

Text Searchable File

DATA EVALUATION RECORD FISH LIFE-CYCLE TOXICITY TEST §72-5

1. <u>CHEMICAL</u>: 2-(4-isopropyl-4-methyl-5-oxo-2imidazolin-2-yl), nicotinic acid (Imazapyr) PC Code No.: 128821

2. <u>TEST MATERIAL</u>: AC 243997 Technical

<u>Purity</u>: 100%

3. <u>CITATION</u>:

Author: Drottar, K.R., et al.

<u>Title</u>: Toxicity of AC 243997 (Imazapyr) Technical During the Full Life-Cycle of the Fathead Minnow (*Pimephales promelas*) Under Flow-Through Test Conditions.

Study Completion Date:

February 5, 1999

Laboratories:

Wildlife International Ltd. Easton, MD.

American Cyanamide Company Princeton, NJ.

Sponsor: American Cyanamide Company Princeton, NJ.

Laboratory Report ID: ECO 97-101

<u>MRID No.</u>: 45119712

DP Barcode: D275562

4. **<u>REVIEWED BY</u>**: Christie E. Padova, Staff Scientist, Dynamac Corporation

Signature: C.E. Pad

Date: 4/12/02

APPROVED BY: Teri Myers, Ph.D., Staff Scientist, Dynamac Corporation

Signature: A Snap

Date: 4/12/02

5. APPROVED BY: Stephen Carey, Biclogist, EFED

Steph Cong Signature:

Date: 3/10/03

MRID No: 45119712

DP Barcode: D275562

6. STUDY PARAMETERS:

Scientific	Name of Test Organism:	Pimephales promelas
	Age of Test Organism:	<24 hours old (F ₀ generation)
	Definitive Test Duration:	249 Days (approximately 8 months)
	Study Method:	Flow-through
	Type of Concentrations:	Mean-measured

7. <u>CONCLUSIONS</u>:

The 8-month chronic toxicity of AC 243997 Technical to the full life cycle of Fathead Minnow (*Pimephales promelas*) was studied under flow-through conditions. Fertilized eggs (200 embryos/treatment, <24 hours old) of fathead minnow were exposed to the test material at nominal concentrations of 0 (negative control), 7.5, 15, 30, 60, and 120 mg a.i./L. No solvent carrier was used. Mean-measured concentrations were 7.2, 15, 29, 59, and 120 mg a.i./L during the parental generation (F_0) and 7.5, 15, 30, 61, and 120 mg a.i./L during the second generation (F_1). Treatment groups were compared to a negative control group.

Following hatching on Day 5, alevins were reduced to 100 per treatment level. On Day 61 (approximately 8 weeks post-hatch), the juveniles were again reduced to 50 per treatment level. At approximately 23 weeks post-hatch (approximately Day 167), 15 adult fish per treatment level were isolated for spawning. Beginning on Day 174, embryos of the F_1 -generation were isolated and exposed under identical test conditions as those described for the parental generation until 4 weeks post-hatch (Day 209).

<u>F₀-generation</u>: No treatment-related effects were observed on embryo survival, time to hatch, or larval, juvenile, or adult survival of the F_0 generation. No treatment-related effects were observed on percent spawning frequency, the mean number of eggs produced per female per reproductive day, the mean number of fertile embryos produced per female per reproductive day, or the mean percent fertilization success. Growth of the F_0 generation was also unaffected by treatment with AC 243997 Technical, and no treatment-related signs of toxicity were observed in surviving fish throughout the study.

<u> F_1 -generation</u>: No treatment-related effects were observed on embryo survival, time to hatch, or larval and juvenile survival of the F_1 generation. Growth of the F_1 generation was also unaffected by treatment with AC 243997 Technical, and no treatment-related signs of toxicity were observed for surviving fry during the 4-week observation period.

This study is scientifically valid, and although results do not meet guideline requirements; the information may be useful in a risk assessment.

US EPA ARCHIVE DOCUMENT

Results Synopsis: NOEC: 120 mg a.i./L LOEC: >120 mg a.i./L

Most Sensitive Endpoint: None.

8. ADEQUACY OF THE STUDY:

A. Classification: Supplemental

B. Rationale: Because the F_1 generation was only maintained for 4 weeks post-hatch (instead of the required 8 weeks), this study does not satisfy guideline requirements for a fish life-cycle toxicity test (§72-5). This study is scientifically sound, and provides supplemental data on the toxicity of AC 243997 Technical to the life cycle of fathead minnow.

C. Repairability: This study may be upgraded to Core status if data are provided to support that assumptions of no adverse effects on the survival, appearance, or growth of second-generation larvae would have been maintained, had the fish been observed up to 8 weeks post-hatch.

9. <u>GUIDELINE DEVIATIONS</u>:

1. F₁-generation fish were maintained for only 4 weeks, instead of the required 8 weeks.

10. <u>SUBMISSION PURPOSE</u>: This study was submitted to provide data on the toxicity of AC 243997 to the life cycle of fathead minnows for the purposes of chemical registration.

11. MATERIALS AND METHODS:

A. Test Organisms	
Guideline Criteria	Reported Information
Species Prefer Sheepshead minnow (<i>Cyprinodon</i> <i>variegatus</i>) or Fathead minnow (<i>Pimephales promelas</i>).	Fathead minnow (<i>Pimephales promelas</i>)

A. Test Organisms

3

MRID No: 45119712

Guideline Criteria	Reported Information
Source and Acclimation	Embryos were obtained from brood stock cultures maintained for an unspecified period of time at Wildlife International Ltd., Easton, MD.
Age at beginning of test Embryos, 2 to 24 hours old	<24 Hours old
Feeding Fish should be fed at least twice daily and should not be fed for at least 24 hours prior to test termination.	Feeding began when $\geq 90\%$ of the negative control embryos had hatched. Newly hatched larvae were fed live brine shrimp nauplii (<i>Artemia sp.</i>) three times daily, twice on weekends. Rations were adjusted based on the number of fish in each test chamber. It was not reported whether or not fish were fed at least 24 hours prior to test termination.
Embryo Exposure (4 to 5 Days) Embryos (≤24 hours old) from at least 3 separate spawns should be randomly distributed to embryo cups.	Days 0-5 Embryos (< 24 hours old) from nine separate spawns were randomly distributed to embryo cups.
A minimum of 50 embryos (\leq 24 hrs old) per replicate cup, 4 cups per treatment should be used.	Each cup contained 25 embryos, with two cups per replicate and four replicates per treatment level (total of 200 embryos per treatment).
 <u>Parameters measured</u>: Survival of embryos Time required to hatch Hatching success Survival of fry for 4 weeks 	 <u>Parameters measured</u>: Survival of embryos Time required to hatch Hatching success Survival and signs of toxicity of fry/juvenile fish
Dead and fungused embryos should be counted and removed daily.	Mortality and clinical signs of toxicity were made daily. Dead embryos were removed.

