

TEXT SEARCHABLE DOCUMENT - 2010

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460

MEMORANDUM

DP Barcode: 365085 PC Code: 122804 February 24, 2010

SUBJECT:

Ecological risk assessment evaluating Abamectin for the registration of a new end-use product (Agri-Mek®SC Miticide/Insecticide) for use on almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes

FROM:

Ibrahim Abdel-Saheb, Environmental Scientist Amy Blankinship, Chemist Chung Manlei & **Environmental Risk Branch 2** Environmental Fate and Effects Division (7507P)

TO:

Venus Eagle, Risk Manager Thomas Harris, Risk Manager Reviewer Insecticide/Rodenticide Branch Registration Division (7505P)

THRU:

William Eckel, Acting Branch Chief William P. E. La 2/24/10 Jean Holmes, RAPL from Wolner Environmental Risk Branch 2 Environmental Fate and Effects Division (7507P)

The Environmental Fate and Effects Division (EFED) has completed the baseline ecological risk assessment for the proposed use of abamectin (PC Code 122804) as a new end-use product (Agri-Mek®SC Miticide/Insecticide) for use on almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes. Conclusions regarding the environmental fate and ecological effects and ecological risks associated with the proposed uses of the chemical can be found in the executive summary of the attached document.

ENVIRONMENTAL FATE AND EFFECTS SCIENCE CHAPTER

For The Proposed Registration of

ABAMECTIN AS A NEW END-USE PRODUCT (AGRI-MEK®SC MITICIDE/INSECTICIDE) FOR ALMONDS, WALNUTS, APPLES, AVOCADOS, CELERIAC, CITRUS, COTTON, CUCURBIT, FRUITING VEGETABLES, GRAPES, HERBS, HOPS, LEAFY VEGETABLES, MINT, PEARS, PLUMS, PRUNES AND POTATOES

USEPA PC Code: 122804

ERB 2 Team:

Ibrahim Abdel-Saheb, Environmental Scientist Amy Blankinship, Chemist Environmental Fate and Effects Division (7507P)

Branch Chief Approval:

William Eckel, Acting Branch Chief Environmental Risk Branch Environmental Fate and Effects Division (7507P)

	Table of Contents	
	List of Tables	
	List of Figures	6
	1.0 Executive Summary	7
	1.1 Nature of Chemical Stressor	7
,	1.2 Conclusions – Exposure Characterization	
	1.3 Conclusions – Effects Characterization	
	1.4 Potential Risks to Non-target Organisms	10
	1.5 Key Uncertainties and Data Gaps	14
	1.5.1 Key Uncertainties	14
	1.5.2 Data Gaps	
	2.0 Problem Formulation	19
	2.1 Nature of Regulatory Action	
	2.2 Stressor Source and Distribution	
~	2.2.1 Nature of the Chemical Stressor	
	2.2.2 Proposed Label Crop Use Rates	21
	2.2.3 Overview of Pesticide Use	
5	2.2.4 Environmental Properties of Abamectin	
	2.3 Receptors	
	2.3.1 Aquatic and Terrestrial Effects	
\mathbf{O}	2.3.2 Incident Database Review	
DOCUMENT	2.4 Ecosystems Potentially at Risk	
0	2.5 Conceptual Model	
0	2.5.1 Risk Hypothesis	
_	2.5.2 Conceptual Diagram	
111	2.6 Analysis Plan	
CHIVE	2.6.1 Conclusions from Previous Risk Assessments	
>	2.6.2 Preliminary Identification of Data Gaps	
	3.0 Analysis	
	3.1 Exposure Characterization	
	3.1.1 Measures of Aquatic Exposure	
	3.1.1.1 Aquatic Exposure Modeling	
~	3.1.1.2 Aquatic Exposure Monitoring and Field Data	
	3.1.2 Measures of Terrestrial Exposure	
4	3.2 Ecological Effects Characterization	
	3.2.1.1 Terrestrial Animals	
4	3.2.1.2 Terrestrial Plants	
0	3.2.2 Aquatic Effects Characterization	
US EPA AR	3.2.2.1 Aquatic Animals	
	3.2.2.2 Aquatic Plants	
10	4.0 Risk Characterization	
<u> </u>	4.1 Risk Estimation – Integration of Exposure and Effects Data	
	4.1.1 Non-target Aquatic Animals and Plants	
	4.1.1.1 Non-target Aquatic Animals	
		•

Table of Contents

3

,	
4.1.1.2 Aquatic Plants	49
4.1.1.3 Non-target Terrestrial Animals	
4.1.1.4 Non-target Terrestrial and Semi-Aquatic Plants	
4.2 Risk Description	. 58
4.2.1 Risks to Aquatic Organisms	. 58
4.2.1.1 Fish and Aquatic Invertebrates	. 59
4.2.1.2 Aquatic Plants	. 60
4.2.2 Risks to Terrestrial Organisms	. 60
4.2.2.1 Terrestrial Animals	. 60
4.2.2.2 Terrestrial Plants	
4.2.3 Federally Threatened and Endangered (Listed) Species Concerns	. 63
4.2.3.1 Taxonomic Groups potentially at Risk	
4.2.3.2 Direct and Indirect Effects	
4.3 Description of Assumptions, Limitations, Uncertainties and Data Gaps	
4.3.1 Related to Exposure for All Species	
4.3.1.1 General Exposure Parameters	
4.3.2 Related to Exposure Assessment	
4.3.2.1 Related to Exposure for Aquatic Species	
4.3.2.2 Related to Exposure for Terrestrial Species	
4.3.3 Related to Effects Assessment	
4.3.3.1 Age class and sensitivity of effects thresholds	
4.3.3.2 Aquatic Studies Conducted Above Water Solubility	
4.3.3.3 Lack of Effect Studies and Complete Review of Aquatic Plant Data4.3.3.4 Uncertainty in LD50 for Mallards and NOAEC for Chronic Daphnia	. 67
Study	
4.3.3.5 Use of the Most Sensitive Species Tested	
5.0 Literature Cited	. 68
·	
Appendix A. EIIS Incident Reports	. 69
Appendix B. PRZM/EXAMS Output Files	. 71
Appendix C. T-REX Outputs	111
Appendix D. Summary of Toxicity Data for Abamectin	132
Appendix E. RQ Method and LOCs	139
Appendix F. Locates Output	140

ĭ

4

List of Tables

Table 1. P	roposed Application Rates for Crops Listed in Agri-Mek SC Label 2	2
Table 2 Pl	nysical and Chemical Properties of Abamectin2	6
Table 3. N	Aeasures of Ecological Effects and Exposure for Abamectin	8
Table 4 Su	urface water exposure inputs for PRZM/EXAMS	6
Table 5. Ti	er II Surface Water 1-in10 Year EECs (ppb) of abamectin and its major soil degradate (a mixture of $8-\alpha$ -hydroxy and a ring opened aldehyde derivative 3	7
Table 6. A	vian Dose-Based Estimated Environmental Concentrations (EECs) for Terrestrial Dietary Items from Foliar Application of Abamectin	8
Table 7. M	ammalian Dose-Based Estimated Environmental Concentrations (EECs) for Terrestrial Dietary Items from Foliar Application of Abamectin	9
Table 8. D	ietary Based Estimated Environmental Concentrations (EECs) for Terrestrial Dietary Items from Foliar Exposure to Abamectin	0
Table 9. S	ummary of Most Sensitive Acute and Chronic Toxicity Data for Birds, Mammals and Terrestrial Invertebrates Exposed to Abamectin	2
Table 10.	Summary of Selected Acute and Chronic Toxicity Data for Fish and Aquatic Invertebrates Exposed to Abamectin for use in Determining Risk	4
Table 11.	Summary of Acute Toxicity Data for Aquatic Plants Exposed to Abamectin 4	5
Table 12.	Acute Risk Quotients for Fish and Aquatic Invertebrates from Abamectin Applied to Various Crops	7
Table 13.	Chronic Risk Quotients for Fish and Aquatic Invertebrates from Abamectin Applied to Various Crops	8
Table 14.	Risk quotients for Aquatic Plants Exposed to Foliar Applications of Abamecti	
Table 15.	Upper bound acute dose-based RQ values for birds for foliar application of abamectin	1
Table 16.	Upper Bound Acute Avian Dietary-based RQ values from Foliar Application of Abamectin to Celeriac, Cucurbit, Fruiting and Leafy Vegetables, Herbs and Potato	
Table 17.	Comparison of the Dietary EECs from Foliar Application of Abamectin to the Chronic Avian NOAEC	
Table 18.	Upper bound Mammalian Acute Dose-based RQ values for Foliar Application of Abamectin	
Table 19.	Upper bound Mammalian Chronic Dose-based RQ values for Foliar Application of Abamectin	5

US EPA ARCHIVE DOCUMENT

Table 20.	Upper bound Chronic Dietary-based RQ Values for Mammals for Foliar Application of Abamectin	. 56
Table 21.	Comparisons of Small and Large Insect EECs from Foliar Application of Abamectin to the Extrapolated Acute Contact Honeybee Concentration	. 58

List of Figures

Figure 1.	Chemical Structure of Abamectin	20
Figure 2	Estimated use of abamectin in 2002 (USGS)	25
Figure 3	Conceptual diagram for assessment of risks from abamectin use on various	
	crops	32

1.0 Executive Summary

Syngenta Crop Protection, Inc. is seeking a registration of abamectin (PC Code 122804) and its new end-use product Agri-Mek®SC Miticide/Insecticide) for almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes for control of mites, thrips, leafminers, leafhoppers, psyllids, potato beetles, skeletonizer, and pinworms.

The new end-use product may be applied by ground application and also aerially for some crops, except for in New York. The maximum single application rate ranges from 0.014 to 0.023 lb ai/A, and the maximum seasonal application rate ranges from 0.038 to 0.056 lb ai/A.

1.1 Nature of Chemical Stressor

Abamectin (also known as avermectin) is a mixture of macrocyclic lactones and is a fermentation product of the soil fungus, *Streptomyces avermitilis*. The active ingredient abamectin is a mixture of avermectins containing at least 80% avermectin B_{1a} (5-0-demethyl avermectin A_{1a}) and at most 20% avermectin B_{1b} (5-0-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl) avermectin A_{1a}). A major soil degrade is a mixture of 8- α -hydroxy and a ring opened aldehyde derivative.

Abamectin is a miticide/insecticide registered for use on almonds, walnuts, apples, avocados, citrus fruits, cucurbits, grapes, fruiting vegetables and other crops. It is also registered as a nematicide for use as a seed treatment for corn and cotton (AvictaTM 500FS) and as a seed treatment for cucurbits and tomatoes (AvictaTM 400 FS). It is also registered as a treatment for as an indoor and outdoor bait for insects such as ants and roaches, waterbugs, and palmetto bugs.

The proposed registration action is for a new formulation, Agri-Mek® SC Miticide/Insecticide, an aqueous suspension concentrate that contains abamectin (avermectin B1a & B1b), for use on almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes for control of mites, thrips, leafminers, leafhoppers, psyllids, potato beetles, skeletonizer, and pinworms. According to the registrant, abamectin is not dissolved in the new end-use product, rather the particles of abamectin are suspended in water. Also, depending on the crop, Agri-Mek SC must be mixed with a horticulture oil (not a dormant oil), non-ionic surfactant, spreading and penetrating surfactant, cucurbit approved adjuvant or organosilicone adjuvant (potatoes only) to avoid the possibility of exceeded established crop tolerances. Agri-Mek SC may be applied by ground application and by aerial application for avocados, cucurbit, fruiting and leafy vegetables, mint, and potatoes and for control of citrus leafminer in citrus fruit (not in California). Aerial application is not approved in New York. Agri-Mek SC can not be applied within 25 ft for ground application or 150 ft for aerial application of lakes, reservoirs, rivers, permanent streams, marshes, pot holes, natural ponds, estuaries or commercial fish farm

ponds. In addition, the label restricts cultivation within 25 ft of the aquatic area to allow growth of a vegetative filter strip. The label states not to apply Agri-Mek SC or allow it to drift to blooming crops or weeds if bees are visiting the treatment area.

Abamectin acts as a chlorine channel agonist in invertebrates (Fritz, *et al.*, 1979, Mellin *et al.*, 1983 and Arena *et al.*, 1991 in Sherma and Cairns, 1993), and may function as a gamma-aminobutyric acid (GABAergic) agonist (Kass et al., 1980, 1984 in Sherma and Cairns, 1993). It acts by stimulating the release of gamma-aminobutyric acid, an inhibitory neurotransmitter, thus causing paralysis (Tomlin, 1994). The difference in toxicity between invertebrates and mammals may be partially due to different distribution of the GABAergic neurons (Turner and Schaeffer, 1989 in Sherma and Cairns, 1993).

1.2 Conclusions – Exposure Characterization

The new proposed use of abamectin may result in drift onto plants, soil, or water adjacent to a treated field. Any abamectin on the soil surface or in clear, shallow surface water should undergo rapid photodegradation (half-life <1 day). However, photodegradation is not likely to be significant where abamectin is incorporated or under canopy. In addition, in most surface waters, suspended sediments and lack of mixing would decrease the rate of photodegradation. In natural waters, abamectin residues are expected to be associated with the sediment, reducing aqueous concentrations. Abamectin slowly biodegrades in soil (90% upper confidence bound of mean half-life = 80.6 days). Abamectin is stable to hydrolytic degradation. Due to its low vapor pressure (1.5 x 10⁻⁹ Torr); it is not likely that volatilization will be a transport process for abamectin.

Laboratory studies indicate that abamectin has moderate to low mobility ($K_{ads} = 9.7$ to 160 mg kg⁻¹); adsorption was correlated with soil organic matter content. Submitted field dissipation studies are unacceptable; therefore, EFED can not determine if the behavior of abamectin in the laboratory is demonstrated in the field. Based upon the laboratory data, ground water effects are expected to be minimal.

1.3 Conclusions – Effects Characterization

Aquatic invertebrates are the aquatic species most sensitive to abamectin. It is very highly acutely toxic to aquatic invertebrates, with a 48-h EC₅₀ value of 0.34 µg ai/L in the freshwater waterflea, *Daphnia magna*, and a 96-h LC₅₀ of 0.020 µg ai/L (20 parts-per-trillion) in the estuarine/marine mysid shrimp, *Americamysis bahia*. Abamectin is highly toxic to the embryo/larval stages of mollusks with a 48-h EC₅₀ of 430 µg ai/L (total form (both dissolved and undissolved abamectin)) in the Eastern Oyster. This value is above the water solubility of abamectin (7.8 ppb in distilled water; <1 ppb in tap water) without the presence of a vehicle such as acetone to increase its water solubility. The life-cycle toxicity test with the *Daphnia magna* resulted in a reproductive NOAEC of 0.030 µg ai/L which was the lowest concentration tested, but the adults in the two lowest treatment groups were observed to be pale and smaller compared to the controls (MRID 00153570) and growth was not measured in the study. Therefore, the reproductive NOAEC appears

to underestimate the true no-effect concentration for Daphnia from chronic exposure to abamectin, as the NOAEC appears to be lower than 0.030 μ g ai/L (30 parts-per-trillion). An acute to chronic ratio using the mysid shrimp toxicity data was used to calculate a chronic no-effect concentration for the daphnia and is 0.006 μ g ai/L (6 parts-per-trillion). The NOAEC value for the life-cycle toxicity test with the mysid shrimp (*Americamysis bahia*) was previously reported as 0.0035 μ g ai/L based on reproduction when compared to the solvent control, but is 0.00035 μ g ai/L (0.35 parts-per-trillion) based on reproduction when compared to the negative control as there was a difference between the negative and solvent control for reproduction. Current EFED policy is to compare treatment groups to the negative control, therefore, the NOAEC value of 0.00035 μ g ai/L was used in the assessment.

Abamectin is also very highly toxic to freshwater fish with an acute 96-h LC₅₀ value of 3.2 μ g ai/L (total form) for rainbow trout (*Oncorhynchus mykiss*), a 96-h LC₅₀ value of 9.6 ai μ g/L (total form) for bluegill sunfish (*Lepomis macrochirus*) and an acute 96-h LC₅₀ value of 15.0 μ g ai/L (total form) for sheepshead minnow (*Cyprinodon variegatus*). These values are above the water solubility of abamectin (7.8 μ g/L in distilled water; <1 μ g/L in tap water) without the presence of a solvent such as acetone or DMF to increase its water solubility. The freshwater fish chronic toxicity NOAEC is 0.52 μ g ai/L, based on an early life stage study in rainbow trout based on growth (wet weight). There is no chronic estuarine-marine fish study for abamectin, therefore an acute to chronic ratio was used to determine a no-effect concentration. The extrapolated estuarine/marine fish chronic toxicity NOAEC is 2.41 μ g/L.

In birds, the acute oral LD_{50} for bobwhite quail (*Colinus virginianus*) is >2,000 mg/kg-bw (practically nontoxic), whereas the acute oral LD_{50} for mallard ducks (*Anas platyrhynchos*) is 85 mg/kg-bw (highly toxic). The dietary LC_{50} values obtained in short-term toxicity tests in bobwhite quail and mallard ducks are >3,102 and 383 mg ai/kg-diet, respectively. There were no statistically significant effects on growth, survival or reproduction in the mallard duck reproduction study at the highest concentration tested, 12 mg ai/kg-diet, therefore, the no observed adverse effect concentration (NOAEC) is at least 12 mg ai/kg-diet for the mallard duck chronic reproduction study (MRID 40318601). During the pilot study for the mallard duck reproduction study, the average number of eggs laid was markedly less in the 64 mg ai/kg treatment group.

In laboratory rats, abamectin has an acute toxicity LD_{50} value of 13.6 mg/kg-bw, when dosed using a sesame oil vehicle, and a 2-generation reproductive NOAEC value of 0.12 mg/kg-bw based on increased retinal folds, increased dead pups at birth, decreased viability and lactation indices, and decreased pup body weight. Based on two rat carcinogenicity studies abamectin is not a carcinogen and based on five mutagenicity and a cytogenetics test abamectin is not a mutagen.

Abamectin is highly toxic to the Honey Bee with an acute dermal LD_{50} of 0.41 µg/bee. A foliar residue study on citrus, demonstrates that residues are toxic for approximately 48 hours.

9

Abamectin has been tested for phytotoxicity in only two aquatic plant species. The growth or biomass inhibition nominal concentration IC_{50} values obtained in these studies are >100 mg ai/L (total form) and 3.9 mg ai/L (total form) for the green alga *Selenastrum capricornutum* and the vascular aquatic plant *Lemma gibba*, respectively. These values are above the water solubility of abamectin (7.8 µg/L distilled water; <1 µg/L in tap water) without the presence of a solvent such as acetone or DMF to increase its water solubility. These studies were conducted using acetone, which is a potential photosensitizer and abamectin is subject to photolysis. Bioavailable dissolved concentrations are unknown, as test solutions were not analyzed.

Abamectin does not bioaccumulate significantly in fish or in mammals. Terrestrial plant toxicity data was not available.

1.4 Potential Risks to Non-target Organisms

Non-Listed Organisms

Acute risk is not expected for non-listed fish, birds or mammals from application of the new end-use abamectin product. Acute risk is expected for non-listed freshwater and estuarine/marine invertebrates. The potential for adverse risk also exists for terrestrial invertebrates and plants from use of abamectin. The RQ values did not exceed the non-listed LOC for aquatic plants, but data for only two of the five recommended species were submitted, and there are technical issues with the submitted data.

Listed Organisms

There is a potential for adverse risk to listed freshwater fish, freshwater and estuarine/marine invertebrates, birds, reptiles, amphibians, and mammals. The potential for adverse risk also exists for terrestrial invertebrates and plants from use of abamectin. The RQ values did not exceed the listed LOC for aquatic plants, but data for only two of the five recommended species were submitted, and there are technical issues with the submitted data.

Aquatic Organisms

<u>Acute</u>

Non-Listed Species

- There were no acute non-listed LOC exceedances for either freshwater or estuarine/marine fish.
- RQ values did exceed the acute non-listed LOC of 0.5 for estuarine/marine invertebrates for all crops (RQs 1.45-32.6), and for freshwater aquatic invertebrates from abamectin use on apples, celeriac, citrus, cotton, cucurbit, fruiting and leafy vegetables, grapes and potatoes.

Listed Species

- There were no acute listed LOC exceedances for estuarine/marine fish for any crop scenario.
- The acute freshwater and estuarine/marine invertebrate RQ values exceed the Agency's acute listed LOC of 0.05 for all crop scenarios (RQs 0.085-1.91 for freshwater and 1.45-32.6 for estuarine/marine).
- The acute freshwater fish RQ values exceed the Agency's acute listed LOC for abamectin application to apples, celeriac, citrus, cotton, cucurbit, fruiting and leafy vegetables, grapes, and potatoes (RQs 0.087-0.203).
- RQ values for aquatic plants did not exceed the listed or non-listed LOC.
 However, data for only two of the five required species was available for review.
 In addition, submitted studies were conducted as nominal concentrations with the use of a potential photosensitizing solvent; therefore, risk may be underestimated.

<u>Chronic</u>

- The chronic RQ values for fish did not exceed the LOC for any crop scenario.
- Chronic freshwater and estuarine/marine invertebrate RQ's exceed the chronic LOC (1.0) for all crop scenarios (RQs 3.83-94.0 for freshwater and 65.7-1611 for estuarine/marine).
- The life-cycle toxicity test with the *Daphnia magna* resulted in a reproductive NOAEC of 0.030 µg ai/L which was the lowest concentration tested, but the adults in the two lowest treatment groups were observed to be pale and smaller compared to the controls (MRID 00153570) and length and weight were not measured. Therefore, the reproductive NOAEC appears to underestimate the true no-effect concentration for Daphnia from chronic exposure to abamectin, as the NOAEC appears to be lower than 0.030 µg ai/L which may be underestimating risk. Therefore, an extrapolated NOAEC value, based on an acute to chronic ratio using the mysid shrimp toxicity data

Terrestrial Organisms

Acute

Non-Listed Species

• The acute dose-based and dietary-based RQ values for birds and dose-based RQ values for mammals did not exceed the non-listed LOC of 0.5 for any crop scenario. However, regurgitation was observed in all the mallard duck acute oral treatment groups, therefore, the reported acute oral LD₅₀ might be underestimating toxicity.

Listed Species

- The avian acute dietary-based RQ values did not exceed the acute listed LOC of 0.1 for any crop scenario.
- The acute avian dose-based RQ values exceed the acute listed LOC for small birds feeding on small and tall grass, broadleaf plants and small insects for all

crop scenarios, except for tall grasses for cotton, grapes and hops, and the LOC was exceeded for medium birds consuming short grasses for all crops except cotton, grapes and hops (RQs 0.10-0.30).

- Since birds are surrogates for reptiles and land-phase amphibians, the potential for direct effects may exist for these taxa as well.
- Acute dose-based RQ values exceeded the LOC for small and medium mammals consuming short and tall grass, broadleaf plants and small insects for all crops, except for medium mammals consuming tall grass for cotton, grapes and hops (RQs 0.11-0.38).
- The acute dose-based listed LOC was also exceeded for large mammals feeding on short grasses for all crop scenarios and broadleaf plants and small insects for abamectin application to celeriac, cucurbit, fruiting and leafy vegetables, herbs and potatoes (RQs 0.10-0.17).
- There are no data regarding the toxicity of abamectin to terrestrial plants, therefore RQ values were not calculated. Due to the lack of data, and reported incidences for almonds and grapes indicated possible plant injury due to abamectin, risk can not be precluded.
- Abamectin is highly toxic to the honeybee. Calculated EECs were greater than the honeybee acute contact toxicity value, and there was an incidence reported that indicated honeybee mortality from abamectin use on avocados. Therefore, the proposed abamectin use is expected to be toxic to terrestrial invertebrates and beneficial insects.

Chronic

- Chronic dose-based and dietary-based RQ values exceed the Agency's chronic LOC (1.0) for mammals feeding on short and tall grass, broadleaf plants and small insects (RQs 5.74-42.64 for dose-based and 1.45-4.92 for dietary based).
- Chronic dose-based RQ values also exceeded the LOC for small and medium mammals consuming fruits, pods or large insects for all crops and for large mammals from abamectin use on celeriac, cucurbit, fruiting and leafy vegetables, herbs and potatoes (RQs 1.22-2.67).
- No chronic dietary-based RQ values exceeded the chronic LOC for mammals consuming fruits, pods, seeds, or large insects or for seeds on a chronic dose basis.
- Chronic risk to birds is not expected as the calculated EECs are lower than the highest concentration tested in the mallard reproduction study.

Table 1. Potential Risks to Nonlisted and Listed Species Associated with Direct or Indirect Effects from the Proposed Application of abamectin for use on Crops

Taxonomic		Direct Effects		Direct Effects Indi		Indirec	t Effects to Listed Species
Group	Effects Endpoint	Non-listed	Listed	Potential	Indirect Effects Due to Direct Effect to: ²		
Dicot terrestrial plants	Survival and Growth	Data not available, risk can not be precluded		Yes	Mammals and birds		

	Taxonomic Group	Effects
	Monocot terrestrial plants	Surv
	Mammals	Acute mo Chroni and su off
	Birds ²	Acute mo Chroni & repi
	Terrestrial	Acute
ENT	invertebrates Freshwater Fish	mo Acut mo Chroni & s
OCUM	Freshwater Invertebrates	Acun mo Chroni & repr
	Estuarine-marine fish	Acut mo Chroni & su
	Estuarine-marine Invertebrates	Acut mo Chronie
IV	Aquatic Vascular Plants	Gr
H	Aquatic Non- Vascular Plants	Gr
A AR	¹ Direct effects to s habitat, and other f ² Since birds are s occur due to direct ³ RQ value calcula ⁴ Studies conducted	factors im urrogates effects to ted using d as nomi
SEP	may be underestim	iated.

Taxonomic		Direct I	Effects	Indirect Effects to Listed Species		
Group	Effects Endpoint	Non-listed	Listed	Potential	Indirect Effects Due to Direct Effect to: ²	
Monocot terrestrial plants	Survival and Growth	Data not availab not be precluded		Yes	Mammals and birds	
Mammals	Acute oral dose: mortality Chronic: growth and survival of offspring	Acute: No Chronic: Yes	Acute: Yes Chronic: Yes	Yes	Terrestrial plants, terrestrial insects	
Birds ²	Acute oral dose: mortality Chronic: growth & reproduction	Acute: No Chronic: No	Acute: Yes Chronic: No	Yes	Terrestrial plants, terrestrial insects	
Terrestrial invertebrates	Acute contact: mortality	Acute: Yes	Acute: Yes	Yes	Terrestrial plants, birds	
Freshwater Fish	Acute dose: mortality Chronic: growth & survival	Acute: No Chronic: No	Acute: Yes Chronic: No	Yes	Freshwater invertebrates, terrestrial plants	
Freshwater Invertebrates	Acute dose: mortality Chronic: growth & reproduction	Acute: Yes Chronic: Yes	Acute: Yes Chronic: Yes	Yes	Freshwater fish, birds, terrestrial plants	
Estuarine-marine fish	Acute dose: mortality Chronic: growth & survival	Acute: No Chronic: No ³	Acute: No Chronic: No ³	Yes	Estuarine/marine invertebrates, terrestrial plants	
Estuarine-marine Invertebrates	Acute dose: mortality Chronic: survival	Acute: Yes Chronic: Yes	Acute: Yes Chronic: Yes	Yes	Birds, terrestrial plants	
Aquatic Vascular Plants	Growth ⁴	Acute: No Chronic: No	Acute: No Chronic: No	Yes	Birds, terrestrial plants	
Aquatic Non- Vascular Plants	Growth ⁴	Acute: No Chronic: No	Acute: No Chronic: No	Yes	Freshwater & estuarine/marine invertebrates, terrestrial plants	

¹ Direct effects to species may result in indirect effects to other species by changing availability of prey, habitat, and other factors important to survival and reproduction.

² Since birds are surrogates for reptiles and land-phase amphibians, potential risk to these groups may occur due to direct effects to birds.

³ RQ value calculated using ACR using freshwater fish chronic NOAEC and LC50 value.

⁴ Studies conducted as nominal concentrations with the use of a potential photosensitizer solvent, so risk may be underestimated.

1.5 Key Uncertainties and Data Gaps

1.5.1 Key Uncertainties

A number of the acute toxicity tests were conducted as nominal concentration static studies and were above the reported solubility limit for abamectin (7.8 μ g/L in distilled water (MRID 47051904) and $<1.0 \mu g/L$ in tap water (D235416)). In addition, the studies were conducted with acetone which is a potential photosensitizer, and abamectin has an aqueous photolysis half-life of 12 hours. Therefore, the use of acetone may have contributed to possible degradation of abamectin in the test solutions especially in the aquatic plant studies. Overall, the dissolved bioavailable concentration of abamectin in these toxicity tests is unknown. Risk quotients calculated from these values may underestimate risks. The acute static daphnia study was also conducted using nominal concentrations. The current OPPTS 850.1075 (acute fish) guideline states that there must be evidence that test concentrations remained at least 80 percent of the nominal concentrations throughout the test or that mean measured concentrations are an accurate representation of exposure levels. The OPPTS 850.1010 (acute daphnia) guideline indicates that the concentration of the test chemical in the chambers should be measured as often as is feasible during the test. Also, the 850.5400 (algal toxicity) indicates the concentration of test chemical in the test containers is to be determined at the beginning and end of the definitive test by standard analytical methods which have been validated prior to the test. Since test solutions were not measured in the acute fish, daphnia, oyster and aquatic plant studies, the actual bioavailable abamectin concentration these organisms were exposed to is not known which increases the uncertainty of the toxicity values. Therefore, it is recommended that the acute fish (rainbow trout, bluegill, and sheepshead minnow), daphnia, oyster, and aquatic plant (duckweed and green algae) studies be repeated under current guidance which would involve the measurement of dissolved (bioavailable) abamectin in the test solutions.

The registrant submitted *Daphnia magna* chronic life-cycle study with abamectin did not measure growth in the parental generation at the end of the study (total length or dry weight) (MRID 00153570). The current no-effect concentration is the lowest concentration tested based on survival. The study does indicate that at test termination, the surviving adult daphnia in the two lowest treatment groups were pale and appeared smaller compared to the controls which may suggest that the actual no-effect concentration is less than the lowest treatment group tested. Risk quotients calculated from the current no adverse effect concentration may underestimate risk. The current OPPTS 850.1300 guideline states that growth for each surviving adult should be determined (total body length or dry weight, or both). It is preferred that both measures be taken. Therefore, it is recommended that the chronic Daphnia magna life-cycle study be repeated. Since the actual no-effect concentration may be less than the lowest treatment group tested, the acute and chronic toxicity values from the mysid shrimp studies were used to calculate an acute to chronic ration for the daphnia. This ratio was used to determine a

14

chronic no-effect concentration for the daphnia and was used to calculate risk quotients which may be overestimating or underestimating risk.

- In the registrant submitted mysid chronic toxicity study with abamectin, reproduction in the solvent control was statistically significant compared to the negative control which may indicate that the solvent may have interfered with the integrity of the test. In the study, reproduction in the treatment groups was compared to the solvent control, but current EFED policy is to compare to the negative control regardless if the controls are statistically different. Comparison of reproduction resulted in a lower no-effect concentration than previously reported, and the lower no-effect concentration was used in this assessment.
- An early life-cycle study for estuarine-marine fish with abamectin was not available. Therefore, the acute and chronic toxicity values from the rainbow trout studies were used to develop an acute to chronic ratio for the sheepshead minnow. This ratio was used to determine a chronic no-effect concentration for the sheepshead and was used to calculate risk quotients which may overestimate or underestimate risk.
- Regurgitation was observed in all the mallard duck acute oral treatment groups, therefore, the reported acute oral LD₅₀ might be underestimating toxicity.
- The label states that for a number of crops (celeriac, cucurbit, fruiting vegetable, leafy vegetable, mint and potatoes (for potato psyllid) not to make more than two sequential applications of Agri-Mek SC or any other foliar applied abamectin containing product, but the maximum seasonal amount allowed for these crops is greater than two applications at the maximum single application rate. The application interval for these crops is 7 days, and the label does not state how long to wait between the second sequential application and subsequent applications. Also, the maximum amount allowed per season for these crops, except mint, is slightly less (0.001 lb ai/A) than the amount applied using three applications at the interval between the second sequential application and subsequent applications, three applications at seven day intervals using the maximum seasonal rate divided by three was modeled for environmental exposure.
- For application to herbs, the label states not to make more than two applications of Agri-Mek SC per single cutting (harvest), but the maximum amount allowed per cropping season is greater than two applications at the maximum single application rate but slightly less than three applications at the maximum single application rate. Therefore, environmental exposure concentrations were modeled in the same manner as discussed above.
- For application to almonds, walnuts, apples, avocados, citrus, pears, plums and prunes, the label states that for the maximum amount per season, not to apply more than 8.5 fl oz/A (or 0.047 lb ai/A) of Agri-Mek SC or any other foliar

15

applied abamectin containing product in a growing season. Based on the density of the formulation, 8.5 fl oz/A calculates to 0.04648 lb ai/A, therefore, it is not known if the reported 0.047 lb ai/A is a rounding issue or if another abamectin product can be applied at 0.001 lb ai/A. In addition, the single maximum application rate reported is 0.023 lb ai/A, and two applications would be 0.046 lb ai/A. For this assessment, abamectin was modeled at 0.0235 lb ai/A (0.047 divided by two applications). Abamectin was also modeled at 0.023 lb ai/A which resulted in the same LOC exceedances as the 0.0235 lb ai/A application.

- The maximum seasonal application rate for cotton, potatoes (for Colorado potato beetle) and grapes on the label is reported as 0.038 lb ai/A, but the label also indicates not to apply more than 6.75 fl oz/A of Agri-Mek SC per season which calculates to 0.0369 (0.037) lb ai/A. The maximum single application rate for cotton, potatoes and grapes is 0.019 lb ai/A, and if applied twice per season, the maximum seasonal application rate of 0.038 lb ai/A. Therefore, a maximum seasonal application rate of 0.038 lb ai/A was used for determining environmental exposure concentrations.
- EFED believes that the inclusion of the suggested buffer zone of (25 ft, for ground application; and 150 ft for aerial application) will not appreciably change the outcome of the risk assessment.

1.5.2 Data Gaps

This assessment is potentially underestimating risk to both terrestrial and aquatic organisms from exposure to abamectin. This potential underestimation is due to a lack of available toxicity data as well as technical issues with the data submitted for some species. Therefore, the following toxicity studies are requested.

- <u>OPPTS 850.1400- Early Life-Stage Toxicity Test</u>. There are no chronic toxicity data available for the Agency to assess chronic risk of abamectin to estuarine/marine fish.
- <u>OPPTS 850.4225 Seedling Emergence, Tier II and OPPTS 850.4250 –</u>
 <u>Vegetative Vigor, Tier II.</u> Seedling emergence and vegetative vigor toxicity data are not available for terrestrial plants.
- <u>OPPTS 850.2300 Avian reproduction Study</u>. A reproduction study with bobwhite quail is not available.

- <u>OPPTS 850.2100 Acute Oral Toxicity with a Passerine Bird</u>. An acute oral toxicity study with a passerine bird is not available. No species recommended at this point. Protocol should be submitted prior to test initiation.
- Whole Sediment Toxicity Test: Chronic Invertebrates Freshwater and Marine. Based on the physiochemical properties, abamectin may sorb to organic materials in sediment and may be toxic to organisms that dwell in and ingest sediment as abamectin is very highly toxic to other aquatic invertebrates. Since abamectin is a foliar application, spray drift to both freshwater and estuarine-marine environments is possible. The concentration of abamectin in water from spray drift from ground or aerial application is greater than the acute EC_{50} value for the estuarine/marine mysid shrimp. 40 CFR Part 158.630 requires a chronic freshwater sediment study if the half-life is greater than or equal to 10 days and any of the following conditions exist: i. Kd \geq 50, ii. the log Kow \geq 3, or iii. the Koc \geq 1000. Abamectin meets these criteria. A protocol should be submitted to the Agency for review prior to testing.
- <u>OPPTS 850.1075 Fish Acute Toxicity Test, freshwater and marine; 850.1010-</u> <u>Aquatic Invertebrate Acute Toxicity test with Daphnia; 850.1025 or 1055 –</u> <u>Oyster Acute Toxicity Test (shell deposition) or Bivalve Acute Toxicity Test</u> (embryo-larvae). The registrant submitted test were conducted as static tests that were conducted above the reported water solubility, conducted using a potential photosensitizing solvent and test concentrations were not measured. As a result, the actual test concentrations (dissolved bioavailable abamectin) are not known which may be underestimating risk. Therefore, a new acute toxicity study for a coldwater and warmwater freshwater fish, estuarine-marine fish and *Daphnia magna* is requested. An oyster shell deposition or a bivalve embryo-larvae toxicity study is also requested.
- <u>OPPTS 850.1300 Daphnia Chronic Toxicity Test</u>. The registrant submitted chronic daphnia toxicity test did not measure growth for the surviving adults at test termination. The study indicates that the surviving daphnia in the two lowest concentrations tested were pale and smaller than the control. Measurement of growth is required under the current guidance. Therefore, a new study is requested.
- <u>OPPTS 850.5400 Algal Toxicity and 850.4400 Aquatic Plant Toxicity Test</u> <u>using Lemna spp</u>. There are limited studies (data on two of the five species available (duckweed and a green alga study)) addressing the toxicity of abamectin to aquatic plants; the studies conducted with duckweed and green algae were conducted above solubility, with a potential photosensitizing solvent, and test concentrations were not measured. Abamectin toxicity studies with a marine diatom, freshwater diatom and blue-green algae are requested as well as new studies for the green algae and duckweed.

US EPA ARCHIVE DOCUMENT

• Submitted field dissipation studies are unacceptable; therefore, the behavior of abamectin in the field as compared to the laboratory cannot be demonstrated. In most cases we would expect dissipation in the field to be greater than that predicted by laboratory studies due to pesticide transport.

2.0 Problem Formulation

2.1 Nature of Regulatory Action

This ecological risk assessment evaluates the use of the insecticide/miticide abamectin (PC 122804) as a new aqueous suspension concentrate end-use product, Agri-Mek®SC Miticide/Insecticide. The assessment is based on the proposed label use of the new end-use product on almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes for control of mites, thrips, leafminers, leafhoppers, psyllids, potato beetles, skeletonizers, and pinworms. The proposed label is listed as a restricted use pesticide and may only be used by certified applicators or persons under their direct supervision, and only for the uses covered by the certified applicator's certificate.

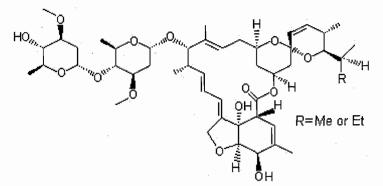
The new end-use product may be applied by ground application and also aerially for some crops, except for in New York. The maximum single application rate ranges from 0.014 to 0.023 lb ai/A, and the maximum seasonal application rate ranges from 0.038 to 0.056 lb ai/A.

