0	0	0	0	~	0	0
	9117	45	8	0	0	0	0 .	1	0	0	0
		2	0	0	0	0	0	0	-	0	0
		14	-	0	0	٦	0	0	-	0	0
		8		0	0	0	0	0	•	0	0

expressed as number of observations/4 weeks

Unsteady gait Incoordinated gait Straddled gait/recumbency Slight Moderate Severe

There was no incidence of ataxia in control animals

PP321: 1 YEAR ORAL DOSING STUDY IN DOGS TABLE 3 - continued INCIDENCE AND SEVERITY OF ATAXIA (INDIVIDUAL ANIMALS)

						3	Unratton (Weeks)	icks)	1		
Irestment	ž	An tast		27-40			* =			45-48	
			1831 %	MUDERATE	SEVENE	X 15H1	MUDEKATE	SEVENE	1891 S	MULKATE	SEVENE
0.1	Male	=	0	э	9	0	9	0	0	0	0
		2	0	Э	0	0	0	0	9	0	9
\$.0	Male	2	0	0	9	9	o	9	9	9	9
.4	•	R2	0	0	0	э	0	9	9	9	0
***************************************	female	3	•	э	9	Э	9	9	9	0	0
The state of the s		7	~	9	0	0	9	9	Э	9	2
sa, isa		2	-	э	9	o	0	•	•	0	0
		æ	٠	-	-	~	o	~	٠	2	-
	9	\$	=	~	2	5 0	2	1	21	-	٠
		=	0	0	э	Э	9	9	9	9	9
		3	۰	0	Э	-	0	0	•	1	-
n 1		\$	-	-	•	Э	9	0	0	0	9
		\$	0	э	9	9	ja '	9	0	0	o
		ş	-	0	9	7	э	э	0	n	9
	U 6 3	2	0	0	o	9	Э	э	-	0	Э
		•	-	9	э	0	•	9	-	2	0
		2	9	3	9	Э	Э	9	Э	9	9

expressed as number of observations/4 weeks

Slight Moderate

Unsteady gait Incoordinated gait Straddled gait/recumbency Severe

There was no incidence of ataxia in control animals

* Killed in week 46

PP321: 1 YEAR ORAL DOSING STUDY IN DOGS

006004

TABLE 3 - continued

INCIDENCE AND SEVERITY OF ATAXIA (INDIVIDUAL ANIMALS)

	•				
	Sex	Animal No.	Duration (Weeks) 49-52(53)		
Treatment (mg PP321/kg/day					
			SLIGHT	MODERATE	SEVERE
0.1	Male	14	0	0	0
0.5	Male	26 27	0	0 0	2 1 0
		28	0	0	ō
	Female	34	0	0	0
	Male	37	3	1	0
		38	0	0	0
		39*	-	•	-
		40	9	1	6
		41	0	0	0
3.5	-	42	7	0	3
	Female	43	2	0	2
		44	0	0	0
		45	0	0	0
		46	0 .	[*] 0	0
		47	0	. 0	0
		48	0	0	0

[/] expressed as number of observations/4 weeks

Slight = Unsteady gait Moderate = Incoordinated gait

= Straddled gait/recumbency Severe

There was no incidence of ataxia in control animals

* Killed in week 46