4

MRID No: 45119712

Guideline Criteria	Reported Information
Larval-Juvenile Exposure (From Hatch to 8 Weeks) After hatching, each group of larvae is randomly reduced to a minimum of 25 fish and released in replicate larval growth chambers. The random selection must include any fish that are lethargic or deformed.	Days 5-60 (hatch to approximately 8 weeks) When \geq 90% of the embryos in the negative control group had hatched, larvae were impartially thinned to 25 per replicate, with four replicates per treatment (100 embryos per treatment), and the larvae were transferred from the incubation cups to the larval growth chambers.
 <u>Parameters measured</u>: Fish survival (determined by counting the number of live fish in each replicate growth chamber weekly). Total lengths (mm) of all fish at 4 and 8 weeks after hatching. 	 <u>Parameters measured</u>: Survival and signs of toxicity of fry/juvenile fish Total lengths (mm) of all surviving fish at 32 and 60 days (approximately 4 and 8 weeks)

MRID No: 45119712

Juvenile-Adult Exposure (From 8 weeks	Days 61 to 249 (approximately 8 to 35
posthatch to the end of the spawning	weeks post-hatch)
phase [32-40 weeks])	On Day 61, juvenile fish were reduced
<u></u>	from four to two replicates per treatment
	(50 total fish per treatment).
At 20-24 weeks after hatching, mature fish	On Day 167 (approximately 23 weeks
are placed in a spawning tank of the same concentration (4 males and 4 females	post-hatch), two males and three females were impartially assigned to each
andomly chosen and assigned). The	spawning compartment. There were two
spawning tank is divided into 4 individual	spawning compartments per replicate.
spawning chambers with appropriate	Five additional fish were maintained in
spawning substrates.	each spawning tank but were segregated
	from the spawning groups for a total of 15
	adults per replicate (30 total fish per treatment).
The substrates are examined daily and	
embryos removed, counted, and recorded	The spawning substrates are examined
separately for each pair.	daily and embryos removed, counted, examined for fertility, and the number of
	fertile and non-fertile embryos were
	recorded for each spawning group.
For fathead minnow, adult exposure	
should be terminated when no spawning	Adult exposure was terminated when no
occurs for one week. For sheepshead	spawning occurred in any group over a
minnow, testing should be terminated after spawning is observed for 2 weeks.	7-day period.
spawning is observed for 2 weeks.	Parameters measured:
	Survival of adult fish
	• Spawning frequency
	 Number of eggs deposited
	• Fertilization success
	• Total lengths (mm) and weight (g) of all
	surviving fish at 249 days

MRID No: 45119712

Guideline Criteria	Reported Information
Second Generation Embryo Exposure (4 to 5 days) 50 embryos from each conc. level are randomly selected and transferred to incubation cups for hatch. Use the same test procedures as those for parental generation. Embryos not selected are discarded.	Days 174-181 (7 days) 100 embryos from each treatment level were randomly selected and transferred to incubation cups for hatch. The same test procedures as those employed for the parental generation were used, and the same endpoints were measured. Embryos not used for the second generation exposure were maintained frozen for possible analyses of tissue residue
Second Generation Larval-Juvenile Exposure (From Hatch to 4-8 weeks) After hatching, 25 larvae are released in each growth chambers (2 chambers per treatment). Each group of 2 nd generation fish is terminated 8 weeks after hatching.	concentration.Days 178-209 (Hatch to 4 weeks)After hatching, 25 larvae were released in two replicate test chambers (50 total larvae per treatment).Each group of F1-generation fish was terminated 4 weeks after hatching.
Fish are blotted, weighed, and measured before being discarded.	Fish were blotted, weighed, and measured for total length.

Comments: None.

MRID No: 45119712

B. Test System **Reported Information** Guideline Criteria **Test Water** Sheepshead Minnow N/A Natural seawater (sterilized and 1. filtered) or a commercial mixture. Natural seawater with a salinity of 2. >15 parts per thousand (weekly range of salinity <6% and monthly pH range <0.8 pH units). Fathead Minnow 1. Well water (40-meters deep) located Reconstituted water or water from 1. on-site at the laboratory. The water was unpolluted well or spring (sterilized filtered, aerated, and UV-sterilized prior and tested for pollutants). to use. 2. Hardness of 124 to 140 mg/L as Hardness of 160 to 180 mg/L as 2. $CaCO_3$ and pH of 7.6 to 8.0. $CaCO_3$ and pH of 7.5 to 8.4. **Test Temperature** N/A Sheepshead: 30°C. Range of 24.0 to 25.6°C. Fathead: 25°C and should not remain outside the range of 24 to 26°C for more than 48 hours.

MRID No: 45119712

Guideline Criteria	Reported Information
Photoperiod 16-hour light/8-hour dark. Light intensity of 10-100 lumens at water	<u>F₀-generation</u> : Ranged from 10.5 to 15.75 hours per day and were adjusted every 2 weeks to approximate the natural sunlight of Evansville, IN.
surface.	Light intensity, ranged from 414 to 995 Lux (lumen/m ²)
	<u>F₁-generation</u> : 16-hours light/8-hours dark, 362 to 545 Lux.
 Dosing Apparatus Intermittent flow proportional diluters or continuous flow serial diluters. A minimum of 5 toxicant concentrations with a dilution factor ≤0.5. One control should be used. 	 Continuous-flow diluter. Five toxicant concentrations with a dilution factor of 0.5. One negative control was used.
 Toxicant Mixing 1. Mixing chamber recommended but not required. 	1. A mixing chamber was used for each toxicant level.
2. Test solution completely mixed before introduction into the test system (aeration should not be used for mixing).	2. Yes
3. Flow splitting accuracy must be within 10% and periodically checked.	3. Maximum deviation reportedly less than 10%.