2.2 Stressor Source and Distribution

Abamectin (Figure 1) is a fermentation product of the soil fungus, *Streptomyces avermitilis*. Abamectin has been registered since the 1980s as an insecticide/miticide to be used for crop protection in numerous fruit and vegetable crops. Some of the active registrations are under trade names Avid®, Zephyr®, Agri-Mek®, Abamectin, Epi-Mek®, Abacide[™], and Abasol[™]. It is also registered as a treatment for Fire Ants (Varsity[™]); turf, lawns, and other non-crop areas such as parks and golf courses, and in and around residential, commercial (food and non-food establishments) and industrial structures¹ for Fire Ants, Pharaoh Ants and related ants (Ascend and TC); as an indoor and outdoor ant² and insect pest³ crack and crevice treatment for residential, commercial (food and non-food establishments) and industrial structures⁴, and transportation equipment⁵ (AVERT® and TC); as an indoor and outdoor bait for ants and pests⁶ (Raid Baits); and for use as a cotton and corn seed treatment (Avicta[™] 500 F) and as a seed

¹ Warehouses, hotels, food storage areas, meat packing plants, motels, schools, supermarkets, hospitals and nursing homes

² Includes but not limited to acrobat, allegheny, argentine, bigheaded, carpenter, soybeans field, crazy, fire, ghost, harvester, little black, odorous house, pavement, pharaoh, and pyramid


³ Booklice, carpet bettles, cockroaches, crickets, drugstore beetles, earwigs, flour beetles, grain weevils, pillbugs, and sowbugs

⁴ Apartments, campgrounds, garages, food storage areas, homes, hospitals and nursing homes (nonoccupied patient ares), hotels, meat packing and food processing plants, motels, resorts, restaurants and other food handling establishments, schools, supermarkets, utilities, warehouses, and other commercial and industrial buildings

⁵ Buses, boats, ships, trains, trucks, planes

⁶ Roaches, waterbugs, palmetto bugs

treatment for cucurbits and tomatoes (Avicta[™] 400 FS) to control nematodes. It is also used as a veterinary antihelmintic (destroys or causes expulsion of parasitic intestinal worms).

Figure 1. Chemical Structure of Abamectin

The proposed registration action is for a new formulation, Agri-Mek® SC Miticide/Insecticide, an aqueous suspension concentrate that contains abamectin (avermectin B1a & B1b), for use on almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes for control of mites, thrips, leafminers, leafhoppers, psyllids, potato beetles, skeletonizers, and pinworms. According to the registrant, abamectin is not dissolved in the new end-use product, rather the particles of abamectin are suspended in water. Also, depending on the crop, Agri-Mek SC must be mixed with a horticulture oil (not a dormant oil), non-ionic surfactant, spreading and penetrating surfactant, cucurbit approved adjuvant or organosilicone adjuvant (potatoes only) to avoid the possibility of exceeding established crop tolerances. Agri-Mek SC may be applied by ground application and by aerial application for avocados, cucurbit, fruiting and leafy vegetables, mint, and potatoes and for control of citrus leafminer in citrus fruit (not in California). Aerial application is not approved in New York. Agri-Mek SC can not be applied within 25 ft for ground application or 150 ft for aerial application of lakes, reservoirs, rivers, permanent streams, marshes, pot holes, natural ponds, estuaries or commercial fish farm ponds. In addition, the label restricts cultivation within 25 ft of the aquatic area to allow growth of a vegetative filter strip. The label states not to apply Agri-Mek SC or allow it to drift to blooming crops or weeds if bees are visiting the treatment area.

2.2.1 Nature of the Chemical Stressor

The active ingredient abamectin is a mixture of avermectins containing at least 80% avermectin B_{1a} (5-0-demethyl avermectin A_{1a}) and up to 20% avermectin B_{1b} (5-0-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl) avermectin A_{1a}).

Abamectin acts as a chlorine channel agonist in invertebrates (Fritz, *et al.*, 1979, Mellin *et al.*, 1983 and Arena *et al.*, 1991 in Sherma and Cairns, 1993), and may function as a gamma-aminobutyric acid (GABAergic) agonist (Kass et al., 1980, 1984 in Sherma and Cairns, 1993). It acts by stimulating the release of gamma-aminobutyric acid, an

inhibitory neurotransmitter, thus causing paralysis (Tomlin, 1994). The difference in toxicity between invertebrates and mammals may be partially due to different distribution of the GABAergic neurons (Turner and Schaeffer, 1989 in Sherma and Cairns, 1993).

2.2.2 Proposed Label Crop Use Rates

The new end-use product may be applied by ground application and also aerially for some crops, except for in New York. The maximum single application rate ranges from 0.014 to 0.023 lb ai/A, and the maximum seasonal application rate ranges from 0.038 to 0.056 lb ai/A. Agri-Mek SC must be mixed with a horticulture oil (not a dormant oil), non-ionic surfactant, spreading and penetrating surfactant, cucurbit approved adjuvant or organosilicone adjuvant (potatoes only) to avoid the possibility of exceeding established crop tolerances.

There are a few uncertainties regarding the label language in terms of maximum seasonal application rate and application intervals:

- The label states that for a number of crops (celeriac, cucurbit, fruiting vegetable, leafy vegetable, mint and potatoes (for potato psyllid) not to make more than two sequential applications of Agri-Mek SC or any other foliar applied abamectin containing product, but the maximum seasonal amount allowed for these crops is greater than two applications at the maximum single application rate. The application interval for these crops is 7 days, and the label does not state how long to wait between the second sequential application and subsequent applications. Also, the maximum amount allowed per season for these crops, except mint, is slightly less (0.001 lb ai/A) than the amount applied using three applications at the interval between the second sequential application and subsequent applications, three applications at seven day intervals using the maximum seasonal rate divided by three was modeled for environmental exposure.
- For application to herbs, the label states not to make more than two applications of Agri-Mek SC per single cutting (harvest), but the maximum amount allowed per cropping season is greater than two applications at the maximum single application rate but slightly less than three applications at the maximum single application rate. Therefore, environmental exposure concentrations were modeled in the same manner as discussed above.
- For application to almonds, walnuts, apples, avocados, citrus, pears, plums and prunes, the label states that for the maximum amount per season, not to apply more than 8.5 fl oz/A (or 0.047 lb ai/A) of Agri-Mek SC or any other foliar applied abamectin containing product in a growing season. Based on the density of the formulation, 8.5 fl oz/A calculates to 0.04648 lb ai/A, therefore, it is not known if the reported 0.047 lb ai/A is a rounding issue or if another abamectin product can be applied at 0.001 lb ai/A. In addition, the single maximum application rate reported is 0.023 lb ai/A, and two applications would be 0.046 lb ai/A. For this assessment, abamectin was modeled at 0.0235 lb ai/A (0.047

divided by two applications). Abamectin was also modeled at 0.023 lb ai/A which resulted in the same LOC exceedances as the 0.0235 lb ai/A application.

• The maximum seasonal application rate for cotton, potatoes (for Colorado potato beetle) and grapes on the label is reported as 0.038 lb ai/A, but the label also indicates not to apply more than 6.75 fl oz/A of Agri-Mek SC per season which calculates to 0.0369 (0.037) lb ai/A. The maximum single application rate for cotton, potatoes and grapes is 0.019 lb ai/A, and if applied twice per season, the maximum seasonal application rate of 0.038 lb ai/A. Therefore, a maximum seasonal application rate of 0.038 lb ai/A was used for determining environmental exposure concentrations.

The maximum single and seasonal application rate, application rate interval and method of application for each of the crops listed in the Agri-Mek SC label is presented below in Table 1.

Сгор	Max. Application rate lbs. a.i./A	No. Applications	Max. Seasonal Application rate Ib ai/A ¹	Application Interval (days)	Application Method ³
Almonds & Walnuts	0.023	2	0.047 (Max seasonal app of 8.5 fl oz/A)	21	Ground
Apples	0.023	2	0.047 (Max seasonal app of 8.5 fl oz/A)	21	Ground
Avocados	0.023	2	0.047 (Max seasonal app of 8.5 fl oz/A)	30	Ground & Aerial
Celeriac	0.019	*2	0.056 (Max seasonal app of 10.25 fl oz/A)	. 7	Ground
Citrus (calamondin, citrus citron, citrus hybrids, grapefruit, kumquat, lemon, lime, mandarin, sour orange, sweet orange, pummelo, Satsuma mandarin)	0.023	3	0.047 (Max seasonal app of 8.5 fl oz/A)	30	Ground; Aerial (citrus leafminer, not in CA)
Cottón	0.019	Not Reported	0.038 (reported on	21	Ground & Aerial

Table 1.	Proposed	Application	Rates for	Crops Liste	d in Agri-M	ek SC Label
----------	----------	-------------	------------------	-------------	-------------	-------------

	· .		label) (Max seasonal app of 6.75 fl oz/A)		
Cucurbits (Chayote, chinese waxgourd, citron melon, cucumber, gherkin, edible gourd, momordica spp, muskmelon, pumpkin, summer and winter squash, watermelon)	0.019	*2	0.056 (Max seasonal app of 10.25 fl oz/A)	7	Ground & Aerial
Fruiting Vegetables (eggplant, groundcherry, pepino, peppers, tomatillo, tomato)	0.019	*2	0.056 (Max seasonal app of 10.25 fl oz/A)	7	Ground & Aerial
Grapes	0.019	Not Reported	0.038 (reported on label) (Max seasonal app of 6.75 fl oz/A)	21	Ground & Aerial
Herb Crop Subgroup (except chives)	0.019	2 (per single cutting)	0.056 (Max seasonal app of 10.25 fl oz/A)	7	Ground
Hops (not in CA)	0.019	2	0.038	21	Ground
Leafy vegetables (amaranth, arugula, cardoon, celery, celtuce, chervil, chinese celery, chrysanthemum edible, corn salad, cress, dandelion, dock, endive, fennel, lettuce, New Zealand spinach, orach, parsley, purslane, radicchio, rhubarb, spinach, Swiss chard)	0.019	*2	0.056 (Max seasonal app of 10.25 fl oz/A)	7	Ground & Aerial
Mint	0.014	* ² only 3 per season	0.042 (Max seasonal app of 7.75 fl oz/A)	7.	Ground & Aerial
Pears (including Oriental pear rees)	0.023	2	0.047 (Max seasonal app of 8.5 fl oz/A)	21	Ground
Plums and Prunes	0.023	2	0.047 (Max seasonal app of 8.5 fl oz/A)	21	Ground

23

		0.056		Aerial
		(Max seasonal		
	1	app of 6.75fl		
· · · · · · · · ·		oz/A for CO		
		beetle, 10.25 fl	,	
· · · ·		oz/A for		
		leafminer		

¹ One gallon of Agri-Mek SC contains 0.7 lb abamectin

 2 * = label states not to make more than 2 sequential applications of Agri-Mek SC or any other foliar applied abarectin containing product.

³ Aerial application not approved in New York.

2.2.3 Overview of Pesticide Use

The current proposed registration is for the new end-use product Agri-Flex for use on almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes. Abamectin is currently registered for use on these crops, except cotton, using the emulsifiable concentrate end-use product Agri-Mek 0.15 EC (EPA Reg. # 100-898) which was first registered in 1989.

Data are available which display the estimated annual use of abamectin (Figure 2).

ABAMECTIN - insecticide

2002 estimated annual agricultural use

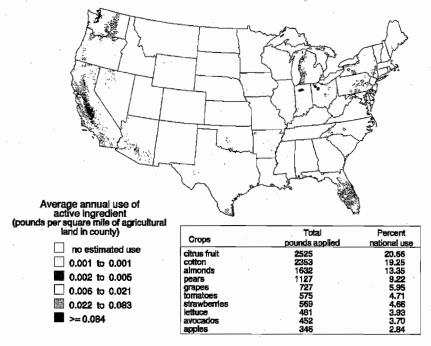


Figure 2 Estimated use of abamectin in 2002 (USGS)

2.2.4 Environmental Properties of Abamectin

A summary of the physical and chemical properties are listed in Table 2. Based on fate properties and application methods, it is expected that abamectin will persist long enough to be available for transport to non-target environments. However, strong sorption to soil is expected to significantly reduce concentrations in the water column and in runoff water.

The results from reviewed studies indicate that abamectin should undergo rapid photodegradation (half-life <1 day) on the soil surface and in clear, shallow surface water. Photodegradation is not likely to be significant where abamectin is incorporated or under canopy. In addition, in most surface waters, suspended sediments and lack of mixing would decrease the rate of photodegradation. In natural waters, abamectin residues are expected to be associated with the sediment, reducing aqueous concentrations. Abamectin slowly biodegrades in soil (90% upper confidence bound of mean half-life = 80.6 days). Abamectin is stable to hydrolytic degradation. Due to its low vapor pressure (1.5 x 10⁻⁹ Torr); it is not likely that volatilization will be a transport process for abamectin.

Abamectin is nearly insoluble in water (7.8 ppb at pH 9 in distilled water; <1 ppb in tap water (D235416)). Laboratory studies indicate that abamectin has moderate to

low mobility ($K_{ads} = 9.7$ to 160 mg kg⁻¹); adsorption was correlated with soil organic matter content. Submitted field dissipation studies are unacceptable; therefore, EFED can not determine if the behavior of abamectin in the laboratory is demonstrated in the field. Based upon the laboratory data, ground water effects are expected to be minimal. Surface water contamination could occur from runoff events that occur soon after application.

Table 2 Physical and Chemical Properties of Abamectin

	Value	Source
Common name	Abamectin, Avermectin	
Pesticide type	Insecticide, Acaricide, Nematicide	
CAS number	71751-41-2	
Empirical formula	$C_{48}H_{72}O_{14} + C_{47}H_{70}O_{14}$	
Molecular mass (g/mol)	866.6	
Vapor pressure (Torr)	1.5 x 10 ⁻⁹	MRID# 47051904
Henry's Law Constant (atm-m ³ /mol)	2.6 X 10 ⁻⁸	MRID# 47051904
Solubility in water (μ g/L)	7.8 (distilled water); <1 (tap water)	MRID# 47051904;
		D235416
Log Kow	4.4 at 25°C (pH aqueous phase 7.2)	MRID# 47051904
pKa	No pKa in aqueous solutions in the range of 1-12	MRID# 47051904

2.3 Receptors

2.3.1 Aquatic and Terrestrial Effects

In order for a chemical to pose an ecological risk, it must reach ecological receptors in biologically significant concentrations. An exposure pathway is the means by which a contaminant moves in the environment from a source to an ecological receptor. For an ecological exposure pathway to be complete, it must have a source, a release mechanism, an environmental transport medium, a point of exposure for ecological receptors, and a feasible route of exposure. In addition, the potential mechanisms of transformation (i.e., which degradates may form in the environment, in which media, and how much) must be known, especially for a chemical whose metabolites/degradates are of greater toxicological concern. The assessment of ecological exposure pathways, therefore, includes an examination of the source and potential migration pathways for constituents,

and the determination of potential exposure routes (e.g., ingestion, inhalation, and dermal absorption).

Ecological receptors that may potentially be exposed to abamectin on-field or off-field from spray drift or run-off include terrestrial wildlife (i.e., invertebrates, mammals, birds, and reptiles), and terrestrial and semi-aquatic plants. In addition to terrestrial ecological receptors, aquatic receptors (e.g., freshwater and estuarine/marine fish and invertebrates, amphibians, aquatic plants) may also be exposed to potential migration of pesticides from the site of application to various watersheds and other aquatic environments via runoff and drift.

Consistent with the process described in the Overview Document (EPA, 2004), this risk assessment uses a surrogate species approach in its evaluation of the proposed new enduse product of abamectin. Data generated from surrogate test species, which are intended to be representative of broad taxonomic groups, are used to extrapolate to potential effects on a variety of species (receptors) included under these taxonomic groupings.

A summary of the assessment and measurement endpoints selected to characterize potential ecological risks associated with exposure to abamectin is provided in Table 3.

Assessment Endpoint		Selected Surrogate Species and Measure of Ecological Effect ¹	Measures of Exposure	
Birds ²	Acute Survival	Mallard (Anas platyrhynchos) acute oral LD_{50} (most sensitive avian acute oral LD_{50})		
•	Survival, reproduction and growth	Mallard (<i>A. platyrhynchos</i>) Reproduction NOAEC (no statistical effects noted at highest concentration tested) (single study available)	Maximum residues on dietary	
Mammals	Acute Survival	Lab Rat (<i>Rattus norvegicus</i>) acute oral LD_{50} (most sensitive acute oral study)	food items (dietary Estimated Environmental Concentrations (EEC))	
	Survival, reproduction and growth	Lab Rat (<i>Rattus norvegicus</i>) 2-generation reproductive NOAEC (based on increased retinal folds, increased dead pups at birth, decreased viability and lactation indices, decreased pup body weight) (most sensitive reproduction NOAEC)		
Terrestrial Invertebrates	Acute Survival	Honey Bee (<i>Apis millefera</i>) acute contact study (single study available)	μg abamectin /Animal	
Freshwater fish ³ Acute Survival Survival, reproduction ⁵ and growth	Acute Survival	Rainbow Trout (<i>Oncorhynchus mykiss</i>) 96- h LC_{50} (most sensitive 96-h fish acute LC_{50})	Surface water peak concentration (EEC) ⁴	
	Rainbow Trout (Oncorhynchus mykiss) Early Life-Stage NOAEC (wet weight) (single freshwater vertebrate early life- cycle study available)	Surface water 60-d average concentration (EEC) ⁴		
invertebrates Survival,	Acute Survival	Water Flea (<i>Daphnia magna</i>) 46-h EC ₅₀ (most sensitive freshwater invertebrate 48-h EC_{50} or 96-h LC_{50})	Surface water peak concentration (EEC) ⁴	
	Survival, reproduction ⁵ and growth	Water Flea (<i>D. magna</i>) Life cycle NOAEC (reproduction) (single freshwater invertebrate life cycle study available)	Surface water 21-d average concentration (EEC) ⁴	
Estuarine/ marine Acute Survival fish Survival, reproduction ⁵ and growth	Sheepshead Minnow (Cyprinodon variegatus) 96-h LC_{50} (single estuarine/marine fish acute 96-h LC_{50} available)	Surface water peak concentration (EEC) ⁴		
	reproduction ⁵ and growth	No data available; used acute to chronic ratio using rainbow trout data	Surface water 60-d average concentration (EEC) ⁴	
invertebrates Survival,	Acute Survival	Mysid Shrimp (Americamysis bahia) 96-h EC ₅₀ (most sensitive estuarine/marine acute 96-h LC_{50} or IC ₅₀ available)	Surface water peak concentratio (EEC) ⁴	
	reproduction and growth	Mysid Shrimp (A. bahia) Life cycle NOAEC (reproduction) (single estuarine/marine life cycle study available)	Surface water 21-d average concentration(EEC) ⁴	
G	Biomass and Growth Rate	Vascular plant Duckweed (<i>Lemna gibba</i>) 14 day IC_{50} (single vascular aquatic plant study available)	Surface water peak concentratio	
	Biomass and Growth Rate	Nonvascular plant Freshwater alga (Selenastrum capricornutum) 9 day EC_{50} (single alga study available)		

Table 3. Measures of Ecological Effects and Exposure for Abamectin

 LD_{50} = Lethal dose to 50% of the exposed test population; NOAEC = No observed adverse effect concentration; NOAEL = No observed adverse effect level; LC_{50} = Lethal concentration to 50% of the exposed test population; EC_{50} = Effect concentration to 50% of the test population; IC_{50} = inhibition concentration resulting in a 50% inhibition in the test population response (e.g., growth rate, biomass)

¹Values listed in this table represent the most sensitive study result within the taxonomic group and for the measurement endpoint identified to evaluate attribute changes.

Birds represent surrogates for amphibians (terrestrial-phase) and reptiles.

³ Freshwater fish are used here as surrogates for amphibians (aquatic-phase).

⁴ One in 10-year return frequency.

⁵ Sensitive early-life stage embryo development, hatching success, and survival and growth of the young are used as a measure of reproduction success.

2.3.2 Incident Database Review

A review of the Ecological Incident Information System (EIIS, version 2.1), which is maintained by the Agency's Office of Pesticide Programs, and the Avian Monitoring Information System (AIMS), which is maintained by the American Bird Conservancy, indicates a total of seven reported ecological incidents associated with the use of abamectin, which are summarized below.

All of the abamectin reported incidents occurred between 1998 and 2003. Two of the abamectin incidents involved aquatic animals, one involved terrestrial animals, and four involved plants. The certainty categories on the likelihood that the use of abamectin caused the seven incidents ranged from possible (4 incidents) to probable (3 incidents). The incidents were considered registered uses at the time of the incident. The one incident with the bees was from the Section 18 use of abamectin for avocados in California. One of the incidents involved an additional chemical besides abamectin. Six reported incidents for abamectin involved uses that are currently Section 3 registrations (almonds, grapes, citrus, and fire ant control). In the report for the incident with the Section 18 for avocados in California, it was reported that the abamectin was not being applied in accordance with the label. The reported incidents associated with the six currently registered uses had certainty categories of possible and probable. A summary of the reported incidences are listed in Appendix A.

According to Office of Pesticides Program Ecological Incident Information System (EIIS), seven incident reports exist in EFED's database. Three of the incidents occurred in June 1998 from direct application of Agri-Mek to almonds in California (I007644-001, 002, 003). The type of injury to the almonds was not reported, but was reported to occur to all applied (34-106 acres). Agri-Mek was applied directly to 34 acres of grapes in June 2000 in California, with all 34 acres affected (I10837-019). They type of injury was not reported, and in the report, the inspector stated "Questionable" in regards to the question "Application within Label". There were two incidents involving freshwater fish. The first incident occurred in April 2000 in Texas, where 100 catfish died two days after 1/8 of a pound of both the pesticide Ascend Fire Ant Stopper (abamectin) and Award (fenoxycarb) were applied to areas around the pond (I010221-001) was reported. The next day one to one and a half inches of rain fell. No other fish species in the pond were observed to be affected. The second fish incident occurred in June 2003 in Florida where a citrus grove was treated with Agri-Mek less than 25 feet from a lake in the morning and

then it rained in the afternoon (1014237-001). One week after the application, the reported indicated that "tons" of dead small bait fish were observed around the pond edges. The last incident involved the spraying of abamectin (Agri-Mek) to avocados in California (1008611-001) under a Section 18 label in April 1999. Southern California beekeepers indicated that the abamectin was aerially sprayed during the daytime during full bloom which was not consistent with favored County instructions. They indicated that it is common to keep bee colonies in avocado fields. The report indicated that 100 colonies were affected.

In addition to the incidents recorded in EIIS and AIMS, additional incidents have been reported to the Agency in aggregated incident reports. Pesticide registrants report certain types of incidents to the Agency as aggregate counts of incidents occurring per product per quarter. Ecological incidents reported in aggregate reports include those categorized as 'minor fish and wildlife' (W-B), 'minor plant' (P-B), and 'other non-target' (ONT) incidents. 'Other non-target' incidents include reports of adverse effects to insects and other terrestrial invertebrates. For abamectin, registrants have reported one minor fish and wildlife incident and four other non-target incidents. Unless additional information on this aggregated incident becomes available, it will be assumed to be representative of registered uses of abamectin in the risk assessment.

A major incident report for abamectin has not been received by the Agency since 2003 and twelve incidents total (7 major and 5 minor) have been reported to the Agency. Incident reports for non-target organisms typically provide information only on mortality events and plant damage. Sublethal effects in organisms such as abnormal behavior, reduced growth and/or impaired reproduction are rarely reported, except for phytotoxic effects in terrestrial plants. EPA's changes in the registrant reporting requirements for incidents in 1998 may account for a reduced number of reported incidents. Registrants are now only required to submit detailed information on 'major' fish, wildlife, and plant incidents. Minor fish, wildlife, and plant incidents, as well as all other non-target incidents, are generally reported aggregately and are not included in EIIS. In addition, there have been changes in state monitoring efforts due to a lack of resources.

2.4 Ecosystems Potentially at Risk

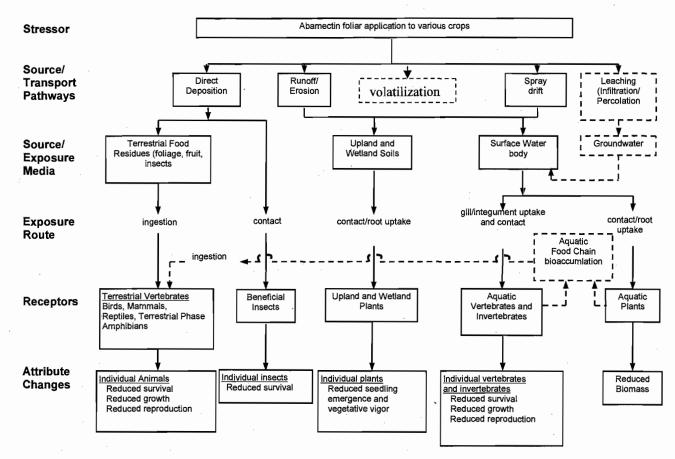
The ecosystems at risk are often extensive in scope, and as a result it may not be possible to identify specific ecosystems during the development of a baseline risk assessment. However, in general terms, terrestrial ecosystems potentially at risk could include the treated field and areas immediately adjacent to the treated field that may receive drift or runoff. Areas adjacent to the treated field could include cultivated fields, fencerows and hedgerows, meadows, fallow fields or grasslands, woodlands, riparian habitats and other uncultivated areas.

Aquatic ecosystems potentially at risk include water bodies adjacent to, or down stream from, the treated field and might include impounded bodies such as ponds, lakes and reservoirs, or flowing waterways such as streams or rivers. For uses in coastal areas, aquatic habitat also includes marine ecosystems, including estuaries.

2.5 Conceptual Model

A conceptual model provides a written description and visual representation of the predicted relationships between abamectin, potential routes of exposure, and the predicted effects for the assessment endpoint. A conceptual model consists of two major components: risk hypothesis and a conceptual diagram (EPA, 1998).

2.5.1 Risk Hypothesis


For abamectin, the following ecological risk hypothesis is being employed for this baseline risk assessment:

Abamectin, when used in accordance with the label, results in potential adverse effects upon the survival, growth, and reproduction of non-target terrestrial and aquatic organisms.

2.5.2 Conceptual Diagram

For a pesticide to pose an ecological risk, it must reach ecological receptors in toxicologically significant concentrations. An exposure pathway is the means by which the pesticide moves in the environment from a source to reach the receptor. For an ecological exposure pathway to be complete, it must have a source, a release mechanism, an environmental transport medium, a point of exposure for ecological receptors, and a feasible route of exposure. The assessment of ecological exposure pathways, therefore, includes an examination of the source and potential fate and transport pathways for the pesticide, and the determination of potential exposure routes, (*e.g.*, ingestion, inhalation, and dermal contact).

Figure 3 depicts the potential exposure pathways associated with the proposed use of abamectin. The conceptual model generically depicts the potential source of abamectin, release mechanisms, abiotic and biotic receiving media, biological receptors, and attribute changes of potential concern and the measurement endpoints used to evaluate them.

 -
 - Dashed lines indicate that physical or chemical properties result in this pathway unlikely to be complete or significant
 --- Solid lines indicate that physical or chemical properties result in this pathway likely being complete

Figure 3 Conceptual diagram for assessment of risks from abamectin use on various crops

Figure 3 depicts the potential exposure pathways associated with abamectin used as a foliar application to almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes. Based on the use pattern for abamectin, the main exposure pathways for terrestrial organisms are direct exposure to abamectin via consumption of food items. In the figure above, the dashed line represents the pathways of exposure that are unlikely to occur because of physical or chemical properties. Although abamectin has a log K_{ow} of 4.4, BCF in bluegill sunfish were in the range of 19-69 (whole fish) and 6.6-33 (fillet); indicating that bioconcentration in aquatic organisms is low. Volatilization is also not expected to be a concern based on the vapor pressure of abamectin (1.5 x 10^{-9} Torr).

2.6 · Analysis Plan

This assessment focuses on adverse acute and chronic reproductive effects to terrestrial and aquatic wildlife associated with proposed abamectin foliar application use on almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes. This analysis plan identifies the approach, methods, specific models, information, and data that will be used to estimate and evaluate risks from proposed labeled uses of abamectin based on the conceptual model and risk hypotheses.

This assessment focuses on adverse acute and chronic reproductive effects to terrestrial and aquatic wildlife associated with proposed abamectin use. This analysis plan identifies the approach, methods, specific models, information, and data that will be used to estimate and evaluate risks from proposed labeled uses of abamectin based on the conceptual model and risk hypotheses.

2.6.1 Conclusions from Previous Risk Assessments

An ecological risk assessment evaluating abamectin for foliar ground application on citrus (DP 210767) concluded that the abamectin may pose acute and chronic risks to birds and small herbivorous mammals. This assessment also concluded that ground applications of abamectin to citrus may pose acute and chronic risks to freshwater and estuarine/marine invertebrates.

2.6.2 Preliminary Identification of Data Gaps

This assessment is potentially underestimating risk to both terrestrial and aquatic organisms from exposure to abamectin. This potential underestimation is due to a lack of available toxicity data as well as technical issues with the data submitted for some species. Therefore, the following toxicity studies are requested:

- <u>OPPTS 850.1400- Early Life-Stage Toxicity Test</u>. There are no chronic toxicity data available for the Agency to assess chronic risk of abamectin to estuarine/marine fish.
- <u>OPPTS 850.4225 Seedling Emergence, Tier II and OPPTS 850.4250 –</u>
 <u>Vegetative Vigor, Tier II.</u> Seedling emergence and vegetative vigor toxicity data are not available for terrestrial plants.
- <u>OPPTS 850.2300 Avian reproduction Study</u>. A reproduction study with bobwhite quail is not available.
- <u>OPPTS 850.2100 Acute Oral Toxicity with a Passerine Bird</u>. An acute oral toxicity study with a passerine bird is not available. No species recommended at this point. Protocol should be submitted prior to test initiation.
- <u>Whole Sediment Toxicity Test:</u> Chronic Invertebrates Freshwater and Marine. Based on the physiochemical properties, abamectin may sorb to organic materials in sediment and may be toxic to organisms that dwell in and ingest sediment as abamectin is very highly toxic to other aquatic invertebrates. Since abamectin is a

foliar application, spray drift to both freshwater and estuarine-marine environments is possible. The concentration of abamectin in water from spray drift from ground or aerial application is greater than the acute EC_{50} value for the estuarine/marine mysid shrimp. 40 CFR Part 158.630 requires a chronic freshwater sediment study if the half-life is greater than or equal to 10 days and any of the following conditions exist: i. Kd \geq 50, ii. the log Kow \geq 3, or iii. the Koc \geq 1000. Abamectin meets these criteria. A protocol should be submitted to the Agency for review prior to testing.

- <u>OPPTS 850.1075 Fish Acute Toxicity Test, freshwater and marine; 850.1010-</u> <u>Aquatic Invertebrate Acute Toxicity test with Daphnia; 850.1025 or 1055 –</u> <u>Oyster Acute Toxicity Test (shell deposition) or Bivalve Acute Toxicity Test</u> (embryo-larvae). The registrant submitted test were conducted as static tests that were conducted above the reported water solubility, conducted using a potential photosensitizing solvent (acetone), and test concentrations were not measured. As a result, the actual test concentrations (dissolved bioavailable abamectin) are not known which may be underestimating risk. Therefore, a new acute toxicity study for a coldwater and warmwater freshwater fish, estuarine-marine fish and *Daphnia magna* is requested. An oyster shell deposition or a bivalve embryolarvae toxicity study is also requested.
- <u>OPPTS 850.1300 Daphnia Chronic Toxicity Test</u>. The registrant submitted chronic daphnia toxicity test did not measure growth for the surviving adults at test termination. The study indicates that the surviving daphnia in the two lowest concentrations tested were pale and smaller than the control. Measurement of growth is required under the current guidance. Therefore, a new study is requested.
- <u>OPPTS 850. 5400 Algal Toxicity and 850.4400 Aquatic Plant Toxicity Test</u> <u>using Lemna spp</u>. There are limited studies (data on two of the five species available (duckweed and a green alga study)) addressing the toxicity of abamectin to aquatic plants; the studies conducted with duckweed and green algae were conducted above solubility, with a potential photosensitizing solvent (acetone), and test concentrations were not measured. Abamectin toxicity studies with a marine diatom, freshwater diatom and blue-green algae are requested as well as new studies for the green algae and duckweed.
- Submitted field dissipation studies are unacceptable; therefore, the behavior of abamectin in the field as compared to the laboratory cannot be demonstrated. In most cases we would expect dissipation in the field to be greater than that predicted by laboratory studies due to pesticide transport.

3.0 Analysis

3.1 Exposure Characterization

Abamectin is moderately persistent in the environment. The reported laboratory soil aerobic half-life was 115 days. Abamectin is relatively stable to hydrolysis but may undergo direct photolysis (photolysis half-life in surface soil = 21 hours). Abamectin has low vapor pressure $(1.5 \times 10^{-9} \text{ Torr})$, indicating that volatilization from dry soil surfaces will not be an important environmental fate process. An estimated Henry's Law constant of $2.6 \times 10^{-8} \text{ atm-m}^3/\text{mol}$ was derived from the vapor pressure and water solubility values provided by the registrant. This value suggests that volatilization from moist soil is not expected to be an important fate process. Abamectin adsorbs strongly to soil surfaces (reported K_{oc} values range from 2,531-12,051), and according to the FAO classification, abamectin is slightly to hardly mobile in soil and that leaching to groundwater will not be an important route of dissipation.

If abamectin was to contaminate surface water, photolysis in sunlit surface waters would be an important environmental fate process based on an aqueous photolysis half-life of 12 hours. Volatilization from water is not expected to be an important fate process based on the estimated Henry's Law constant. The large K_{oc} values suggest that adsorption to suspended solids and sediment in the water column will occur. Bioconcentration factors (BCF) in bluegill sunfish were in the range of 19-69 (whole fish) and 6.6-33 (fillet); suggesting bioconcentration in aquatic organisms is low.

3.1.1 Measures of Aquatic Exposure

3.1.1.1 Aquatic Exposure Modeling

At the screening risk assessment level for aquatic organisms, such as plants, fish, aquaticphase amphibians, and invertebrates, computer simulation models are used to estimate acute (annual instantaneous peak) and chronic (21 and 60 day weighted average annual peaks for aquatic invertebrates and fish, respectively) residue levels of the dissolved pesticide active ingredient in surface water and sediment pore water and in bulk sediment from runoff and spray drift. These models calculate EECs in surface water and sediment using environmental fate data for abamectin. Monitoring data, if available, may also be used to determine EECs or to support the model's exposure estimates. PRZM-EXAMS as documented at www.epa.gov/oppefed1/models/water/index.htm is the model used to simulate the fate and transport of abamectin from a treated field to and in a receiving water body adjacent to the treated field. Cropping patterns, soil structure, and weather input data for the simulation modeling has been standardized for a number of crops, referred to as crop scenarios, to provide high-end estimates of runoff and soil erosion representative of the primary growing area for a given crop. The quality control checked crop scenarios and associated meteorological files available for use in a risk analysis are also found at the same web address under the bullet "PRZM crop scenario metadata".

PRZM-EXAMS model inputs for abamectin and its major degradate (a mixture of 8- α -hydroxy and a ring opened aldehyde derivative fate parameters (e.g., aerobic metabolism, photolysis, etc.) are listed in Table 4. The scenarios modeled reflect differences in weather and cropping patterns, soil structure, and abamectin application dates in different major growing areas. A screening assessment of estimated environmental concentrations (EECs) for abamectin and its major soil degradate (a mixture of 8- α -hydroxy and a ring opened aldehyde derivative) in surface water resulting from the proposed label uses was performed.

PRZM/EXAMS modeling output files are listed in Appendix B. Tier II Surface Water 1in10 Year EECs (ppb) of abamectin in surface water from its new proposed uses from PRZM/EXAMS modeling are shown in Table 6.

MODEL INPUT VARIABLE	INPUT VALUE	SOURCE and COMMENTS
Application rate (kg ai/hectare) and application interval	See Table 6	Some crops were modeled at 0.023 and 0.0235 lb ai/A but 0.0235 lb ai/A used to determine risk quotients
K_{d} (mL/g)	82 (average)	MRID 40856301; no data for degradate; Input guideline, 2002
Aerobic Soil Metabolic Half-life (days)	150	Total toxic residue half-life for parent and degradate (a mixture of $8-\alpha$ -hydroxy and a ring opened aldehyde derivative)
Is the pesticide wetted-in?	No	EPA Reg. No. 100-RGLR
Spray Drift Fraction	0.05	Input guideline, 2002
Application Efficiency	0.95	Input guideline, 2002
Solubility (µg/L)	78	10x reported value (7.8 μ g/L) per guidance (Input guideline, 2002); as there is no data for degradate it was assumed that it was no more soluble than the parent.
Aerobic Aquatic Metabolic Half-life (days)	300	No acceptable aerobic aquatic metabolism data were available, therefore 2x the aerobic soil metabolism half-life (identified above) was used per guidance (Input guideline, 2002).
Hydrolysis (pH 7) half-life (days)	0	Stable. No MRID available. Review dated 4/18/83; no data for degradate.
Aquatic Photolysis Half- life (days)	0.5	Dark-control adjusted half-life. Ku and Jacob, 1983 (Public literature, EFED Review dated 3/28/84); no data for degradate.

Table 4 Surface water exposure inputs for PRZM/EXAMS

US EPA ARCHIVE DOCUMENT

Table 5. Tier II Surface Water 1-in10 Year EECs (ppb) of abamectin and its major
soil degradate (a mixture of 8-α-hydroxy and a ring opened aldehyde derivative

Crop	Application Rate	PRZM Scenario;	Peak	21-day avg	60-day avg	
	(lb ai/acre); (# Applications/ Application	method of application	EEC (ppb)	EEC (ppb)	EEC (ppb)	
Almonds & Walnuts	interval) 0.0235; $(2/21)^1$	CAalmond_WirrigSTD	0.075	0.059	0.048	
Apples	0.0235; $(2/21)^1$	PAApplesSTD	0.339	0.266	0.214	
Avocados	0.0235; $(2/30)^1$	FLAvocadoSTD	0.142	0.111	0.102	
Celeriac	0.0187; (3/7) ²	FLCarrotSTD	0.429	0.351	0.298	
Citrus	0.0235; (2/30)	FLCitrusSTD	0.394	0.318	0.278	
Cotton	0.019; (2/21)	MScottonSTD	0.420	0.348	0.291	
Cucurbit	$\begin{array}{c} 0.0187;\\ (3/7)^2 \end{array}$	FLcucumberSTD	0.540	0.446	0.386	
Fruiting Veg	$0.0187; \\ (3/7)^2$	FLpepperSTD	0.493	0.410	0.373	
Grapes	0.019; (2/21)	NYgrapesstd	0.466	0.404	0.361	
Herb	$0.0187; \\ (3/7)^2$	ORmintSTD	0.084	0.075	0.065	
Hops	0.019; (2,21)	ORhopsSTD	0.158	0.136	0.130	
Leafy Veg	$0.0187; \\ (3/7)^2$	FLcabbageSTD	0.277	0.217	0.174	
Mint	0.014; (3/7)	ORmintSTD	0.156	0.129	0.107	
Pears	0.0235; $(2/21)^1$	WAorchards	0.029	0.023	0.020	
Plums & Prunes	$\begin{array}{c} 0.0235;\\ (2/21)^1\end{array}$	WAorchards	0.040	0.031	0.023	
Potatoes	0.0187; (3/7) ²	MEpotatoSTD	0.651	0.564	0.498	

¹ These crops were modeled using the maximum seasonal application rate divided by 2 applications. ² These crops were modeled using the maximum seasonal application rate divided by 3 applications.

3.1.1.2 Aquatic Exposure Monitoring and Field Data

Groundwater and surface water monitoring data are not available. Screening models were used to determine estimated concentrations for abamectin in groundwater and surface water for the proposed uses.

