MEMORANDUM

MRID No. 436801-01.
CBTS No. 15854; DP Barcode: D217347.

FROM: William D. Wassell, Chemist
Tolerance Petition Section I
Chemistry Branch I - Tolerance Support
Health Effects Division (7509C)

THROUGH: Michael S. Metzger, Chief
Chemistry Branch I - Tolerance Support
Health Effects Division (7509C)

TO: Hoyt Jamerson, PM-43
Emergency Response and Minor Use Section
Registration Division (7505W)

and

Jane Smith, Acting Section Head
Registration Section
Risk Characterization and Analysis Branch
Health Effects Division (7509C)

Summary/Background:

George M. Markle, Associate Director, Interregional Research Project No. 4 (IR-4), State Agricultural Experiment Station, Rutgers University, New Brunswick, NJ on behalf of the IR-4 Project, the Agricultural Experiment Stations of Idaho, Oregon and Washington, the Idaho, Oregon and Washington Hops Commissions and the Hops Growers of America requests the establishment of tolerances with an expiration date of December 31, 1996, for residues resulting from the use of the
miticide/insecticide abamectin [a mixture of avermectins containing ≥80% avermectin B\textsubscript{1a} (5-O-demethyl avermectin A\textsubscript{1a}) and ≤20% avermectin B\textsubscript{1b} (5-O-demethyl-25-de (1-methylpropyl)-25-(1-methylethyl) avermectin A\textsubscript{1b})] in or on hops and cattle fat. The time-limited tolerances are requested in terms of the combined residues of the insecticide avermectin B\textsubscript{1} and its delta-8,9-isomer in or on the raw agricultural commodities hops (dried) and cattle fat at 0.5 ppm and 0.015 ppm, respectively. The time-limited tolerances are requested while IR-4 generates additional residue data to support the use of the product on hops.

The current submission consists of a cover letter (dated: 6/8/95) and a volume of data containing an independent laboratory validation of the proposed enforcement method. CBTS has previously recommended for the establishment of the proposed time-limited tolerances (see our memo of 05/02/95, W.D. Wassell, DP Barcode: D214067). IR-4 had previously agreed to provide the independent laboratory validation of the method as per PR Notice 88-5 in an expeditious manner.

Recommendations:

The recommendations from our previous review of this petition (see our memo of 5/2/95, W.D. Wassell, DP Barcode: D214067) remain unchanged and are restated here: CBTS recommends for the establishment of the proposed time-limited tolerances for residues of abamectin in/on dried hops at 0.5 ppm and cattle fat at 0.015 ppm. The petitioner is advised to refer to our memo of 2/6/95 (W.D. Wassell, PP# 4E4419, DP Barcode: D205257) for the data requirements for the granting of Section 3 registration and the establishment of permanent tolerances in conjunction with this use.

Detailed Considerations:

Deficiency 5d: In our earlier review, (W.D. Wassell, 2/6/95, DP Barcode: D205257), CBTS concluded that the proposed enforcement method is not adequate for enforcement of the proposed tolerances and must be independently validated as per PR Notice 88-5 and validated by the Agency’s Analytical Chemistry Laboratory prior to a favorable recommendation from CBTS for the proposed time-limited tolerances. CBTS further concluded adequate methodology was not available for the enforcement of the proposed tolerances for residues of abamectin in/on dried hops.

Petitioner’s Response: The petitioner has submitted a study entitled: "Independent Laboratory Confirmation of the Enforcement Method for the Determination of Avermectin B1 Residues in Dried Hops According to PR Notice 88-5 Guidelines (MRID No. 436801-01)." The study was performed by personnel of Analytical Development Corporation (ADC) of Colorado Springs, CO. The proposed
enforcement method (entitled: "Liquid Chromatographic Method for the Quantification of Total Avermectin B1 and 8,9-Z-Avermectin B1 in Dried Hops Using Fluorescence Detection", dated: 6/15/94) was validated for use with dried hops at 0.2, 0.5 and 1.0 ppm. The validation of the method was divided into two parts. The first part involved validation for residues of avermectin B1 and the second part involved validation for residues of 8,9-Z-avermectin B1a.

ADC reports the method was successfully validated for residues of avermectin B1 in dried hops on the initial attempt. Recoveries for total avermectin B1 residues ranged from 72% to 85%. Residue levels of all analytes in the reagent blanks and control samples were below the method limit of detection (<2 ppb). The results of the validation for residues of avermectin B1 are summarized in Table 1.