9

MRID No: 45119712

Guideline Criteria	Reported Information
 Exposure System/Test Vessels Exposure tanks should be all glass or glass with a plastic or stainless steel frame (30.5 x 30.5 x 91.4 cm or 30.5 x 30.5 x 61 cm for fathead, and 45 x 90 x 26 cm for sheepshead). Larval chambers should have glass bottoms and drains that allow water to be 	During the F_0 -generation embryo/larval/juvenile exposure (Days 0- 60), 9-L glass aquaria were used, with a fill volume of 7 L and depth of 16 cm. During the F_0 -generation juvenile/adult exposure (Days 61-249), 54-L glass aquaria were used, with a fill volume of
drawn down to 3 cm. Test water depth in adult tanks and larval chambers should be a minimum of 15 cm.	27 L and depth of 15 cm. During the F_1 -generation embryo/larval/juvenile exposure (Days 174-209), 9-L glass aquaria were used, with a fill volume of 7 L and depth of 17 cm.
	It was not specified if larval chambers had drains to allow for water level reduction.
Embryo and Fry Chambers 120 mL glass jars with bottoms replaced with 40 mesh stainless steel or nylon screen. Chambers can be oscillated vertically using rocker arm apparatus (2 rpm motor) or placed in separate chambers with self-starting siphons.	Glass cylinders, 50-mm diameter (depth not specified) and sealed on one end with 425-µm nylon mesh screen. The embryo cups were suspended in the water column of each chamber and slowly reciprocated (2 rpm) using a rocking arm.

US EPA ARCHIVE DOCUMENT

MRID No: 45119712

Reported Information
During the F_0 -generation embryo/larval/juvenile exposure (Days 0- 60), the flow rate was adjusted to provide approximately 6.4 volume additions per day.
During the F_0 -generation juvenile/adult exposure (Days 61-249), the flow rate was adjusted to provide approximately 6 volume additions per day.
During the F_1 -generation embryo/larval/juvenile exposure (Days 174-209), the flow rate was adjusted to provide approximately 10 volume additions per day.
On Day 112 of the parental generation exposure, the DO dropped to 4.7 mg/L (57% of saturation). Mild aeration was initiated in all parental generation test chambers and thereafter, DO levels remained ≥ 6.3 mg/L (76% of saturation). DO levels in the second generation chambers remained ≥ 7.6 mg/L (93% of saturation) and aeration was not
saturation) and aeration was not necessary. The toxicant level never fell below 20% of nominal values. The mild aeration required from Days 112 to study termination did not adversely affect toxicant levels.

MRID No: 45119712

DP Barcode: D275562

Guideline Criteria	Reported Information
<u>Aeration</u> Dilution water should be aerated to insure dissolved oxygen concentrations at or near 100% saturation. Test tanks and embryo chambers should not be aerated.	Dilution water was aerated prior to entering the mixing chamber. In addition, F_0 -generation test tanks were mildly aerated from Days 112 to 249.

C. Chemical System

Guideline Criteria	Reported Information
Nominal Concentrations Minimum of 5 concentrations and a control, all replicated; plus solvent control if appropriate.	0 (negative control), 7.5, 15, 30, 60, and 120 mg a.i./L. Concentrations were adjusted for the purity of the test material.
Toxicant conc. must be measured in one tank at each toxicant level every week.	Toxicant concentrations were measured from alternating replicate aquaria in each test group at test initiation, at approximately weekly intervals during the test, and at test termination. Samples were collected at mid-depth and were analyzed immediately.

MRID No: 45119712

	Guideline Criteria	Reported Information
<u>Ot</u> 1.	her Variables DO must be measured at each conc. at least once a week.	1. DO was measured in each replicates at initiation, once weekly, and at test termination.
2.	Test water temp. must be recorded continuously.	2. Temperature measured in each replicate aquaria at initiation, once weekly, and at test termination. Also, continuously monitored in one negative control replicate.
3.	<u>Freshwater</u> : A control and one conc. must be analyzed weekly for pH, alkalinity, hardness, and conductance. <u>Natural seawater</u> : must maintain a constant salinity and not fluctuate more than 6% weekly; monthly pH range <0.8 pH units.	3. pH was measured at test initiation, once weekly, and at test termination. Hardness, alkalinity, and specific conductance were measured during the F_0 -generation exposure in the control and one treatment group at test initiation, once weekly, and at test termination.
Solvents Should not exceed 0.1 ml/L in a flow- through system. Acceptable solvents are: dimethylformamide, triethylene glycol, methanol, acetone, ethanol.		N/A

Comments: None.

MRID No: 45119712

12. <u>REPORTED RESULTS</u>:

A. General Results

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes
 Data Endpoints must include: survival of F₀ and F₁ embryos, time required to hatch, and hatching success; survival and total length of F₀ fish at 4 and 8 weeks after hatching; weights and lengths of F₁ fish at 8 weeks; incidence of pathological or histological effects; and observations of other effects or clinical signs. 	 Data Endpoints included: daily monitoring of survival of F₀ and F₁ embryos, time required to hatch, and hatching success; daily monitoring of survival and signs of toxicity of fry/juvenile/adult F₀ fish total lengths of surviving F₀ fish at approximately 4 and 8 weeks and total lengths and wet weights of surviving fish at approximately 36 weeks spawning frequency, number of eggs deposited, and fertilization success of F₀ spawning groups total lengths and wet weights of F₁ fish at approximately 4 weeks instead of 8 weeks
Raw data included?	Yes

MRID No: 45119712

<u>F₀ Results</u>:

Nominal Conc. (mg a.i./L)	Mean Measured Conc. (mg a.i./L) (SD)	% Hatch ¹	4-Week Post- Hatch % Survival ²	8-Week Post- Hatch % Survival ²	Test Termination (Day 249) % Survival ³
Negative Control	<lod<sup>4</lod<sup>	96	92	88	97
7.2	7.2 ± 0.49	97	91	84	90
15	15 ± 1.1	95	91	87	100
30	29 ± 2.0	94	92	89	100
60	59 ± 3.2	94	89	83	93
120	120 ± 6.3	95	91	88	97

¹ Percent hatching success = (number hatched \div number exposed) x 100

² Relative to 100 initial larvae/treatment.