3.1.2 Measures of Terrestrial Exposure

Avian and Mammalian Dietary Exposure

The Terrestrial Exposure (T-REX) model (Version 1.4. l), an EFED computer model that uses a first-order dissipation relationship to account for residue dissipation between applications, was used to estimate exposure concentrations of abamectin to terrestrial wildlife. The T-REX simulation model incorporates the nomogram (Fletcher *et al.*, 1994; Hoerger and Kenaga, 1972; Pfleeger *et al.*, 1996) relationship between the amount of pesticide applied and the amount of pesticide residue present on a given food item. In addition to exposure concentrations (dose and diet-based), the T-REX model calculates risk quotients based on food items for mammals and birds, including herbivores, insectivores, and granivores. For dose-based exposures, three weight classes of mammals (15, 35, and 1000 g) and birds (20, 100, and 1000 g) are considered (Appendix C).

A default foliar dissipation half-life of 35 days was used in this assessment, although, residue concentrations may be lower as a honey-bee foliar residue study on citrus, demonstrates that residues are toxic above background levels for approximately 48 hours.

Since the label does not specifically state the interval between the second sequential application and subsequent applications for a number of crops (celeriac, cucurbit, fruiting vegetable, leafy vegetable, mint, herbs and potatoes (for potato psyllid), three applications at seven day intervals using the maximum seasonal rate divided by three (which is slightly less than three applications at the maximum single application rate, 0.0187 vs. 0.019 lb ai/A) was modeled for environmental exposure. The dietary exposure model T-REX can not model different application intervals or application rates at the same time. In addition, the application rate for almonds, walnuts, apples, citrus, avocados, pears, plums and prunes was modeled using the maximum seasonal application rate divided by two applications (0.0235 lb ai/A).

Input parameters, such as application rate, interval, and number of applications, used in T-REX model are presented with corresponding EECs in Table 6, Table 7, and Table 8.

Table 6. Avian Dose-Based Estimated Environmental Concentrations (EECs) for	
Terrestrial Dietary Items from Foliar Application of Abamectin	

			Avian Dose-Based EECs (ppm)						
Crop; (Application Rate (lb	Size Class		Dietary Item						
(Application Kate (ib ai/A); # of Applications; Application Interval (days))	(g) ¹	Short Grass	Tall Grass	Broadleaf plants/ sm insects	Fruits/pods/ seeds/ lg insects	Granivore			
Celeriac, cucurbit,	20	13.43	6.16	7.56	. 0.84	0.19			
fruiting and leafy	100	7.66	3.51	4.31	0.48	0.11			

vegetables, herbs, potato; (0.0187;3;7) ²	1000	3.43	1.57	1.93	0.21	0.05
Cotton, grapes, hops;	20	8.62	3.95	4.85	0.54	0.12
(0.019;2;21)	100	4.92	2.25	2.76	0.31	0.07
	1000	2.20	1.01	1.24	0.14	0.03
	_				· · · ·	
Almonds, walnuts,	20	10.66	4.89	6.00	0.67	0.15
apple, pears, plums, prunes ;	100	6.08	2.79	3.42	0.38	0.08
$(0.0235;2;21)^2$	1000	2.72	1.25	1.53	0.17	0.04
	,					
Avocados, citrus; $(0.0235;2;30)^2$	20	9.97	4.57	5.61	0.62	0.14
	100	5.68	2.61	3.20	0.36	0.08
	1000	2.55	1.17	1.43	0.16	0.04
Mint;	20	10.06	4.61	5.66	0.63	0.14
(0.014;3;7)	100	5.74	2.63	3.23	0.36	0.08
	1000	2.57	1.18	1.44	0.16	0.04

²These crops were modeled using the maximum seasonal application rate divided by 3 applications. These crops were modeled using the maximum seasonal application rate divided by 2 applications.

Table 7. Mammalian Dose-Based Estimated Environmental Concentrations (EECs) for Terrestrial Dietary Items from Foliar Application of Abamectin

			Mammalia	n Dose-Based	EECs (ppm)	
Crop; (Application Rate (lb	Size Class			Dietary Iten	n .	
ai/A); # of Applications; Application Interval (days))	(g) ¹	Short Grass	Tall Grass	Broadleaf plants/ sm insects	Fruits/pods/ seeds/ lg insects	Granivore
Celeriac, cucurbit,	15	11.25	5.15	6.33	0.70	0.16
fruiting and leafy vegetables, herbs,	35	7.77	3.56	4.37	0.49	0.11
potato; $(0.0187;3;7)^2$	1000	1.80	0.83	1.01	0.11	0.03
			•			
Cotton, grapes, hops; (0.019;2;21)	15	7.22	3.31	4.06	0.45	0.10
	35	4.99	2.29	2.81	0.31	0.07
	1000	1.16	0.53	0.65	0.07	0.02

39

Almonds, walnuts,	15	8.93	4.09	5.02	0.56	0.12
apple, pears, plums, prunes ;	35	6.17	2.83	3.47	0.39	0.09
$(0.0235;2;21)^3$	1000	1.43	0.66	0.80	0.09	0.02
	•					
Avocados, citrus;	15	8.35	3.83	4.69	0.52	0.12
$(0.0235;2;30)^3$	35	5.77	2.64	3.24	0.36	0.08
	1000	1.34	0.61	0.75	0.08	0.02
			•			
Mint;	15	8.42	3.86	4.74	0.53	0.12
(0.014;3;7)	35	5.82	2.67	3.27	0.36	0.08
	1000	1.35	0.62	0.76	0.08	0.02

¹ Adjusted LD₅₀ (mg/kg-bw) based on mammalian body weight: 15 g = 29.89, 35 g = 24.18, 1000 g = 10.46; Adjusted NOAEL: 15 g = 0.26, 35 g = 0.21, 1000 g = 0.09

²These crops were modeled using the maximum seasonal application rate divided by 3 applications. ³These crops were modeled using the maximum seasonal application rate divided by 2 applications.

³ These crops were modeled using the maximum seasonal application rate divided by 2 applications.

Table 8. Dietary Based Estimated Environmental Concentrations (EECs) for Terrestrial Dietary Items from Foliar Exposure to Abamectin

		Dietary-	Based EECs (ppm)					
Crop;	Dietary Item							
(Application Rate (lb ai/A); # of Applications; Application Interval (days))	Short Grass	Tall Grass	Broadleaf plants/ sm insects	Fruits/pods/seeds/ lg insects				
Celeriac, cucurbit, fruiting and leafy vegetables, herbs, potato; $(0.0187;3;7)^1$	11.80	5.41	6.64	0.74				
Cotton, grapes, hops; (0.019;2;21)	7.57	3.47	4.26	0.47				
Almonds, walnuts, pears, apple, plums, prunes; $(0.0235;2;21)^2$	9.36	4.29	5.27	0.59				
Avocados, citrus; (0.0235;2;30) ²	8.75	4.01	4.92	0.55				
Mint; (0.014;3;7)	8.83	4.05	4.97	0.55				

^aThese crops were modeled using the maximum seasonal application rate divided by 3 applications. ^aThese crops were modeled using the maximum seasonal application rate divided by applications

Terrestrial Plants

There are no data regarding the explicit toxicity of abamectin to terrestrial plants. Therefore, no modeling of exposure for soil or foliar residues for terrestrial and semiaquatic plants was performed.

3.2 Ecological Effects Characterization

In screening-level ecological risk assessments, effects characterization describes the types of effects a pesticide can produce in an organism or plant. This characterization is based on registrant-submitted studies that describe acute and chronic effects toxicity information for various aquatic and terrestrial animals and plants. All acceptable or supplemental guideline study data for technical grade abamectin, formulations, and degradates are summarized in Appendix D.

3.2.1.1 Terrestrial Animals

The most sensitive avian and mammalian acute and chronic toxicity test results and terrestrial invertebrates toxicity data selected for use in assessing baseline risk from abamectin are summarized in Table 9.

Birds

In birds, the acute toxicity of abamectin technical varies, depending on the species tested. The acute oral LD_{50} for bobwhite quail (*Colinus virginianus*) is >2,000 mg ai/kg-bw (MRID 00129879, practically nontoxic), whereas the acute oral LD_{50} for mallard ducks (*Anas platyrhynchos*) is 85 mg ai/kg-bw (MRID 00097859, moderately toxic). Regurgitation was observed in all the mallard duck acute oral treatment groups, therefore, the reported acute oral LD_{50} might be underestimating toxicity. The LC_{50} values obtained in acceptable sub-acute dietary toxicity tests with bobwhite quail and mallard duck are >3,102 (MRID 00129880, slightly toxic) and 383 mg ai/kg-diet, respectively (MRID 00129520, highly toxic). A reproduction toxicity study with the bobwhite quail was not available. There were no statistically significant effects on growth, survival or reproduction in the mallard duck reproduction study at the highest concentration tested, 12 mg ai/kg-diet, therefore, the no observed adverse effect concentration (NOAEC) is at least 12 mg ai/kg-diet for the mallard duck chronic reproduction study (MRID 40318601). During the pilot study for the mallard duck reproduction study, the average number of eggs laid was markedly less in the 64 mg ai/kg treatment group.

<u>Mammals</u>

Based on data for laboratory rats, abamectin technical has an acute toxicity LD_{50} value of 13.6 mg/kg-bw when using sesame oil as a delivery vehicle but 214 – 232 mg/kg-bw using a methyl cellulose delivery vehicle (MRID 0006894, 45607202). There are three prenatal developmental studies, three 1-generation reproduction studies and a 2-generation study with laboratory rats (Appendix D). The most sensitive reproductive endpoint was the 2-generation reproduction toxicity NOAEL value of 0.12 mg/kg-bw/day

based on increased retinal folds, increased dead pups at birth, decreased viability and lactation indices, and decreased pup body weight (MRID 00265576).

Although data exists for other routes of exposure (Appendix D), given the proposed application and the physical properties of the chemical, the expected significant route of exposure is oral. Therefore the focus of the risk estimation is on this route of exposure.

Terrestrial Invertebrates

Based on the honey bee LD_{50} value of 0.41 µg/bee toxicity value, abamectin is highly toxic to terrestrial invertebrates (MRID 00159162). There was 13% mortality at 48-hrs at the lowest concentration tested for the acute contact study. A honey bee foliar exposure study indicated that exposure to abamectin treated citrus foliage is toxic for approximately 48 hours after application to the foliage (MRID 00159161). The proposed label states not to apply Agri-Flex SC or allow it to drift to blooming crops or weeds if bees are visiting the treatment area.

		Se	elected Measu	rement Endpo	int Value and Sour	rce
Assessment Endpoint	Measurement Endpoint	Species	Study Duration	Toxicity Value	Most Sensitive Endpoint	Source and Study Classification
Survival and Reproduction of Birds	Most sensitive avian acute oral toxicity, LD ₅₀ (single-dose)	Mallard duck (A. platyrhynchos)	Single Oral Dose, post 14 day	$\frac{\text{LD}_{50} = 85 \text{ mg}}{\text{a.i./kg-bw}^1}$	Mortality	00097859 Supplemental
	Most sensitive acute avian dietary toxicity	Mallard duck (A. platyrhynchos)	8 d (5 d exposure, post 3 d)	LC ₅₀ =383 (mg ai/kg- diet)	Mortality	00129520 Acceptable
	Most sensitive avian reproductive toxicity NOAEC	Mallard duck (A. platyrhynchos)	18 Weeks	NOAEL ≥ 12 (mg ai/kg- diet), highest conc. tested ²	No statistically significant effect at highest conc. tested.	40318601 Acceptable
Survival and Reproduction of Terrestrial	Most sensitive acute oral toxicity, LD_{50} (single-dose)	Rat	Single oral dose	LD ₅₀ 13.6 mg /kg-bw	Mortality	00006894
Mammals	Most sensitive reproduction NOAEL	Rat	2-gen reproduction	0.12 mg a.i./kg-bw/d	Reproduction ³	00265576
Survival of Terrestrial Invertebrates and beneficial insects	Most sensitive acute contact LD ₅₀ (µg/bee)	Honey bee (Apis mellifera)	96-hr	$LD_{50} = 0.41$ µg per bee	Mortality	00159162 Acceptable

Table 9. Summary of Most Sensitive Acute and Chronic Toxicity Data for Birds,	
Mammals and Terrestrial Invertebrates Exposed to Abamectin	

² In pilot test, marked decrease in average number of eggs laid at 64 ppm.

³ increased retinal folds, increased dead pups at birth, decreased viability and lactation indices, and decreased pup body weight.

3.2.1.2 Terrestrial Plants

Registrant submitted seedling emergence or vegetative vigor toxicity data are not available for avermectin components, abamectin, or major degradates.

3.2.2 Aquatic Effects Characterization

3.2.2.1 Aquatic Animals

Abamectin is very highly toxic to both freshwater and estuarine/marine fish (Table 10). The 96-hr LC₅₀ values for rainbow trout (*Oncorhynchus mykiss*) and bluegill sunfish (*Lepomis macrochirus*) are 3.2 and 9.6 μ g ai/L (total form (dissolved and undissolved abamectin)), respectively (MRID 00088780 and 00088782). For the estuarine/marine fish, sheepshead minnow (*Cyprinodon variegatus*), the 96-hr LC₅₀ value is 15 μ g ai/L (total form) (MRID 00150910). All three of these reported fish studies were conducted above the reported limit of solubility for abamectin (7.8 ppb in distilled water; <1 ppb in tap water); acetone was used to increase abamectin solubility in water, and acetone can be a potential photosensitizer and abamectin undergoes rapid photolysis. These studies were based on nominal concentrations, as test solutions were not measured in these studies. Therefore, the actual concentrations of abamectin these organisms were exposed to are not known. An early life-cycle toxicity study was conducted with rainbow trout, and the reported no observed adverse effect concentration (NOAEC) was 0.52 μ g ai/L (MRID 40069609) based on growth (wet weight).

An early life stage value for estuarine/marine fish has not been submitted to the Agency. However, an ACR of 6.2^7 was calculated from the rainbow trout (*O. mykiss*) acute and chronic toxicity data, and was used to extrapolate from an acute 96-h LC₅₀ value for the sheepshead minnow to an early-life stage NOAEC. An acute to chronic ratio is available for both rainbow trout and aquatic invertebrates, but since abamectin is an insecticide, the mode of action is expected to be different for fish and invertebrates. Therefore the rainbow trout toxicity values were used to calculate the ACR. The extrapolated sheepshead NOAEC is $2.4 \mu g/L^8$.

Aquatic invertebrates are the aquatic species most sensitive to abamectin. It is very highly acutely toxic to aquatic invertebrates, with a 48-hr EC_{50} value of 0.34 µg ai/L in the freshwater waterflea , *Daphnia magna* (MRID 00088784), and a 96-hr LC_{50} of 0.020 µg ai/L in the estuarine/marine mysid shrimp, *Americamysis bahia* (MRID 40856305) Abamectin is highly toxic to the embryo/larval stages of mollusks with a 48-h EC_{50} of 430 µg ai/L (total form) in the Eastern oyster (*Crassostrea virginica*) (MRID 00159158). The oyster embryo/larvae study was conducted above the water solubility limit of abamectin (7.8 ppb in distilled water; <1 ppb in tap water); acetone was used to increase solubility in water. Again, the daphnia and oyster larvae studies were evaluated using

⁷ O. mykiss ACR = 96-h LC₅₀/early-life stage NOAEC = 3.2 ppb/0.52 ppb = 6.2

⁸ Sheepshead Minnow early life stage NOAEC = 96-h LC50/fish ACR = 15 ppb/6.2 = 2.4 ppb.

nominal concentrations, therefore, the actual concentrations these organisms were exposed to are not known. The life-cycle toxicity test with the *Daphnia magna* resulted in a reproductive NOAEC of 0.030 μ g ai/L which was the lowest concentration tested, but the adults in the two lowest treatment groups were observed to be pale and smaller compared to the controls and growth was not analyzed (MRID 00153570). Therefore, the reproductive NOAEC appears to underestimate the true no-effect concentration for Daphnia from chronic exposure to abamectin, as the NOAEC appears to be lower than $0.030 \,\mu g \,ai/L$ (30 parts-per-trillion). An acute to chronic ration using the mysid shrimp toxicity data was used to calculate a chronic no-effect concentration for the daphnia and is 0.006 µg ai/L (6 parts-per-trillion)⁹. The NOAEC value for the life-cycle toxicity test with the mysid shrimp (Americamysis bahia) was previously reported as 0.0035 µg ai/L based on reproduction when compared to the solvent control, but is $0.00035 \,\mu g \,ai/L \,(0.35)$ parts-per-trillion) based on reproduction when compared to the negative control as there was a difference between the negative and solvent control for reproduction. Current EFED policy is to compare treatment groups to the negative control, therefore, the NOAEC value of $0.00035 \,\mu g$ ai/L was used in the assessment.

Table 10. Summary of Selected Acute and Chronic Toxicity Data for Fish and
Aquatic Invertebrates Exposed to Abamectin for use in Determining Risk

			Selected Meas	urement Endpoir	nt Value and Sourc	e
Assessment Endpoint	Measurement Endpoint	Species	Study Duration	Toxicity Value	Most Sensitive Endpoint	Source and Study Classification
Survival and reproduction of freshwater	Most sensitive acute freshwater fish LC_{50}	Rainbow trout (Oncorhynchus mykiss)	96 hr LC _{50,} Static	$\begin{array}{c} 3.2 \ \mu g \ ai/L \\ (total \ form)^1 \end{array}$	Mortality	00088780 Acceptable
vertebrates (fishes, etc)	Most sensitive freshwater fish early life stage or life cycle NOAEC	Rainbow trout (Oncorhynchus mykiss)	60-day	NOAEC = 0.52 µg ai/L	Growth	40069609 Acceptable
Survival and reproduction of freshwater	Most sensitive acute freshwater invertebrate LC_{50} (or EC_{50})	Water flea, (Daphnia magna)	48 hr EC _{50,} Static	0.34 μg ai/L	Immobilization and mortality	00088784 Acceptable
invertebrates	Most sensitive aquatic invertebrate life cycle NOAEC	Water flea, (Daphnia magna)	21 day Flow- through	ACR = 0.006 µg ai/L ²	Reproduction and growth	00153570 Acceptable
Survival and reproduction of marine/ estuarine	Most sensitve acute marine/ estuarine vertebrate LC ₅₀	Sheepshead minnow (Cyprinodon variegatus)	96 hr Static- renewal	15 μg ai/L (total form) ¹	Mortality	00150910 Supplemental
vertebrates (fishes, etc)	Most sensitive marine/estuarine fish early life stage or life cycle NOAEC	Sheepshead minnow (Cyprinodon variegatus)	28 day	No data available; ACR used value = 2.4 µg ai/L	NA	NA

⁹ Mysid shrimp ACR = 96-h EC₅₀/reproduction NOAEC = 0.020 ppb/0.00035 ppb = 57 Daphnia chronic NOAEC= 48-hr EC50/mysid ACR = 0.34 ppb/57 = 0.006 ppb

44

		Selected Measurement Endpoint Value and Source						
Assessment Endpoint	Measurement Endpoint	Species	Study Duration	Toxicity Value	Most Sensitive Endpoint	Source and Study Classification		
Survival and reproduction of marine/estuarine invertebrates	Most sensitive marine/estuarine acute mollusk shell deposition or embryo larval EC ₅₀	Eastern oyster (Crassostrea virginica) embryo/larvae	96 hr EC ₅₀ Static	430 μg ai/L (total form) ¹	Embryo development	00159158 Supplemental		
,	Most sensitive marine/estuarine acute invertebrate EC ₅₀	Mysids (Americamysis bahia)	96 hour EC ₅₀ Flow- through	0.020 µg ai/L	Mortality	40856305 Acceptable		
	Most sensitive marine/estuarine life cycle invertebrate NOAEC	Mysids (Americamysis bahia)	28 day Flow- through	NOAEC = 0.00035 μg ai/L	Reproduction	40856306 Supplemental		

¹ Study conducted above limit of solubility for abamectin so value may contain both dissolved and undissolved abamectin. Studies used acetone to increase water solubility.

² Adult daphnia in two lowest treatment groups were reported as pale in coloration and small compared to controls (NOAEC may be less than 0.030 ppb) so an acute to chronic ratio was calculated using mysid shrimp toxicity data.

3.2.2.2 Aquatic Plants

Abamectin has been tested for phytotoxicity with only two aquatic plant species of the five listed for testing under guideline testing. The IC₅₀ values based on biomass or growth rate measures obtained in these two studies are >100,000 ppb and 3,900 ppb for the green alga *Selenastrum capricornutum* and the vascular aquatic plant *Lemma gibba*, respectively (MRID 00088787 and 00088788) (Table 11). These studies were evaluated using nominal concentrations since test solutions were not measured. Also, the studies were conducted using acetone which is a potential photosensitizer and abamectin is subject to photolysis. Therefore, the actual test concentrations these organisms were exposed to are not known (Table 11).

Table 11. Summary of Acute Toxicity Data for Aquatic Plants Exposed to Abamectin

		Selected Measurement Endpoint Value and Source						
Assessment Endpoint	Measurément Endpoint	Species	Study Duration	Toxicity Value	Most Sensitive Endpoint	Source and Study Classification		
Reduced biomass and growth rate of aquatic plants	Most sensitive vascular plant biomass and area under curve NOAEL and IC ₅₀	Duckweed (Lemna gibba)	14 day Static EC ₅₀	3,900 μg ai/L (total form) ¹ NOAEC 1,200 μg ai/L	Frond number	00088787		
	Most sensitive nonvascular plant biomass and growth rate NOAEL and IC_{50}	Green algae (Selenastrum capricornutum)	9 days static	>100,000 µg ai/L (total form) ^{1,2} NOAEC = Not Available	Biomass	00088788		

	Concentrations tested we	Selected Measurement Endpoint Value and Source					
Assessment Endpoint		Species	Study Duration	Toxicity Value	Most Sensitive Endpoint	Source and Study Classification	
contain both	h dissolved and ι	indissolved a		ne was used to increa			

4.0 Risk Characterization

Risk characterization is the integration of exposure and effects characterization to determine the ecological risk from the use of abamectin and the likelihood of effects on aquatic life, wildlife, and plants based on varying pesticide-use scenarios. The risk characterization provides estimation and a description of the risk; articulates risk assessment assumptions, limitations, and uncertainties; synthesizes an overall conclusion; and provides the risk managers with information to make regulatory decisions.

4.1 Risk Estimation – Integration of Exposure and Effects Data

Results of the exposure and toxicity effects data are used to evaluate the likelihood of adverse ecological effects on non-target species. For the assessment of abamectin risks, the risk quotient (RQ) method is used to compare exposure and measured toxicity values. Estimated environmental concentrations (EECs) are divided by acute and chronic toxicity values. The RQ's are compared to the Agency's levels of concern (LOCs). These LOCs are the Agency's interpretive policy and are used to analyze potential risk to non-target organisms and the need to consider regulatory action. These criteria are used to indicate when a pesticide's use as directed on the label has the potential to cause adverse effects on non-target organisms. The LOC's are listed in Appendix E.

4.1.1 Non-target Aquatic Animals and Plants

4.1.1.1 Non-target Aquatic Animals

Surface water concentrations resulting from abamectin application were predicted with the PRZM-EXAMS model. These aquatic estimated environmental concentrations (EEC's) are listed in Table 6. Peak EECs were then compared to acute toxicity endpoints to derive acute RQ's. The 60- day EECs were compared to chronic toxicity endpoints (NOAEC values) to derive chronic RQ's for fish, and 21-day EECs were compared to chronic toxicity endpoints to chronic toxicity endpoints (NOAEC values) for aquatic invertebrates. Acute RQ's for freshwater and estuarine/marine organisms for different exposure scenarios are presented in Table 12 and chronic RQ's for these species are presented in Table 13.

Fish and Aquatic Invertebrates

Acute

Non-Listed Species

There were no acute non-listed LOC exceedances for either freshwater or estuarine/marine fish. RQ values did exceed the acute non-listed LOC of 0.5 for freshwater aquatic invertebrates from abamectin use on apples, celeriac, citrus, cotton, cucurbit, fruiting and leafy vegetables, grapes and potatoes. The acute estuarine/marine invertebrates RQ values also exceeded the acute non-listed LOC for all crop scenarios.

Listed Species

The acute freshwater and estuarine/marine invertebrate RQ values exceed the Agency's acute listed LOC of 0.05 for all crop scenarios. The acute freshwater fish RQ values exceed the Agency's acute listed LOC for abamectin application to apples, celeriac, citrus, cotton, cucurbit, fruiting and leafy vegetables, grapes, and potatoes. None of the crop scenario RQ values exceeded the listed LOC for estuarine/marine fish.

Chronic Chronic

Chronic freshwater and estuarine/marine invertebrate RQ's exceed the chronic LOC (1.0) for all crop scenarios. Freshwater fish and estuarine/marine fish chronic RQ values do exceed the chronic LOC for any crop scenario.

Table 12. Acute Risk Quotients for Fish and Aquatic Invertebrates from Abamectin Applied to Various Crops

Crop Scenario	Application Rate (lb ai/acre); (# Applications/	Calculated EECs	Freshwater Fish ^a	Freshwater Invertebrates ^b	Estuarine/ Marine Fish [°]	Estuarine/ Marine Invertebrates ^d
	Application interval)	Peak (µg/L)	$LC_{50} = 3.2$ µg/L	$LC_{50} = 0.34$ µg/L	$LC_{50} = 15.0$ µg/L	$\begin{array}{c} LC_{50} \neq 0.02\\ \mu g/L \end{array}$
Almonds &	0.0235; $(2/21)^1$		· .	-		
∝ Walnuts	(2/21)	0.075	0.023	0.219	0.005	3.73*
Apples	0.0235; $(2/21)^1$	0.339	0.106	0.997*	0.023	17.0*
Avocados	0.0235; $(2/30)^1$	0.142	0.044	0.418	0.009	7.10*
Celeriac	0.0187; (3/7) ²	0.429	0.134	1.26*	0.029	21.5*
Citrus	0.0235; (2/30) ¹	0.394	0.123	1.16*	0.026	19.7*

Crop Scenario	Application Rate (lb ai/acre); (# Applications/	Calculated EECs	Freshwater Fish ^a	Freshwater Invertebrates ^b	Estuarine/ Marine Fish ^c	Estuarine/ Marine Invertebrates ^d
	Application interval)	Peak (µg/L)	$LC_{50} = 3.2$ $\mu g/L$	$LC_{50} = 0.34$ µg/L	$LC_{50} = 15.0$ $\mu g/L$	$LC_{50} = 0.02$ µg/L
Cotton	0.019; (2/21)	0.420	0.131	1.24*	0.028	21.0*
Cucurbit	$0.0187; \\ (3/7)^2$	0.540	0.169	1.59*	0.036	27.0*
Fruiting Veg	0.0187; (3/7) ²	0.493	0.154	1.45*	0.033	24.7*
Grapes	0.019; (2/21)	0.466	0.146	1.37*	0.031	23.3*
Herb	$0.0187; \\ (3/7)^2$	0.084	0.026	0.247	0.006	4.20*
Hops	0.019; (2,21)	0.158	0.049	0.465	0.011	7.90*
Leafy Veg	0.0187; (3/7) ²	0.277	0.087	0.815*	0.018	13.9*
Mint	0.014; (3/7)	0.156	0.049	0.459	0.010	7.80*
Pears	0.0235; $(2/21)^1$	0.029	0.009	0.085	0.002	1.45*
Plums & Prunes	0.0235; $(2/21)^1$	0.040	0.013	0.118	0.003	2.00*
Potatoes	$\begin{array}{c} 0.0187;\\ (3/7)^2 \end{array}$	0.651	0.203	1.91*	0.043	32.6*

¹ These crops were modeled using the maximum seasonal application rate divided by 2 applications.

² These crops were modeled using the maximum seasonal application rate divided by 3 applications

Bolded RQ values exceed the Agency's acute listed LOC (0.05) for direct effects to listed species

* = RQ values exceed the Agency's non-listed acute LOC (0.5) for non-listed species

^a Based on Rainbow Trout (Oncorhynchus mykiss)

^b Based on Water Flea (Daphnia magna)

^c Based on Sheepshead Minnow (Cyprinodon variegatus)

^d Based on Mysid Shrimp (Americamysis bahia)

Table 13. Chronic Risk Quotients for Fish and Aquatic Invertebrates from Abamectin Applied to Various Crops

Crop Scenario	Application Rate (lb ai/acre); (# Applications/		ılated (µg/L)	Freshwater Fish ^a	Estuarine/ Marine Fish ^b	Freshwater Invertebrates ^c	Estuarine/ Marine Invertebrates ^d
	Application interval)	21 - d ³	60-d ³	NOAEC = 0.52 μg/L	NOAEC = 2.4 µg/L	NOAEC = 0.006 μg/L	NOAEC = 0.00035 μg/L
Almonds & Walnuts	0.0235; $(2/21)^1$	0.059	0.048	0.09	0.02	9.83	169
Apples	0.0235; $(2/21)^1$	0.266	0.214	0.41	0.09	44.3	760

48

		-					
Avocados	0.0235; $(2/30)^1$	0.111	0.102	0.20	0.04	18.5	317
Celeriac	0.0187; (3/7) ²	0.351	0.298	0.57	0.12	58.5	1003
Citrus	0.0235; (2/30) ¹	0.318	0.278	0.53	0.12	53.0	909
Cotton	0.019; (2/21)	0.348	0.291	0.56	0.12	58.0	994
Cucurbit	0.0187; (3/7) ²	0.446	0.386	0.74	0.16	74.3	1274
Fruiting Veg	$0.0187; \\ (3/7)^2$	0.410	0.373	0.72	0.15	68.3	1171
Grapes	0.019; (2/21)	0.404	0.361	0.69	0.15	67.3	1154
Herb	$0.0187; \\ (3/7)^2$	0.075	0.065	0.13	0.03	12.5	214
Hops	0.019; (2,21)	0.136	0.130	0.25	0.05	22.7	389
Leafy Veg	$0.0187; \\ (3/7)^2$	0.217	0.174	0.33	0.07	36.2	620
Mint	0.014; (3/7)	0.129	0.107	0.21	0.04	21.5	369
Pears	$0.0235; (2/21)^{1}$	0.023	0.020	0.04	0.01	3.83	65.7
Plums & Prunes	$0.0235; (2/21)^{1}$	0.031	0.023	0.04	0.01	5.17	88.6
Potatoes	$0.0187; \\ (3/7)^2$	0.564	0.498	0.96	0.21	94.0	1611

² These crops were modeled using the maximum seasonal application rate divided by 3 applications ³ Freshwater and estuarine/marine invertebrates NOAEC values were compared to the 21-day EEC, and freshwater and estuarine/marine fish NOAEC values were compared to the 60-day EEC.

Bolded RQ values exceed the Agency's chronic LOC (1.0)

^a Based on Rainbow Trout (Oncorhynchus mykiss)

^b Estimated early life stage NOAEC using an ACR of 6.2

^c Estimated using an ACR of 57 (Based on Water Flea (Daphnia magna)) and mysid shrimp)

^dBased on Mysid Shrimp (Americamysis bahia)

4.1.1.2 **Aquatic Plants**

Calculated peak EECs were compared to IC_{50} endpoints for to derive aquatic vascular and non-vascular plant RQ's for non-listed species, and the peak EECs were compared to the aquatic vascular NOAEC value to derive RQ's for listed species. Listed species RQ values were not calculated for the non-vascular species (Selenastrum capricornum) as a NOAEC value was not available. Acute RQ's for aquatic vascular and nonvascular plants are summarized in Table 14. RQ values did not exceed the plant LOC of 1.0 for any crop. However, data for only two of the five species was available for review. In addition, submitted studies were conducted as nominal concentrations with the use of a potential photosensitizing solvent; therefore, risk may be underestimated.

1 Ibuilleett					
Crop	Application Rate (lb ai/acre);	Calculated	Vascular	Vascular	Non-Vascular
Scenario	(# Applications/	EECs	Non-Listed ^a	Listed ^a	Non-Listed ^b
	Application interval)	Peak (µg/L)	$IC_{50} = 3,900$ ppb	NOAEC = 1,200 ppb	IC ₅₀ >100,000 ppb
Almonds & Walnuts	$0.0235; (2/21)^1$	0.075	<0.01	<0.01	<0.01
Apples	0.0235; $(2/21)^1$	0.339	<0.01	<0.01	<0.01
Avocados	0.0235; (2/30) ¹	0.142	<0.01	<0.01	<0.01
Celeriac	0.0187; (3/7) ²	0.429	<0.01	<0.01	<0.01
Citrus	0.0235; $(2/30)^1$	0.394	<0.01	<0.01	<0.01
Cotton	0.019; (2/21)	0.420	<0.01	<0.01	<0.01
Cucurbit	0.0187; (3/7) ²	0.540	<0.01	<0.01	<0.01
Fruiting Veg	0.0187; (3/7) ²	0.493	<0.01	<0.01	<0.01
Grapes	0.019; (2/21)	0.466	<0.01	<0.01	<0.01
Herb	0.0187; (3/7) ²	0.084	<0.01	<0.01	<0.01
Hops	0.019; (2,21)	0.158	<0.01	<0.01	<0.01
Leafy Veg	$0.0187; \\ (3/7)^2$	0.277	<0.01	<0.01	<0.01
Mint	0.014; (3/7)	0.156	<0.01	<0.01	<0.01
Pears	0.0235; $(2/21)^1$	0.029	<0.01	<0.01	<0.01
Plums & Prunes	0.0235; $(2/21)^1$	0.040	<0.01	<0.01	<0.01
Potatoes	$0.0187; \\ (3/7)^2$	0.651	<0.01	<0.01	<0.01

Table 14. Risk quotients for Aquatic Plants Exposed to Foliar Applications of Abamectin

¹ These crops were modeled using the maximum seasonal application rate divided by 2 applications. ² These crops were modeled using the maximum seasonal application rate divided by 3 applications. ^a Based on Duckweed (*Lemna gibba*)

^b Based on (Selenastrum capricornutum)

4.1.1.3 Non-target Terrestrial Animals

The RQ's for avian species are summarized in Table 15 through Table 17, and mammalian RQ's are summarized in Table 18 through Table 20. EEC comparisons to terrestrial invertebrate toxicity are summarized in Table 21.

Acute Avian Risk

Non-Listed Species

The acute dose-based and dietary-based RQ values for birds did not exceed the non-listed LOC of 0.5 for any crop scenario (Table 15 and Table 16). However, regurgitation was observed in all the mallard duck acute oral treatment groups, therefore, the reported acute oral LD₅₀ might be underestimating toxicity.

Listed Species

Acute avian dietary-based RQ values did not exceed the acute endangered LOC of 0.1 for any crop scenario. However, the acute avian dose-based RQ values exceeded the acute listed LOC for small birds feeding on small and tall grass, broadleaf plants and small insects for all crop scenarios, except for tall grasses for cotton, grapes and hops. Acute avian dose-based RQ values also exceed the acute listed LOC for medium birds consuming short grasses for all crops except cotton, grapes and hops (Table 15 and Table 16).

Chronic Avian Risk

For the mallard duck chronic reproduction toxicity study, the highest concentration tested (12 mg ai/kg) resulted in no statistically significant effect for survival, growth or reproduction, therefore, chronic RQ values were not calculated. This highest tested concentration, 12 mg ai/kg, was compared to the calculated EECs, and all EECs were lower than this tested concentration (Table 17).

Table 15. Upper bound acute dos	e-based RQ valu	es for birds for foli	ar application
of abamectin		н н	

Crop and Application Rate	Functional Feeding Group Dietary Item	20 g bird Acute ¹	100 g bird Acute ¹	1000 g bird Acute ¹
Celeriac.	Herbivores/Insectivores			
<u>cucurbit.</u> fruiting and	Short Grass	0.30	0.14	0.04
leafy veg.	Tall Grass	0.14	0.06	0.02
herbs, potato ²	Broadleaf plants/ sm insects	0.17	0.08	0.02
0.0187 lb	Fruits/pods/lg insects	0.02	0.01	<0.01
ai/A/ 3 apps/7-d	Granivore			
interval	Seeds	< 0.01	<0.01	< 0.01
	· ·			
Cotton, grapes, hops	Herbivores/Insectivores	а. Х		
	Short Grass	0.20	0.09	0.03
	Tall Grass	0.09	0.04	0.01

Crop and	Functional Feeding	20 g bird	100 g bird	1000 g bird
Application Rate	Group Dietary Item	Acute ¹	Acute ¹	Acute ¹
0.019 lb ai/A/ 2 Apps/21-d	Broadleaf plants/ sm insects	0.11	0.05	0.02
interval	Fruits/pods/lg insects	0.01	0.01	< 0.01
	Granivore			
	Seeds	<0.01	` <0.01	< 0.01
Almonds,	Herbivores/Insectivores	· ·	. *	
walnuts,	Short Grass	0.24	0.11	0.03
apple, pears,	Tall Grass	0.11	0.05	0.02
$\frac{\text{plums, prunes}^3}{0.0235 \text{ lb}}$	Broadleaf plants/ sm insects	0.14	0.06	0.02
ai/A/ 2	Fruits/pods/lg insects	0.02	0.01	< 0.01
apps/21-d	Granivore			
interval	Seeds	< 0.01	<0.01	< 0.01
	Herbivores/Insectivores			
Avocado,	Short Grass	0.23	0.10	0.03
<u>citrus³</u>	Tall Grass	0.10	0.05	0.01
0.0235 lb ai/A/ 2	Broadleaf plants/ sm insects	0.13	0.06	0.02
apps/30-d	Fruits/pods/lg insects	0.01	0.01	<0.01
interval	Granivore			
	Seeds	< 0.01	< 0.01	< 0.01
			· .	
	Herbivores/Insectivores			
	Short Grass	0.23	0.10	0.03
Mint 0.014 lb ai/A/ 3 apps/7-d interval	Tall Grass	0.10	0.05	0.01
	Broadleaf plants/ sm insects	0.13	0.06	0.02
	Fruits/pods/lg insects	0.01	0.01	< 0.01
	Granivore			
	Seeds	< 0.01	< 0.01	< 0.01

Bolded RQ values exceed the listed LOC of 0.1;

¹ Acute $RQ = (upper bound dose-based EEC, mg/kg-bw) / (LD_{50}, mg/kg-bw)$. The upper bound EECs for a given body weight and LD_{50} values adjusted for the given body weight are in Table 6. ² These crops were modeled using the maximum seasonal application rate divided by 3 applications.

³ These crops were modeled using the maximum seasonal application rate divided by 3 applications

Table 16. Upper Bound Acute Avian Dietary-based RQ values from Foliar Application of Abamectin to Celeriac, Cucurbit, Fruiting and Leafy Vegetables, Herbs and Potato

Crop and Application Rate	Dietary Item	EEC (mg/kg-diet) ¹	Acute Dietary RQ ²
	Short Grass	11.80	0.03
Celeriac, cucurbit, fruiting and leafy veg., herbs, potato	Tall Grass	5.41	0.01
0.0187 lb ai/A/	Broadleaf plants/sm Insects	6.64	0.02
3 apps/7-d interval	Fruits/pods/seeds/lg insects	0.74	<0.01

¹ Dietary-based residue levels for application from Table 8.

² Acute RQ = (EEC, mg/kg-diet) / acute dietary LC50, mg/kg-diet; where the acute dietary LC50 is 383 mg/kg-diet for the mallard duck from Table 9.