Table 1. Recovery of residues of Avermectin B1 from Dried Hops.

<table>
<thead>
<tr>
<th>Fortification Level</th>
<th>Avermectin B1a</th>
<th>Percent Recovery</th>
<th>Avermectin B1b</th>
<th>Combined Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 ppm</td>
<td>77</td>
<td>73</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>0.50 ppm</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>1.0 ppm</td>
<td>72</td>
<td>70</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>69</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>75</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>76</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

The validation of the method for residues of 8,9-Z-avermectin B1a required three trials. ADC reports that the recovery levels for the first two trials were unacceptably low. Recoveries for the first trial ranged from 65% to 70% and for the second trial ranged from 49% to 67%. During the first trial, sample extracts were stored for a weekend in hexane in a refrigerator. After contacting personnel at Merck, it was discovered that avermectin residues may not be stable in hexane. It was suspected that the brand of solid phase extraction columns may have caused the low recovery in the second trial, but a definitive reason for the low recoveries was not discovered.

The third trial resulted in recoveries for residues of 8,9-Z-avermectin B1a ranging from 61% to 82% with an average recovery of 75%. Residue levels of all analytes in the reagent blanks and control samples were below the method limit of detection (<2 ppb). Two recoveries of six were below 70%, but problems were noted with both samples. For one of the samples, a portion of the extract was spilled which resulted in a recovery of 66%. For the other low recovery, it was noted that the
layers of the hexane wash seemed to separate much slower than the rest of the samples and a large amount of particulate matter remained in the extract. The recovery for this sample was 61%. The results of the third trial are summarized in Table 2.

Table 2. Recovery of 8,9-Z-Avermectin B1a from Dried Hops.

<table>
<thead>
<tr>
<th>Fortification Level</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 ppm</td>
<td>81</td>
</tr>
<tr>
<td>0.50 ppm</td>
<td>66</td>
</tr>
<tr>
<td>1.0 ppm</td>
<td>82</td>
</tr>
</tbody>
</table>

ADC reported a set of 8 or 9 samples can be completed by one analyst in one day (approximately 8 man-hours). This time includes preparation of the HPLC mobile phase. An additional 2 to 3 man-hours are required for evaluation of the chromatograms. ADC suggests two steps may be critical to ensure acceptable performance of the method. These steps are:

1. The extracts cannot be stored in hexane for any extended period of time. The specification of a stopping point in the method is necessary.

2. Care should be taken not to disturb the solid material at the bottom of the tube when the aliquot of extract is removed from the centrifuge tube. Even though the extract has been centrifuged, the solids can be easily disturbed. Large amounts of particulate matter in the extract could affect the hexane wash or extraction.

ADC also noted that the calculations for determining residue levels in the sample extracts were incorrect. The calculations specified utilizing a final extract volume of 0.5 mL, but the actual final volume of the extract is 2.1 mL. The final volume of 2.1 mL includes the volume of added derivatizing reagents.

CBTS Comments:

CBTS concludes the proposed enforcement method (entitled: "Liquid Chromatographic Method for the Quantification of Total Avermectin B1 and 8,9-Z-Avermectin B1 in Dried Hops Using Fluorescence Detection", dated: 6/15/94) has been adequately validated by an independent laboratory for the
determination of avermectin residues in dried hops. The registrant should be made aware of ADC's comments concerning the proposed enforcement method. A validation of the method by ACL/BEAD is required and is being requested at this time. Once the method has been successfully validated by the Agency, ADC's comments (i.e. storage of extracts in hexane, specification of a stopping point and the calculations) and any comments by ACL/BEAD will need to be incorporated into the method and a revised method will need to be submitted.

c: WDWassell, RF, Circ., PP#4E4419.

RDI:RSQuick: 07/26/95; MJNelson: 07/26/95; Mmetzger: 07/26/95.
7509C:CBTS:WDWassell:wdw:CM#2:Rm 804U:305-6135:07/01/95
Disk: WDW-6, File: FY95WDW.135
Residue Chemistry Review

Document Class:
Product Chem:
Residue Chem: 860.1340 Residue analytical method

Biochemicals:
DP Barcode: D217347
MRIDs: 43680101
PC Codes: Actives 122804 Abamectin (ANSI) Inerts

Commodities: Hops
Administrative #: 4E04419; 000618-00098
Reviewers: William D. Wassell
Review M. Metzger
Approved on: March 7, 1996

WP Document: Abamecti.055