³ Relative to 30 fish/treatment, thinned on Day 167.

 4 LOD = 1.0 mg a.i./L.

Mean		Mean Total	Length (mm)		Ţ	Vet Weight (g)
Measured Conc. (mg a.i./L)	Day 32 (4 Weeks) Day 60 (8 Weeks)		Day 249 (Test Termination)		Day 60 (8 Weeks)	Day (Test Ter	249 mination)
			ď	ę		్	ę
Control	18.3	33	72	58	0.3284	4.3117	2.1631
7.2	18.2	32	74	61	0.3372	4.8279	2.4345
15	17.9	32	72	61	0.3695	4.0690	2.3257
29	18.9	33	72	60	0.2920	4.5711	2.2701
59	18.9	33	73	61	0.3053	4.4532	2.2854
120	18.2	32	73	60	0.3019	4.4234	2.1941

MRID No: 45119712

Mean Measured Conc. (mg a.i./L)	Number of Spawns ¹	Total Number of Eggs ¹	Number of Eggs/ Spawn	Number of Spawns/Female ²	Number of Eggs/ Female
Control	42	4467	106	3.5	372
7.2	36	4460	124	3.0	372
15	36	3763	105	3.0	314
29	. 34	4576	135	2.8	381
59	51	5766	113	4.2	480
120	35	3800	109	2.9	. 317

¹ Values represent sum of two replicates.

 2 Six females per replicate, with 12 per treatment.

<u>Toxicity Observations</u>: No treatment-related effects were observed on embryo survival, time to hatch, or larval, juvenile, growth or adult survival of the F_0 generation. No treatment-related effects were observed on percent spawning frequency, the mean number of eggs produced per female per reproductive day, the mean number of fertile embryos produced per female per reproductive day, or the mean percent fertilization success.

No treatment-related signs of toxicity were observed in surviving fish throughout the study.

<u>F₁ Results:</u>

Mean Measured Concentration (mg a.i./L)	% Hatch	28-Day Post-Hatch % Survival	28-Day Post-Hatch Length (mm)	28-Day Post-Hatch Wet Weight (g)
Control	83	88	20	0.0878
7.5	83	88	19	0.0875
15	81	84	20	0.0946
30	86	82	20	0.0865
61	82	88	19	0.0885
120	86	82	20	0.0848

<u>Toxicity Observations</u>: No treatment-related effects were observed on embryo survival, time to hatch, or larval, juvenile survival and growth of the F_1 generation.

US EPA ARCHIVE DOCUMENT

No treatment-related signs of toxicity were observed in surviving fry during the 4-week observation period.

B. Reported Statistical Results

Data obtained for the F_0 generation that were statistically analyzed included (1) hatching success, (2) survival, (3) total length at 4 and 8 weeks post-hatch, (4) total wet weight at 8 weeks post-hatch, (5) total length and wet weight on Days 167 and 249 (study termination), (6) spawning frequency, and (7) the number of fertile eggs produced. Data obtained for the F_1 generation that were statistically analyzed included (1) hatching success, (2) survival, (3) and total length at 4 weeks post-hatch.

Data were analyzed by standard statistical techniques using a computer program (TOXSTAT, Ver. 3.5 or SPSS/PC, Ver. 2.0). Discrete-variable data (mortality proportions) were analyzed using 2X2 contingency tables to identify treatment groups that showed a statistically-significant difference ($p \le 0.05$) from the negative control group. Continuous-variable data (weight and length) were evaluated for normality using Shapiro-Wilkes test and for homogeneity of variance using Bartlett's test (p=0.01). Dunnett's test was used to evaluate difference between treatment and the control means ($p \le 0.05$).

Biological Endpoint	NOEC (mg a.i./L)	LOEC (mg a.i./L)
F ₀ hatching success	120	>120
F ₀ 4-week survival	120	>120
F ₀ 4-week length	120	>120
F ₀ 8-week survival	120	>120
F ₀ 8-week length	120	>120
F ₀ 8-week weight	120	>120
F ₀ test termination survival	120	>120
F ₀ test termination length (Males)	120	>120
F ₀ test termination length (Females)	120	>120
F ₀ test termination weight (Males)	120	>120
F ₀ test termination weight (Females)	120	>120
$F_0 $ # of spawns/female	120	>120

MRID No: 45119712

Biological Endpoint	NOEC (mg a.i./L)	LOEC (mg a.i./L)
$F_0 $ # of eggs/female	120	>120
F ₁ hatching success	120	>120
F ₁ 4-week survival	120	>120
F ₁ 4-week length	120	>120
F ₁ 4-week weight	120	>120
F ₁ 8-week survival	Not determined	Not determined
F ₁ 8-week length	Not determined	Not determined
F ₁ 8-week weight	Not determined	Not determined

NOEC: 120 mg a.i./L **LOEC:** >120 mg a.i./L

13. <u>REVIEWER'S STATISTICAL RESULTS</u>:

The reviewer analyzed data to verify conclusions made for the following parental endpoints: hatching success, 4-week, 8-week, and terminal survival, # of spawning days, total eggs produced, # eggs/female/reproductive day, # of fertile embryos, # fertile embryos/female/reproductive day, male and female length and wet weight from days 32, 60, 167, and test termination. Data analyzed from the second generation included: hatching success, 4-week survival, total wet weight and length.

There was no significant effect for any endpoint. This could be determined via visual inspection of the data for many parameters. In cases where the reviewer could not determine the LOEC and NOEC visually, data were analyzed using TOXSTAT. Data were tested to determine if their distribution was normal and variances were homogeneous. For those parameters that satisfied these assumptions, the LOEC and NOEC were determined using Dunnett's test (or William's test, for dose-dependent responses). For parameters that did not satisfy these assumptions, the LOEC and NOEC were determined using the non-parametric Kruskall-Wallis test.