Table 17. Comparison of the Dietary EECs from Foliar Application of Abamectin to the Chronic Avian NOAEC

Crop and Application Rate	Dietary Item	EEC (mg/kg-diet) ¹	Chronic Avian NOAEC ² (mg ai/kg-diet)
	Short Grass	11.80	< 12
Celeriac, cucurbit, fruiting and leafy veg., herbs, potato	Tall Grass	5.41	<12
0.0187 lb ai/A/	Broadleaf plants/sm Insects	6.64	<12
3 apps/7-d interval	Fruits/pods/seeds/lg insects	0.74	<12

¹ Dietary-based residue levels for applications from Table 8.

² the chronic NOAEC is 12 mg ai/kg-diet for the mallard duck, the highest dose tested Table 9.

Acute Mammalian Risk

Non-Listed Species

No acute dose-based RQ values exceeded the acute LOC (0.5) for non-listed mammalian species in any scenario tested (Table 18).

Listed Species

Acute dose-based RQ values exceed the Agency's listed LOC of 0.1 for small and medium mammals consuming short and tall grass, broadleaf plants and small insects for all crops except for medium mammals consuming tall grass for cotton, grapes and hops. The acute dose-based listed LOC was also exceeded for large mammals feeding on short grasses for all crop scenarios and broadleaf plants and small insects for abamectin application to celeriac, cucurbit, fruiting and leafy vegetables, herbs and potatoes (Table 18).

Chronic Mammalian Risk

Chronic dose-based RQ values exceed the Agency's chronic LOC (1.0) for small, medium and large mammals feeding on short grass, tall grass, broadleaf plants, small

insects, fruits, pods or large insects for all crops, except for large mammals consuming fruits, pods and large insects in which only abamectin use on celeriac, cucurbit, fruiting and leafy vegetables, herbs and potatoes exceeded the LOC for fruits, pods and large insects. No chronic dose-based RQ values exceeded the Agency's chronic LOC for mammals feeding on seeds (Table 19).

Chronic dietary-based RQ values exceeded the LOC for mammals consuming short and tall grass, broadleaf plants and small insects for all crops. No chronic dietary-based RQ values exceeded the chronic LOC for mammals consuming fruits, pods, seeds, or large insects (Table 20).

Table 18. Upper bound Mammalian Acute Dose-based RQ values for Foliar Application of Abamectin

Crop	Functional Feeding Group	15 g mammals	35 g mammals	1000 g mammals	
	Dietary Item	Acute ¹	Acute ¹	Acute ¹	
Celeriac,	Herbivores/Insectivores				
cucurbit. fruiting and	Short Grass	0.38	0.32	0.17	
leafy veg.,	Tall Grass	0.17	0.15	0.08	
herbs, potato ²	Broadleaf plants/ sm insects	0.21	0.18	0.10	
0.0187 lb ai/A/	Fruits/pods/lg insects	0.02	0.02	0.01	
3 apps/7-d	Granivore				
interval	Seeds	0.01	<0.01	< 0.01	
	Herbivores/Insectivores				
Cotton,	Short Grass	0.24	0.21	0.11	
grapes, hops	Tall Grass	0.11	0.09	0.05	
0.019 lb ai/A/	Broadleaf plants/ sm insects	0.14	0.12	0.06	
2 Apps/21-d interval	Fruits/pods/lg insects	0.02	0.01	0.01	
interval	Granivore				
	Seeds	<0.01	<0.01	< 0.01	
A 1	Herbivores/Insectivores	·			
<u>Almonds</u> , walnuts,	Short Grass	0.30	0.26	0.14	
apple, pears,	Tall Grass	0.14	0.12	0.06	
plums, prunes ³ 0.0235 lb	Broadleaf plants/ sm insects	0.17	0.14	0.08	
ai/A/ 2	Fruits/pods/lg insects	0.02	0.02	0.01	
apps/21-d	Granivore				
interval	Seeds	<0.01	< 0.01	< 0.01	
Avocado,	Herbivores/Insectivores				
citrus ³	Short Grass	0.28	0.24	0.13	
	Tall Grass	0.13	0.24	0.13	
0.0235 lb ai/A/ 2	Broadleaf plants/	0.15	0.11	0.08	

Crop	Functional Feeding Group Dietary Item	15 g mammals Acute ¹	35 g mammals Acute ¹	1000 g mammals Acute ¹
apps/30-d	sm insects			
interval	Fruits/pods/lg insects	0.02	0.01	0.01
	Granivore		,	
	Seeds	<0.01	<0.01	< 0.01
	Herbivores/Insectivores Short Grass	0.28	0.24	'0.13
Mint	Tall Grass			
0.014 lb ai/A/ 3 apps/7-d	Broadleaf plants/ sm insects	0.13	0.11 0.14	0.06
interval	Fruits/pods/lg insects	0.02	0.02	0.01
	Granivore			
			<0.01	< 0.01

Bolded RQ values exceed the listed LOC of 0.1;

¹ Acute RQ = (upper bound dose-based EEC, mg/kg-bw) / (LD₅₀; mg/kg-bw). The upper bound EECs for a given body weight and LD₅₀ values adjusted for the given body weight are in Table 6.

 2 These crops were modeled using the maximum seasonal application rate divided by 3 applications.

³ These crops were modeled using the maximum seasonal application rate divided by 2 applications.

Table 19. Upper bound Mammalian Chronic Dose-based RQ values for Foliar Application of Abamectin

Crop	Functional Feeding15 g mamnGroupAcute1		35 g mammals Acute ¹	1000 g mammals Acute ¹	
Celeriac,	Herbivores/Insectivores				
cucurbit, fruiting and	Short Grass	42.64	36.43	19.53	
leafy veg.	Tall Grass	19.55	16.70	8.95	
herbs, potato ²	Broadleaf plants/ sm insects	23.99	20.49	10.98	
0.0187 lb	Fruits/pods/lg insects	2.67	2.28	1.22	
ai/A/ 3 apps/7-d	Granivore				
interval	Seeds	0.59	0.51	0.27	
	Herbivores/Insectivores	27.26	22.27	10.52	
a	Short Grass	27.36	23.37	12.53	
Cotton, grapes, hops	Tall Grass	12.54	10.71	5.74	
0.019 lb ai/A/	Broadleaf plants/ sm insects	15.39	13.15	7.05	
2 Apps/21-d	Fruits/pods/lg insects	1.71	1.46	0.78	
interval	Granivore				
	Seeds	0.38	0.32	0.17	
Almonds,	Herbivores/Insectivores				
walnuts, pears,	Short Grass	33.84	28.91	15.49	

Crop	Functional Feeding Group	15 g mammals Acute ¹	35 g mammals Acute ¹	1000 g mammals Acute ¹	
	Dietary Item				
apple, plums,	Tall Grass	15.51	13.25	7.10	
prunes ³ 0.0235 lb	Broadleaf plants/ sm insects	19.04	16.26	8.72	
ai/A/ 2	Fruits/pods/lg insects	2.12	1.81	0.97	
apps/21-d	Granivore				
interval	Seeds	0.47	0.40	0.22	
	Herbivores/Insectivores				
Avocado,	Short Grass	31.64	27.03	14.49	
<u>citrus³</u>	Tall Grass	14.50	12.39	6.64	
0.0235 lb ai/A/ 2	Broadleaf plants/ sm insects	17.80	15.20	8.15	
apps/30-d	Fruits/pods/lg insects	1.98	1.69	0.91	
interval	Granivore				
	Seeds	0.44	0.38	0.20	
* .	Herbivores/Insectivores				
	Short Grass	31.93	27.27	14.62	
Mint	Tall Grass	14.63	12.50	6.70	
0.014 lb ai/A/ 3 apps/7-d	Broadleaf plants/ sm insects	17.96	15.34	8.22	
interval	Fruits/pods/lg insects	2.00	1.70	0.91	
· .	Granivore		······		
1	Seeds	0.44	0.38	0.20	

Bolded RQ values exceed the listed LOC of 1

¹Chronic RQ = (upper bound dose-based EEC, mg/kg-bw) / (NOAEL; mg/kg-bw). The upper bound EECs for a given body weight and NOAEL values adjusted for the given body weight are in Table 6.

 2 These crops were modeled using the maximum seasonal application rate divided by 3 applications.

³ These crops were modeled using the maximum seasonal application rate divided by 2 applications

Crop and Application Rate	Dietary Item	EEC (mg/kg-diet) ¹	Chronic Mammalian RQ Value ¹	
	Short Grass	11.80	4.92	
<u>Celeriac, cucurbit, fruiting and</u> <u>leafy veg., herbs, potato²</u>	Tall Grass	5.41	2.25	
0.0187 lb ai/A/	Broadleaf plants/sm Insects	6.64	2.76	
3 apps/7-d interval	Fruits/pods/seeds/lg insects	0.75	0.31	
			•	
	Short Grass	7.57	3.15	
Cotton, grapes, hops	Tall Grass	3.47	1.45	
0.019 lb ai/A/ 2 Apps/21-d	Broadleaf plants/sm Insects	4.26	1.77	
interval	Fruits/pods/seeds/lg insects	0.47	0.20	

Table 20. Upper bound Chronic Dietary-based RQ Values for Mammals for Foliar Application of Abamectin

	Short Grass	9.36	3.90
Almonds, walnuts, apple, pears, plums, prunes ³	Tall Grass	4.29	1.79
0.0235 lb ai/A/ 2 apps/21-d	Broadleaf plants/sm Insects	5.27	2.19
interval	Fruits/pods/seeds/lg insects	0.59	0.24
			-
	Short Grass	8.75	3.65
Avocado, citrus ³	Tall Grass	4.01	1.67
0.0235 lb ai/A/ 2 apps/30-d	Broadleaf plants/sm Insects	4.92	2.05
interval	Fruits/pods/seeds/lg insects	0.55	0.23
	,	1	
	Short Grass	8.83	3.68
Mint	Tall Grass	4.05	1.69
0.014 lb ai/A/ 3 apps/7-d interval	Broadleaf plants/sm Insects	4.97	2.07
	Fruits/pods/seeds/lg insects	0.55	0.23

¹ Chronic RO = (upper bound dietary-based EEC, mg/kg-diet) / (NOAEL; mg/kg-diet). The upper bound EECs for a crop are in Table 8 and chronic dietary NOAEL value is 2.40 mg/kg-diet, calculated from dose-based NOAEL of 0.12 mg/kg-bw

 2 These crops were modeled using the maximum seasonal application rate divided by 3 applications.

³ These crops were modeled using the maximum seasonal application rate divided by 3 applications

Terrestrial Invertebrates

Currently, there is not a method to quantify risk to non-listed terrestrial invertebrates. Abamectin is registered for use to control terrestrial invertebrates such as leafminers, mites, beetles, and ants; therefore, abamectin exposure to non-target terrestrial invertebrates is expected to also impact these non-target species. The acute contact abamectin LD_{50} value for the honeybee is 0.41 µg ai/bee. This acute contact LD_{50} value was converted to a body weight value using 0.128 g as the body weight of a bee. The extrapolated acute contact toxicity value for terrestrial invertebrates is 3.20 ppm.¹⁰ For the acute contact honeybee study, there was 13% mortality at the lowest concentration tested. Risk to insects were evaluated by comparing abamectin toxicity, as determined in the submitted honeybee acute contact study, with the residue levels from abamectin use on small and large insects generated as dietary-based EECs for birds and mammals using T-REX. Comparisons of the EECs for abamectin uses and the extrapolated acute toxicity are presented in Table 21. The small insect EECs are greater than the extrapolated acute contact value for all crops. So while the large insect EECs are less than the extrapolated LD_{50} value, abamectin may still have the potential to cause adverse effects to terrestrial invertebrates as the acute contact toxicity data indicates that abamectin is highly toxic to

¹⁰ Extrapolated LD50_{terrestrial insect} = $\frac{LD50_{honeybee}}{BW_{honeybee}} = \frac{0.41}{0.128} \frac{\mu g}{g} = 3.20$ ppm

the honeybee. Also, a foliage toxicity study indicated that foliar residues of abamectin may remain toxic to bees for two days following application.

Application Rate (Crop)	ation Rate Dietary Item		Extrapolated Acute Contact Value 3.20 (mg/kg)
Celeriac, cucurbit, fruiting	Small insects	6.64	>3.20
and leafy veg., herbs, potato ¹ 0.0187 lb ai/A/ 3 apps/7-d interval	Large insects	0.74	<3.20
Cotton, grapes, hops	Small insects	4.26	>3.20
0.019 lb ai/A/ 2 Apps/21-d interval	Large insects	0.47	<3.20
Almonds, walnuts, apple,	Small insects	5.27	>3.20
pears, plums, prunes ² 0.0235 lb ai/A/ 2 apps/21-d interval	Large insects	0.59	<3.20
Avocado, citrus ²	Small insects	4.92	>3.20
0.0235 lb ai/A/ 2 apps/30-d interval	Large insects	0.55	<3.20
Mint	Small insects	4.97	>3.20
0.014 lb ai/A/ 3 apps/7-d interval	Large insects	0.55	<3.20

Table 21. Comparisons of Small and Large Insect EECs from Foliar Application of	
Abamectin to the Extrapolated Acute Contact Honeybee Concentration	

Bold values indicate the EEC exceeds the extrapolated acute contact value.

¹These crops were modeled using the maximum seasonal application rate divided by 3 applications.

² These crops were modeled using the maximum seasonal application rate divided by 3 applications

4.1.1.4 Non-target Terrestrial and Semi-Aquatic Plants

There are no toxicity data available to calculate RQ values for terrestrial and semi-aquatic plants.

4.2 Risk Description

The results of this risk assessment indicate that there are potential effects to listed freshwater fish species, listed and non-listed freshwater and estuarine/marine invertebrates, listed bird species, listed and non-listed mammalian species and terrestrial invertebrates from proposed new end-use abamectin product.

4.2.1 Risks to Aquatic Organisms

The proposed label indicates that Agri-Mek SC can not be applied within 25 ft for ground application or 150 ft for aerial application of lakes, reservoirs, rivers, permanent streams, marshes, pot holes, natural ponds, estuaries or commercial fish farm ponds. In addition, the label restricts cultivation within 25 ft of the aquatic area to allow growth of a vegetative filter strip.

4.2.1.1 Fish and Aquatic Invertebrates

Calculated estimated exposure concentrations EECs from run-off and spray drift, based on modeling, potentially pose acute and chronic risks to listed and non-listed freshwater and estuarine/marine invertebrates and potentially acute risks to listed freshwater fish.

Acute

Non-Listed Species

Acute risk to non-listed fish is not expected as there were no acute non-listed LOC exceedances for either freshwater or estuarine/marine fish. RQ values did exceed the acute non-listed LOC of 0.5 for estuarine/marine invertebrates for all crops (RQs 1.45-32.6) and for freshwater aquatic invertebrates from abamectin use on apples, celeriac, citrus, cotton, cucurbit, fruiting and leafy vegetables, grapes and potatoes.

Listed Species

Acute risk to listed estuarine/marine fish is not expected, as none of the crop scenario RQ values exceeded the listed LOC. The acute freshwater and estuarine/marine invertebrate RQ values exceed the Agency's acute listed LOC of 0.05 for all crop scenarios (RQs 0.085-1.91 for freshwater and 1.45-32.6 for estuarine/marine). The acute freshwater fish RQ values exceed the Agency's acute listed LOC for abamectin application to apples, celeriac, citrus, cotton, cucurbit, fruiting and leafy vegetables, grapes, and potatoes (RQs 0.087-0.203). In addition, fish are used as surrogates for aquatic phase amphibians and since there is potential risk to freshwater fish, risk to these species is also assumed.

Based on the calculated RQ values and a default concentration-response slope of 4.5, the probability of an individual mortality was calculated using the model IEC v1.1 (EPA, 2004a). For freshwater fish RQ values, this corresponds to a probability of mortality of less than 1 in 1 million to 1 in 1090, and for freshwater invertebrates, the probability of mortality ranges from less than 1 in 1.4 million to 1 in 1. Based on the calculated RQ's for estuarine/marine invertebrates, the probability of mortality is 1 in 1.

<u>Chronic</u>

Chronic risk to fish from abamectin use is not expected because the chronic RQ values did not exceed the LOC for any crop scenario. Chronic freshwater and estuarine/marine invertebrate RQ's exceed the chronic LOC (1.0) for all crop scenarios, except freshwater invertebrates exposed from abamectin application to pears (RQs 3.83-94.0 for freshwater and 65.7 -1611 for estuarine/marine).

The life-cycle toxicity test with the *Daphnia magna* resulted in a reproductive NOAEC of $0.030 \ \mu g$ ai/L which was the lowest concentration tested, but the adults in the two lowest treatment groups were observed to be pale and smaller compared to the controls (MRID 00153570). Therefore, the reproductive NOAEC appears to underestimate the true no effect concentration for Daphnia from chronic exposure to abamectin, as the NOAEC appears to be lower than 0.030 μg ai/L which may be underestimated risk. An extrapolated NOAEC value was calculated using the mysid shrimp toxicity data, but there is uncertainty as this extrapolated value may underestimate or overestimate risk.

4.2.1.2 Aquatic Plants

The aquatic plant RQ values did not exceed the acute non-listed or listed LOCs, however this is based on only two of the five guideline studies. These studies were conducted without measuring test concentrations, so the actual toxicity concentrations are not known. In addition, submitted studies were conducted with the use of a potential photosensitizing solvent; therefore, risk may be underestimated. If the nominal concentrations tested in the duckweed and green algae were maintained throughout the study, these untested species would have to be about 1,800 times more sensitive than current data indicate in order to exceed listed LOC's.

4.2.2 Risks to Terrestrial Organisms

4.2.2.1 Terrestrial Animals

Birds and Mammals

Acute

Non-Listed Species

Acute risk to non-listed birds and mammals from abamectin use is not expected, as the acute dose-based and dietary-based RQ values for birds and dose-based RQ values for mammals did not exceed the non-listed LOC of 0.5 for any crop scenario. However, regurgitation was observed in all the mallard duck acute oral treatment groups, therefore, the reported acute oral LD₅₀ might be underestimating toxicity

Listed Species

Acute dietary risk for birds is not expected as the avian acute dietary-based RQ values did not exceed the acute endangered LOC of 0.1 for any crop scenario. However, the acute avian dose-based RQ values exceed the acute listed LOC for small birds feeding on small and tall grass, broadleaf plants and small insects for all crop scenarios, except for tall grasses for cotton, grapes and hops, and the LOC was exceeded for medium birds consuming short grasses for all crops except for cotton, grapes and hops (RQs 0.10-0.30). Since birds are surrogates for reptiles and land-phase amphibians, the potential for direct effects may exist for these taxa as well.

Acute dose-based RQ values exceeded the LOC for small and medium mammals consuming short and tall grass, broadleaf plants and small insects for all crops except for medium mammals consuming tall grass for cotton, grapes and hops (RQs 0.11-0.38). The acute dose-based listed LOC was also exceeded for large mammals feeding on short grasses for all crop scenarios and broadleaf plants and small insects for abamectin application to celeriac, cucurbit, fruiting and leafy vegetables, herbs and potatoes (RQs 0.10-0.17).

Based on the calculated RQ values and a concentration-response slope of 7.3 for the acute oral bird study and default concentration-response slope of 4.5 for mammals, the probability of an individual mortality was calculated using the model IEC v1.1 (EPA, 2004a). For the bird RQ values, this corresponds to a probability of mortality of less than 1 in seven trillion to 1 in 14,800, and for mammals, the probability of mortality ranges from less than 1 in 294,000 to 1 in 34.

<u>Chronic</u>

Chronic dose-based and dietary-based RQ values exceed the Agency's chronic LOC (1.0) for mammals feeding on short and tall grass, broadleaf plants and small insects (RQs 5.74-42.64 for dose-based and 1.45-4.92 for dietary based). Chronic dose-based RQ values also exceeded the LOC for small and medium mammals consuming fruits, pods or large insects for all crops and for large mammals for celeriac, cucurbit, fruiting and leafy vegetables, herbs and potatoes (RQs 1.22-2.67). No chronic dietary-based RQ values exceeded the chronic LOC for mammals consuming fruits, pods, seeds, or large insects or for seeds on a chronic dose basis.

For the mallard duck chronic reproduction toxicity study, the highest concentration tested (12 mg ai/kg) resulted in no statistically significant effect for survival, growth or reproduction, therefore, chronic RQ values were not calculated. This highest tested concentration, 12 mg ai/kg, was compared to the EECs, and all EECs were lower than this tested concentration.

The label states not to make more than two sequential applications of Agri-Mek SC, but the maximum seasonal amount allowed for these crops is greater than two applications at the maximum single application rate. Also, the maximum amount allowed per season for these crops is slightly less (0.0187 lb ai/A) than the amount applied using three applications at the maximum single application rate of 0.19 lb ai/A. Since the label does not specifically state the interval between the second sequential application and subsequent applications, three applications at seven day intervals using the maximum seasonal rate divided by three (0.0187 lb ai/A) was modeled for environmental exposure as the dietary exposure model T-REX can not model different application intervals or application rates at the same time. In addition, the application rate for almonds, walnuts, apples, citrus, avocados, pears, plums and prunes was modeled using the maximum seasonal application rate, 0.047 lb ai/A, divided by two applications (0.0235 lb ai/A).

The label indicates that the maximum single application rate for these crops is 0.023 lb ai/A, and with a maximum number of 2 applications, calculates 0.046. The label also indicates that the maximum seasonal application rate is 8.5 fl oz/A which calculates to 0.04648 lb ai/A, therefore it is not known if the reported 0.047 lb ai/A is due to rounding. Whether abamectin was modeled at 0.0235 or 0.023 lb ai/A, it resulted in exactly the same LOC exceedances.

In an effort to compare avian and mammalian acute and chronic dietary RQ's for other application scenarios, applications were modeled using the maximum single rate of 0.019 lb ai/A and three applications applied seven days apart. In addition, EECs were calculated using the maximum single application rate applied twice seven days apart with the assumption that subsequent applications would be applied at a later date in which the residues from the previous applications would have dissipated. For both birds and mammals using these two alternative application scenarios, the acute RO values exceeded the listed LOC for exactly the same dietary items and body classes as the maximum seasonal application rate divided by three applications, except for large mammals consuming broadleaf plants and small insects for the two application scenario. Also, the chronic RQ values for mammals using the two alternative application methods exceeded the LOC for the same dietary items and body classes, except for large mammals consuming fruits, pods and large insects for the two application scenario. Therefore, except for large mammals consuming broadleaf plants, small and large insects, fruits and pods, acute and chronic RQ values will exceed the LOC whether abamectin is applied two or three times at the maximum single application rate or whether it is applied at the maximum seasonal rate divided by three applications.

Only the short grass EEC modeled using the maximum single rate of 0.019 lb ai/A and three applications applied every seven days was equal to the highest concentration tested in the mallard reproduction study (EEC = 11.99 vs. 12 ppm), but this modeling scenario is very slightly more (0.001 lb ai/A) than the maximum seasonal rate allowed (0.057 vs. 0.056 lb ai/A). In addition, EECs were calculated using the maximum single application rate applied twice seven days, and these EECs were lower than the mallard study concentration. Moreover, the level in which an adverse effect will not occur is not known but is observed to be at least 12 mg ai/kg. During the pilot study for the mallard reproduction study, the average number of eggs laid was markedly less in the 64 mg ai/kg treatment group. Overall, if two sequential applications at the single maximum application rate, is applied more than seven days after the last application, the calculated EECs will be less than the highest concentration tested in the mallard reproduction study. Therefore, the potential for chronic risk to birds is not anticipated.

Terrestrial Invertebrates

Abamectin is highly toxic to the honeybee. The calculated EECs for small insects were greater than the extrapolated acute contact value (LD50) for the honeybee. Additionally, an incident was reported in EFED's Ecological Incident Information System (EIIS)

database (Incident No. 1008611-001), where thousands of bees were killed during a registered use of abamectin on avocados in San Diego County CA in 1999. A foliar residue study on citrus demonstrated that foliar residues of abamectin are toxic to honeybees for approximately 48 hours after application (Appendix D). In addition, abamectin is registered for use to control terrestrial invertebrates such as leafminers, mites, beetles, and ants; therefore, abamectin exposure to non-target terrestrial invertebrates is expected to also impact these non-target species. Therefore, the proposed abamectin use is expected to be toxic to terrestrial invertebrates and beneficial insects.

The proposed label has environmental hazard labeling regarding bees and indicates not to apply when weather conditions favor drift from target areas, and that the product is highly toxic to bees exposed to direct treatment or residues on blooming crops or weeds. It also indicates not to apply the product or allow it to drift to blooming crops or weds if bees are visiting the treatment area.

4.2.2.2 Terrestrial Plants

US EPA ARCHIVE DOCUMENT

There are no data regarding the toxicity of abamectin to terrestrial plants, therefore RQ values were not calculated.

According to the EIIS incidence database there were three incidents for almonds in June 1998 from direct application of Agri-Mek in California (I007644-001, 002, 003). The type of injury to the almonds was not reported, but was reported to occur to all applied (34-106 acres). In addition, Agri-Mek was applied directly to 34 acres of grapes in June 2000 in California, with all 34 acres affected (I10837-019). They type of injury was not reported, and in the report, the inspector stated "Questionable" in regards to the question "Application within Label". All of these incidences were classified as possible.

Since there is no submitted toxicity data to evaluate terrestrial plants, and there are reported possible incidences for almonds and grapes, adverse risk to terrestrial plants can not be precluded.

4.2.3 Federally Threatened and Endangered (Listed) Species Concerns

4.2.3.1 Taxonomic Groups potentially at Risk

The Agency's LOC is exceeded for Federally listed Endangered and Threatened birds, mammals, and freshwater and estuarine/marine invertebrates for this proposed new enduse abamectin product for all listed crops (almonds, walnuts, apples, avocados, celeriac, citrus, cotton, cucurbit, fruiting vegetables, grapes, herbs, hops, leafy vegetables, mint, pears, plums, prunes and potatoes). The acute listed LOC is also exceeded for freshwater fish for abamectin use on apples, celeriac, citrus, cotton, cucurbit, fruiting and leafy vegetable, grapes, and potatoes. Since there is no data for reptiles and land-phase amphibians, birds were used as surrogates for these species, and due to potential risk to birds, risk to these species are assumed. In addition, fish are used as surrogates for aquatic phase amphibians and since there is potential risk to freshwater fish, risk to these

63

species is also assumed. Abamectin is highly toxic to bees, and the potential for adverse risk may occur from abamectin use. In addition, because of the lack of submitted terrestrial plant toxicity data and reported possible incidences involving almonds and grapes, adverse risk to terrestrial and semi-aquatic plants can not be precluded. A list of endangered/threatened species at the state level for these taxonomic groups and crops is attached to this assessment (Appendix F).

4.2.3.2 Direct and Indirect Effects

Due to the potential for direct effects to listed birds, reptiles, amphibians, mammals, fish, aquatic and terrestrial invertebrates, the potential for indirect effects may exist. The indirect effects may be from loss of the above species due to impacts on survival, growth, and reproduction. This loss may result in structural and functional changes of both the aquatic and terrestrial ecosystems. Changes may be manifested in the form of disruption of food chain and reduced biodiversity.

4.3 Description of Assumptions, Limitations, Uncertainties and Data Gaps.

4.3.1 Related to Exposure for All Species

4.3.1.1 General Exposure Parameters

- This screening-level risk assessment relies on labeled statements of the maximum rate of abamectin application, the maximum number of applications, and the shortest interval between applications. Together, these assumptions constitute a maximum use scenario. The frequency at which actual uses approach these maximums is dependent on resistance to the insecticide, timing of applications, and market forces.
- The label states that for a number of crops (celeriac, cucurbit, fruiting vegetable, leafy vegetable, mint and potatoes (for potato psyllid) not to make more than two sequential applications of Agri-Mek SC or any other foliar applied abamectin containing product, but the maximum seasonal amount allowed for these crops is greater than two applications at the maximum single application rate. The application interval for these crops is 7 days, and the label does not state how long to wait between the second sequential application and subsequent applications. Also, the maximum amount allowed per season for these crops, except mint, is slightly less (0.001 lb ai/A) than the amount applied using three applications at the interval between the second sequential application and subsequent applications, three applications at seven day intervals using the maximum seasonal rate divided by three was modeled for environmental exposure. In addition, alternative application section (section 4.0)

- For application to herbs, the label states not to make more than two applications of Agri-Mek SC per single cutting (harvest), but the maximum amount allowed per cropping season is greater than two applications at the maximum single application rate but slightly less than three applications at the maximum single application rate. Therefore, environmental exposure concentrations were modeled in the same manner as discussed above.
- For application to almonds, walnuts, apples, avocados, citrus, pears, plums and prunes, the label states that for the maximum amount per season, not to apply more than 8.5 fl oz/A (or 0.047 lb ai/A) of Agri-Mek SC or any other foliar applied abamectin containing product in a growing season. Based on the density of the formulation, 8.5 fl oz/A calculates to 0.04648 lb ai/A, therefore, it is not known if the reported 0.047 lb ai/A is a rounding issue or if another abamectin product can be applied at 0.001 lb ai/A. In addition, the single maximum application rate reported is 0.023 lb ai/A, and two applications would be 0.046 lb ai/A. For this assessment, abamectin was modeled at 0.0235 lb ai/A (0.047 divided by two applications). Abamectin was also modeled at 0.0235 lb ai/A application.
- The maximum seasonal application rate for cotton, potatoes (for Colorado potato beetle) and grapes on the label is reported as 0.038 lb ai/A, but the label also indicates not to apply more than 6.75 fl oz/A of Agri-Mek SC per season which calculates to 0.0369 (0.037) lb ai/A. The maximum single application rate for cotton, potatoes and grapes is 0.019 lb ai/A, and if applied twice per season, the maximum seasonal application rate of 0.038 lb ai/A. Therefore, a maximum seasonal application rate of 0.038 lb ai/A was used for determining environmental exposure concentrations.

4.3.2 Related to Exposure Assessment

4.3.2.1 Related to Exposure for Aquatic Species

For an acute risk assessment, there is no averaging time for exposure. An instantaneous peak concentration, with a 1 in 10 year return frequency, is assumed. The use of the instantaneous peak assumes that instantaneous exposure is of sufficient duration to elicit acute effects comparable to those observed over more protracted exposure periods tested in the laboratory, typically 48 to 96 hours. In the absence of data regarding time-to-toxic event analyses and latent responses to instantaneous exposure, the degree to which risk is overestimated cannot be quantified.

4.3.2.2 Related to Exposure for Terrestrial Species

Screening-level risk assessments for applications of pesticides consider dietary exposure alone. Other routes of exposure, not considered in this assessment, are discussed below:

<u>Incidental soil ingestion exposure</u> - This risk assessment does not consider incidental soil ingestion. Available data suggests that up to 15% of the diet can consist of incidentally ingested soil depending on the species and feeding strategy (Beyer et al., 1994). Being that the proposed new use is a granular formulation, significant exposure via this scenario is not expected.

<u>Inhalation Exposure</u> - The screening risk assessment does not consider inhalation exposure. Such exposure may occur through three potential sources: (1) spray material in droplet form at the time of application (2) vapor phase pesticide volatilizing from treated surfaces, and (3) airborne particulate (soil, vegetative material, and pesticide dusts). Being that the proposed new use is a granular formulation, significant inhalation exposure is not expected.

<u>Dermal Exposure</u> - The screening assessment does not consider dermal exposure, except as it is indirectly included in calculations of RQ's based on lethal doses per unit of pesticide treated area. Dermal exposure may occur through three potential sources: (1) direct application of spray to terrestrial wildlife in the treated area or within the drift footprint, (2) incidental contact with contaminated vegetation, or (3) contact with contaminated water or soil. Being that the proposed new use is a use is a granular formulation, significant exposure via these scenarios is not expected.

<u>Drinking Water Exposure</u> - Drinking water exposure to a pesticide active ingredient may be the result of consumption of surface water or consumption of the pesticide in dew or other water on the surfaces of treated vegetation. For pesticide active ingredients with a potential to dissolve in runoff, puddles on the treated field may contain the chemical.

4.3.3 Related to Effects Assessment

4.3.3.1 Age class and sensitivity of effects thresholds

It is generally recognized that test organism age may have a significant impact on the observed sensitivity to a toxicant. The screening risk assessment acute toxicity data for fish are collected on juvenile fish between 0.1 and 5 grams. Aquatic invertebrate acute testing is performed on recommended immature age classes (e.g., first instar for daphnids, second instar for amphipods, stoneflies and mayflies, and third instar for midges). Similarly, acute dietary testing with birds is also performed on juveniles, with mallard being 5-10 days old and quail 10-14 days old.

Testing of juveniles may overestimate toxicity at older age classes for active ingredients, such as abamectin, that act directly (without metabolic transformation) because younger age classes may not have the enzymatic systems associated with detoxifying xenobiotics. The screening risk assessment has no current provisions for a generally applied method that accounts for this uncertainty. Insofar as the available toxicity data may provide ranges of sensitivity information with respect to age class, the risk assessment uses the most sensitive life-stage information as the conservative screening endpoint.

4.3.3.2 Aquatic Studies Conducted Above Water Solubility

A number of the acute toxicity tests, primarily for fish, oyster and aquatic plants, were conducted as nominal and were above the known solubility limit for abamectin (<1.0 μ g/L in tap water). Therefore, the dissolved bioavailable form in these toxicity tests is unknown. Risk quotients calculated from these values may underestimate risks.

4.3.3.3 Lack of Effect Studies and Complete Review of Aquatic Plant Data

There are no chronic toxicity data available for the Agency to access chronic risk of abamectin to marine and estuarine fish. There is also no registered submitted data for vegetative vigor and seedling emergence toxicity data for terrestrial plants. An acute oral toxicity study with a passerine bird species and a chronic reproduction study with the bobwhite quail are also not available. Toxicity tests with sediment organisms are also not available, and the potential for abamectin to be present in the sediment exists. There are only two of the five studies addressing the acute toxicity of abamectin to aquatic plants available.

4.3.3.4 Uncertainty in LD50 for Mallards and NOAEC for Chronic Daphnia Study

The acute oral LD_{50} for mallard ducks (*Anas platyrhynchos*) is 85 mg ai/kg-bw (MRID 00097859, moderately toxic). However, regurgitation was observed in all the mallard duck acute oral treatment groups, therefore, the reported acute oral LD_{50} might be underestimating toxicity.

The life-cycle toxicity test with the *Daphnia magna* resulted in a reproductive NOAEC of $0.030 \ \mu g ai/L$ which was the lowest concentration tested, but the adults in the two lowest treatment groups were observed to be pale and smaller compared to the controls (MRID 00153570). Therefore, the reproductive NOAEC appears to underestimate the true no effect concentration for Daphnia from chronic exposure to abamectin, as the NOAEC appears to be lower than 0.030 $\ \mu g ai/L$ which may be underestimating risk.

4.3.3.5 Use of the Most Sensitive Species Tested

Although the screening risk assessment relies on a selected toxicity endpoint from the most sensitive species tested, it does not necessarily mean that the selected toxicity endpoints reflect sensitivity of the most sensitive species existing in a given environment. The relative position of the most sensitive species tested in the distribution of all possible species is a function of the overall variability among species to a particular chemical. In the case of listed species, there is uncertainty regarding the relationship of the listed species' sensitivity and the most sensitive species tested.

5.0 Literature Cited

JS EPA ARCHIVE DOCUMENT

- Fletcher, J., J. Nellessen and T Pfleeger. 1994. Literature review and evaluation of the EPA Food-Chain (Kenaga) Nomogram, an Instrument for Estimating Pesticide Residues on Plants. *Environ. Tox. Chem.* 13(9): 1383-1391.
- Hoerger, F. and E. E. Kenaga. 1972. Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment. in: F. Coulston and F. Korte (editors), Environmental Quality and Safety: Chemistry, Toxicology, and Technology. Vol I. Georg Thieme Publishers, Stuttgart, West Gemany, pp. 9-28.
- Pfleeger, T.G., A. Fong, R. Hayes, H. Ratsch and C. Wickliff. 1996. Field evaluation of the EPA (Kenaga) nomogram, a method for estimating wildlife exposure to pesticide residues on plants. Env. Toxicol. Chem. 15:535-543, 1996.
- Sherma, J. and Cairns, T. Comprehensive analytical profiles of important pesticides. 1993. CRC Press, Inc. Boca Raton, Fl. p 75.
- Tomlin, C.D.S. (ed.). 1994. *The Pesticide Manual World Compendium*. 10th ed. Surrey, UK. The British Crop Protection Council, p. 4:
- U.S. Environmental Protection Agency. 1998. Guidelines for Ecological Risk Assessment. Risk Assessment Forum, Office of Research and Development, Washington, D.C. EPA/630/R-95/002F. April 1998.
- U.S. Environmental Protection Agency. 2004. Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs, U.S. Environmental Protection Agency. Endangered and Threatened Species Effects Determinations. Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, Washington, D.C. January 23, 2004.
- U.S. Environmental Protection Agency. 2004a. Individual Effect Chance Model. Version 1.1, Developed by Ed Odenkirchen, Environmental Effects and Fate Division, Office of Pesticides. June 22, 2004.

68

Incident No.	Year	State	Organism Affected	No. Acres/Animal Affected	Mixture – if mixture; abamectin plus names of others chemicals	Certainty index	Comments
1007644-001	June 1998	CA	Almonds	All 65	Agri-Mek (EPA# 100-898) abamectin	possible	Almond field treated directly w/Agri-Mek. Type of injury not reported.
1007644-002	June 1998	CA	Almonds	A11 34	Agri-Mek (EPA# 100-898) abamectin	possible	Almond field treated directly w/Agri-Mek. Type of injury not reported.
1007644-003	June 1998	CA	Almonds	All 106	Agri-Mek (EPA# 100-898) abamectin	possible	Almond field treated directly w/Agri-Mek. Type of injury not reported.
1008611-001	April 1999	CA	Bees	100 colonies	Agri-Mek (EPA# 100-898) abamectin	probable	Section 18 exemption for avocados for thrip problem. Southern California beekeepers reported bee kills where beehives kept in avocado groves. Report indicates that contrary to recommendation helicopters have been spraying during the day instead of at night as County instructions favored; also the labels warn of drift if bees are visiting crops. Report indicated that thousands of dead bees littered the bee yard. The County sent a representative to take samples.
I010221-001	April 2000	ТХ	Catfish	100 dead (1/8 acre pond)	PT 370 Ascend Fire Ant Stopper (EPA# 499-370) abamectin; Award (EPA#100-722) fenoxycarb	probable	1/8 lb of both Ascend and Award to applied to areas around pond. 1 to 1 ½ in. of rain fell the next day. 100 catfish of varying sizes and age died 2 days after application. No other species in pond observed dead. Pond located in woods w/little to no runoff or stream flow, and is filled w/well water.
I-10837-019	June 2000	CA	Grapes	All 34	Agri-Mek (EPA# 100-898) abamectin	possible	Applied at 10 gal/A directly to foliar crop by airblast (broadcast). Type of injury not reported.

DOCUME П ARCHIV EPA S

						Registrant inspector in responding to question "Application within Label" stated "Questionable".
1014237-001	June 2003	Bait Fish (small)	"tons"	Agri-Mek 0.15 (EPA# 100-898) abamectin	probable	Agri-Mek applied to citrus grove less than 25 ft from lake at a reported rate of 10 oz. Application made in morning and rain fell in afternoon. One week after application, "tons" of dead small bait fish observed around edges of lake.

. .

. 70

Appendix B. PRZM/EXAMS Output Files

Almonds & Walnuts

stored as A49nd.out Chemical: Abamectin PRZM environment: CAalmond_WirrigSTD.txt mc EXAMS environment: pond298.exv mc Metfile: w23232.dvf mc Water segment concentrations (ppb)

modified Tueday, 26 August 2008 at 05:16:36

modified Tueday, 26 August 2008 at 05:14:08 modified Tueday, 26 August 2008 at 05:15:38 ns (ppb)

v	02	٦r

	Peak	96 hr	21 Day	60 Day	90 Day		Yearly
1961	0.04042	0.03762	0.02937	0.01716		0.01382	0.007031
1962	0.1863	0.1721	0.1305	0.09103		0.0762	0.0358
1963	0.0782	0.07558	0.06845	0.06027		0.05784	0.04969
1964	0.06302	0.06128	0.05414	0.04567		0.0432	0.03916
1965	0.05042	0.04893	0.04575	0.03988		0.03742	0.03374
1966	0.04619	0.04444	0.04009	0.03475		0.03128	0.02794
1967	0.05962	0.05763	0.05198	0.04225		0.03895	0.03318
1968	0.04064	0.03904	0.03608	0.03243		0.03128	0.0257
1969	0.04048	0.03924	0.03552	0.03225		0.0311	0.02682
1970	0.07429	0.0704	0.05852	0.04059		0.03467	0.02976
1971	0.04454	0.04288	0.03889	0.03565		0.03428	0.0292
1972	0.04066	0.03907	0.03449	0.03069		0.02964	0.02529
1973	0.04234	0.04112	0.03759	0.03409		0.03264	0.02961
1974	0.04055	0.03859	0.036	0.03547		0.03502	0.02774
1975	0.03886	0.03724	0.03331	0.03013		0.02918	0.02381
1976	0.03948	0.03754	0.03411	0.02954		0.02858	0.02099
1977	0.03813	0.03658	0.03265	0.02888		0.02769	0.02172
1978	0.05851	0.05568	0.04864	0.04252		0.03918	0.03234
1979	0.04474	0.04354	0.03824	0.035		0.03424	0.02998
1980	0.04284	0.04167	0.03884	0.03696		0.03562	0.03011
1981	0.06692	0.06301	0.05304	0.04275	:	0.03634	0.02852
1982	0.07453	0.071	0.0596	0.04866	i	0.04527	0.041
1983	0.05544	0.05408	0.04511	0.04347	1	0.0423	0.03868
1984	0.04931	0.04785	0.04341	0.0384		0.0362	0.03178
1985	0.04294	0.04086	0.03631	0.03017		0.02883	0.02434
1986	0.05697	0.05398	0.04572	0.0369		0.03431	0.02965
1987	0.03928	0.03727	0.03335	0.02981		0.02853	0.0232
1988	0.03674	0.03521	0.03225	0.02849		0.02733	0.02119
1989	0.04267	0.0405	0.03414	0.02889		0.02756	0.02245
1990	0.04835	0.04679	0.03988	0.03336		0.03189	0.02694

Sorted results								
Prob.		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	0.032258065	0.1863	0.1721	· 0.1305	0.09103		0.0762	0.04969
	0.064516129	0.0782	0.07558	0.06845	0.06027		0.05784	0.041

0.096774194	0.07453	0.071	0.0596	0.04866	0.04527	0.03916	
0.129032258	0.07429	0.0704	0.05852	0.04567	0.0432	0.03868	
0.161290323	0.06692	0.06301	0.05414	0.04347	0.0423	0.0358	
0.193548387	0.06302	0.06128	0.05304	0.04275	0.03918	0.03374	
0.225806452	0.05962	0.05763	0.05198	0.04252	0.03895	0.03318	
0.258064516	0.05851	0.05568	0.04864	0.04225	0.03742	0.03234	
0.290322581	0.05697	0.05408	0.04575	0.04059	0.03634	0.03178	
0.322580645	0.05544	0.05398	0.04572	0.03988	0.0362	0.03011	
0.35483871	0.05042	0.04893	0.04511	0.0384	0.03562	0.02998	
0.387096774	0.04931	0.04785	0.04341	0.03696	0.03502	0.02976	
0.419354839	0.04835	0.04679	0.04009	0.0369	0.03467	0.02965	
0.451612903	0.04619	0.04444	0.03988	0.03565	0.03431	0.02961	
0.483870968	0.04474	0.04354	0.03889	0.03547	0.03428	0.0292	
0.516129032	0.04454	0.04288	0.03884	0.035	0.03424	0.02852	
0.548387097	0.04294	0.04167	0.03824	0.03475	0.03264	0.02794	
0.580645161	0.04284	0.04112	0.03759	0.03409	0.03189	0.02774	
0.612903226	0.04267	0.04086	0.03631	0.03336	0.03128	0.02694	
0.64516129	0.04234	0.0405	0.03608	0.03243	0.03128	0.02682	
0.677419355	0.04066	0.03924	0.036	0.03225	0.0311	0.0257	
0.709677419	0.04064	0.03907	0.03552	0.03069	0.02964	0.02529	
0.741935484	0.04055	0.03904	0.03449	0.03017	0.02918	0.02434	
0.774193548	0.04048	0.03859	0.03414	0.03013	0.02883	0.02381	
0.806451613	0.04042	0.03762	0.03411	0.02981	0.02858	0.0232	
0.838709677	0.03948	0.03754	0.03335	0.02954	0.02853	0.02245	
0.870967742	0.03928	0.03727	0.03331	0.02889	0.02769	0.02172	
0.903225806	0.03886	0.03724	0.03265	0.02888	0.02756	0.02119	
0.935483871	0.03813	0.03658	0.03225	0.02849	0.02733	0.02099	
0.967741935	0.03674	0.03521	0.02937	0.01716	0.01382	0.007031	
0.1	0.074506	0.07094	0.059492	0.048361	0.045063	0.039112	

Average of yearly averages:

0.028912

Inputs generated by pe5.pl - Novemeber 2006

US EPA ARCHIVE DOCUMENT

Data used for this	run:				
Output File: CAAI	mond				
Metfile:		w23232.dv	٢f		,
PRZM scenario:		CAalmond	_WirrigSTI	D.txt	
EXAMS environm	ent file:	pond298.e	XV		
Chemical Name:		Abamectin			
		Variable			
Description		Name	Value	Units	Comments
Molecular weight		mwt	873.11	g/mol	
			2.60E-		
Henry's Law Cons	st.	henry	08	atm-m^3/	mol
			1.50E-		
Vapor Pressure		vapr	09	torr	
Solubility		sol	78	mg/L	
Kd		Kd	82	mg/L	
Koc		Koc		mg/L	

Photolysis half-life Aerobic Aquatic Metabolism	kdp kbacw	0.5 300	days days	Half-life Halfife
Anaerobic Aquatic Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	· 0	cm	
Application Rate:	TAPP	0.0263	kg/ha	
Application Efficiency:	APPEFF	0.99	fraction	
Spray Drift	DRFT	0.01	fraction of	application rate applied to pond
Application Date	Date	6-May	dd/mm or	dd/mmm or dd-mm or dd-mmm
Interval 1	interval	21	days	Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha	
Record 17:	FILTRA			
	IPSCND	1		
,	UPTKF			
Record 18:	PLVKRT			
	PLDKRT			
• .	FEXTRC	0.5		
Flag for Index Res. Run	IR	EPA Pon	d	
Flag for runoff calc.	RUNOFF	none	none, mor	hthly or total(average of entire run)

Apples

stored as PAApples.out Chemical: Abamectin PRZM environment: PAappleSTD.txt EXAMS environment: pond298.exv Metfile: w14751.dvf Water segment concentra

modified Tueday, 26 August 2008 at 05:16:42	
modified Tueday, 26 August 2008 at 05:14:08	
modified Tueday, 26 August 2008 at 05:15:00	

Water segment concentrations (ppb)

Year Peak 96 hr 60 Day 90 Day 21 Day Yearly 1961 0.1297 0.1202 0.09809 0.08633 0.07887 0.03257 1962 0.1091 0.1048 0.09207 0.08378 0.08291 0.06465 1963 0.08413 0.08276 0.08112 0.08014 0.07843 0.06935 0.1102 1964 0.1058 0.09275 0.08206 0.07893 0.07167 1965 0.08485 0.08388 0.08044 0.07455 0.07202 0.06443 1966 0.2341 0.22 0.1795 0.1396 0.1277 0.07623 1967 0.1997 0.1925 0.1709 0.1447 0.1349 0.109 1968 0.2175 0.2059 0.1717 0.1402 0.132 0.1061 1969 0.4276 0.4026 0.3431 0.2618 0.2348 0.1472 1970 0.2222 0.2152 0.1944 0.1863 0.1818 0.1615 1971 0.283 0.2684 0.2253 0.1945 0.1802 0.14 1972 0.6103 0.5716 0.4606 0.3474 0.3116 0.1998 · 1973 0.2601 0.2502 0.2208 0.2035 0.2009 0.1769 1974 0.212 0.2058 0.1902 0.1769 0.1688 0.1446 · 1975 0.3447 0.3255 0.27 0.2154 0.197 0.1434 1976 0.2086 0.2012 0.181 0.1611 0.155 0.1432

EPA ARCHIVE DOCUMENT

	1977	0.1525	0.1522	0.1494	0.1485	0.1466	0.1193
	1978	0.1635	0.1575	0.1447	0.1267	0.1195	0.1039
	1979	0.1498	0.1443	0.133	0.1203	0.114	0.09969
	1980	0.0978	0.09458	0.09239	0.09027	0.08997	0.07791
	1981	0.1141	0.1102	0.09913	0.091	0.08601	0.07523
	1982	0.1074	0.1034	0.09186	0.08491	0.08043	0.07089
	1983	0.09096	0.08812	0.07998	0.06195	0.0573	0.05515
	1984	0.1063	0.1024	0.09483	0.08547	0.07987	0.06588
	1985	0.09061	0.08677	0.07597	0.06727	0.0667	0.05932
	1986	0.1731	0.1646	0.1424	0.1172	0.1091	0.07807
	1987	0.1499	0.1441	0.1288	0.1115	0.1074	0.0899
	1988	0.1514	0.1451	0.1263	0.108	0.1015	0.09059
	1989	0.1653	0.1591	0.1406	0.1269	0.1208	0.0931
	1990	0.1436	0.1387	0.1241	0.11	0.1081	0.09543
Sorted results							
Prob.		Peak	96 hr	21 Day	60 Day	90 Day	Yearly
	0.032258	0.6103	0.5716	0.4606	0.3474	0.3116	0.1998
	0.064516	0.4276	0.4026	0.3431	0.2618	0.2348	0.1769
	0.096774	0.3447	0.3255	0.27	0.2154	0.2009	0.1615
	0.129032	0.283	0.2684	0.2253	0.2035	0.197	0.1472
	0.16129	0.2601	0.2502	0.2208	0.1945	0.1818	0.1446
- -	0.193548	0.2341	0.22	0.1944	0.1863	0.1802	0.1434
	0.225806	0.2222	0.2152	0.1902	0.1769	0.1688	0.1432
	0.258065	0.2175	0.2059	0.181	0.1611	0.155	0.14
	0.290323	0.212	0.2058	0.1795	0.1485	0.1466	0.1193
	0.322581	0.2086	0.2012	0.1717	0.1447	0.1349	0.109
	0.354839	0.1997	0.1925	0.1709	0.1402	0.132	0.1061
	0.387097	0.1731	0.1646	0.1494	0.1396	0.1277	0.1039
	0.419355	0.1653	0.1591	0.1447	0.1269	0.1208	0.09969
	0.451613	0.1635	0.1575	0.1424	0.1267	0.1195	0.09543
	0.483871	0.1525	0:1522	0.1406	0.1203	0.114	0.0931
	0.516129	0.1514	0.1451	0.133	0.1172	0.1091	0.09059
	0.548387	0.1499	0.1443	0.1288	0.1115	0.1081	0.0899
	0.580645	0.1498	0.1441	0.1263	0.11	0.1074	0.07807
	0.612903	0.1436	0.1387	0.1241	0.108	0.1015	0.07791
	0.645161	0.1297	0.1202	0.09913	0.091	0.08997	0.07623
	0.677419	0.1141	0.1102	0.09809	0.09027	0.08601	0.07523
	0.709677	0.1102	0.1058	0.09483	0.08633	0.08291	0.07167
	0.741935	0.1091	0.1048	0.09275	0.08547	0.08043	0.07089
	0.774194	0.1074	0.1034	0.09239	0.08491	0.07987	0.06935
	0.806452	0.1063	0.1024	0.09207	0.08378	0.07893	0.06588
	0.83871	0.0978	0.09458	0.09186	0.08206	0.07887	0.06465
	0.870968	0.09096	0.08812	0.08112	0.08014	0.07843	0.06443
	0.903226	0.09061	0.08677	0.08044	0.07455	0.07202	0.05932
	0.935484	0.08485	0.08388	0.07998	0.06727	0.0667	0.05515
	0.967742	0.08413	0.08276	0.07597	0.06195	0.0573	0.03257
•							
	0.1	0.33853	0.31979	0.26553	0.21421	0.20051	0.16007
						Average of yearly	0.400000
						averages:	0.100832

Data used for this run:				
Output File: PAApples				
Metfile:	w14751.dv	f		• •
PRZM scenario:	PAappleS1	D.txt		
EXAMS environment file:	pond298.e			
Chemical Name:	Abamectin			
	Variable			
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11 2.60E-	g/mol	
Henry's Law Const.	henry	08 1.50E-	atm-m^3/	/mol
Vapor Pressure	vapr	09	torr	
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	
Koc	Koc		mg/L	
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic			•	
Metabolism	kbacw	300	days	Halfife
Anaerobic Aquatic				
Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0	cm	
Application Rate:	TAPP	0.0263	kg/ha	
Application Efficiency:	APPEFF	0.99	fraction	
Spray Drift	DRFT	0.01	fraction o	of application rate applied to pond
Application Date	Date	15-06	dd/mm o	r dd/mmm or dd-mm or dd-mmm
Interval 1	interval	21	days	Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha	
Record 17:	FILTRA			
	IPSCND	1		
	UPTKF			
Record 18:	PLVKRT			
	PLDKRT			
	FEXTRC	0.5		
Flag for Index Res. Run	IR	EPA Pon	d	<i>i</i>
Flag for runoff calc.	RUNOFF	none	none, mo	onthly or total(average of entire run)

Avocado

stored as FLAvocado.out Chemical: Abamectin PRZM environment:

modified Tueday, 26 August 2008 at 05:16:38

FLavocadoSTD.txt **EXAMS** environment: pond298.exv

Metfile: w12839.dvf

modified Tueday, 26 August 2008 at 05:14:08 modified Tueday, 26 August 2008 at 05:14:20 Water segment concentrations (ppb)

0.290323

0.322581

0.354839

0.1186

0.1151

0.117

0.1115 0.09066

0.108 0.08778

0.08832

0.1096

Year		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	1961	0.08559	0.07854	0.05815	0.04895		0.04471	0.02267
	1962	0.0994	0.09215	0.07112	0.05737		0.05277	0.03224
	1963	0.1122	0.1042	0.08108	0.06411		0.05753	0.03613
	1964	0.1057	0.0986	0.08067	0.06656		0.06339	0.04367
	1965	0.1107	0.1035	0.08255	0.06902		0.06265	0.04452
,	1966	0.1126	0.1055	0.08778	0.08032		0.07547	0.0513
	1967	0.1333	0.1254	0.1052	0.0844		0.07945	0.05455
	1968	0.119	0.1144	0.1038	0.08812		0.08123	0.05369
	1969	0.1151	0.108	0.08723	0.07354		0.06721	0.0449
	1970	0.1236	0.1161	0.09566	0.08259		0.07511	0.04773
	1971	0.1095	0.1023	0.08199	0.06817		0.06359	0.04208
	1972	0.1252	0.1173	0.09597	0.08014		0.07283	0.04585
	1973	0.1104	0.1033	0.08259	0.06883		0.06229	0.04094
	1974	0.1059	0.09874	0.07793	0.06439		0.06025	0.03785
	1975	0.1044	0.09731	0.07669	0.06283		0.05643	0.03503
	1976	0.103	0.09601	0.07565	0.06181		0.05588	0.03494
	1977	0.1895	0.175	0.1344	0.1144		0.09966	0.05722
	1978	0.1186	0.1115	0.09066	0.07714		0.07016	0.04766
	1979	0.3626	0.3324	0.2721	0.1868		0.1573	0.08354
	1980	0.1429	0.1351	0.1121	0.1031		0.09322	0.06416
	1981	0.117	0.1096	0.08832	0.07509		0.06799	0.04728
	1982	0.1315	0.1227	0.09684	0.08019		0.07318	0.04522
	1983	0.1084	0.1012	0.08001	0.0666		0.06126	0.03958
	1984	0.1108	0.1043	0.08523	0.07678		0.07005	0.04372
	1985	0.1087	0.1014	0.08023	0.06697		0.06062	0.04117
	1986	0.1066	0.09954	0.07983	0.06589		0.05971	0.03763
	1987	0.1042	0.09704	0.07626	0.06255		0.05713	0.037
	1988	0.1049	0.09785	0.0772	0.06339		0.05933	0.03724
	1989	0.1037	0.09634	0.07504	0.06166		0.05524	0.03438
	1990	0.109	0.1016	0.07992	0.06982		0.06428	0.03898
Sorted results								
Prob.		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
1100.	0.032258	0.3626	0.3324	0.2721	0.1868	,	0.1573	0.08354
	0.064516	0.1895	0.175	0.1344	0,1144		0.09966	0.06416
	0.096774	0.1429	0.1351	0.1121	0.1031		0.09322	0.05722
	0.129032	0.1333	0.1254	0.1052	0.08812		0.08123	0.05455
	0.16129	0.1315	0.1227	0.1038	0.0844		0.07945	0.05369
	0.193548	0.1252	0.1173	0.09684	0.08259		0.07547	0.0513
	0.225806	0.1236	0.1161	0.09597	0.08032		0.07511	0.04773
	0.258065	0.119	0.1144	0.09566	0.08019		0.07318	0.04766

0.08014

0.07714

0.07678

76

0.04728

0.04585

0.04522

0.07283

0.07016

0.07005

0.387097	0.1126	0.1055	0.08723	0.07509	0.06799	0.0449	
0.419355	0.1122	0.1043	0.08523	0.07354	0.06721	0.04452	
0.451613	0.1108	0.1042	0.08259	0.06982	0.06428	0.04372	
0.483871	0.1107	0.1035	0.08255	0.06902	0.06359	0.04367	
0.516129	0.1104	0.1033	0.08199	0.06883	0.06339	0.04208	
0.548387	0.1095	0.1023	0.08108	0.06817	0.06265	0.04117	
0.580645	0.109	0.1016	0.08067	0.06697	0.06229	0.04094	
0.612903	0.1087	0.1014	0.08023	0.0666	0.06126	0.03958	
0.645161	0.1084	0.1012	0.08001	0.06656	0.06062	0.03898	
0.677419	0.1066	0.09954	0.07992	0.06589	0.06025	0.03785	
0.709677	0.1059	0.09874	0.07983	0.06439	0.05971	0.03763	
0.741935	0.1057	0.0986	0.07793	0.06411	0.05933	0.03724	
0.774194	0.1049	0.09785	0.0772	0.06339	0.05753	0.037	
0.806452	0.1044	0.09731	0.07669	0.06283	0.05713	0.03613	
0.83871	0.1042	0.09704	0.07626	0.06255	0.05643	0.03503	
0.870968	0.1037	0.09634	0.07565	0.06181	0.05588	0.03494	
0.903226	0.103	0.09601	0.07504	0.06166	0.05524	0.03438	
0.935484	0.0994	0.09215	0.07112	0.05737	0.05277	0.03224	
0.967742	0.08559	0.07854	0.05815	0.04895	0.04471	0.02267	
0.1	0.14194	0.13413	0.11141	0.101602	0.092021	0.056953	
					Average of yearly	0.044000	
					averages:	0.044096	
					۰.	-	

US EPA ARCHIVE DOCUMENT

ł	Data used for this run:				
(Output File: FLAvocado	· .			
	Metfile:	w12839.dv	f		
	PRZM scenario:	FLavocado	STD.txt		
	EXAMS environment file:	pond298.e	xv		· .
(Chemical Name:	Abamectin			
		Variable			
	Description	Name	Value	Units	Comments
	Molecular weight	mwt	873.11	g/mol	
			2.60E-		
	Henry's Law Const.	henry	08	atm-m^3/	mol
			1.50E-		
	Vapor Pressure	vapr	09	torr	
;	Solubility	sol	78	mg/L	
1	Kd	Kd	82	mg/L	
1	Koc	Koc		mg/L	
1	Photolysis half-life	kdp	0.5	days	Half-life
1	Aerobic Aquatic Metabolism	kbacw	300	days	Halfife
	Anaerobic Aquatic				
	Vetabolism	kbacs	0	days	Halfife
/	Aerobic Soil Metabolism	asm	150	days	Halfife
	Hydrolysis:	pH 7	· 0	days	Half-life
I	Method:	CAM	2	integer	See PRZM manual
	ncorporation Depth:	DEPI	0	cm	
	Application Rate:	TAPP	0.0263	kg/ha	
				-	

Application Efficiency: Spray Drift	APPEFF DRFT	0.95 0.05	fraction fraction of application rate applied to pond
Application Date	Date	4-May	dd/mm or dd/mmm or dd-mm or dd-mmm
Interval 1	interval	30	days Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha
Record 17:	FILTRA		
•	IPSCND	1	
· · · · · · · · · · · · · · · · · · ·	UPTKF		
Record 18:	PLVKRT		
	PLDKRT		
	FEXTRC	0.5	
Flag for Index Res. Run	IR	EPA Pon	d ,
Flag for runoff calc.	RUNOFF	none	none, monthly or total(average of entire run)

Celeriac

stored as FLCeleriac.out Chemical: Abamectin PRZM environment: FLcarrotSTD.txt modified Tueday, 26 August 2008 at 05:16:38 EXAMS environment: pond298.exv modified Tueday, 26 August 2008 at 05:14:08 Metfile: w12844.dvf modified Tueday, 26 August 2008 at 05:14:22 Water segment concentrations (ppb)

Year

· .	Peak	96 hr	21 Day	60 Day	90 Day		Yearly
1961	0.05137	0.04779	0.03901	0.02904		0.02987	0.01335
1962	0.2173	0.2056	0.1831	0.1507		0.1453	0.07778
1963	0.2796	0.267	0.231	0.1774		0.1589	0.1002
1964	0.3291	0.3171	0.2823	0.2533		0.2411	0.1621
1965	0.379	0.3599	0.3211	0.2751		0.2479	0.1966
1966	0.5594	0.5311	0.4475	0.3731		0.3554	0.2479
1967	0.3088	0.2977	0.2767	0.2504		0.243	0.2108
1968	0.4022	0.388	0.3507	0.2999		0.2884	0.2167
1969	0.5095	0.4777	0.4064	0.3401		0.3185	0.2442
1970	0.2504	0.243	0.2289	0.2168		0.2126	0.1928
1971	0.2942	0.2778	0.2504	0.1961		0.1837	0.147
1972	0.431	0.4132	0.3511	0.2761		0.2499	0.174
1973	0.2746	0.2622	0.2373	0.2214		0.2161	0.1698
1974	0.2463	0.239	0.2186	0.1977		0.1893	0.154
1975	0.2522	0.239	0.216	0.178		0.164	0.1359
1976	0.2291	0.2194	0.1902	0.176		0.1687	0.129
1977	0.3443	0.3279	0.2792	0.2161		0.1933	0.1369
1978	0.3669	0.344	0.2902	0.2391		0.2163	0.161
1979	0.3784	0.356	0.3187	0.2627		0.2376	0.172
1980	0.223	0.2137	0.2023	0.1816		0.1783	0.1543
1981	0.284	0.2673	0.2337	0.2159		0.2008	0.1391
1982	0.3897	0.3722	0.3228	0.2527		0.235	0.1805

US EPA ARCHIVE DOCUMENT

		1983	0.2748	0.26
		1984	0.2796	0.26
		1985	0.3228	0.30
		1986	0.2509	0.23
		1987	0.2639	0.24
		1988	0.4108	0.38
		1989	0.1981	0.19
		1990	0.3108	0.29
	Sorted results			
	Prob.		Peak	96 hr
		0.032258	0.5594	0.53
		0.064516	0.5095	0.47
		0.096774	0.431	0.41
		0.129032	0.4108	0.3
		0.16129	0.4022	0.38
	· · ·	0.193548	0.3897	0.37
~		0.225806	0.379	0.35
		0.258065	0.3784	0.3
		0.290323	0.3669	0.3
		0.322581	0.3443	0.32
OCUMEN		0.354839	0.3291	0.31
		0.387097	0.3228	0.30
		0.419355	0.3108	0.29
0		0.451613	0.3088	0.29
$\overline{\mathbf{O}}$		0.483871	0.2942	0.27
0		0.516129	0.284	0.26
		0.548387	0.2796	0.26
_	<i>e</i>	0.580645	0.2796	0.2
	,	0.612903	0.2748	0.26
		0.645161	0.2746	0.26
\geq		0.677419	0.2639	0.24
		0.709677	0.2522	0.2
		0.741935	0.2509	0.23
		0.774194	0.2504	0.2
		0.806452	0.2463	0.2
\sim		0.83871	0.2291	0.21
œ		0.870968	0.223	0.21
		0.903226	0.2173	0.20
		0.935484	0.1981	0.19
-		0.967742	0.05137	0.047
EPA	. •	0.1	0.42898	0.410
Π				
S	Inputs generate	ed by pe5.pl -	Novemeber	2006
ñ	Data used for t	his run:		
	Output File: FL	Celeriac		

1983

Metfile:

0.2748

0.2626

0.2673

0.3076

0.2393

0.2498

0.2000	0.2100	0.2200	0.2040	0.102	. 0.1430	
0.4108	0.3877	0.3198	0.2826	0.2695	0.183	
0.1981	0.1907	0.1692	0.1531	0.1466	0.1343	
0.3108	0.2958	0.2648	0.2325	0.2216	0.1443	
Peak	96 hr	21 Day	60 Day	90 Day	Yearly	
0.5594	0.5311	0.4475		0.3554		
0.5095	0.4777	0.4064	0.3401	0.3185		
0.431	0.4132	0.3511	0.2999	0.2884		
0.4108	0.388	0.3507	0.2826	0.2695		
0.4022	0.3877	0.3228	0.2761	0.2499		
0.3897	0.3722	0.3211	0.2751	0.2479		
0.379	0.3599	0.3198	0.2627	0.243		
0.3784	0.356	0.3187	0.2533	0.2411		
0.3669	0.344	0.2902	0.2527	0.2376		
0.3443	0.3279	0.2823	0.2504	0.235		
0.3291	0.3171	0.2792	0.2391	0.2216		
0.3228	0.3076	0.2767	0.2325	0.2173		
0.3108	0.2977	0.2669	0.2248	0.2163		
0.3088	0.2958	0.2648	0.2214	0.2161	0.1621	
0.2942	0.2778	0.2504	0.2168	0.2126	6 0.161	
0.284	0.2673	0.2373	0.2161	0.2049	0.16	
0.2796	0.2673	0.2337	0.2159	0.2008	0.1543	
0.2796	0.267	0.231	0.2119	0.1982	0.154	
0.2748	0.2626	0.2306	0.2105	0.1933	0.1514	
0.2746	0.2622	0.2301	0.2046	0.192		
0.2639	0.2498	0.2289	0.1977	0.1893		
0.2522	0.243	0.2255	0.1961	0.1876		
0.2509	0.2393	0.2208	0.1921	0.1837		
0.2504	0.239	0.2186	0.1816	0.1783		
0.2463	0.239	0.216	0.178	0.1687		
0.2291	0.2194	0.2023	0.1774	0.164		
0.223	0.2137	0.1902	0.176	0.1589		
0.2173	0.2056	0.1831	0.1531	0.1466		
0.1981	0.1907	0.1692	0.1507	0.1453		
0.05137	0.04779	0.03901	0.02904	0.02987	0.01335	
0.42898	0.41068	0.35106	0.29817	0.28651 Average of yearly	0.21611	
				averages:	0.159408	

0.2301

0.2306

0.2669

0.2255

0.2208

0.2105

0.1921

0.2248

0.2119

0.2046

0.2049

0.1876

0.2173

0.1982

0.192

0.1786

0.1649

0.1514

0.1498

0.16

<u>79</u>

PRZM scenario:	FLcarrotS ⁻			
EXAMS environment file:	pond298.e	XV		
Chemical Name:	Abamectin	1	`	
	Variable			
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11	g/mol	
· · ·		2.60E-	-	
Henry's Law Const.	henry	08	atm-m^3	/mol
		1.50E-		
Vapor Pressure	vapr	09	torr	
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	
Koc	Koc		mg/L	
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic	·		,	
Metabolism	kbacw	300	days	Halfife
Anaerobic Aquatic				
Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0	cm	
Application Rate:	TAPP	0.021	kg/ha	
Application Efficiency:	APPEFF	0.99	fraction	
Spray Drift	DRFT	0.01		f application rate applied to pond
Application Date	Date	6-May		r dd/mmm or dd-mm or dd-mmm
Interval 1	interval	7	days	Set to 0 or delete line for single app.
app. rate 1	apprate	1	kg/ha	Set to 0 of delete life for single app.
Interval 2		7	-	Satto 0 ar dalata lina far single ann
	interval	/	days	Set to 0 or delete line for single app.
app. rate 2	apprate		kg/ha	
Record 17:	FILTRA			
•	IPSCND	1		
	UPTKF			
Record 18:	PLVKRT			
	PLDKRT		•	
	FEXTRC	0.5		
Flag for Index Res. Run	IR	EPA Pond	d	
Flag for runoff calc.	RUNOFF	none	none, mo	onthly or total(average of entire run)
-				

Citrus

stored as FLCitrustets.out Chemical: Abamectin PRZM environment: FLcitrusSTD.txt modified Tueday, 26 August 2008 at 05:16:38 EXAMS environment: pond298.exv modified Tueday, 26 August 2008 at 05:14:08 Metfile: w12844.dvf modified Tueday, 26 August 2008 at 05:14:22 Water segment concentrations (ppb)

-		
-		
\sim		
_		
	,	
	,	
1		
2		
•		
	,	
S EPA		

Year		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	1961	0.09614	0.08833	0.07048	0.051		0.04599	0.02746
	1962	0.1561	0.1466	0.136	0.1139		0.1088	0.07214
	1963	0.2106	0.2017	0.1756	0.1406	1	0.1292	0.09892
	1964	0.2915	0.279	0.233	0.2026		0.1897	0.1495
	1965	0.2907	0.2755	0.2414	0.2213		0.2066	0.1671
	1966	0.4028	0.3871	0.3319	0.2902		0.2724	0.1956
	1967	0.2709	0.2588	0.2354	0.2076		0.1988	0.1662
	1968	0.436	0.4091	0.3843	0.3202		0.2935	0.1994
	1969	0.3951	0.3735	0.3187	0.2656		0.2516	0.2008
	1970	0.333	0.3157	0.2746	0.238		0.2183	0.1696
	1971	0.2409	0.2317	0.211	0.1846		0.1755	0.1375
	1972	0.3593	0.3399	0.3078	0.2787		0.2689	0.1836
· •	1973	0.2359	0.229	0.2131	0.2041		0.198	0.1624
	1974	0.1917	0.1851	0.1699	0.158		0.1546	0.133
	1975	0.2129	0.201	0.1778	0.1626		0.1491	0.1204
	1976	0.2815	0.2641	0.2171	0.1739		0.1635	0.127
	1977	0.3038	0.2878	0.2526	0.2279		0.205	<i>,</i> 0.1525
	1978	0.3213	0.304	0.2595	0.2298		0.2119	0.1587
	1979	0.297	0.2804	0.2368	0.2014		0.1863	0.1568
	1980	0.2446	0.2322	0.2149	0.1865		0.1759	0.1436
	1981	0.2212		0.1883	0.1745		0.1641	0.1304
	1982	0.3421	0.3247	0.2861	0.2271		0.2088	0.1571
	1983	0.28	0.269	0.2576	0.2125		0.1976	0.1562
	1984	0.2755	0.2598	0.2214	0.1999		0.1883	0.1488
· ·	1985	0.2327	0.2248	0.2001	0.1783		0.1697	0.1373
	1986	0.1996	0.1914	0.1726	0.1678		0.1591	0.1242
	1987	0.197	0.1882	0.1671	0.1546		0.1502	0.1258
	1988	0.3873	0.3627	0.2953	0.2684		0.2542	0.1708
`	1989	0.1844	0.1766	0.1597	0.1498 0.1896		0.147 0.1801	0.1264
	1990	0.249	0.2351	0.2165	0.1090		0.1001	0.1298
Sorted results								
Prob.	*	Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	0.032258	0.436	0.4091	0.3843	0.3202		0.2935	0.2008
	0.064516	0.4028	0.3871	0.3319	0.2902		0.2724	0.1994
	0.096774	0.3951	0.3735	0.3187	0.2787		0,2689	0.1956
	0.129032	0.3873	0.3627	0.3078	0.2684		0.2542	0.1836
	0.16129	0.3593	0.3399	0.2953	0.2656		0.2516	0.1708
	0.193548	0.3421	0.3247	0.2861	0.238		0.2183	0.1696
	0.225806	0.333	0.3157	0.2746	0.2298		0,2119	0.1671
	0.258065	0.3213	0.304	0.2595	0.2279		0.2088	0.1662
	0.290323	0.3038	0.2878	0.2576	0.2271		0.2066	0.1624
	0.322581	0.297	0.2804	0.2526	0.2213		0.205	0.1587
	0.354839	0.2915	0.279	0.2414	0.2125		0,1988	0.1571
	0.387097	0.2907	0.2755	0.2368	0.2076		0.198	0.1568
	0.419355	0.2815	0.269	0.2354	0.2041		0.1976	0.1562
	0.451613	0.28	0.2641	0.233	0.2026		0.1897	0.1525
	0.483871	0.2755	0.2598	0.2214	0.2014		0.1883	0.1495

0.516129	0.2709	0.2588	0.2171	0.1999	0.1863	0.1488	
0.548387	0.249	0.2351	0.2165	0.1896	0.1801	0.1436	
0.580645	0.2446	0.2322	0.2149	0.1865	0.1759	0.1375	
0.612903	0.2409	0.2317	0.2131	0.1846	0.1755	0.1373	
0.645161	0.2359	0.229	0.211	0.1783	0.1697	0.133	
0.677419	0.2327	0.2248	0.2001	0.1745	0.1641	0.1304	
0.709677	0.2212	0.2108	0.1883	0.1739	0.1635	0.1298	
0.741935	0.2129	0.2017	0.1778	0.1678	0.1591	0.127	
0.774194	0.2106	0.201	0.1756	0.1626	0.1546	0.1264	
0.806452	0.1996	0.1914	0.1726	0.158	0.1502	0.1258	
0.83871	0.197	0.1882	0.1699	0.1546	0.1491	0.1242	
0.870968	0.1917	0.1851	0.1671	0.1498	0.147	0.1204	
0.903226	0.1844	0.1766	0.1597	0.1406	0.1292	0.09892	
0.935484	0.1561	0.1466	0.136	0.1139	0.1088	0.07214	
0.967742	0.09614	0.08833	0.07048	0.051	0.04599	0.02746	
0.1	0.39432	0.37242	0.31761	0.27767	0.26743	0.1944	
					Average of yearly		
					averages:	0.144301	
ated by pe5.pl -	Novemeber	2006					
this run:							
LCitrustets							
	w12844.dv	f					
rio:	FLcitrusST		,				
onment file:	pond298.ex						

Inputs generate

	Data used for this run: Output File: FLCitrustets		~		
	Metfile:	w12844.dv	f	,	
	PRZM scenario:	FLcitrusST	D.txt		
	EXAMS environment file:	pond298.ex	xv		
	Chemical Name:	Abamectin			
		Variable			
	Description	Name	Value	Units	Comments
	Molecular weight	mwt	873.11 2.60E-	g/mol	
	Henry's Law Const.	henry	08	atm-m^3/	ímol
			1.50E-		
	Vapor Pressure	vapr	09	torr	
	Solubility	sol	78	mg/L	,
	Kd	Kd	82	mg/L	
	Koc	Koc		mg/L	
,	Photolysis half-life	kdp	0.5	days	Half-life
	Aerobic Aquatic				
	Metabolism	kbacw	300	days	Halfife
	Anaerobic Aquatic		•	1	
	Metabolism	kbacs	0	days	Halfife
	Aerobic Soil Metabolism	asm	150	days	Halfife
	Hydrolysis:	pH 7	0	days	Half-life
	Method:	CAM	2	integer	See PRZM manual
	Incorporation Depth:	DEPI	0	cm	
	Application Rate:	TAPP	0.0263	kg/ha	
	Application Efficiency:	APPEFF	0.95	fraction	
	Spray Drift	DRFT	0.05		f application rate applied to pond
	Application Date	Date	30-04		dd/mmm or dd-mm or dd-mmm
	Interval 1	interval	30	days	Set to 0 or delete line for single app.

apprate	kg/ha
FILTRA	
IPSCND	1
UPTKF	
PLVKRT	
PLDKRT	
FEXTRC	0.5
IR	EPA Pond
RUNOFF	none none, monthly or total(average of entire run)
	FILTRA IPSCND UPTKF PLVKRT PLDKRT FEXTRC IR

Cotton

stored as MSCotton.out Chemical: Abamectin PRZM environment: MScottonSTD.txt EXAMS environment: pond298.exv Metfile: w03940.dvf

modified Tueday, 26 August 2008 at 05:16:40

pond298.exvmodified Tueday, 26 August 2008 at 05:14:08Metfile: w03940.dvfmodified Tueday, 26 August 2008 at 05:14:14Water segment concentrations (ppb)

Year

JS EPA ARCHIVE DOCUMENT

		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	1961	0.1998	0.19	0.1671	0.1376		0.1086	0.03978
	1962	0.1758	0.1692	0.1497	0.1387		0.134	0.1156
	1963	0.1838	0.1753	0.1578	0.1239		0.1183	0.1054
	1964	0.4204	0.3953	0.3215	0.2588		0.2533	0.1659
	1965	0.5373	0.5064	0.4192	0.3295		0.2991	0.2168
	1966	0.3168	0.3085	0.2859	0.2529		0.2399	0.2125
	1967	0.2961	0.2832	0.252	0.2162		0.2059	0.1755
	1968	0.2596	0.2484	0.223	0.1882		0.1801	0.1636
L	1969	0.3521	0.3316	0.2718	0.2139		0.1964	0.1538
	1970	0.3415	0.3281	0.3046	0.2734		0.2619	0.1885
	1971	0.3651	0.3478	0.2969	0.2444		0.241	0.2033
	1972	0.2499	0.2455	0.2385	0.2236		0.2159	0.1823
	1973	0.2144	0.2072	0.1965	0.1834		0.1758	0.1614
	1974	0.2794	0.2676	0.2429	0.2254		0.2132	0.1777
	1975	0.4144	0.3952	0.3396	0.2907		0.275	0.2099
	1976	0.3367	0.3272	0.3099	0.2722	·	0.2561	0.2161
	1977	0.298	0.2886	0.2598	0.232		0.2236	0.1935
	1978	0.2634	0.2538	0.2254	0.2079		0.2009	0.1776
	1979	0.4249	0.4077	0.356	0.3253		0.3096	0.2515
	1980	0.3067	0.3021	0.2947	0.2807	:	0.2744	0.23
	1981	0.2521	0.2435	0.2176	0.1957		0.1949	0.1686
	1982	0.4053	0.3878	0.349	0.2909		0.2865	0.2018
i -	1983	0.3336	0.3247	0.3006	0.2845		0.2729	0.2413
	1984	0.3439	0.3343	0.291	0.2662		0.2441	0.2085
	1985	0.3483	0.3306	0.2867	0.24		0.236	0.1986
-	1986	0.2496	0.2444	0.2276	0.2153		0.2057	0.1691
	1987	0.2262	0.2174	0.1938	0.1906		0.1889	0.1625