14. <u>REVIEWER'S COMMENTS</u>:

The reviewer's conclusions were identical to the study authors'. This study is scientifically valid. However, because the F_1 -generation fish were only maintained for 4 weeks posthatch, although results do not meet guideline requirements; the information may be useful in a risk assessment. The NOEC and LOEC were 120 mg a.i./L and >120 mg a.i./L, respectively, under the conditions tested in this study.

The study authors reported that nominal test concentrations were chosen based on results from the study entitled "Toxicity of AC 243997 During the Early Life-Stages of the Fathead Minnow (*Pimephales promelas*)", Cyanamid Study Number 954-97-102. No adverse effects on any life-stage were observed at concentrations of up to 118 mg a.i./L.

Since initiation of the F_1 -generation exposure was based on the availability of eggs in the parental generation spawning compartments, not all treatment levels or replicates were initiated on the same day. The second-generation exposures were thus initiated over a 3-day period, with the majority of exposures initiated on Day 174 of the test.

On Day 169, one male and one female from a spawning compartment of the 7.5-mg a.i./L treatment group were found dead. Since the spawning period had just begun (on Day 167), the fish were replaced from the pool of five additional fish in the test chamber.

Guidelines specify that the photoperiod provide 10-100 lumens at the water surface. In this study, light intensity was reported 414 - 995 Lux in the F_0 generation and 362-545 Lux (lumens/m²) in the F_1 generation.

At test initiation, fish from different treatment groups were exposed to Imazapyr at different pH levels. The pH was lower at higher treatment levels and tend to increase with decreasing treatment levels.

It was not specified if larval chambers had drains to allow for water level reduction.

15. <u>REFERENCES</u>:

- APHA, AWWA, WPCF. 1985. Standard Methods for the Examination of Water and Wastewater. 16th Edition, American Public Health Association. American Water Works Association. Water Pollution Control Federation, New York.
- Benoit, D.A. 1981. User's Guide for Conducting Life-Cycle Chronic Toxicity tests with Fathead Minnows (*Pimephales promelas*). U.S. Environmental Protection Agency, Office of Research and Development. EPA-600/8-81-011.

MRID No: 45119712

- Martin, J.W. 1967. A method of measuring lengths of juvenile salmon from photographs. Prgr. Fish-Cult. 29:238-240.
- National Water Quality Laboratory Committee on Aquatic Bioassays. 1971. Recommended bioassay procedure for fathead minnow *Pimephales promelas* (Rafinesque) chronic test. Revised January, 1972. pp. 15-24 in Biological Field and Laboratory Methods. U.S. Environmental Protection Agency, Office of Research and Development. EPA-670/4-73-001.

SPSS Inc. 1988. SPSS/PC+ Version 2.0. Chicago, Illinois.

U.S. Environmental Protection Agency. 1982. Pesticide Assessment Guidelines, FIFRA Subdivision E, Hazard Evaluation: Wildlife and Aquatic Organisms. EPA 540/9-82-024.

West, Inc., and D.D. Gulley. 1996. TOXSTAT 3.5. Western EcoSystems Technology, Inc., Cheyenne, Wyoming.

MRID No: 45119712

16. OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION:

parental hatching success Transform: NO TRANSFORMATION File: 9712ph ANOVA TABLE SS MS F DFSOURCE _____ _____ 1.700 1.302 5 8.500 Between Within (Error) 18 1.306 23.500 _____ _____ Total 23 32.000 Critical F value = 2.77 (0.05, 5, 18)Since F < Critical F FAIL TO REJECT Ho:All groups equal parental hatching success File: 9712ph Transform: NO TRANSFORMATION DUNNETTS TEST - TABLE 1 OF 2 Ho:Control<Treatment _____ TRANSFORMED MEAN CALCULATED IN
 IDENTIFICATION
 MEAN
 ORIGINAL UNITS

 control
 48.000
 48.000

 7.2
 48.500
 48.500
 T STAT SIG GROUP IDENTIFICATION ____ ___ 1 2 -0.619 47.500 0.619 47.500 3 15 46,750 1.547 1.237 29 4 47.000 47.000 59 5 5947.00012047.250 47.250 0.928 6 _____ Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5) parental hatching success Transform: NO TRANSFORMATION File: 9712ph DUNNETTS TEST - TABLE 2 OF 2 Ho:Control<Treatment _____ _____

 NUM OF
 Minimum Sig Diff % of
 DIFFERENCE

 GROUP
 IDENTIFICATION
 REPS
 (IN ORIG. UNITS)
 CONTROL
 FROM CONTROL

 control 4 7.2 4 15 4 29 4 59 4 120 4 1 1.947 4.1 -0.500 2 4.1 4.1 1.947 0.500 3 1.250 4 1.947 4.1 1.000 1.947 5 1.947 4.1 0.750 6 _ _ _ _ _ parental hatching success File: 9712ph Transform: NO TRANSFORMATION TABLE 1 OF 2 WILLIAMS TEST (Isotonic regression model) _____ ORIGINAL TRANSFORMED ISOTONIZED IDENTIFICATION N MEAN MEAN MEAN GROUP

control 4 48.000

48.000 48.250

1

MRID No: 45119712

4 2	5 4 9 4 9 4	48.500 47.500 46.750 47.000 47.250	47.50046.75047.000	48.250 47.500 47.000 47.000 47.000
-----	-------------------	--	--------------------	--

parental hatching success

File: 9712ph Transform: NO TRANSFORMATION

IDENTIFICATION	SOTONIZED	CALC.	SIG	TABLE	DEGREES OF
	MEAN	WILLIAMS	P=.05	WILLIAMS	FREEDOM
control 7.2 15 29 59 120	48.250 48.250 47.500 47.000 47.000 47.000	0.309 0.619 1.238 1.238 1.238		1.73 1.82 1.85 1.86 1.87	k= 1, v=18 k= 2, v=18 k= 3, v=18 k= 4, v=18 k= 5, v=18

4-week parental survival File: 9712p4s Transform: NO TRANSFORMATION

rite:	9/12045	Transform:	NOIN	ANDEORMATION	
			ANOVA	TABLE	

SOURCE	DF	SS	MS	`F
Between	5	1.500	0.300	0.318
Within (Error)	18	17.000	0.944	
Total	23	18.500		