	1988 1989	0.263 0.258	0.2499 0.2491	0.2142 0.2296	0.2037 0.2078	0.1976 0.2035	0.1559 0.1682
· .	1990	0.2558	0.2463	0.2288	0.218	0.209	0.1818
Sorted results							
Prob.		Peak	96 hr	21 Day	60 Day	90 Day	Yearly
	0.032258	0.5373	0.5064	0.4192	0.3295	0.3096	0.2515
	0.064516	0.4249	0.4077	0.356	0.3253	0.2991	0.2413
	0.096774	0.4204	0.3953	0.349	0.2909	0.2865	0.23
	0.129032	0.4144	0.3952	0.3396	0.2907	0.275	0.2168
	0.16129	0.4053	0.3878	0.3215	0.2845	0.2744	0.2161
	0.193548	0.3651	0.3478	0.3099	0.2807	0.2729	0.2125
	0.225806	0.3521	0.3343	0.3046	0.2734	0.2619	0.2099
	0.258065	0.3483	0.3316	0.3006	0.2722	0.2561	0.2085
	0.290323	0.3439	0.3306	0.2969	0.2662	0.2533	0.2033
* · · · ·	0.322581	0.3415	0.3281	0.2947	0.2588	0.2441	0.2018
	0.354839	0.3367	0.3272	0.291	0.2529	0.241	0.1986
	0.387097	0.3336	0.3247	0.2867	0.2444	0.2399	0.1935
	0.419355	0.3168	0.3085	0.2859	0.24	0.236	0.1885
	0.451613	0.3067	0.3021	0.2718	0.232	0.2236	0.1823
	0.483871	0.298	0.2886	0.2598	0.2254	0.2159	0.1818
	0.516129	0.2961	0.2832	0.252	0.2236	0.2132	0.1777
	0.548387	0.2794	0.2676	0.2429	0.218	0.209	0.1776
	0.580645	0.2634	0.2538	0.2385	0.2162	0.2059	0.1755
	0.612903	0.263	0.2499	0.2296	0.2153	0.2057	0.1691
	0.645161	0.2596	0.2491	0.2288	0.2139	0.2035	0.1686
	0.677419	0.258	0.2484	0.2276	0.2079	0.2009	0.1682
	0.709677	0.2558	0.2463	0.2254	0.2078	0.1976	0.1659
	0.741935	0.2521	0.2455	0.223	0.2037	0.1964	0.1636
	0.774194	0.2499	0.2444	0.2176	0.1957	0.1949	0.1625
	0.806452	0.2496	0.2435	0.2142	0.1906	0.1889	0.1614
	0.83871	0.2262	0.2174	0.1965	0.1882	0.1801	0.1559
×	0.870968	0.2144	0.2072	0.1938	0.1834	0.1758	0.1538
	0.903226	0.1998	0.19	0.1671	0.1387	0.134	0.1156
	0.935484		0.1753	0.1578	0.1376	0.1183	0.1054
	0.967742		0.1692	0.1497	0.1239	0.1086	0.03978
	0.1	0.4198	0.39529	0.34806	0.29088	0.28535 Average of yearly	0.22868
					1	averages:	0.179899

Data used for this run: **Output File: MSCotton** Metfile: w03940.dvf PRZM scenario: MScottonSTD.txt EXAMS environment file: pond298.exv Chemical Name: Abamectin Variable Description Name

Comments

Value

Units

,	Molecular weight	mwt		g/mol	
			2.60E-		
	Henry's Law Const.	henry	08 1.50E-	atm-m^3/i	mol
	Vapor Pressure	vapr	09	torr	
	Solubility	sol	78	mg/L	
	Kd	Kd	82	mg/L	
	Koc	Koc		mg/L	
	Photolysis half-life Aerobic Aquatic	kdp	0.5	days	Half-life
	Metabolism Anaerobic Aquatic	kbacw	300	days	Halfife
	Metabolism	kbacs	0	days	Halfife
	Aerobic Soil Metabolism	asm	150	days	Halfife
	Hydrolysis:	pH 7	0	days	Half-life
	Method:	CAM	2	integer	See PRZM manual
	Incorporation Depth:	DEPI	0	cm	1
	Application Rate:	TAPP	0.0213	kg/ha	
	Application Efficiency:	APPEFF	0.95	fraction	
	Spray Drift	DRFT	0.05	fraction of	f application rate applied to pond
	Application Date	Date	28-07	dd/mm or	dd/mmm or dd-mm or dd-mmm
	Interval 1	interval	21	days	Set to 0 or delete line for single app.
	app. rate 1	apprate		kg/ha	
	Record 17:	FILTRA			
		IPSCND	1		
		UPTKF			
	Record 18:	PLVKRT			
	•	PLDKRT			
		FEXTRC	0.5		
	Flag for Index Res. Run	IR	EPA Pon	d	
	Flag for runoff calc.	RUNOFF	none	none, mo	nthly or total(average of entire run)

Cucurbit

stored as FLCucumber.out Chemical: Abamectin PRZM environment:	
FLcucumberSTD.txt	modified Tueday, 26 August 2008 at 05:16:38
EXAMS environment:	
pond298.exv	modified Tueday, 26 August 2008 at 05:14:08
Metfile: w12844.dvf	modified Tueday, 26 August 2008 at 05:14:22
Water segment concentrations	(ppb)

Year		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	1961	0.1287	0.1185	0.09315	0.07863		0.06947	0.02037
	1962	0.3477	0.329	0.2647	0.1881		0.1633	0.07786
	1963	0.5249	0.4996	0.423	0.3204		0.2823	0.1396
	1964	0.5414	0.5172	0.4485	0.3885		0.3656	0.2242
	1965	0.6089	0.5683	0.5133	0.421		0.367	0.2428
	1966	0.3609	0.347	0.3143	0.3011		0.2827	0.2519

•	1967	0.4399	0.4188	0.3478	0.2995	0.2718	0.1988
	1968	0.6154	0.5842	0.5041	0.4006	0.3538	0.2182
	1969	0.4415	0.4238	0.3885	0.3595	0.3333	0.24
	1970	0.3299	0.3143	0.2985	0.256	0.2434	0.2137
	1971	0.3794	0.3574	0.2967	0.2324	0.2236	0.1591
	1972	0.3461	0.3276	0.2731	0.2171	0.2084	0.1736
	1973	0.2903	0.2791	0.2475	0.2277	0.2072	0.1589
	1974	0.3951	0.3702	0.3061	0.2441	0.2273	0.1625
	1975	0.3965	0.3696	0.3308	0.2553	0.2279	0.1531
	1976	0.3115	0.2967	0.27	0.2345	0.2184	0.1557
	1977	0.2938	0.2784	0.2433	0.2064	0.1941	0.1594
	1978	0.3434	0.3296	0.2884	0.2424	0.2305	0.1647
	1979	0.4792	0.4592	0.4258	0.3488	0.3098	0.1948
	1980	0.2773	0.2634	0.2329	0.2078	0.2038	0.1785
	1981	0.3819	0.3611	0.2897	0.2378	0.223	0.1478
	1982	0.4169	0.399	0.3547	0.2952	0.2807	0.2001
	1983	0.4808	0.4501	0.3689	0.3176	0.29	0.2221
	1984	0.4765	0.4508	0.3758	0.2917	0.2865	0.2132
	1985	0.3875	0.3645	0.3208	0.2589	0.2329	0.1919
	1986	0.2638	0.2527	0.2219	0.2009	0.1958	0.1658
	1987	0.4465	0.4169	0.3594	0.321	0.2962	0.1858
	1988	0.2678	0.256	0.2218	0.2111	0.1993	0.1798
	1989	0.2255	0.2126	0.1841	0.1718	0.1577	0.1277
	1990	0.4437	0.4113	0.3601	0.2707	0.2364	0.1378

Sorted results Prob.

		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	0.032258	0.6154	0.5842	0.5133	0.421		0.367	0.2519
	0.064516	0.6089	0.5683	0.5041	0.4006		0.3656	0.2428
	0.096774	0.5414	0.5172	0.4485	0.3885		0.3538	0.24
	0.129032	0.5249	0.4996	0.4258	0.3595		0.3333	0.2242
	0.16129	0.4808	0.4592	0.423	0.3488		0.3098	0.2221
	0.193548	0.4792	0.4508	0.3885	0.321		0.2962	0.2182
	0.225806	0.4765	0.4501	0.3758	0.3204		0.29	0.2137
	0.258065	0.4465	0.4238	0.3689	0.3176		0.2865	0.2132
	0.290323	0.4437	0.4188	0.3601	0.3011		0.2827	0.2001
	0.322581	0.4415	0.4169	0.3594	0.2995		0.2823	0.1988
	0.354839	0.4399	0.4113	0.3547	0.2952		0.2807	0.1948
	0.387097	0.4169	0.399	0.3478	0.2917		0.2718	0.1919
	0.419355	0.3965	0.3702	0.3308	0.2707	-	0.2434	0.1858
	0.451613	0.3951	0.3696	0.3208	0.2589		0.2364	0.1798
	0.483871	0.3875	0.3645	0.3143	0.256		0.2329	0.1785
	0.516129	0.3819	0.3611	0.3061	0.2553		0.2305	0.1736
	0.548387	0.3794	0.3574	0.2985	0.2441		0.2279	0.1658
	0.580645	0.3609	0.347	0.2967	0.2424		0.2273	0.1647
	0.612903	0.3477	0.3296	0.2897	0.2378		0.2236	0.1625
	0.645161	0.3461	0.329	0.2884	0.2345	,	0.223	0.1594
	0.677419	0.3434	0.3276	0.2731	0.2324		0.2184	0.1591
	0.709677	0.3299	0.3143	0.27	0.2277		0.2084	0.1589
•	0.741935	0.3115	0.2967	0.2647	0.2171		0.2072	0.1557

	0.774194	0.2938	0.2791	0.2475	0.2111	0.2038	0.1531	
	0.806452	0.2903	0.2784	0.2433	0.2078	0.1993	0.1478	
	0.83871	0.2773	0.2634	0.2329	0.2064	0.1958	0.1396	
	0.870968	0.2678	0.256	0.2219	0.2009	0.1941	0.1378	
	0.903226	0.2638	0.2527	0.2218	0.1881	0.1633	0.1277	
	0.935484	0.2255	0.2126	0.1841	0.1718	0.1577	0.07786	
	0.967742	0.1287	0.1185	0.09315	0.07863	0.06947	0.02037	
2								
	0.1	0.53975	0.51544	0.44623	0.3856	0.35175	0.23842	
						Average of yearly		
		· · · ·				averages:	0.175324	

EPA ARCHIVE DOCUMEN

Data used for this run:				
Output File: FLCucumber				
Metfile:	w12844.dv			
PRZM scenario:	FLcucumb			
EXAMS environment file:	pond298.e			
Chemical Name:	Abamectin			
Deventer	Variable	·	11	
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11 2.60E-	g/mol	
Henry's Law Const.	henry	· 08	atm-m^3/	/mol
- · ·	-	1.50E-		
Vapor Pressure	vapr	09	torr	
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	·
Koc	Koc		mg/L	
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic Metabolism	kbacw	300	days	Halfife
Anaerobic Aquatic				
Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	рН 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0	cm	
Application Rate:	TAPP	0.021	kg/ha	
Application Efficiency:	APPEFF	0.95	fraction	
Spray Drift	DRFT	0.05	fraction o	of application rate applied to pond
Application Date	Date	9-May		r dd/mmm or dd-mm or dd-mmm
Interval 1	interval	7	days	Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha	
Interval 2	interval	7	days	Set to 0 or delete line for single app.
app. rate 2	apprate		kg/ha	· ·
Record 17:	FILTRA	•		
	IPSCND	1		
	UPTKF			
Record 18:	PLVKRT			
	PLDKRT			

FEXTRC 0.5

IR

Flag for Index Res. Run Flag for runoff calc.

EPA Pond RUNOFF none none, monthly or total(average of entire run)

Fruiting Vegetables

stored as FLPepper.out Chemical: Abamectin PRZM environment: FLpeppersSTD.txt EXAMS environment: pond298.exv Metfile: w12844.dvf Water segment concentrations (ppb)

modified Tueday, 26 August 2008 at 05:16:38

modified Tueday, 26 August 2008 at 05:14:08 modified Tueday, 26 August 2008 at 05:14:22

Year

1961 0.1199 0.1119 0.09474 0.08143 0.07086 0.03974 1962 0.2091 0.2004 0.1846 0.1583 0.1515 0.1002 1963 0.248 0.2353 0.2118 0.1673 0.1496 0.1206 1964 0.3968 0.379 0.3203 0.2981 0.2758 0.2006 1965 0.3597 0.3453 0.3023 0.2792 0.2615 0.2129 1966 0.4966 0.476 0.4102 0.3624 0.3435 0.2481 1967 0.3309 0.319 0.2936 0.2583 0.2495 0.2107 1968 0.5813 0.5485 0.5146 0.4479 0.408 0.2691 1969 0.4705 0.4469 0.3911 0.337 0.3244 0.2634 1970 0.4022 0.3843 0.3454 0.3087 0.2885 0.2229 1971 0.3851 0.3697 0.3004 0.2716 0.2547 0.1896 1972 0.474 0.4461 0.409 0.3802 0.3749 0.2467 1973 0.3125 0.2984 0.2788 0.2708 0.2689 0.2177 1974 0.2444 0.2382 0.2213 0.2068 0.1997 0.1745 1975 0.2607 0.2477 0.2236 0.2137 0.2052 0.1574 1976 0.4753 0.4447 0.3632 0.2911 0.2618 0.1846 1977 0.4953 0.377 $0.$			Peak	96 hr	21 Day	60 Day	90 Day		Yearly
1963 0.248 0.2353 0.2118 0.1673 0.1496 0.1206 1964 0.3968 0.379 0.3203 0.2981 0.2758 0.2006 1965 0.3597 0.3453 0.3023 0.2792 0.2615 0.2129 1966 0.4966 0.476 0.4102 0.3624 0.3435 0.2481 1967 0.3309 0.319 0.2936 0.2583 0.2495 0.2107 1968 0.5813 0.5485 0.5146 0.4479 0.408 0.2691 1969 0.4705 0.4469 0.3911 0.337 0.3244 0.2634 1970 0.4022 0.3843 0.3454 0.3087 0.2885 0.2229 1971 0.3851 0.3697 0.3004 0.2716 0.2547 0.1896 1972 0.474 0.4461 0.409 0.3802 0.3749 0.2467 1973 0.3125 0.2984 0.2788 0.2708 0.2689 0.2177 1974 0.2444 0.2382 0.2213 0.2068 0.1997 0.1745 1975 0.2607 0.2477 0.2236 0.2137 0.2618 0.1846 1977 0.4953 0.477 0.4203 0.3742 0.3349 0.2324 1978 0.3953 0.3765 0.2394 0.198 0.2933 0.2757 0.2177 1979 0.3406 0.3238 0.2774 0.2535 0.2394 0.1981 1980 0.3891 0.3672		1961	0.1199		•	•		0.07086	-
1964 0.3968 0.379 0.3203 0.2981 0.2758 0.2006 1965 0.3597 0.3453 0.3023 0.2792 0.2615 0.2129 1966 0.4966 0.476 0.4102 0.3624 0.3435 0.2481 1967 0.3309 0.319 0.2936 0.2583 0.2495 0.2107 1968 0.5813 0.5485 0.5146 0.4479 0.408 0.2691 1969 0.4705 0.4469 0.3911 0.337 0.3244 0.2634 1970 0.4022 0.3843 0.3454 0.3087 0.2885 0.2229 1971 0.3851 0.3697 0.3004 0.2716 0.2547 0.1896 1972 0.474 0.4461 0.409 0.3802 0.3749 0.2467 1973 0.3125 0.2984 0.2788 0.2708 0.2689 0.2177 1974 0.2444 0.2382 0.2213 0.2068 0.1997 0.1745 1975 0.2607 0.2477 0.2236 0.2137 0.2052 0.1574 1976 0.4753 0.447 0.3632 0.2911 0.2618 0.1846 1977 0.4953 0.3765 0.2398 0.2933 0.2759 0.2177 1979 0.3406 0.3238 0.2774 0.2535 0.2394 0.198 1980 0.3891 0.3672 0.3205 0.2731 0.2672 0.1738 1983 0.36 0.3459 0.3247 <		1962	0.2091	0.2004	0.1846	0.1583		0.1515	0.1002
1965 0.3457 0.3453 0.3023 0.2792 0.2615 0.2129 1966 0.4966 0.476 0.4102 0.3624 0.3435 0.2481 1967 0.3309 0.319 0.2936 0.2583 0.2495 0.2107 1968 0.5813 0.5485 0.5146 0.4479 0.408 0.2691 1969 0.4705 0.4469 0.3911 0.337 0.3244 0.2634 1970 0.4022 0.3843 0.3454 0.3087 0.2885 0.2229 1971 0.3851 0.3697 0.3004 0.2716 0.2547 0.1896 1972 0.474 0.4461 0.409 0.3802 0.3749 0.2467 1973 0.3125 0.2984 0.2788 0.2708 0.2689 0.2177 1974 0.2444 0.2322 0.2213 0.2068 0.1997 0.1745 1975 0.2607 0.2477 0.2236 0.2137 0.2052 0.1574 1976 0.4753 0.4477 0.3632 0.2911 0.2618 0.1846 1977 0.4953 0.477 0.4203 0.3742 0.3349 0.2324 1978 0.3953 0.3765 0.3298 0.2933 0.2757 0.2177 1979 0.3406 0.3238 0.2774 0.2535 0.2394 0.198 1980 0.3891 0.3672 0.3205 0.2731 0.2572 0.1931 1981 0.2766 0.2247 0.356		1963	0.248	0.2353	0.2118	0.1673		0.1496	0.1206
1966 0.4966 0.476 0.4102 0.3624 0.3435 0.2481 1967 0.3309 0.319 0.2936 0.2583 0.2495 0.2107 1968 0.5813 0.5485 0.5146 0.4479 0.408 0.2691 1969 0.4705 0.4469 0.3911 0.337 0.3244 0.2634 1970 0.4022 0.3843 0.3454 0.3087 0.2885 0.2229 1971 0.3851 0.3697 0.3004 0.2716 0.2547 0.1896 1972 0.474 0.4461 0.409 0.3802 0.3749 0.2467 1973 0.3125 0.2984 0.2788 0.2708 0.2689 0.2177 1974 0.2444 0.2382 0.2213 0.2068 0.1997 0.1745 1975 0.2607 0.2477 0.2236 0.2137 0.2052 0.1574 1976 0.4753 0.4447 0.3632 0.2911 0.2618 0.1846 1977 0.4953 0.477 0.4203 0.3742 0.3349 0.2324 1978 0.3953 0.3765 0.2933 0.2759 0.2177 1979 0.3406 0.3238 0.2774 0.2535 0.2394 0.198 1980 0.3891 0.3672 0.3205 0.2731 0.2572 0.1931 1981 0.2786 0.2666 0.2418 0.2198 0.2062 0.1738 1982 0.429 0.4064 0.3632 0.3003		1964	0.3968	0.379	0.3203	0.2981		0.2758	0.2006
1967 0.3309 0.319 0.2936 0.2583 0.2495 0.2107 1968 0.5813 0.5485 0.5146 0.4479 0.408 0.2691 1969 0.4705 0.4469 0.3911 0.337 0.3244 0.2634 1970 0.4022 0.3843 0.3454 0.3087 0.2885 0.2229 1971 0.3851 0.3697 0.3004 0.2716 0.2547 0.1896 1972 0.474 0.4461 0.409 0.3802 0.3749 0.2467 1973 0.3125 0.2984 0.2788 0.2708 0.2689 0.2177 1974 0.24444 0.2382 0.2213 0.2068 0.1997 0.1745 1975 0.2607 0.2477 0.2236 0.2137 0.2052 0.1574 1976 0.4753 0.4447 0.3632 0.291 0.2618 0.1846 1977 0.4953 0.477 0.4203 0.3742 0.3349 0.2324 1978 0.3953 0.3765 0.3298 0.2933 0.2759 0.2177 1979 0.3406 0.3238 0.2774 0.2535 0.2394 0.198 1980 0.3891 0.3672 0.3205 0.2731 0.2572 0.1931 1981 0.2786 0.2666 0.2418 0.2198 0.2075 1984 0.445 0.4227 0.3508 0.3044 0.2837 0.212 1985 0.3131 0.3018 0.2711 0.2404		1965	0.3597	0.3453	0.3023	0.2792		0.2615	0.2129
19680.58130.54850.51460.44790.4080.269119690.47050.44690.39110.3370.32440.263419700.40220.38430.34540.30870.28850.222919710.38510.36970.30040.27160.25470.189619720.4740.44610.4090.38020.37490.246719730.31250.29840.27880.27080.26890.217719740.24440.23820.22130.20680.19970.174519750.26070.24770.22360.21370.20520.157419760.47530.44470.36320.2910.26180.184619770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.3257<		1966	0.4966	0.476	0.4102	0.3624		0.3435	0.2481
1969 0.4705 0.4469 0.3911 0.337 0.3244 0.2634 1970 0.4022 0.3843 0.3454 0.3087 0.2885 0.2229 1971 0.3851 0.3697 0.3004 0.2716 0.2547 0.1896 1972 0.474 0.4461 0.409 0.3802 0.3749 0.2467 1973 0.3125 0.2984 0.2788 0.2708 0.2689 0.2177 1974 0.2444 0.2382 0.2213 0.2068 0.1997 0.1745 1975 0.2607 0.2477 0.2236 0.2137 0.2052 0.1574 1976 0.4753 0.4447 0.3632 0.2911 0.2618 0.1846 1977 0.4953 0.477 0.4203 0.3742 0.3349 0.2324 1978 0.3953 0.3765 0.3298 0.2933 0.2759 0.2177 1979 0.3406 0.3238 0.2774 0.2535 0.2394 0.198 1980 0.3891 0.3672 0.3205 0.2731 0.2572 0.1931 1981 0.2786 0.2666 0.2418 0.2198 0.2062 0.1738 1982 0.429 0.4064 0.3632 0.3003 0.2787 0.2053 1983 0.36 0.3459 0.3247 0.2766 0.2619 0.2075 1984 0.445 0.4227 0.3508 0.3044 0.2837 0.212 1985 0.3131 0.3018 0.2711		1967	0.3309	0.319	0.2936	0.2583		0.2495	0.2107
19700.40220.38430.34540.30870.28850.222919710.38510.36970.30040.27160.25470.189619720.4740.44610.4090.38020.37490.246719730.31250.29840.27880.27080.26890.217719740.24440.23820.22130.20680.19970.174519750.26070.24770.22360.21370.20520.157419760.47530.44470.36320.2910.26180.184619770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.2498<		1968	0.5813	0.5485	0.5146	0.4479		0.408	0.2691
19710.38510.36970.30040.27160.25470.189619720.4740.44610.4090.38020.37490.246719730.31250.29840.27880.27080.26890.217719740.24440.23820.22130.20680.19970.174519750.26070.24770.22360.21370.20520.157419760.47530.44470.36320.2910.26180.184619770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.2498 <t< td=""><td></td><td>1969</td><td>0.4705</td><td>0.4469</td><td>0.3911</td><td>0.337</td><td></td><td>0.3244</td><td>0.2634</td></t<>		1969	0.4705	0.4469	0.3911	0.337		0.3244	0.2634
19720.4740.44610.4090.38020.37490.246719730.31250.29840.27880.27080.26890.217719740.24440.23820.22130.20680.19970.174519750.26070.24770.22360.21370.20520.157419760.47530.44470.36320.2910.26180.184619770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1970	0.4022	0.3843	0.3454	0.3087		0.2885	0.2229
19730.31250.29840.27880.27080.26890.217719740.24440.23820.22130.20680.19970.174519750.26070.24770.22360.21370.20520.157419760.47530.44470.36320.2910.26180.184619770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1971	0.3851	0.3697	0.3004	0.2716		0.2547	0.1896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1972	0.474	0.4461	0.409	0.3802		0.3749	0.2467
19750.26070.24770.22360.21370.20520.157419760.47530.44470.36320.2910.26180.184619770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1973	0.3125	0.2984	0.2788	0.2708		0.2689	0.2177
19760.47530.44470.36320.2910.26180.184619770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1974	0.2444	0.2382	0.2213	0.2068		0.1997	0.1745
19770.49530.4770.42030.37420.33490.232419780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1975	0.2607	0.2477	0.2236	0.2137		0.2052	0.1574
19780.39530.37650.32980.29330.27590.217719790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1976	0.4753	0.4447	0.3632	0.291		0.2618	0.1846
19790.34060.32380.27740.25350.23940.19819800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1977	0.4953	0.477	0.4203	0.3742		0.3349	0.2324
19800.38910.36720.32050.27310.25720.193119810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1978	0.3953	0.3765	0.3298	0.2933		0.2759	0.2177
19810.27860.26660.24180.21980.20620.173819820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1979	0.3406	0.3238	0.2774	0.2535		0.2394	0.198
19820.4290.40640.36320.30030.27870.205319830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1980	0.3891	0.3672	0.3205	0.2731		0.2572	0.1931
19830.360.34590.32470.27660.26190.207519840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1981	0.2786	0.2666	0.2418	0.2198		0.2062	0.1738
19840.4450.42270.35080.30440.28370.21219850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1982	0.429	0.4064	0.3632	0.3003		0.2787	0.2053
19850.31310.30180.27110.24040.23170.188919860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1983	0.36	0.3459	0.3247	0.2766			
19860.24140.23540.22350.2120.20250.163819870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554		1984		0.4227	0.3508				
19870.32570.3060.25380.21880.21080.165119880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554									
19880.46910.44020.36270.33480.31890.215819890.24980.23920.21590.18740.18260.1554	÷	1986	0.2414		0.2235				
1989 0.2498 0.2392 0.2159 0.1874 0.1826 0.1554									
1990 0.3257 0.3061 0.277 0.2528 0.2459 0.1705									
		1990	0.3257	0.3061	0.277	0.2528	н.	0.2459	0.1705

Sorted results

Prob	D
------	---

	Peak	96 hr	21 Day	60 Day	90 Day	Yearly
0.032258	0.5813	0.5485	0.5146	0.4479	0.408	0.2691
0.064516	0.4966	0.477	0.4203	0.3802	0.3749	0.2634
0.096774	0.4953	0.476	0.4102	0.3742	0.3435	0.2481
0.129032	0.4753	0.4469	0.409	0.3624	0.3349	0.2467
0.16129	0.474	0.4461	0.3911	0.337	0.3244	0.2324
0.193548	0.4705	0.4447	0.3632	0.3348	0.3189	0.2229
0.225806	0.4691	0.4402	0.3632	0.3087	0.2885	0.2177
0.258065	0.445	0.4227	0.3627	0.3044	0.2837	0.2177
0.290323	0.429	0.4064	0.3508	0.3003	0.2787	0.2158
0.322581	0.4022	0.3843	0.3454	0.2981	0.2759	0.2129
0.354839	0.3968	0.379	0.3298	0.2933	0.2758	0.212
0.387097	0.3953	0.3765	0.3247	0,291	0.2689	0.2107
0.419355	0.3891	0.3697	0.3205	0.2792	0.2619	0.2075
0.451613	0.3851	0.3672	0.3203	0.2766	0.2618	0.2053
0.483871	0.36	0.3459	0.3023	0.2731	0.2615	0.2006
0.516129	0.3597	0.3453	0.3004	0.2716	0.2572	0.198
0.548387	0.3406	0.3238	0.2936	0.2708	0.2547	0.1931
0.580645	0.3309	0.319	0.2788	0.2583	0.2495	0.1896
0.612903	0.3257	0.3061	0.2774	0.2535	0.2459	0.1889
0.645161	0.3257	0.306	0.277	0.2528	0.2394	0.1846
0.677419	0.3131	0.3018	0.2711	0.2404	0.2317	0.1745
0.709677	0.3125	0.2984	0.2538	0.2198	0.2108	0.1738
0.741935	0.2786	0.2666	0.2418	0.2188	0.2062	0.1705
0.774194	0.2607	0.2477	0.2236	0.2137	0.2052	0.1651
0.806452	0.2498	0.2392	0.2235	0.212	0.2025	0.1638
0.83871	0.248	0.2382	0.2213	0.2068	0.1997	0.1574
0.870968	0.2444	0.2354	0.2159	0.1874	0.1826	0.1554
0.903226	0.2414	0.2353	0.2118	0.1673	0.1515	0.1206
0.935484	0.2091	0.2004	0.1846	0.1583	0.1496	0.1002
0.967742	0.1199	0.1119	0.09474	0.08143	0.07086	0.03974
•			·		·	
0.1	0.4933	0.47309	0.41008	0.37302	0.34264	0.24796
×	х ,				Average of yearly averages:	0.191935
					averages.	0.191900

Data used for this run:

Output File: FLPepper Metfile: w12844.dvf FLpeppersSTD.txt PRZM scenario: EXAMS environment file: pond298.exv Chemical Name: Abamectin Variable Description Name Value Units Comments 873.11 Molecular weight g/mol mwt 2.60E-Henry's Law Const. 08 atm-m^3/mol henry 1.50E-Vapor Pressure vapr 09 torr

Sc	blubility	sol	78	mg/L	
Kd		Kd	82	mg/L	
Ko)C	Koc		mg/L	
Ph	notolysis half-life	kdp	0.5	days	Half-life
	erobic Aquatic Metabolism naerobic Aquatic	kbacw	300	days	Halfife
Me	etabolism	kbacs	0	days	Halfife
Ae	robic Soil Metabolism	asm	150	days	Halfife
Hy	drolysis:	pH 7	0	days	Half-life
Me	ethod:	CAM	2	integer	See PRZM manual
Inc	corporation Depth:	DEPI	· 0	cm	
Ap	plication Rate:	TAPP	0.021	kg/ha	
Ap	plication Efficiency:	APPEFF	0.95	fraction	
Sp	oray Drift	DRFT	0.05	fraction o	f application rate applied to pond
Ар	plication Date	Date	28-04	dd/mm o	r dd/mmm or dd-mm or dd-mmm
Int	erval 1	interval	7	days	Set to 0 or delete line for single app.
ар	p. rate 1	apprate		kg/ha	
Int	erval 2	interval	7	days	Set to 0 or delete line for single app.
ap	p. rate 2	apprate		kg/ha	
Re	ecord 17:	FILTRA			
		IPSCND	1		
		UPTKF			
Re	cord 18:	PLVKRT	× `		
		PLDKRT			,
		FEXTRC	0.5		
Fla	ag for Index Res. Run	IR	EPA Pon	d	
Fla	ag for runoff calc.	RUNOFF	none	none, mo	onthly or total(average of entire run)
	•	IR	EPA Pon		onthly or total(average of entire run)

Grapes

stored as NYGrapes.outChemical: AbamectinPRZM environment:NYGrapesSTD.txtmodified Tueday, 26 August 2008 at 05:16:42EXAMS environment:pond298.exvmodified Tueday, 26 August 2008 at 05:14:08Metfile: w14860.dvfmodified Tueday, 26 August 2008 at 05:15:12Water segment concentrations (ppb)

Year

	Peak	96 hr	21 Day	60 Day	90 Day		Yearly	
1961	0.0802	0.07444	0.06301	0.04638		0.04103	0.01936	
1962	0.3028	0.2853	0.2356	0.1892		0.1765	0.09046	
1963	0.1978	0.19	0.1793	0.1638		0.1552	0.1381	
1964	0.3999	0.381	0.3249	0.2673		0.2471	0.1727	
1965	0.318	0.3059	0.2816	0.2484		0.2384	0.2059	
1966	0.3005	0.29	0.2583	0.2263		0.2151	0.1949	
1967	0.3468	0.3319	0.2976	0.2575		0.2433	0.1938	
1968	0.2259	0.2192	0.2062	0.2019		0.1977	0.1755	
1969	0.2175	0.21	0.1887	0.1743		0.1684	0.1529	
1970	0.3218	0.3077	0.2791	0.24		0.2364	0.1755	

	1971	0.3432	0.33	0.2901	0.2535		0.2423	0.209
	1972	0.2991	0.289	0.2652	0.2445		0.2337	0.2066
	1973	0.2306	0.2246	0.2065	0.2019		0.198	0.1804
•	1974	0.3054	0.293	0.2644	0.242		0.2353	0.1882
	1975	0.3639	0.3549	0.3274	0.3008		0.2907	0.2304
	1976	0.3091	0.3003	0.2857	0.2713		0.2584	0.2312
	1977	0.4075	0.3929	0.3721	0.3352		0.3212	0.2481
	1978	0.4711	0.4531	0.4074	0.3628		0.3456	0.2901
	1979	0.4767	0.4586	0.4067	0.386		0.3757	0.3103
	1980	0.5089	0.4926	0.4434	0.4036		0.3896	0.3311
	1981	0.3877	0.3767	0.3541	0.3454		0.3381	0.3054
	1982	0.3551	0.3438	0.3117	0.2954		0.2889	0.2598
	1983	0.4178	0.403	0.379	0.3358		0.321	0.2567
	1984	0.3358	0.3263	0.2984	0.2763	• •	0.2722	0.2466
	1985	0.3208	0.3093	0.2773	0.2453		0.2335	0.2209
	1986	0.3276	0.3155	0.2933	0.2545		0.2416	0.2137
	1987	0.3822	0.3675	0.3249	0.3067		0.2936	0.2306
	1988	0.3432	0.3307	0.2935	0.2713		0.263	0.2347
	1989	0.2624	0.2555	0.2348	0.2278		0.2238	0.2076
	1990	0.3417		0.3055	0.2694		0.2563	0.1976
								•
		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	0.032258	0.5089	0.4926	0.4434	0.4036		0.3896	0.3311
	0.064516	0.4767	0.4586	0.4074	0.386		0.3757	0.3103
	0.096774	0.4711	0.4531	0.4067	0.3628		0.3456	0.3054
	0.129032	0.4178	0.403	0.379	0.3454		0.3381	0.2901
	0.16129	0.4075	0.3929	0.3721	0.3358		0.3212	0.2598
	0.193548	0.3999	0.381	0.3541	0.3352		0.321	0.2567
	0.225806	0.3877	0.3767	0.3274	0.3067		0.2936	0.2481
	0.258065	0.3822	0.3675	0.3249	0.3008		0.2907	0.2466
	0.290323	0.3639	0.3549	0.3249	0.2954		0.2889	0.2347
	0.322581	0.3551	0.3438	0.3117	0.2763		0.2722	0.2312
	0.354839	0.3468	0.3319	0.3055	0.2713		0.263	0.2306
	0.387097	0.3432	0.3307	0.2984	0.2713		0.2584	0.2304
	0.419355	0.3432	0.33	0.2976	0.2694		0.2563	0.2209
	0.451613	0.3417	0.3286	0.2935	0.2673		0.2471	0.2137
	0.483871	0.3358	0.3263	0.2933	0.2575		0.2433	0.209
	0.516129	0.3276	0.3155	0.2901	0.2545		0.2423	0.2076
	0.548387	0.3218	0.3093	0.2857	0.2535		0.2416	0.2066
	0.580645	0.3208	0.3077	0.2816	0.2484		0.2384	0.2059
	0.612903	0.318	0.3059	0.2791	0.2453		0.2364	0.1976
	0.645161	0.3091	0.3003	0.2773	0.2445		0.2353	0.1949
	0.677419	0.3054	0.293	0.2652	0.242	·	0.2337	0.1949
	0.709677	0.3028	0.293	0.2644	0.242		0.2335	0.1882
	0.741935	0.3005	0.289	0.2583	0.2278		0.2238	0.1802
	0.774194	0.2991	0.2853	0.2356	0.2263		0.2250	0.1755
	0.806452	0.2624	0.2555	0.2348	0.2203		0.198	0.1755
	0.83871	0.2306	0.2246	0.2045	0.2019		0.1977	0.1735
	0.870968	0.2259	0.2192	0.2062	0.1892		0.1765	0.1529
	5.5.0000	0.2200	, , , , , , , , , , , , , , , , , , , ,	0.2002	0.1002		0.1100	0.1020

DOCUMENT EPA ARCHIVE ſ

Sorted results Prob.

0.903226	0.2175	0.21	0.1887	0.1743	0.1684	0.1381
0.935484	0.1978	0.19	0.1793	0.1638	0.1552	0.09046
0.967742	0.0802	0.07444	0.06301	0.04638	0.04103	0.01936
0.1	0.46577	0.44809	0.40393	0.36106	0.34485	0.30387
					Average of yearly	
					averages:	0.210604

Data used for this run:		• ·		
Output File: NYGrapes				
Metfile:	w14860.dv	/f		
PRZM scenario:	NYGrapes	STD.txt		
EXAMS environment file:	pond298.e	XV		
Chemical Name:	Abamectin			
	Variable			
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11 2.60E-	g/mol	
Henry's Law Const.	henry	08 1.50E-	atm-m^3/	/mol
Vapor Pressure	vapr	09	torr	
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	
Кос	Koc		mg/L	
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic Metabolism	kbacw	300	days	Halfife
Anaerobic Aquatic				
Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0	cm	
Application Rate:	TAPP	0.0213	kg/ha	
Application Efficiency:	APPEFF	0.95	fraction	
Spray Drift	DRFT	0.05		f application rate applied to pond
Application Date	Date	25-06		r dd/mmm or dd-mm or dd-mmm
Interval 1	interval	21	days	Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha	· · · ·
Record 17:	FILTRA			
	IPSCND	1		
	UPTKF			
Record 18:	PLVKRT			
	PLDKRT			
	FEXTRC	0.5		
Flag for Index Res. Run	IR	EPA Pon		
Flag for runoff calc.	RUNOFF	none	none, mo	onthly or total(average of entire run)

Herb

stored as ORHerb.out Chemical: Abamectin PRZM environment: ORmintSTD.txt EXAMS environment: pond298.exv Metfile: w24232.dvf

modified Tueday, 26 August 2008 at 05:16:42

modified Tueday, 26 August 2008 at 05:14:08 modified Tueday, 26 August 2008 at 05:15:54 ns (ppb)

Water segment concentrations (ppb)

Year		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	1961	0.02616	0.02416	0.01956	0.01466		0.01249	0.007133
	1962	0.04646	0.04367	0.0399	0:03379		0.03005	0.02157
	1963		0.08177	0.07761	0.06896		0.0629	0.04317
,	1964	0.07416	0.07171	0.05398	0.04802		0.04544	0.0395
	1965	0.06217	0.06019	0.05607	0.05099		0.04892	0.0419
	1966	0.06179	0.05965	0.05498	0.04862		0.04605	0.03986
•	1967	0.05849	0.05644	0.05176	0.04571		0.04351	0.03636
	1968	0.05648	0.05446	0.05081	0.04498		0.0438	0.03883
	1969	0.06019	0.05823	0.05358	0.04767		0.04532	0.04243
	1970	0.06596	0.06449	0.05943	0.0531		0.05137	0.04336
	1971	0.1289	0.1223	0.1006	0.07842		0.07104	0.05501
	1972	0.08285	0.07988	0.07128	0.06399		0.06082	0.05053
	1973	0.07338	0.07045	0.06405	0.05633		0.04822	0.04311
	1974	0.08226	0.07931	0.07484	0.065		0.06035	0.05027
	1975	0.06429	0.06221	0.05752	0.05136		0.04863	0.04175
	1976	0.05914	0.05701	0.05232	0.04605		0.04343	0.03463
	1977	0.05038	0.04813	0.04255	0.03352		0.03102	0.02657
	1978	0.05133	0.04935	0.04462	0.04146		0.03956	0.03253
	1979	0.05077	0.0488	0.04416	0.03866		0.03584	0.03213
	1980	0.07322	0.06961	0.05993	0.04969		0.04597	0.03747
	1981	0.07239	0.06939	0.06132	0.05322		0.05027	0.04474
	1982	0.07457	0.07225	0.06599	0.05812		0.05425	0.04513
	1983	0.08109	0.07764	0.07287	0.06112		0.0563	0.04597
	1984	0.08368	0.08	0.06892	0.05906		0.05513	0.04519
	1985	0.06204	0.05984	0.05513	0.04881		0.04789	0.04017
	1986	0.05576	0.05372	0.04905	0.04349		0.04117	0.03387
	1987	0.0662	0.063	0.05666	0.04031		0.03736	0.03371
	1988	0.05995	0.05775	0.05299	0.04661		0.04351	0.03645
	1989	0.05612	0.05355	0.04638	0.0404		0.03762	0.03223
	1990	0.05599	0.05395	0.04928	0.04421		0.04153	0.03625
							1 · · · · · · · · · · · · · · · · · · ·	
Sorted results							. 1	
Prob.		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	0.032258	0.1289	0.1223	0.1006	0.07842		0.07104	0.05501
	0.064516	0.08679	0.08177	0.07761	0.06896		0.0629	0.05053
	0.096774	0.08368	0.08	0.07484	0.065		0.06082	0.05027
	0.129032	0.08285	0.07988	0.07287	0.06399		0.06035	0.04597
	0.16129	0.08226	0.07931	0.07128	0.06112		0.0563	0.04519
	0.193548	0.08109	0.07764	0.06892	0.05906		0.05513	0.04513
	0.225806	0.07457	0.07225	0.06599	0.05812		0.05425	0.04474

	0.258065	0.07416	0.07171	0.06405	0.05633	0.05137	0.04336	
	0.290323	0.07338	0.07045	0.06132	0.05322	0.05027	0.04317	
	0.322581	0.07322	0.06961	0.05993	0.0531	0.04892	0.04311	
	0.354839	0.07239	0.06939	0.05943	0.05136	0.04863	0.04243	
	0.387097	0.0662	0.06449	0.05752	0.05099	0.04822	0.0419	
	0.419355	0.06596	0.063	0.05666	0.04969	0.04789	0.04175	
	0.451613	0.06429	0.06221	0.05607	0.04881	0.04605	0.04017	
	0.483871	0.06217	0.06019	0.05513	0.04862	0.04597	0.03986	
	0.516129	0.06204	0.05984	0.05498	0.04802	0.04544	0.0395	
	0,548387	0.06179	0.05965	0.05398	0.04767	0.04532	0.03883	
	0.580645	0.06019	0.05823	0.05358	0.04661	0.0438	0.03747	
	0.612903	0.05995	0.05775	0.05299	0.04605	0.04351	0.03645	
	0.645161	0.05914	0.05701	0.05232	0.04571	0.04351	0.03636	
	0.677419	0.05849	0.05644	0.05176	0.04498	0.04343	0.03625	
	0.709677	0.05648	0.05446	0.05081	0.04421	0.04153	0.03463	
	0.741935	0.05612	0.05395	0.04928	0.04349	0.04117	0.03387	
	0.774194	0.05599	0.05372	0.04905	0.04146	0.03956	0.03371	
	0.806452	0.05576	0.05355	0.04638	0.0404	0.03762	0.03253	
	0.83871	0.05133	0.04935	0.04462	0.04031	0.03736	0.03223	
`	0.870968	0.05077	0.0488	0.04416	0.03866	0.03584	0.03213	
	0.903226	0.05038	0.04813	0.04255	0.03379	0.03102	0.02657	
	0.935484	0.04646	0.04367	0.0399	0.03352	0.03005	0.02157	
	0.967742	0.02616	0.02416	0.01956	0.01466	0.01249	0.007133	
	0.1	0.083597	0.079988	0.074643	0.064899	0.060773	0.04984	
						Average of yearly	0.00000	
			,			averages:	0.038394	'

Data used for this run: Output File: ORHerb							
Metfile:	w24232.dvf						
PRZM scenario:	ORmintSTD.txt						
EXAMS environment file:	pond298.ex						
Chemical Name:	Abamectin						
N - 4	Variable						
Description	Name	Value	Units	Comments			
Molecular weight	mwt	873.11	g/mol				
Henry's Law Const.	henry	2.60E-08	atm-m^3/m	lor			
Vapor Pressure	vapr	1.50E-09	torr				
Solubility	sol	78	mg/L				
Kd	Kd	82	mg/L				
Кос	Koc		mg/L				
Photolysis half-life	kdp	0.5	days	Half-life			
Aerobic Aquatic				11 JCC			
Metabolism	kbacw	300	days	Halfife			
Anaerobic Aquatic	kbacs	0	days	Halfife			
Aerobic Soil Metabolism	asm	150	days	Halfife			
Hydrolysis:	pH 7	0	days	Half-life			
ryuroryulu.	P'''	0	aayo				

Method: Incorporation Depth: Application Rate: Application Efficiency: Spray Drift Application Date Interval 1	CAM DEPI TAPP APPEFF DRFT Date interval	2 0.021 0.99 0.01 25-03 7	dd/mm or d days	See PRZM manual application rate applied to pond dd/mmm or dd-mm or dd-mmm Set to 0 or delete line for single app.
app. rate 1 Interval 2 app. rate 2 Record 17:	apprate interval apprate FILTRA	7	kg/ha days kg/ha	Set to 0 or delete line for single app.
Record 18:	IPSCND UPTKF PLVKRT PLDKRT FEXTRC	1	н 1 1	
Flag for Index Res. Run Flag for runoff calc.	IR RUNOFF	0.5 EPA Pond none	none, mon	thly or total(average of entire run)

Hops

stored as ORHops.out Chemical: Abamectin PRZM environment: ORhopsSTD.txt modified EXAMS environment: pond298.exv modified Metfile: w24232.dvf modified Water segment concentrations (ppb)

modified Tueday, 26 August 2008 at 05:16:42

modified Tueday, 26 August 2008 at 05:14:08 modified Tueday, 26 August 2008 at 05:15:54 ns (pph)

Year

	Peak	96 hr	21 Day	60 Day	90 Day		Yearly	
196	61 0.07536	0.06927	0.05153	0.03893		0.03338	0.01445	
196	0.09738	0.09131	0.07827	0.06806		0.06613	0.04389	
196	63 0.122	0.1157	0.09715	0.0877		0.08129	.0.06832	
196	0.138	0.1343	0.1072	0.09401		0.08675	0.07821	
196	0.1368	0.1306	0.1121	0.1018		0.09604	0.087	
196	6 0.1394	0.1329	0.1138	0.1016		0.09761	0.08948	
196	67 0.136	0.1294	0.11	0.09803		0.09202	0.0866	
196	68 0.1385	0.1324	0.1247	0.1161		0.1151	0.09585	
196	0.1547	0.1497	0.1364	0.1304		0.1286	0.1081	
197	0.1585	0.152	0.1344	0.13		0.1254	0.1119	
197	71 0.1612	0.1562	0.1387	0.1276		0.124	0.1089	
197	0.1533	0.1468	0.1294	0.1208		0.1171	0.1043	
197	73 0.1484	0.1439	0.1337	0.1211		0.1084	0.0956	
197	74 0.1512	0.1447	0.1254	0.1164		0.1121	0.1025	
197	7 <u>5</u> 0.146	0.1398	0.1212	0.1085		0,1021	0.09596	
197	76 0.141	0.1348	0.1164	0.1038		0.0961	0.08499	
197	0.1215	0.1152	0.1012	0.08607		0.07887	0.0685	

US EPA ARCHIVE DOCUMENT

.

1978	0.1305	0.1243	0.1059	0.09427	0.08846	0.07715
1979	0.1328	0.1277	0.1127	0.1074	0.1037	0.08465
1980	0.1497	0.1448	0.1259	0.1063	0.09729	0.09261
1981	0.1542	0.151	0.1423	0.1356	0.1341	0.1058
1982	0.159	0.1526	0.1334	0.1258	0.1221	0.1089
1983	0.152	0.1455	0.1261	0.1163	0.1089	0.1009
1984	0.1405	0.1342	0.1245	0.1182	0.1085	0.09448
1985	0.1398	0.1335	0.1149	0.1026	0.0955	0.08863
1986	0.1326	0.126	0.1066	0.0947	0.08829	0.0788
1987	0.1468	0.1413	0.1308	0.1002	0.09143	0.07967
1988	0.1397	0.1332	0.114	0.1018	0.09708	0.08868
1989	0.1353	0.1298	0.1165	0.09926	0.09201	0.08371
1990	0.1425	0.1362	0.1174	0.105	0.09959	0.09224

Sorted results								
Prob.		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	0.032258	0.1612	0.1562	0.1423	0.1356		0.1341	0.1119
•	0.064516	0.159	0.1526	0.1387	0.1304		0.1286	0.1089
-	0.096774	0.1585	0.152	0.1364	0.13		0.1254	0.1089
	0.129032	0.1547	0.151	0.1344	0.1276		0.124	0.1081
	0.16129	0.1542	0.1497	0.1337	0.1258		0.1221	0.1058
	0.193548	0.1533	0.1468	0.1334	0.1211		0.1171	0.1043
	0.225806	0.152	0.1455	0.1308	0.1208		0.1151	0.1025
	0.258065	0.1512	0.1448	0.1294	0.1182		0.1121	0.1009
	0.290323	0.1497	0.1447	0.1261	0.1164		0.1089	0.09596
	0.322581	0.1484	0.1439	0.1259	0.1163		0.1085	0.09585
	0.354839	0.1468	0.1413	0.1254	0.1161		0.1084	0.0956
	0.387097	0.146	0.1398	0.1247	0.1085		0.1037	0.09448
	0.419355	0.1425	0.1362	0.1245	0.1074		0.1021	0.09261
	0.451613	0.141	0.1348	0.1212	0.1063		0.09959	0.09224
	0.483871	0.1405	0.1343	0.1174	0.105		0.09761	0.08948
	0.516129	0.1398	0.1342	0.1165	0.1038		0.09729	0.08868
	0.548387	0.1397	0.1335	0.1164	0.1026		0.09708	0.08863
	0.580645	0.1394	0.1332	0.1149	0.1018		0.0961	0.087
	0.612903	0.1385	0.1329	0.114	0.1018		0.09604	0.0866
	0.645161	0.138	0.1324	0.1138	0.1016		0.0955	0.08499
	0.677419	0.1368	0.1306	0.1127	0.1002		0.09202	0.08465
	0.709677	0.136	0.1298	0.1121	0.09926		0.09201	0.08371
	0.741935	0.1353	0.1294	0.11	0.09803		0.09143	0.07967
	0.774194	0.1328	0.1277	0.1072	0.0947		0.08846	0.0788
	0.806452	0.1326	0.126	0.1066	0.09427		0.08829	0.07821
	0.83871	0.1305	0.1243	0.1059	0.09401		0.08675	0.07715
	0.870968	0.122	0.1157	0.1012	0.0877		0.08129	0.0685
	0.903226	0.1215	0.1152	0.09715	0.08607		0.07887	0.06832
	0.935484	0.09738	0.09131	0.07827	0.06806		0.06613	0.04389
	0.967742	0.07536	0.06927	0.05153	0.03893		0.03338	0.01445
	0.1	0.15812	0.1519	0.1362	0.12976		0.12526	0.10882

Average of yearly averages:

0.087359

Data used for this run:				
Output File: ORHops				
Metfile:	w24232.dv	ŕf		
PRZM scenario:	ORhopsST			
EXAMS environment file:	pond298.e			
Chemical Name:	Abamectin			
onemical Hame.	Variable			
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11 2.60E-	g/mol	
Henry's Law Const.	henry	08	atm-m^3/	/mol
-	•	1.50E-		
Vapor Pressure	vapr	09	torr	1
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	
Koc	Koc		mg/L	
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic				
Metabolism	kbacw	300	days	Halfife
Anaerobic Aquatic	·		davia	1.1-166-
Metabolism	kbacs	. 0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0	cm	
Application Rate:	TAPP	0.0213	kg/ha	
Application Efficiency:	APPEFF	0.95	fraction	
Spray Drift	DRFT	0.05		of application rate applied to pond
Application Date	Date	17-07	dd/mm o	r dd/mmm or dd-mm or dd-mmm
Interval 1	interval	21	days	Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha	
Record 17:	FILTRA			
	IPSCND	1		
	UPTKF			
Record 18:	PLVKRT			
	PLDKRT	1		
	FEXTRC	0.5		
Flag for Index Res. Run	IR	EPA Pon	d	
Flag for runoff calc.	RUNOFF	none		onthly or total(average of entire run)
J			-,	,

Leafy Vegetables

stored as FLCabbage.out Chemical: Abamectin PRZM environment: FLcabbageSTD.txt EXAMS environment:

modified Tueday, 26 August 2008 at 05:16:38 modified Tueday, 26 August 2008 at 05:14:08

pond298.exv

Metfile: w12842.dvf modified Tueday, 26 August 2008 at 05:14:20 Water segment concentrations (ppb)

0.193548

0.225806

0.258065

0.290323

0:322581

0.354839

0.387097

0.215

0.2111

0.2097

0.2094

0.2044

0.2044

0.2001

0.2044

0.1986

0.1985

0.194

0.1938

0.1896

0.199

0.1757

0.1755

0.174

0.1723

0.1719

0.1703

0.1662

0.1598

0.1482

0.1474

0.1449

0.1423

0.1419

0.1415

Year		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	1961	0.1176	0.1076	0.08497	0.06842		0.04618	0.01139
	1962	0.1584	0.1481	0.1249	0.09757		0.08099	0.05529
	1963	0.2818	0.2625	0.2268	0.1653		0.1298	0.08723
	1964	0.215	0.2046	0.1812	0.1622		0.1441	0.1327
	1965	0.2001	0.1896	0.1662	0.141	,	0.125	0.1128
	1966	0.1886	0.1781	0.1547	0.127		0.1112	0.1028
	1967	0.1864	0.1759	0.1524	0.127		0.1112	0.09251
	1968	0.2111	0.1986	0.1723	0.1367		0.1172	0.09265
	1969	0.2372	0.2283	0.1931	0.1746		0.1483	0.1169
	1970	0.1989	0.1885	0.1651	0.1474		0.1462	0.1224
	1971	0.2044	0.1938	0.1703	0.1415		0.1277	0.1102
	1972	0.198	0.1875	0.1655	0.1419		0.1227	0.1054
	1973	0.1902	0.1792	0.1574	0.1342		0.1152	0.1002
. · ·	1974	0.1873	0.1764	0.1527	0.1302		0.1121	0.09744
	1975	0.1893	0.1786	0.1552	0.1266		0.1121	0.09294
	1976	0.1942	0.184	0.1607	0.1326		0.1156	0.09789
	1977	0.173	0.1628	0.1429	0.1183		0.09916	0.08415
	1978	0.1752	0.1647	0.1413	0.1152		0.09833	0.08759
	1979	0.3299	0.3124	0.2526	0.1892		0.17	0.139
	1980	0.2094	0.1985	0.174	0.1449		0.1249	0.1149
	1981	0.1933	0.1826	0.1592	0.1363		0.12	0.1097
	1982	0.2097	0.199	0.1755	0.1482		0.1337	0.1201
	1983	0.2044	0.194	0.1757	0.1598		0.1386	0.1257
	1984	0.1873	0.1769	0.1535	0.1277		0.1235	0.1057
	1985	0.1943	0.1834	0.1599	0.1309		0.1142	0.09152
	1986	0.1804	0.1698	0.1464	0.1233		0.1052	0.09182
	1987	0.2162	0.2044	0.1719	0.1423		0.1281	0.1103
	1988	0.2888	0.2703	0.2197	0.1787		0.148	0.1087
	1989	0.1915	0.1809	0.1588 [,]	0.1391	•	0.1204	0.1064
	1990	0.1805	0.1699	0.1465	0.1185		0.1057	0.09499
Sorted results								
Prob.		Peak	96 hr	21 Day	60 Day	90 Day		Yearly
	0.032258	0.3299	0.3124	0.2526	0.1892	-	0.17	0.139
	0.064516	0.2888	0.2703	0.2268	0.1787		0.1483	0.1327
	0.096774	0.2818	0.2625	0.2197	0.1746		0.148	0.1257
	0.129032	0,2372	0.2283	0.1931	0.1653		0.1462	0.1224
	0.16129	0.2162	0.2046	0.1812	0.1622		0.1441	0.1201
	0 1005 10	0.045	0.0044	0 4757	0 4500		0 4000	0 4 4 6 0

0.1386

0.1337

0.1298

0.1281

0.1277

0.125

0.1249

0.1169

0.1149

0.1128

0.1103

0.1102

0.1097

0.1087

0.419355	0.1989	0.1885	0.1655	0.141	0.1235	0.1064
0.451613	0.198	0.1875	0.1651	0.1391	0.1227	0.1057
0.483871	0.1943	0.184	0.1607	0.1367	0.1204	0.1054
0.516129	0.1942	0.1834	0.1599	0.1363	0.12	0.1028
0.548387	0.1933	0.1826	0.1592	0.1342	0.1172	0.1002
0.580645	0.1915	0.1809	0.1588	0.1326	0.1156	0.09789
0.612903	0.1902	0.1792	0.1574	0.1309	0.1152	0.09744
0.645161	0.1893	0.1786	0.1552	0.1302	0.1142	0.09499
0.677419	0.1886	0.1781	0.1547	0.1277	0.1121	0.09294
0.709677	0.1873	0.1769	0.1535	0.127	0.1121	0.09265
0.741935	0.1873	0.1764	0.1527	0.127	0.1112	0.09251 `
0.774194	0.1864	0.1759	0.1524	0.1266	0.1112	0.09182
0.806452	0.1805	0.1699	0.1465	0.1233	0.1057	0.09152
0.83871	0.1804	0.1698	0.1464	0.1185	0.1052	0.08759
0.870968	0.1752	0.1647	0.1429	0.1183	0.09916	0.08723
0.903226	0.173	0.1628	0.1413	0.1152	0.09833	0.08415
0.935484	0.1584	0.1481	0.1249	0.09757	0.08099	0.05529
0.967742	0.1176	0.1076	0.08497	0.06842	0.04618	0.01139
· 0.1	0.27734	0.25908	0.21704	0.17367	0.14782	0.12537
					Average of yearly	
					averages:	0.10071

Data used for this run: Output File: FLCabbage Metfile: PRZM scenario: EXAMS environment file: Chemical Name:	w12842.dv FLcabbag pond298.e Abamectir Variable	eSTD.txt xv	•	
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11 2.60E-	g/mol	
Henry's Law Const.	henry	08 1.50E-	atm-m^3/	mol
Vapor Pressure	vapr	09	torr	
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	
Koc	Koc		mg/L	
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic Metabolism Anaerobic Aquatic	kbacw	300	days	Halfife
Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0	cm	× · ·
Application Rate:	TAPP	0.021	kg/ha	
Application Efficiency:	APPEFF	0.95	fraction	

Spray Drift Application Date Interval 1	DRFT Date interval	0.05 11-Jan 7		of application rate applied to pond or dd/mmm or dd-mm or dd-mmm Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha	
Interval 2	interval	7	days	Set to 0 or delete line for single app.
app. rate 2	apprate		kg/ha	
Record 17:	FILTRA			
	IPSCND	1		
	UPTKF			
Record 18:	PLVKRT			
	PLDKRT			
	FEXTRC	0.5		
Flag for Index Res. Run	IR	EPA Pon	d	
Flag for runoff calc.	RUNOFF	none	none, m	onthly or total(average of entire run)

Mint

Year

stored as ORMint.out	
Chemical: Abamectin	
PRZM environment:	
ORmintSTD.txt	modified Tueday, 26 August 2008 at 05:16:42
EXAMS environment:	
pond298.exv	modified Tueday, 26 August 2008 at 05:14:08
Metfile: w24232.dvf	modified Tueday, 26 August 2008 at 05:15:54
Water segment concentratio	ns (ppb)

Peak 96 hr 21 Day 60 Day 90 Day Yearly 0.02091 1961 0.09218 0.08504 0.06781 0.04882 0.04129 1962 0.1176 0.1098 0.09242 0.07316 0.06431 0.04089 1963 0.1528 0.126 0.1438 0.1043 0.09359 0.06201 0.1301 1964 0.1374 0.1128 0.09251 0.08395 0.06203 1965 0.1396 0.1324 0.1155 0.09595 0.08714 0.06472 1966 0.1401 0.1326 0.1152 0.09438 0.08537 0.06353 1967 0.1383 0.131 0.1136 0.09312 0.08418 0.06103 1968 0.1114 0.1361 0.1287 0.09106 0.08252 0.06302 1969 0.1395 0.1324 0.115 0.08597 0.06631 0.09478 1970 0.1435 0.1372 0.1196 0.09894 0.08976 0.06678 1971 0.1866 0.1764 0.1461 0.105 0.07566 0.116 1972 0.1569 0.149 0.1285 0.1074 0.0983 0.07234 1973 0.1413 0.1339 0.1165 0.09582 0.08698 0.06664 1974 0.156 0.1482 0.1307 0.108 0.09799 0.072 0.1427 0.118 0.09748 0.08848 0.06574 1975 0.1354 0.08466 0.06042 1976 0.1389 0.1315 0.1142 0.09355 1977 0.1286 0.1213 0.1039 0.08391 0.07564 0.0543 1978 0.1335 0.109 0.09042 0.0827 0.05931 0.1263 1979 0.1341 0.1269 0.1096 0.08955 0.0807 0.05968 0.08747 0.06294 1980 0.1465 0.1403 0.1189 0.09656 1981 0.1403 0.1355 0.1199 0.099 0.0904 0.06799

		1982	0.1442	0.1373	0.123
		1983	0.1539	0.1463	0.1286
		1984	0.1511	0.1434	0.1242
		1985	0.1408	0.1334	0.116
•		1986	0.1358	0.1285	0.1112
		1987	0.1332	0.1259	0.1088
		1988	0.1385	0.1311	0.1137
		1989	0.1342	0.1268	0.1094
•		1990	0.1362	0.1289	0.1116
	Control requilite				
	Sorted results Prob.		Peak	96 hr	21 Day
	1105.	0.032258	0.1866	0.1764	0.1461
		0.064516	0.1569	0.149	0.1307
		0.096774	0.156	0.1482	0.1286
_		0.129032	0.1539	0.1463	0.1285
		0.16129	0.1528	0.1438	0.126
		0.193548	0.1511	0.1434	0.1242
		0.225806	0.1465		0.123
		0.258065	0.1442	0.1373	0.1199
		0.290323	0.1435	0.1372	0.1196
2		0.322581	0.1427	0.1355	0.1189
VE DOCUMEN		0.354839	0.1413	0.1354	0.118
		0.387097	0.1408	0.1339	0.1165
\mathbf{O}		0.419355	0,1403	0.1334	0.116
õ		0.451613	0.1401	0.1326	0.1155
U		0.483871	0.1396	0.1324	0.1152
		0.516129	0.1395	0.1324	0.115
_		0.548387	0.1389	0.1315	0.1142
		0.580645	0.1385	0.1311	0.1137
		0.612903	0.1383	0.131	0.1136
~	÷ .	0.645161	0.1374	0.1301	0.1128
	·	0.677419 0.709677	0.1362 0.1361	0.1289 0.1287	0.1116 0.1114
		0.709677		0.1287	0.1114
		0.741935	0.1358 0.1342	0.1269	0.1096
\mathbf{O}		0.806452	0.1342	0.1268	0.1090
~		0.83871	0.1335	0.1263	0.109
		0.870968	0.1332	0.1259	0.1088
4		0.903226	0.1286	0.1213	0.1039
		0.935484	0.1176	0.1098	0.09242
4		0.967742	0.09218	0.08504	0.06781
0					
		0.1	0.15579	0.14801	0.12859
10					
<u> </u>	Inputs generate	d by pe5.pl	- Novemebe	r 2006	
	Data used for th	i			

0.1019

0.1041

0.1033

0.09542

0.0912

0.0886

0.09327

0.08893

0.09202

60 Day

0:116

0.108

0.1074

0.1043

0.1041

0.1033

0.1019

0.09894

0.09748

0.09656

0.09595

0.09582

0.09542

0.09478

0.09438

0.09355

0.09327

0.09312

0.09251

0.09202

0.09106

0.09042

0.08955

0.08893

0.08391

0.07316

0.04882

0.10709

0.0886

0.0912

0.099

.

90 Day

0.09246

0.09402

0.09409

0.08817

0.08253

0.07975

0.08455

0.08022

0.08367

0.105

0.0983

0.09799

0.09409

0.09402

0.09359

0.09246

0.0904

0.08976

0.08848

0.08817

0.08747

0.08714

0.08698

0.08597

0.08537

0.08466

0.08455

0.08418

0.08395

0.08367

0.08253

0.08252

0:0807

0.08022

0.07975

0.07564

0.06431

0.04129

0.0976

Average of yearly

averages:

0.0827

0.06791

0.06877

0.0685

0.0642

0.05945

0.05886

0.06098

0.05834

0.0617

Yearly

0.07566

0.07234

0.06877

0.06799

0.06791

0.06678

0.06664

0.06631

0.06574 0.06472

0.0642

0.06353

0.06302

0.06294

0.06203

0.06201

0.0617 0.06103

0.06098

0.06042

0.05968

0.05945

0.05931

0.05886

0.05834

0.0543

0.04089

0.02091

0.071677

0.061899

0.0685

0.072

Data used for this run: **Output File: ORMint**

Metfile:	w24232.d\	/f		
PRZM scenario:	ORmintST	D.txt		
EXAMS environment file:	pond298.e	XV		
Chemical Name:	Abamectin	1		
· · · · ·	Variable			,
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11 2.60E-	g/mol	
Henry's Law Const.	henry	08 1.50E-	atm-m^3	/mol
Vapor Pressure	vapr	09	torr	
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	
Koc	Koc		mg/L	·
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic			-	
Metabolism	kbacw	300	days	Halfife
Anaerobic Aquatic				
Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	. 0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0.1	cm	
Application Rate:	TAPP	0.0158	kg/ha`	
Application Efficiency:	APPEFF	0.95	fraction	
Spray Drift	DRFT	0.05	fraction of	of application rate applied to pond
Application Date	Date	25-03	dd/mm o	r dd/mmm or dd-mm or dd-mmm
Interval 1	interval	7	days	Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha	
Interval 2	interval	7	days	Set to 0 or delete line for single app.
app. rate 2	apprate		kg/ha	
Record 17:	FILTRA		-	
	IPSCND	1		
	UPTKF			
Record 18:	PLVKRT			
	PLDKRT			
	FEXTRC	0.5		
Flag for Index Res. Run	IR	EPA Pon	d	
Flag for runoff calc.	RUNOFF	none		onthly or total(average of entire run)
riag for failoff dalo.	Ronori	none	none, me	shany of total (avoiage of charcinal)

Pears

stored as WAPears.out Chemical: Abamectin PRZM environment: WAorchardsNMC.txt EXAMS environment: pond298.exv

modified Thuday, 14 June 2007 at 10:19:00

modified Tueday, 26 August 2008 at 05:14:08

Metfile: w24243.dvf Water segment concentrations (ppb)

Year

modified Tueday, 26 August 2008 at 05:15:56

			– –							
	•		Peak	96 hr	21 Day	60 Day	90 Day		Yearly	
		1961	0.01885	0.01738	0.01308	0.009906		0.00844	0.004075	
		1962	0.02178	0.02029	0.01593	0.01281		0.01127	0.006875	
		1963	0.02382	0.02236	0.01797	0.01471		0.01307	0.008392	
		1964	0.02417	0.02267	0.01825	0.0151		0.01352	0.009127	
		1965	0.02713	0.02564	0.02116	0.01798		0.01624	0.01167	
		1966	0.02644	0.02493	0.02044	0.0173		0.01562	0.01089	
		1967	0.02573	0.02425	0.01983	0.01663		0.01493	0.009979	
		1968	0.02595	0.02445	0.01999	0.01684		0.01516	0.01068	
		1969	0.02664	0.02515	0.0207	0.01751		0.01578	0.01089	
		1970	0.02855	0.02705	0.02252	0.01934		0.01753	0.01273	
		1971	0.0277	0.02621	0.02171	0.01854		0.01681	0.01194	
		1972	0.02662	0.02512	0.02064	0.01749		0.0158	0.01103	
	· .	1973	0.02617	0.02465	0.02016	0.01706		0.01539	0.0111	
		1974	0.03401	0.03219	0.02758	0.02252		0.02056	0.01468	
		1975	0.02903	0.02752	0.02301	0.01984		0.01807	0.0141	
		1976	0.02882	0.02733	0.02286	0.01967		0.01791	0.01288	
		1977	0.02723	0.0257	0.02125	0.01821		0.01652	0.01214	
		1978	0.0292	0.02772	0.02325	0.02005		0.01824	0.01336	
		1979	0.02772	0.02623	0.02175	0.01856		0.01678	0.01185	
		1980	0.02672	0.02521	0.02077	0.01765		0.016	0.01142	
		1981	0.02702	0.02554	0.02111	0.01792		0.01624	0.01142	
		1982	0.02686	0.02536	0.02088	0.01775		0.01605	0.01253	
	•	1983	0.02869	0.02716	0.02258	0.01947		0.01768	0.01325	
		1984	0.02866	0.02717	0.02272	0.01956		0.01785	0.0131	
		1985	0.02852	0.027	0.02247	0.01935		0.01756	0.01282	
		1986	0.02802	0.02652	0.02211	0.01897		0.01722	0.01282	
		1987	0.02826	0.02675	0.02223	0.01912		0.01732	0.01295	
		1988	0.03297	0.03124	0.02611	0.02204		0.0202	0.01481	
		1989	0.02885	0.02733	0.02281	0.01971		0.01792	0.01282	
		1990	0.02842	0.02694	0.02251	0.01829		0.01662	0.01391	
results										

Sorted results

Prob.		Peak	96 hr	21 Day	60 Day	90 Day	· ·	Yearly
	0.032258	0.03401	0.03219	0.02758	0.02252		0.02056	0.01481
	0.064516	0.03297	0.03124	0.02611	0.02204		0.0202	0.01468
	0.096774	0.0292	0.02772	0.02325	0.02005		0.01824	0.0141
	0.129032	0.02903	0.02752	0.02301	0.01984		0.01807	0.01391
	0.16129	0.02885	0.02733	0.02286	0.01971		0.01792	0.01336
	0.193548	0.02882	0.02733	0.02281	0.01967		0.01791	0.01325
	0.225806	0.02869	0.02717	0.02272	0.01956	•	0.01785	0.0131
· .	0.258065	0.02866	0.02716	0.02258	0.01947	:	0.01768	0.01295
	0.290323	0.02855	0.02705	0.02252	0.01935		0.01756	0.01288
	0,322581	0.02852	0.027	0.02251	0.01934	•	0.01753	0.01282
	0.354839	0.02842	0.02694	0.02247	0.01912	· ·	0.01732	0.01282
	0.387097	0.02826	0.02675	0.02223	0.01897		0.01722	0.01282
	0.419355	0.02802	0.02652	0.02211	0.01856		0.01681	0.01273

0.451613	0.02772	0.02623	0.02175	0.01854	0.01678	0.01253
0.483871	0.0277	0.02621	0.02171	0.01829	0.01662	0.01214
0.516129	0.02723	0.0257	0.02125	0.01821	0.01652	0.01194
0.548387	0.02713	0.02564	0.02116	0.01798	0.01624	0.01185
0.580645	0.02702	0.02554	0.02111	0.01792	0.01624	0.01167
0.612903	0.02686	0.02536	0.02088	0.01775	0.01605	0.01142
0.645161	0.02672	0.02521	0.02077	0.01765	0.016	0.01142
0.677419	0.02664	0.02515	0.0207	0.01751	0.0158	0.0111
0.709677	0.02662	0.02512	0.02064	0.01749	0.01578	0.01103
0.741935	0.02644	0.02493	0.02044	0.0173	0.01562	0.01089
0.774194	0.02617	0.02465	0.02016	0.01706	0.01539	0.01089
0.806452	0.02595	0.02445	0.01999	0.01684	0.01516	0.01068
0.83871	0.02573	0.02425	0.01983	0.01663	0.01493	0.009979
0.870968	0.02417	0.02267	0.01825	0.0151	0.01352	0.009127
0.903226	0.02382	0.02236	0.01797	0.01471	0.01307	0.008392
0.935484	0.02178	0.02029	0.01593	0.01281	0.01127	0.006875
0.967742	0.01885	0.01738	0.01308	0.009906	0.00844	0.004075
0.1	0.029183	0.0277	0.023226	0.020029	0.018223	0.014081
					Average of yearly	
					averages:	0.011675

Data used for this run:				
Output File: WAPears				
Metfile:	w24243.dv			
PRZM scenario:	WAorchard			
EXAMS environment file:	pond298.ex	xv		
Chemical Name:	Abamectin Variable			
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11 2.60E-	g/mol	
Henry's Law Const.	henry	08 1.50E-	atm-m^3/m	nol
Vapor Pressure	vapr	09	torr	
Solubility	sol	-78	mg/L	
Kd	Kd	82	mg/L	
Koc	Koc		mg/L	
Photolysis half-life	kdp	0.5	days	Half-life
Aerobic Aquatic Metabolism Anaerobic Aquatic	kbacw	300	days	Halfife
Metabolism	kbacs	Ó	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
Hydrolysis:	pH 7	0	days	Half-life
Method:	CAM	2	integer	See PRZM manual
Incorporation Depth:	DEPI	0	cm	
Application Rate:	TAPP	0.0263	kg/ha	,
Application Efficiency:	APPEFF	0.99	fraction	
Spray Drift	DRFT	0.01	fraction of a	application rate applied to pond

Application Date Interval 1 app. rate 1 Record 17:	Date interval apprate FILTRA IPSCND UPTKF	31-03 21 1	dd/mm or dd/mmm or dd-mm or dd-mmm days Set to 0 or delete line for single app. kg/ha
Record 18:	PLVKRT PLDKRT FEXTRC	0.5	
Flag for Index Res. Run Flag for runoff calc.	IR RUNOFF	EPA Pono none	none, monthly or total(average of entire run)

Plums & Prunes

stored as WAPrunestest.out Chemical: Abamectin PRZM environment: WAorchardsNMC.txt **EXAMS** environment: pond298.exv Metfile: w24243.dvf Water segment concentrations (ppb)

modified Thuday, 14 June 2007 at 10:19:00

modified Tueday, 26 August 2008 at 05:14:08 modified Tueday, 26 August 2008 at 05:15:56

Year

	Peak	96 hr	21 Day	60 Day	90 Day		Yearly	
1961	0.01818	0.01669	0.01235	0.009318		0.007918	0.002808	
1962	0.02107	0.01959	0.01525	0.01219		0.01104	0.006381	
1963	0.02295	0.02143	0.01701	0.01401		0.01248	0.008281	
1964	0.02858	0.0273	0.01764	0.01459		0.01304	0.009267	
1965	0.0275	0.02599	0.02154	0.01852		0.01688	0.0141	
1966	0.02627	0.02473	0.02022	0.01726		0.01564	0.01226	
1967	0.02484	0.02329	0.01877	0.01582		0.01425	0.01062	
1968	0.02557	0.0241	0.02051	0.01721		0.01564	0.01177	
1969	0.02574	0.0242	0.0197	0.01679		0.01525	0.01173	
1970	0.03202	0.03064	0.02725	0.02123		0.01909	0.01564	`
1971	0.02749	0.02593	0.02136	0.01847		0.01684	0.01391	
1972	0.02611	0.02457	0.02006	0.01714		0.01556	0.01211	
1973	0.02538	0.02385	0.01937	0.01643		0.01489	0.01213	
1974	0.02967	0.02814	0.02551	0.02074		0.019	0.01635	
1975	0.03907	0.03673	0.03027	0.02365		0.02171	0.01627	
1976	0.02847	0.02697	0.02254	0.01944	ر	0.01771	0.01441	
1977	0.03614	0.0341	0.02695	0.01763		0.01607	0.01345	
1978	0.02962	0.02812	0.02369	0.02068		0.01903	0.01622	
1979	0.02734	0.02582	0.02135	0.01833		0.01668	0.01343	
1980	0.02627	0.02475	0.02028	0.0173		0.01569	0.01275	
1981	0.02674	0.02519	0.02063	0.01772		0.01645	0.01305	
1982	0.02689	0.02535	0.02085	0.01852		0.01685	0.0139	
1983	0.02872	0.02719	0.02267	0.01966		0.01794	0.01575	
1984	0.02856	0.02701	0.02247	0.01956		0.01795	0.01556	
1985	0.02844	0.02692	0.02245	0.01947		0.01788	0.01514	

	1986 1987 1988 1989 1990	0.02769 0.04104 0.03128 0.02861 0.05318	0.02614 0.03912 0.02971 0.0271 0.04967	0.02159 0.03334 0.0251 0.02264 0.03929	0.01996 0.0203 0.02257 0.01958 0.02948	0.01916 0.01791 0.02116 0.01788 0.02635	0.01488 0.01524 0.01833 0.01476 0.01689
Sorted results							
Prob.		Peak	96 hr	21 Day	60 Day	90 Day	Yearly
	0.032258	0.05318	0.04967	0.03929	0.02948	0.02635	0.01833
	0.064516	0.04104	0.03912	0.03334	0.02365	0.02171	0.01689
	0.096774	0.03907	0.03673	0.03027	0.02257	0.02116	0.01635
	0.129032	0.03614	0.0341	0.02725	0.02123	0.01916	0.01627
	0.16129	0.03202	0.03064	0.02695	0.02074	0.01909	0.01622
	0.193548	0.03128	0.02971	0.02551	0.02068	0.01903	0.01575
	0.225806	0.02967	0.02814	0.0251	0.0203	0.019	0.01564
	0.258065	0.02962	0.02812	0.02369	0.01996	0.01795	0.01556
	0.290323	0.02872	0.0273	0.02267	0.01966	0.01794	0.01524
н н	0.322581	0.02861	0.02719	0.02264	0.01958	0.01791	0.01514
	0.354839	0.02858	0.0271	0.02254	0.01956	0.01788	0.01488
	0.387097	0.02856	0.02701	0.02247	0.01947	0.01788	0.01476
	0.419355	0.02847	0.02697	0.02245	0.01944	0.01771	0.01441
	0.451613	0.02844	0.02692	0.02159	0.01852	0.01688	0.0141
	0.483871	0.02769	0.02614	0.02154	0.01852	0.01685	0.01391
	0.516129	0.0275	0.02599	0.02136	0.01847	0.01684	0.0139
	0.548387	0.02749	0.02593	0.02135	0.01833	0.01668	0.01345
	0.580645	0.02734	0.02582	0.02085	0.01772	0.01645	0.01343
	0.612903	0.02689	0.02535	0.02063	0.01763	0.01607	0.01305
	0.645161	0.02674	0.02519	0.02051	0.0173	0.01569	0.01275
	0.677419	0.02627	0.02475	0.02028	0.01726	0.01564	0.01226
	0.709677	0.02627	0.02473	0.02022	0.01721	0.01564	0.01213
	0.741935	0.02611	0.02457	0.02006	0.01714	0.01556	0.01211
	0.774194	0.02574	0.0242	0.0197	0.01679	0.01525	0.01177
	0.806452	0.02557	0.0241	0.01937	0.01643	0.01489	0.01173
	0.83871	0.02538	0.02385	0.01877	0.01582	0.01425	0.01062
	0.870968	0.02484	0.02329	0.01764	0.01459	0.01304	0.009267
	0.903226	0.02295	0.02143	0.01701	0.01401	0.01248	0.008281
	0.935484	0.02107	0.01959	0.01525	0.01219	0.01104	0.006381
	0.967742	0.01818	0.01669	0.01235	0.009318	0.007918	0.002808
		• • • • 		0.000000	0.000.000		0.0400.40
	0.1	0.038777	0.036467	0.029968	0.022436	0.02096	0.016342
						Average of yearly averages:	0.013246
						aronagoo.	5.0102-10

Data used for this run: Output File: WAPrunestest Metfile: PRZM scenario: EXAMS environment file: Chemical Name:

w24243.dvf WAorchardsNMC.txt pond298.exv Abamectin

		Variable			
	Description	Name	Value	Units	Comments
	Molecular weight	mwt	873.11	g/mol	
	Henry's Law Const.	henry	2.60E-08	atm-m^3/	mol
	Vapor Pressure	vapr	1.50E-09	torr	
	Solubility	sol	78	mg/L	
	Kd	Kd	82	mg/L	
	Koc	Koc		mg/L	
	Photolysis half-life	kdp	0.5	days	Half-life
	Aerobic Aquatic Metabolism Anaerobic Aquatic	kbacw	300	days	Halfife
	Metabolism	kbacs	0	days	Halfife
	Aerobic Soil Metabolism	asm	150	days	Halfife
	Hydrolysis:	pH 7	• _ 0	days	Half-life
	Method:	CAM	2	integer	See PRZM manual
	Incorporation Depth:	DEPI	0	cm	
	Application Rate:	TAPP	0.0258	kg/ha	
	Application Efficiency:	APPEFF	0.99	fraction	
	Spray Drift	DRFT	0.01	fraction of	f application rate applied to pond
	Application Date	Date	25-07	dd/mm or	dd/mmm or dd-mm or dd-mmm
	Interval 1	interval	21	days	Set to 0 or delete line for single app.
	app. rate 1	apprate		kg/ha	
	Record 17:	FILTRA			
		IPSCND	1		
		UPTKF			·
	Record 18:	PLVKRT			
		PLDKRT			
	•	FEXTRC	0.5		
	Flag for Index Res. Run	IR	EPA Pond		
1	Flag for runoff calc.	RUNOFF	none	none, mo	nthly or total(average of entire run)
	· · · · · · · · · · · · · · · · · · ·		`	•	
					· · · ·
	Potato				
					· · · ·
;	stored as MEPotato.out				

stored as MEPotato.out Chemical: Abamectin PRZM environment: modified Tueday, 26 August 2008 at 05:16:40 MEpotatoSTD.txt **EXAMS** environment: pond298.exv modified Tueday, 26 August 2008 at 05:14:08 modified Tueday, 26 August 2008 at 05:14:52 Metfile: w14607.dvf Water segment concentrations (ppb)

				21	60		. 1	
Year		Peak	96 hr	Day	Day	90 Day		Yearly
	1961	0.4108	0.3921	0.3188	0.243		0.2184	0.1197
	1962	0.2887	0.2794	0.2595	0.2297		0.2201	0.1962
	1963	0.3106	0.2996	0.2768	0.2466		0.2371	0.217
·. ·	1964	0.3865	0.3714	0.3337	0.2859		0.2776	0.2371
5. 	1965	0.327	0.3168	0.2948	0.2652		0.2532	0.2261

1966	0.2852	0.275	0.2517	0.2372	0.2277	0.2009
1967	0.354	0.3419	0.3123	0.2762	0.2689	0.2307
1968	0.3324	0.3219	0.2985	0.2682	0.2592	0.2464
1969	0.4322	0.4176	0.3732	0.3389	0.3225	0.2822
1970	0.4817	0.4649	0.4359	0.3951	0.3742	0.318
1971	0.4112	0.3995	0.376	0.3397	0.3295	0.2922
1972	0.4887	0.474	0.4431	0.4049	0.3893	0.3233
1973	0.6691	0.6505	0.5972	0.5377	0.5105	0.4125
1974	0.5244	0.5148	0.4885	0.4542	0.4398	0.3952
1975	0.5885	0.5749	0.5191	0.4616	0.4413	0.3736
1976	0.5814	0.5632	0.51	0.4702	0.4563	0.3945
1977	0.5343	0.5257	0.51	0.4634	0.4533	0.4022
1978	0.4601	0.4484	0.4257	0.4008	0.4008	0.3715
1979	0.6269	0.6055	0.5445	0.4765	0.45	0.3822
1980	0.4589	0.4473	0.4204	0.3859	0.3809	0.3499
1981	0.5447	0.5252	0.4679	0.4122	0.3958	0.3677
1982	0.4516	0.4399	0.4159	0.3905	0.3831	0.3629
1983	0.6535	0.6358	0.5667	0.5005	0.4822	0.4003
1984	0.658	0.638	0.5788	0.5317	0.5128	0.4285
1985	0.5236	0.5093	0.4679	0.4292	0.4156	0.374
1986	0.4764	0.4636	0.4282	0.3967	0.3804	0.3505
1987	0.4108	0.4011	0.3784	0.3692	0.3606	0.3284
1988	0.3936	0.3823	0.3585	0.3281	0.3227	0.2891
1989	0.4743	0.4614	0.413	0.3686	0.3459	0.2946
1990	0.5784	0.5598	0.4952	0.454	0.434	0.3608

Sorted results

Prob.