Critical F value = 2.77 (0.05,5,18) Since F < Critical F FAIL TO REJECT Ho:All groups equal

4-week parental survival

File: 9712p4s Transform: NO TRANSFORMATION

	DUNNETTS TEST - TABLE 1 OF 2		Ho:Control <treatment< th=""></treatment<>		
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS		SIG
1 2 3 4 5 6	control 7.2 15 29 59 120	23.000 22.750 22.750 23.000 22.250 22.750	23.000 22.750 22.750 23.000 22.250 22.750	0.364 0.364 0.000 1.092 0.364	
Dunnet	tt table value = 2.41	(1 Tailed Va	alue, P=0.05, df=18	.5)	

4-week parental survival File: 9712p4s Transform: NO TRANSFORMATION

MRID No: 45119712

	DUNNETTS TEST - 1	TABLE 2 OF	2 Но:	Control <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of DIFFERENCE CONTROL FROM CONTROL
1	control	4		
2	7.2	4	1.656	7.2 0.250
`3	15	4	1.656	7.2 0.250
4	29	4	1.656	7.2 0.000
5	59	4	1.656	7.2 0.750
6.	120	4	1.656	7.2 0.250

4-week parental survival File: 9712p4s Tran

File: 9712p4s Transform: NO TRANSFORMATION

	WILLIAMS TEST (Isoto	nic	regression model	1) TABLE 1 C	F 2
GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	control	4	23.000	23.000	23.000
2	7.2	4	22.750	22.750	22.833
3	15	4	22.750	22.750	22.833
4	29	4	23.000	23.000	22.833
5	59	4	22.250	22.250	22.500
6	120	4	22.750	22.750	22.500

4-week parental survival

File: 9712p4s Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
control	23.000	······································			
7.2	22.833	0.243		1.73	k= 1, v=1
15	22.833	0.243		1.82	k = 2, v = 1
29	22.833	0.243		1.85	k= 3, v=1
59	22.500	0.728		1.86	k= 4,-v=1
120	22.500	0.728		1.87	k= 5, v=1

s = 0.972

S EPA ARCHIVE DOCUMENT

Note: df used for table values are approximate when v > 20.

8-week parental survival

File: 9712p8s Transform: NO TRANSFORMATION

		ANOVA TABLE	·	· · · · · · · · · · · · · · · · · · ·
SOURCE	DF	SS	MS	F
Between	5	7.375	1.475	1.095
Within (Error)	18	24.250	1.347	
Total	23	31.625		

23

Critical F value = 2.77 (0.05,5,18) Since F < Critical F FAIL TO REJECT Ho:All groups equal

8-week parental survival File: 9712p8s Tran

Transform: NO TRANSFORMATION

I 	DUNNETTS TEST - TAN	BLE 1 OF 2	Ho:Control <t< th=""><th>reatment</th><th></th></t<>	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1 2 3 4 5 6	control 7.2 15 29 59 120	22.000 21.000 21.750 22.250 20.750 22.000	22.000 21.000 21.750 22.250 20.750 22.000	1.219 0.305 -0.305 1.523 0.000	
	t table value = 2.41	(1 Tailed V	alue, P=0.05, df=18	, 5)	
	parental survival 9712p8s Transfo	rm: NO TRANSFOR	MATION		
- I	DUNNETTS TEST - TAR	BLE 2 OF 2	Ho:Control <t< td=""><td>reatment</td><td></td></t<>	reatment	

			2 110.	CONCLOTAL	reachient
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1	control	4			
2	7.2	4	1.978	9.0	1,000
3	15	4	1.978	9.0	0.250
4	29	4	1.978	9.0	-0.250
5	59	- 4	1.978	9.0	1.250
6	120	4	1.978	9.0	0.000

8-week parental survival File: 9712p8s Tran

EPA ARCHIVE DOCUMEN

Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 1 OF 2
---------------	-----------	------------	--------	--------------

GROUP	IDENTIFICATION		ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1 2 3 4	control 7.2 15 29	4 4 4	22.000 21.000 21.750 22.250	22.000 21.000 21.750 22.250	21.500 21.500 21.583 21.583
5 6	59 120	4 4	20.750	20.750	21.583

8-week parental survival File: 9712p8s Tran Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 OF	7 2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
control	21.500	** ***			

MRID No: 45119712

7.2	21.500	0.609	1.73	k= 1, v=18
15	21.583	0.508	1.82	k= 2, v=18
29	21.583	0.508	1.85	k= 3, v=18
59	21.583	0.508	1.86	k= 4, v=18
120	22.000	0.000	1.87	k= 5, v=18

s = 1.161

Note: df used for table values are approximate when $v\,>\,20\,.$

spawning days

File: 9712sf Transform: NO TRANSFORMATION

	KRUSKAL-WALLIS	ANOVA BY RANKS	5 - TABLE 1 OF 2	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	control	21.000	21.000	12.500
2	7.2	18.000	18.000	13.000
3	15	18.000	18.000	12.500
4	29	17.000	17.000	8.000
5	59	25.500	25.500	22.000
6	. 120	17.500	17.500	10,000

Calculated H Value = 4.554 Critical H Value Table = 11.070 Since Calc H < Crit H FAIL TO REJECT Ho:All groups are equal.

spawning days

File: 9712sf Transform: NO TRANSFORMATION

				GROUP
		TRANSFORMED	ORIGINAL	0 0 0 0 0
GROUP	IDENTIFICATION	MEAN	MEAN	4 6 2 3 1 5
4	29	17.000	17.000	$\sim \sqrt{1-1}$
6	120	17.500	17,500	• \
2	7.2	18.000	18.000	• • \
3	15	18.000	18.000	\
. 1	control	21.000	21.000	\
5	59	25.500	25.500	\

* = significant difference (p=0.05)Table q value (0.05, 6) = 2.936 . = no significant difference
SE = 3.561

total eggs produced

File: 9712e Transform: NO TRANSFORMATION

		ANOVA TABLE		
SOURCE	DF	SS	MS	F
Between	5	1319843.000	263968.600	1.065
Within (Error)	6	1487119.000	247853.167	
Total	11	2806962.000		

25

MRID No: 45119712

DP Barcode: D275562

Critical F value = 4.39 (0.05,5,6) Since F < Critical F FAIL TO REJECT Ho:All groups equal

total eggs produced File: 9712e Transform: NO TRANSFORMATION

D	UNNETTS TEST - TA	Ho:Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT SIG	
1 2 3 4 5 6	control 7.2 15 29 59 120	2233.500 2230.000 1881.500 2288.000 2883.000 1900.000	2233.500 2230.000 1881.500 2288.000 2883.000 1900.000	0.007 0.707 -0.109 -1.305 0.670	
Dunnett	table value = 2.83	(1 Tailed Va	lue, P=0.05, df=6,5	5)	
	ggs produced 712e Transform	: NO TRANSFORMAT	ION		
. r	עד הערגעונו		HotControl	costment	

	DUNNETTS TEST - 7	FABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1 2 3 4 5 6	control 7.2 15 29 59 120	2 2 2 2 2 2 2 2	1408.911 1408.911 1408.911 1408.911 1408.911 1408.911	$ \begin{array}{c} 63.1 \\ 63.1 \\ 63.1 \\ 63.1 \\ 63.1 \\ 63.1 \\ 63.1 \\ \end{array} $	3.500 352.000 -54.500 -649.500 333.500

total eggs produced File: 9712e Transform: NO TRANSFORMATION

	WILLIAMS TEST	(Isoto	nic	regression model) TABLE 1	LOF2
GROUP	IDENTIFICAT	ION	N	ORIGINAL MEAN	TRANSFORMEI MEAN	D ISOTONIZED MEAN
1 2 3 4 5 6		control 7.2 15 29 59 120	2 2 2 2 2 2 2 2	2233.500 2230.000 1881.500 2288.000 2883.000 1900.000	2233.500 2230.000 1881.500 2288.000 2883.000 1900.000	2303.200 2303.200 2303.200 2303.200 2303.200 2303.200 1900.000
total File:	eggs produced 9712e Tr WILLIAMS TEST			TRANSFORMATION) TABLE 2	2 OF 2

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	 TABLE WILLIAMS	DEGREES OF FREEDOM
control	2303.200		 	

MRID No: 45119712

120 1900.000 0.670 2.15 $K=5, V=6$		15 29	2303.200 2303.200 2303.200 2303.200 1900.000	0.140 0.140 0.140 0.140 0.670	1.94 2.06 2.10 2.12 2.13	k= 1, v= 6 k= 2, v= 6 k= 3, v= 6 k= 4, v= 6 k= 5, v= 6
------------------------------------	--	----------	--	---	--------------------------------------	--

s = 497.849

Note: df used for table values are approximate when v > 20.

eggs/female/reproductive day

		ANOVA TABLE	OVA TABLE				
SOURCE	DF	SS	MS	F			
Between	5	5.336	1.067	1.065			
Within (Error)	6	6.011	1.002				
Total	11	11.347					

Critical F value = 4.39 (0.05,5,6) Since F < Critical F FAIL TO REJECT Ho:All groups equal

eggs/female/reproductive day
File: 9712erd Transform: NO TRANSFORMATION

	DUNNETTS TEST - TAP	Ho:Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	control	4.485	4.485		
2	7.2	4.480	4.480	0.005	
3	15	3.775	3.775	0.709	
4	29	4.595	4.595	-0.110	
5	59	5.790	5.790	-1.304	
6	120	3.815	3.815	0.669	

Dunnett table value = 2.83 (1 Tailed Value, P=0.05, df=6,5)

eggs/female/reproductive day
File: 9712erd Transform: NO TRANSFORMATION

	DUNNETTS TEST -	TABLE 2 OF	2 Но:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1 2 3 4 5 6	control 7.2 15 29 59 120	2 2 2 2 2 2 2 2 2 2	2.833 2.833 2.833 2.833 2.833 2.833 2.833	63.2 63.2 63.2 63.2 63.2 63.2	0.005 0.710 -0.110 -1.305 0.670

eggs/female/reproductive day

File: 9712erd Transform: NO TRANSFORMATION

	WILLIAMS TEST (ISOTO)	nıc	regression model)	TABLE I O	E' 2
GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1 2 3 4 5 6	control 7.2 15 29 59 120	2 2 2 2 2 2	$\begin{array}{c} 4.485 \\ 4.480 \\ 3.775 \\ 4.595 \\ 5.790 \\ 3.815 \end{array}$	4.485 4.480 3.775 4.595 5.790 3.815	$\begin{array}{r} 4.625\\ 4.625\\ 4.625\\ 4.625\\ 4.625\\ 4.625\\ 3.815\end{array}$

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

eggs/female/reproductive day

File: 9712erd Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED	CALC.	SIG	TABLE	DEGREES OF
	MEAN	WILLIAMS	P=.05	WILLIAMS	FREEDOM
control 7.2 15 29 59 120	4.625 4.625 4.625 4.625 4.625 4.625 3.815	0.140 0.140 0.140 0.140 0.140 0.669		1.94 2.06 2.10 2.12 2.13	k= 1, v= 6 k= 2, v= 6 k= 3, v= 6 k= 4, v= 6 k= 5, v= 6

s = 1.001

Note: df used for table values are approximate when v > 20.

eggs/female/reproductive day

File: 9712fe Transform: NO TRANSFORMATION

		ANOVA TABLE		
SOURCE	DF	SS	MS	E
Between	5	1300206.000	260041.200	1.120
Within (Error)	6	1393617.000	232269.500	
Total	11	2693823.000		

Critical F value = 4.39 (0.05,5,6) Since F < Critical F FAIL TO REJECT Ho:All groups equal

eggs/female/reproductive day
File: 9712fe Transform: NO TRANSFORMATION

	DUNNETTS TEST - TA	TS TEST - TABLE 1 OF 2 Ho:Control <tr< th=""></tr<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1 2 3	control 7.2 15	2164.000 2135.500 1790.000	2164.000 2135.500 1790.000	0.059	

MRID No: 45119712

4	29	2209.000	2209.000	-0.093
5	59	2783.000	2783.000	-1.284
6	120	1809.500	1809.500	0.736
Dunnett table value =	2.83	(1 Tailed Value,	P=0.05,	df = 6, 5

eggs/female/reproductive day

File: 9712fe Transform: NO TRANSFORMATION

<u></u>	DUNNETTS TEST - 1	ABLE 2 OF	2 Но:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	control	2			
2	7.2	2	1363.900	63.0	28.500
3	15	2	1363.900	63.0	374.000
4	29	2	1363.900	63.0	-45.000
5	59	2	1363.900	63.0	-619.000
6	120	2	1363.900	63.0	354.500

eggs/female/reproductive day

File: 9712fe Transform: NO TRANSFORMATION

> WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	control	2	2164.000	2164.000	2216.300
2	7.2	2	2135.500	2135.500	2216.300
3	15	2	1790.000	1790.000	2216.300
4	29	2	2209.000	2209.000	2216.300
5	59	2	2783.000	2783.000	2216.300
6	120	2	1809.500	1809.500	1809.500

eggs/female/reproductive day
File: 9712fe Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 O	F 2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
control 7.2 15 29 59 120	2216.300 2216.300 2216.300 2216.300 2216.300 2216.300 1809.500	0.109 0.109 0.109 0.109 0.109 0.736		1.94 2.06 2.10 2.12 2.13	k= 1, v= 6 k= 2, v= 6 k= 3, v= 6 k= 4, v= 6 k= 5, v= 6

s = 481.943

Note: df used for table values are approximate when v > 20.

fertile embryos/female/reproductive day

File: 9712ferd Transform: NO TRANSFORMATION

ANOVA TABLE

MRID No: 45119712

SOURCE		DF	5	SS		MS	F	
Betweer	J	5		5.245	1	.049	1.12	 1
Within	(Error)	Ġ		5.617	, C	.936		
 Total		 11		L0.863				
Since # ferti	e F < Critile embryo.	ue = 4.39 tical F FA s/female/rep Trans:	IL TO REC productiv	JECT Ho: ve day		equal		
Ľ	OUNNETTS T	EST - TA	ABLE 1 OF	F 2	Но:	Control <t< td=""><td>reatment</td><td></td></t<>	reatment	
GROUP	IDENTIF	ICATION	TRANSI MEA		MEAN CALC ORIGINA	ULATED IN	T STAT	SIG
1 2 3 4 5		control 7.2 15 29 59 120	4.2 3.5 4.4 5.5	345 285 595 435 590 635	4. 3. 4. 5.	345 285 595 435 590 635	0.062 0.775 -0.093 -1.287 0.734	
† ferti	ile embryo:	lue = 2.83 s/female/rep Trans	productiv	ve day		15, df=6,	5)	
Dunnett # ferti File: 9	ile embryo: 9712ferd	lue = 2.83 s/female/rep	productiv form: NO ABLE 2 OF	ve day TRANSFOF F 2	MATION Ho:	Control <t< th=""><th>reatment</th><th></th></t<>	reatment	
Dunnett # ferti File: 9	ile embryo: 9712ferd	lue = 2.83 s/female/rej Trans EST - Ta	productiv form: NO ABLE 2 OF	ve day TRANSFOF F 2 Minimum	RMATION	Control <t< td=""><td></td><td></td></t<>		
Dunnett # ferti File: 9	ile embryo 9712ferd DUNNETTS TI	lue = 2.83 s/female/rep Trans EST - Tr ICATION control 7.2 15	productiv form: NO ABLE 2 OF NUM OF REPS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ve day TRANSFOF F 2 Minimum	MATION Ho: A Sig Diff	Control <t % of CONTROL 63.0 63.0</t 	Treatment DIFFERENC FROM CON 0.0	FROL 50 50 90 45
Dunnett # ferti File: 9 GROUP 	ile embryo 9712ferd DUNNETTS TI IDENTIF	lue = 2.83 s/female/rej Trans EST - T ICATION control 7.2 15 29 59	productiv form: NO ABLE 2 OF NUM OF REPS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ve day TRANSFOF 7 2 Minimum (IN ORI 	MATION Ho: Sig Diff G. UNITS) 2.738 2.7378 2.738 2.748 2.748 2.748 2.748 2.748 2.748 2.748 2.748 2.748 2.748 2.748 2.748 2.748 2.748	Control <t % of CONTROL 63.0 63.0 63.0 63.0 63.0 7ABLE 1 0</t 	DIFFEREN(FROM CON 0.0 0.7 -0.0 -1.2 0.7	FROL 50 50 90 45 10

MRID No: 45119712

fertile embryos/female/reproductive day
File: 9712ferd Transform: NO TRANSFORMATION

	/	
WILLIAMS TEST	(isotonic regression model)) TABLE 2 OF 2
	TOOLOUITO ICGICODICH WORCI	

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
control	4.450				
7.2	4.450	0.109		1.94	k = 1, v = 6
15	4.450	0.109		2.06	k=2, v=6
29	4.450	0.109		2.10	k=3, v=0
59	4.450	0.109		2.12	k = 4, $v =$
120	3.635	0.734		2.13	k = 5, v = 1

s = 0.968

US EPA ARCHIVE DOCUMENT

Note: df used for table values are approximate when v > 20.

2nd generation 4 week survival

File: 97122s4 Transform: NO TRANSFORMATION

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	control	22.000	22.000	18.000
2 3	7.5 15	21.000	21.000	$17.000 \\ 11.000$
4 5	30 61	20.500	20.500 22.000	7.500
6	120	20.500	20.500	7.500

Calculated H Value = 5.006 Critical H Value Table = 11.070 Since Calc H < Crit H FAIL TO REJECT Ho:All groups are equal.

2nd generation 4 week survival File: 97122s4 Transform: NO TRANSFORMATION

ROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	-	0	0	0 0 2	0	-		
		20.500	20.500	~		-	_	-	-		
6 .	120	20.500	20.500	1	١						
3	15	21.000	21.000	÷	È.	\mathbf{N}					
2	7.5	22.000	22.000		•		\mathbf{N}				
5	61	22.000	22.000					\mathbf{N}			
1	control	22.000	22.000	•	•	•	•	•	\		