. 1			21	60			
	Peak	96 hr	Day	Day	90 Day		Yearly
0.0322	.58 0.6691	0.6505	0.5972	0.5377		0.5128	0.4285
0.0645	0.658 0.658	0.638	0.5788	0.5317		0.5105	0.4125
0.0967	74 0.6535	0.6358	0.5667	0.5005		0.4822	0.40 2 2
0.1290	0.6269	0.6055	0.5445	0.4765		0.4563	0.4003
0.161	29 0.5885	0.5749	0.5191	0.4702		0.4533	0.3952
0.1935	48 0.5814	0.5632	0.51	0.4634		0.45	0.3945
0.2258	06 0.5784	0.5598	0.51	0.4616		0.4413	0.3822
0.2580	65 0.5447	0.5257	0.4952	0.4542		0.4398	0.374
0.2903	0.5343	0.5252	0.4885	0.454		0.434	0.3736
0.3225	81 0.5244	0.5148	0.4679	0.4292		0.4156	0.3715
0.3548	39 0.5236	0.5093	0.4679	0.4122		0.4008	0.3677
0.3870	97 0.4887	0.474	0.4431	0.4049		0.3958	0.3629
0.4193	55 0.4817	0.4649	0.4359	0.4008		0.3893	0.3608
0.4516	0.4764	0.4636	0.4282	0.3967		0.3831	0.3505
0.4838	0.4743	0.4614	0.4257	0.3951		0.3809	0.3499
0.5161	29 0.4601	0.4484	0.4204	0.3905		0.3804	0.3284
0.5483	87 0.4589	0.4473	0.4159	0.3859		0.3742	0.3233
0.5806	45 0.4516	0.4399	0,413	0.3692		0.3606	0.318
0.6129	03 0.4322	0.4176	0.3784	0.3686		0.3459	0.2946
0.6451	61 0.4112	0.4011	0.37	6 0.339	07	0.329	5 0.2922
0.6774	0.4108	0.3995	0.373	2 0.338	9	0.322	0.2891
0.7096	0.4108	0.3921	0.358	5 0.328	51	0.322	5 0.2822

EPA ARCHIVE DOCUMENT S

0.741935	0.3936	0.3823	0.3337	0.2859	0.2776	0.2464
0.774194	0.3865	0.3714	0.3188	0,2762	0.2689	0.2371
0.806452	0.354	0.3419	0.3123	0.2682	0.2592	0.2307
0.83871	0.3324	0.3219	0.2985	0.2652	0.2532	0.2261
0.870968	0.327	0.3168	0.2948	0.2466	0.2371	0.217
0.903226	0.3106	0.2996	0.2768	0.243	0.2277	0.2009
0.935484	0.2887	0.2794	0.2595	0.2372	0.2201	0.1962
0.967742	0.2852	0.275	0.2517	0.2297	0.2184	0.1197
					,	
0.1	0.65084	0.63277	0.56448	0.4981	0.47961	0.40201
					Average of yearly	
		• .			averages:	0.317607

Inputs generated by pe5.pl - Novemeber 2006

Data used for this run:				
Output File: MEPotato	w14607.dv	æ		
Metfile:				
PRZM scenario:	MEpotatos			
EXAMS environment file:	pond298.e			
Chemical Name:	Abamectin Variable			
Description	Name	Value	Units	Comments
Molecular weight	mwt	873.11	g/mol	
Molecular Weight		2.60E-	9	
Henry's Law Const.	henry	08	atm-m^3	/mol
•	. •	1.50E-		
Vapor Pressure	vapr	09	torr	
Solubility	sol	78	mg/L	
Kd	Kd	82	mg/L	
Koc	Koc		mg/L	
				Half-
Photolysis half-life	kdp	0.5	days	life
Aerobic Aquatic				
Metabolism	kbacw	300	days	Halfife
Anaerobic Aquatic	lab a say	•	davia	11-166-
Metabolism	kbacs	0	days	Halfife
Aerobic Soil Metabolism	asm	150	days	Halfife
	pH 7	0	days	Half- life
Hydrolysis:	CAM		•	See PRZM manual
Method:		2 0	integer	See FRZIM Manual
Incorporation Depth:	DEPI	-	cm	
Application Rate:		0.021	kg/ha	
Application Efficiency:	APPEFF	0.95	fraction	
Spray Drift	DRFT	0.05		of application rate applied to pond
Application Date	Date	28-04		or dd/mmm or dd-mm or dd-mmm
Interval 1	interval	7		Set to 0 or delete line for single app.
app. rate 1	apprate	_	kg/ha	
Interval 2	interval	7	days	Set to 0 or delete line for single app.
app. rate 2	apprate		kg/ha	
Record 17:	FILTRA			
	IPSCND	1		

	UPTKF	
Record 18:	PLVKRT	
	PLDKRT	1
	FEXTRC	0.5
Flag for Index Res. Run	IR	EPA Pond
Flag for runoff calc.	RUNOFF	none none, monthly or total(average of entire run)

US EPA ARCHIVE DOCUMENT

Appendix C. T-REX Outputs

Chemical Name:	abamectin
Use	eleriac, cucurbit,fruit veg, herb,leafy veg,pota
Formulation	agri-mek SC
Application Rate	0.0187 lbs a.i./acre
Half-life	35 days
 Application Interval 	7 days
Maximum # Apps./Year	3
Length of Simulation	1 year

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			
	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mallard duck)	LC50 (mg/kg-diet)	383.00
	Maliard duck	NOAEL(mg/kg-bw)	0.00
	Mallard duck	NOAEC (mg/kg-diet)	0.00
	κ	LD50 (mg/kg-bw)	13.60
Manager		LC50 (mg/kg-diet)	0.00
Mammals		NOAEL (mg/kg-bw)	0.12
		NOAEC (mg/kg-diet)	2.40
Dietary-based EECs (ppm)	Kenaga Values		
Short Grass	11.80		
Tail Grass	5.41		
Broadleaf plants/sm insects	6.64		
Fruits/pods/seeds/lg insects	0.74		

Avian Results

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Ewet) (g/day)	% body wgt consumed	Fl (kg-diet/day)
Small	20	5	23	114	2.28E-02
Mid	100	13	65	65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	5	25	5.06E-03
Granivores	100	13	14	14	1.44E-02
	1000	58	65	6	6.46E-02

Avian Body Weight (g)	Adjusted LD50 (mg/kg-bw)
20	44.13
100	56.18
1000	79.36

	AND HARRISON	Avian C	lasses and Body	Neights (grams)		the set of the set of
Dose-based EECs	small	mid	large	G Contraction of the second	ranivores(grams)	
(mg/kg-bw)	20	100	1000	20	100	1000
Short Grass	13.43	7.66	3.43			
Tall Grass	6.16	3.51	1,57			
Broadleaf plants/sm insects	7.56	_4.31	1.93			
Fruits/pods/seeds/lg insects	0.84	0.48	0.21	0.19	0.11	0.05

Dose-based RQs	 ・ ・ ・ くは、何なり、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Avian Acute RQs Size Class (grams)	
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.30	0.14	0.04
Tall Grass	0.14	0.06	0.02
Broadleaf plants/sm insects	0.17	0.08	0.02
Fruits/pods/seeds/ig insects	0.02	0.01	0.00
Seeds (granivore)	0.00	0.00	0.00

Dietary-based RQs	R	Qs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0.03	#DIV/0!
Tall Grass	0.01	#DIV/0!
Broadleaf plants/sm insects	0.02	#DIV/0!
Broadlear plants/sm insects		

US EPA ARCHIVE DOCUMENT

celeriac, cucurbit,fruit veg, herb,leafy veg,potato

Upper bound Kenaga Residues

abamectin Mammalian Results

Mammalian Class	Body Weight	Ingestion (Fdry) (g bwt/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fl (kg-diet/day)
	15	3	14	95	1.43E-02
lerbivores/	35	5	23	66	2.31E-02
nsectivores	1000	31	153	15	1.53E-01
	15	3	3	21	3.18E-03
Grainvores	35	5	5	15	5.13E-03
	. 1000	31	34	3	3.40E-02

Class	Weight	LD50	NOAEL
	15	29.89	0.26
Herbivores/	35	24.18-	0.21
insectivores	1000	10.46	0.09
	15	29.89	0.26
Grainvores	35	24.18	0.21
	1000	10.46	0.09

		Mami	nalian Classes an	d Body weight	和自然的意思	
Dose-Based EECs	Herbiv	ores/ insectivores (grar	法规律 建筑 快步 加		ranivores(grams)	
(mg/kg-bw)	150 to 20 M	35	1000	经济省、资源15、10月10日公司	35	1000
Short Grass	11.25	7.77	1.80			
Tall Grass	5.15	3.56	0.83			
Broadleaf plants/sm Insects	6.33	4.37	1.01			•
Fruits/pods/seeds/lg insects	0.70	0.49	0.11	0.16	0.11	0.03

Dose-based RQs	[14] M. Davidski, Phys. Rev. 19, 105 (1997) 14, 12 (1997).	nammai grams	a state of the second s	mammal grams		nammal grams
(Dose-based EEC/LD50 or NOAEL)	Acute	Chronic	Acute	Chronic	Acute	Chronic
Short Grass	0.38	42.64	0.32	36.43	0.17	19,53
Tall Grass	0.17	19.55	0.15	16,70	0.08	8.95
Broadleaf plants/sm insects	0.21	23.99	0.18	20.49	0.10	10.98
Fruits/pods/lg insects	0.02	2,67	0.02	2.28	0.01	1.22
Seeds (granivore)	0.01	0.59	0.00	0.51	0.00	0.27

Dietary-based RQs (Dietary-based EEC/LC50 or NOAEC)	Mamm Acute	al RQs Chronic
Short Grass	#DIV/01	4.92
Tall Grass	#DIV/0!	2.25
Broadleaf plants/sm insects	#DIV/0!	2.76
Fruits/pods/seeds/lg insects	#DIV/0!	0.31

Chemical Name:	abamectin
Úse	almonds, walnuts,pears,piums,prunes, apples
Formulation	agri-mek SC
Application Rate	0.0235 lbs a.i./acre
Half-life	35 days
Application Interval	21 days
Maximum # Apps./Year	2
Length of Simulation	1 year

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			
	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mailard duck)	LC50 (mg/kg-diet)	383.00
	Mallard duck	NOAEL(mg/kg-bw)	0.00
	Mallard duck	NOAEC (mg/kg-diet)	0.00
		LD50 (mg/kg-bw)	13.60
Mananala		LC50 (mg/kg-diet)	0.00
Mammals		NOAEL (mg/kg-bw)	0.12
·		NOAEC (mg/kg-diet)	2.40
Dietary-based EECs (ppm)	Kenaga Values		
Short Grass	9.36		
Tall Grass	4.29		
Broadleaf plants/sm insects	5,27		
Fruits/pods/seeds/lg insects	0.59		

Avian Results

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fi (kg-diet/day)
Small	20	5	23	114	2.28E-02
Mid	100	13	65	65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	5	25	5.06E-03
Granivores	100	13	14	14	1.44E-02
	1000	58	65	· 6	6.46E-02

Avian Body	Adjusted LD50
Weight (g)	(mg/kg-bw)
20	44.13
100	56.18
1000	79.36

Dose-based EECs		Avian Clas	ses and Body Weig	ghts (grams)	an the later set of	
(ma/ka-bw)	small 20	mid 100	large 1000	20	ranivores(grams) 100	1000
Short Grass	10.66	6.08	2.72			
Tall Grass	4.89	2.79	1.25			
Broadleaf plants/sm insects	6.00	3.42	1.53			
Fruits/pods/seeds/lg insects	0.67	0.38	0.17	0.15	0.08	0.04

Dose-based RQs		Avian Acute RQs Size Class (grams)	
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.24	0.11	0.03
Tall Grass	0.11	0.05	0.02
Broadleaf plants/sm insects	0.14	0.06	0.02
Fruits/pods/seeds/lg insects	0.02	0.01	0.00
Seeds (granivore)	0.00	0.00	0.00

Dietary-based RQs		RQS
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0.02	#DIV/0!
Tall Grass	0.01	#DIV/0!
Broadleaf plants/sm insects	0.01	#DIV/0!
Fruits/pods/seeds/lg insects	0.00	#DIV/01

US EPA ARCHIVE DOCUMENT

Mammalian Results			
	Mammalian	Body Weight	Ingestion (g bwt/d
		15	3
	Herbivores/	35	5
,	insectivores	1000	31
		15	3
	Grainvores	35	5
	· · · · · · · · · · · · · · · · · · ·	1000	31

almonds, walnuts,pears,plums,prunes, apples

abamectin

Mammalian Class	Body Weight	Ingestion (Fdry) (g bwt/day)	Ingestion (Fwet) (g/day)
	15	3	14
Herbivores/	35	5	23
insectivores	1000	31	153
	15	3	3
Grainvores	35	5	5
	1000	31	34
Mammalian Class	Body Weight	Adjusted	Adjusted NOAEL
	15	29.89	0.26
Herbivores/	35	24.18	0.21
insectivores	1000	10.46	0.09
	15	29.89	0.26
Grainvores	35	24.18	0.21

Upper bound Kenaga Residues

% body wgt consumed 95 66 15 21 15 3 Fl (kg-diet/day) 1.43E-02 2.31E-02 1.53E-01 3.18E-03 5.13E-03 3.40E-02

Dose-Based EECs	Hed 15	Mammal bivores/insectivores(grams) 35	ian Classes and B 1000		ranivores(grams) 35	1000
Short Grass	8.93	6.17	1.43			
Tall Grass	4.09	2.83	0.66			
Broadleaf plants/sm insects	5.02	3.47	0.80			
Fruits/pods/seeds/lg insects	0.56	0.39	0.09	0.12	0.09	0.02

Dose-based RQs	The second and the part of	i mammai grams	The second s	n ammal Grams		nammal grams
(Dose-based EEC/LD50 or NOAEL)	Acute	Chronic	Acute	Chronic	Acute	Chronic
Short Grass	0.30	33.84	0.26	28.91	0.14	15.49
Tall Grass	0.14	15.51	0.12	13.25	0.06	7.10
Broadleaf plants/sm insects	0.17	19.04	0.14	16.26	0.08	8.72
Fruits/pods/lg insects	0.02	2.12	0.02	1.81	0.01	0.97
Seeds (granivore)	0.00	0.47	0.00	0.40	0.00	0.22

Dietary-based RQs		nmai Kus
(Dietary-based EEC/LC50 or NOAEC) Short Grass	Acute #DIV/0!	Chronic 3.90
Tall Grass	#DIV/01	1.79
Broadleaf plants/sm insects	#DIV/0!	2.19
Fruits/pods/seeds/Ig insects	#DIV/0!	0.24

117

Chemical Name:	abamectin	
Use	almonds, wainuts,pears,piums,prunes	
Formulation	agri-mek SC	
Application Rate	0.023 lbs a.i./acre	
Half-life	35 days	
Application Interval	21 days	
Maximum # Apps./Year	2	
Length of Simulation	1 year	

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			
	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mallard duck)	LC50 (mg/kg-diet)	383.00
	Mallard duck	NOAEL(mg/kg-bw)	0.00
· · · ·	Mallard duck	NOAEC (mg/kg-diet)	0.00
		LD50 (mg/kg-bw)	13.60
Mammals		LC50 (mg/kg-diet)	0.00
Wallinais		NOAEL (mg/kg-bw)	0.12
		NOAEC (mg/kg-diet)	2.40
	Kenaga		
Dietary-based EECs (ppm)	Values		
Short Grass	9.16		
Tall Grass	4.20		
Broadleaf plants/sm insects	5.15		
Fruits/pods/seeds/lg insects	0.57		

Avian Results

1	Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	FI (kg-diet/day)
	Small	20	5	23	114	2.28E-02
	Mid	100	13	65	65	6.49E-02
	Large	1000	58	291	29	2.91E-01
Г		20	5	5	25	5.06E-03
1	Granivores	100	13	14	14	1.44E-02
		1000	58	65	6	6.46E-02

Avian Body	Adjusted LD50
Weight (g)	(mg/kg-bw)
20	44.13
100	56.18
1000	79.36

Dose-based EECs	and the second second second	Avian	Classes and Body	Weights (grams)		2. 酸血、合同
	smail	mid	large	STORE STORE	ranivores(grams)	
(mg/kg-bw)	20	100	1000	20	100	1000
Short Grass	10.43	5.95	2.66			
Tall Grass	4.78	2.73	1.22			
Broadleaf plants/sm insects	5.87	3.35	1.50			
Fruits/pods/seeds/lg insects	0.65	0.37	0.17	0.14	0.08	0.04

Dose-based RQs		vian Acute RQs ze Class (grams)	
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.24	0.11	0.03
Tall Grass	0.11	0.05	0.02
Broadleaf plants/sm insects	0.13	0.06	0.02
Fruits/pods/seeds/lg insects	0.01	0.01	0.00
Seeds (granivore)	0.00	0.00	0.00

Dietary-based RQs	R) s
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0.02	#DIV/0!
Tall Grass	0.01	#DIV/0!
Broadleaf plants/sm insects	0.01	#DIV/01
Fruits/pods/seeds/lg insects	0.00	#DIV/0!

bamectin	almonds, walnuts,pea	rs,piums,prunes		Upper bound Kena	ga Residues	
Mammalian Results						
	Mammalian	Body		Ingestion (Fwet)	% body wgt	
	Class	Weight	(g bwt/day)	(g/day)	consumed	(kg-diet/day
	Herbivores/	15 35	3	14 23	95	1.43E-02
	insectivores	1000	31	23 153	66	2.31E-02
	Insectivores	15	31	3	15 21	1.53E-01 3.18E-03
	Grainvores	35	5	5	. 15	5.18E-03
	Grainvores	1000	31	. 34	3	3.40E-02
		1000		54		3.40E-02
	Mammalian Class	Body	Adjusted	Adjusted		
	UIASS	Weight 15	29.89	NOAEL 0.26		
	Herbivores/	35	29.89	0.26		
	insectivores	1000	24.18 10.46	0.21		
	msectivores	15	29.89	0.09		
	Grainvores	35	24.18	0.21		
	Grainvores	1000	10.46	0.09		
Dose-Based EECs		ores/ insectivores (grar			ranivores(grams)	國的基礎很可能
mg/kg-bw)	15 (St. 15)	35	1000	15 26 1	35	1000
all Grass	8.74	6.04	1.40			
all Grass roadleaf plants/sm insects	4.00	2.77	0.64			
	4.91	3.40	0.79			1
				0.40	0.00	
	0.55	0.38	0.09	0.12	0.08	0.02
ruits/pods/seeds/lg insects	0.55	0.38	Medium	mammal	Large	nammal
ruits/pods/seeds/lg insects	0.55	0.38 nammal grams	Medium 35	mammai grams	Large I 1000	mammal grams
ruits/pods/seeds/lg insects Dose-based RQs Dose-based EEC/LD50 or NOAEL)	0.55 Small Acute	0.38 nammal grams Chronic	Medium 35 Acute	mammal grams Chronic	Large 1000 Acute	mammal grams Chronic
ruits/pods/seeds/lg insects Dose-based RQs Dose-based EEC/LD50 or NOAEL) hort Grass	0.55 Small i 15 Acute 0.29	0.38 nammal grams Chronic 33.12	Medium 35 Acute 0.25	mammal grams <u>Chronic</u> 28.29	Large 1000 Acute 0.13	marrimal grams Chronic 15.17
ruits/pods/seeds/Ig insects Dose-based RQs Dose-based EEC/LD50 or NOAEL) hort Grass all Grass	0.55 Small (15 0.29 0.13	0.38 grams Chronic 33.12 15.18	Medium 35 Acute 0.25 0.11	mammal grams Chronic 28.29 12.97	Large (1000 Acute 0.13 0.06	nammal grams Chronic 15.17 6.95
Fruits/pods/seeds/lg insects Dose-based RQs Dose-based EEC/LD50 or NOAEL) ihort Grass fall Grass froadleaf plants/sm insects	0.55 Small (Acute 0.29 0.13 0.16	0,38 nammal grams Chronic 33,12 15,18 18,63	Medium 35 0.25 0.11 0.14	mammal grams Chronic 28,29 12.97 15.91	Large 0.13 0.06 0.08	nammal grams Chronic 15.17 6.95 8.53
ruits/pods/seeds/lg insects Dose-based RQs Dose-based EEC/LD50 or NOAEL) short Grass all Grass aroadleaf plants/sm insects iruits/pods/lg insects seeds (granivore)	0.55 Small (15 0.29 0.13	0.38 grams Chronic 33.12 15.18	Medium 35 Acute 0.25 0.11	mammal grams Chronic 28.29 12.97	Large (1000 Acute 0.13 0.06	nammal grams Chronic 15.17 6.95

Dietary-based RQs (Dietary-based EEC/LC50 or NOAEC)	Mamm Acute	al RQs Chronic
Short Grass	#DIV/0!	3.82
Tall Grass	#DIV/0!	1.75
Broadleaf plants/sm insects	#D[V/0]	2.15
Fruits/pods/seeds/lg insects	#DIV/0!	0.24

	Chemical Name:	abamectin	
	Use	avocados,citrus	
	Formulation	agri-mek SC	
	Application Rate	0.0235 lbs a.i./acre	
	Half-life	35 days	
	Application Interval	30 days	
,	Maximum # Apps./Year	2	
	Length of Simulation	1 year	
			1

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			
	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mallard duck)	LC50 (mg/kg-diet)	383.00
	Mallard duck	NOAEL(mg/kg-bw)	0.00
	Mallard duck	NOAEC (mg/kg-diet)	0.00
		LD50 (mg/kg-bw)	13.60
Mammals		LC50 (mg/kg-diet)	0.00
Waltinais		NOAEL (mg/kg-bw)	0.12
		NOAEC (mg/kg-diet)	2.40
Dietary-based EECs (ppm)	Kenaga Values		
Short Grass	8.75		
Tall Grass	4.01		
Broadleaf plants/sm Insects	4.92		
Fruits/pods/seeds/lg insects	0,55		

Avian Results

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fi (kg-diet/day)
Small	20	5	23	114	2,28E-02
Mid	100	13	65	65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	5	25	5.06E-03
Granivores	100	13	- 14	14	1.44E-02
	1000	58	65	6	6.46E-02

Avian Body	Adjusted LD50
Weight (g)	(mg/kg-bw)
20	44.13
100	56.18
1000	79.36

Dose-based EECs		Avian C	lasses and Body	Weights (grams)	* *******	2401. Maria * 8
「「「「「「「「「「「「」」」」」、「「「」」」、「「」」、「」」、「」、「」、	small	mid	large	G	ranivores(grams)	
(mg/kg-bw)	20	100	1000	20	100	1000
Short Grass	9.97	5,68	2.55			
Tall Grass	4.57	2.61	1,17			,
Broadleaf plants/sm Insects	5.61	3.20	1.43			,
Fruits/pods/seeds/lg insects	0.62	0.36	0.16	0.14	0.08	0.04

Dose-based RQs	وتهليك أراجا والمتكار متكل متكاريه	ivian Acute RQs ize Class (grams)	
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.23	0.10	0.03
Tall Grass	0.10	0.05	0.01
Broadleaf plants/sm insects	0.13	0.06	0.02
Fruits/pods/seeds/lg insects	0.01	0.01	0.00
Seeds (granivore)	0.00	0.00	0.00

Dietary-based RQs	R	Qs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0.02 ·	#DIV/0!
Tall Grass	0.01	#DIV/0!
Broadleaf plants/sm insects	0.01	#DIV/0!
Fruits/pods/seeds/lg insects	0.00	#DIV/0!

120

Upper bound Kenaga Residues

 Mammalian Class
 Body Weight
 Ingestion (Fdry) (g bwt/day)
 Ingestion (Fwet) (g/day)
 % body wgt consumed
 FI (kg-diet/day)

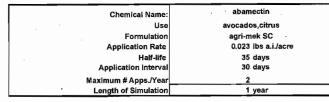
 Herbivores/
 15
 3
 14
 95
 1.43E-02

 Herbivores/
 35
 5
 23
 66
 2.31E-02

 Insectivores
 1000
 31
 153
 15
 1.63E-01

 Grainvores
 35
 5
 5
 15
 5.13E-03

 1000
 31
 34
 3
 3.40E-02


Mammalian Class	Body Weight	Adjusted LD50	Adjusted NOAEL
	15	29.89	0.26
Herbivores/	· 35	24.18	0.21
insectivores	1000	10.46	0.09
	15	29.89	0.26
Grainvores	35	24.18	0.21
1. A.	1000	10.46	0.09

Dose-Based EECs	Mammalian Classes and Body weight Herbivores/ insectivores (grams) Granivores(grams) 15 35 1000						
Short Grass	8.35	5.77	1.34				
Tall Grass Broadleaf plants/sm insects	3.83	2.64 3.24	0.61				
Fruits/pods/seeds/lg insects	0.52	0.36	0.08	0.12	0.08	0.02	

	Dose-based RQs	LAWARD TRUE IN SHARL TRADUCTION	nammal grams	1.526 Parts 1.63812 P. 8. Marshall	mammal grams		nammal grams
	(Dose-based EEC/LD50 or NOAEL)	Acute	Chronic	Acute	Chronic	Acute	Chronic
	Short Grass	0.28	31.64	0.24	27.03	0.13	14.49
,	Tall Grass	0.13	14.50	. 0.11	12.39	0.06	6.64
	Broadleaf plants/sm insects	0.16	17.80	0.13	15.20	0.07	8.15
	Fruits/pods/lg insects	0.02	1,98	0.01	1.69	0.01	0.91
	Seeds (granivore)	0.00	0.44	0.00	0.38	0.00	0.20

Dietary-based RQs	Mamm	al RQs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	#DIV/01	3.65
Tall Grass	#DIV/0!	1.67
Broadleaf plants/sm insects	#DIV/01	2.05
Fruits/pods/seeds/lg insects	#DIV/0!	0.23

avocados,citrus

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mallard duck)	LC50 (mg/kg-diet)	383.00
	Mallard duck	NOAEL(mg/kg-bw)	0.00
	Mallard duck	NOAEC (mg/kg-diet)	0.00
			_
		LD50 (mg/kg-bw)	13.60
Mammals		LC50 (mg/kg-diet)	0.00
Vidiliilidis		NOAEL (mg/kg-bw)	0.12
x		NOAEC (mg/kg-diet)	2.40
	, , , , , , , , , , , , , , , , , , , ,		

3.93 4.82 0.54

Avian Results

Broadleaf plants/sm insects Fruits/pods/seeds/ig insects

Tall Grass

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fl (kg-diet/day)
Small	20	5	23	114	2.28E-02
Mid	100	13	65	65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	5	25	5.06E-03
Granivores	100	13	14	14	1.44E-02
	1000	58	65	6	6.46E-02

Avian Body	Adjusted LD50
Weight (g)	(mg/kg-bw)
20	44.13
100	56.18
1000	79.36

	and the second second second	Avian C	lasses and Body	Neights (grams)	(additional and a second	le construction
Dose-based EECs	small	mid	large	G	ranivores(grams)	
(mg/kg-bw)	20	100	1000	20	100	1000
Short Grass	9.76	5.56	2.49			
Tall Grass	4.47	2.55	1.14			
Broadleaf plants/sm Insects	5.49	3.13	1.40			
Fruits/pods/seeds/lg insects	0.61	0.35	0.16	0.14	0.08	0.03

Dose-based RQs	1. 38 °C	Avian Acute RQs ize Class (grams)	
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.22	0.10	0.03
Tall Grass	0.10	0.05	0.01
Broadleaf plants/sm insects	0.12	0.06	0.02
Fruits/pods/seeds/lg insects	0.01	0.01	0.00
	0.00	0.00	0.00

Fail Grass Broadleaf plants/sm insects Fruits/pods/seeds/ig insects	0.01	#DIV/0! #DIV/0! #DIV/0!
Short Grass Tall Grass	0.02	#DIV/0! #DIV/0!
(Dietary-based EEC/LC50 or NOAEC) Acute	Chronic
Dietary-based RQs	R	Qs

abamectin Mammalian Results

Upper bound Kenaga Residues

	Mammalian	Body	Ingestion (Fdry)	Ingestion (Fwet)	% body wgt	FI.
	Class	Weight	(g bwt/day)	(g/day)	consumed	(kg-diet/day
		15	3	14	95	1.43E-02
	Herbivores/	35 ΄	5	23	66	2.31E-02
	insectivores	1000	31	153	15	1.53E-01
		15	3	3	21	3.18E-03
	Grainvores	35	5	5	15	5.13E-03
		1000	31	34	3	3.40E-02
	Mammalian	Body	Adjusted	Adjusted		
	Class	Weight	LD50	NOAEL		
		15	29.89	0.26		
	Herbivores/	35	24.18	0.21		
	insectivores	1000	10.46	0.09		
		15	29.89	0.26		
	Grainvores	35	24.18	0.21		
		1000	10.46	0.09		
		Mam	matian Classes an	d Body weight		Charles and
Dose-Based EECs	Herbiv	ores/ insectivores (grar	ns)	Gr	anivores(grams)	關係会与主
mg/kg-bw)	15	35	1000	15	35	1000
Short Grass	8.17	5.65	1.31			
	3.74	2.59	0.60			
Tall Grass	3./4	2100				
Broadleaf plants/sm insects	4,59	3.18	0.74			
			0.74 0.08	0.11	0.08	0.02
Broadleaf plants/sm insects	4.59	3.18		0.11	0.08	0.02
Broadleaf plants/sm Insects Fruits/pods/seeds/lg insects	4.59 0.51	3,18 0,35	0.08	mammal	Large n	ammal
Broadleaf plants/sm insects	4.59 0.51	3.18 0.35	0.08		Large n	

Dose-based RQs	二、气化剂 的复数形式的复数形式的现在分词	nammai Grams	The second second second second second	i mammai grams	Large m	ammai Grams
(Dose-based EEC/LD50 or NOAEL)	Acute	Chronic	Acute	Chronic	Acute	Chronic
Short Grass	0.27	30.97	0.23	26.46	0.13	14.18
Tall Grass	0.13	14,19	0.11	12.13	0.06	6.50
Broadleaf plants/sm insects	0.15	17.42	0.13	14,88	0.07	7.98
Fruits/pods/lg insects	0.02	1.94	0.01	1.65	0.01	0.89
Seeds (granivore)	0,00	0.43	0.00	0.37	0.00	0.20

Dietary-based RQs	Mamm	al RQs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	#DIV/0!	3.57
Tall Grass	#DIV/0!	1.64
Broadleaf plants/sm insects	#DIV/0!	2.01
Fruits/pods/seeds/lg insects	#DIV/0!	0.22

avocados,citrus

Chemical Name: Use Formulation Application Rate Half-ife	cotton,grapes,hops
Application Interval	21 days
Maximum # Apps./Year	2
Length of Simulation	1 year

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			副 我的这:
	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mallard duck)	LC50 (mg/kg-diet)	383.00
Arian	Mallard duck	NOAEL(mg/kg-bw)	0.00
	Mallard duck	NOAEC (mg/kg-diet)	0.00
		LD50 (mg/kg-bw)	13.60
Mammals		LC50 (mg/kg-diet)	0.00
all in a state of the state of		NOAEL (mg/kg-bw)	0.12
		NOAEC (mg/kg-diet)	2.40
Dietary-based EECs (ppm)	Kenaga Values	-	
Short Grass	7.57		
Tall Grass	3.47		
Broadleaf plants/sm insects	4.26		2
Fruits/pods/seeds/lg insects	0.47		

Avian Results

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	ingestion (Fwet) (g/day)	% body wgt consumed	Fl (kg-diet/day)
Small	20	5	23	114	2.28E-02
Mid	100	13	- 65	65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	5 .	25	5.06E-03
Granivores	100	13	. 14	14	1.44E-02
	1000	58	65	6	6.46E-02

Avian Body Weight (g)	Adjusted LD50 (mg/kg-bw)
. 20	44.13
100	56.18
1000	79,36

Dose-based EECs		Avian C	lasses and Body \	Weights (grams)	e village added for a	Sala and a star
Dose-Dased EEGs	small	mid	large	G	ranivores(grams)	
(mg/kg-bw)	20	100	1000	20	100	1000
Short Grass	8.62	4.92	2.20			
Tall Grass	3.95	2.25	1.01			
Broadleaf plants/sm Insects	4.85	2.76	1.24			
Fruits/pods/seeds/lg insects	0.54	0.31	0.14	0.12	0.07	0.03

Dose-based RQs	1. 1. 1. 1. 1.	Avian Acute RQs ize Class (grams)	4
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.20	0.09	0.03
Tall Grass	0.09	0.04	0.01
Broadleaf plants/sm insects	0.11	0.05	0.02
Fruits/pods/seeds/lg insects	0.01	0.01	0.00
Seeds (granivore)	0.00	0.00	0,00

Dietary-based RQs	R	ጋs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0.02	#DIV/0!
Tall Grass	0.01	#DIV/0!
Broadleaf plants/sm Insects	0.01	#DIV/0!
Fruits/pods/seeds/lg insects	0.00	#DIV/0!

124

	Mammalian	Body	Ingestion (Fdry)	Ingestion (Fwet)	% body wat	a se se se
	Class	Weight	(g bwt/day)	(g/day)	consumed	(kg
		15	3	14	95	1
·	Herbivores/	35	5	23	66	2
	insectivores	1000	31	153	15	1
	0	15	3	3	21	3
	Grainvores	35 1000	5 31	5 34	15 3	5
	· ·	1000	51	34		3
	Mammalian	Body	Adjusted	Adjusted		
	Class.	Weight	LD50	NOAEL		
		15 35	29.89	0.26		
	Herbivores/ insectívores	1000	24.18 10.46	0.21 0.09		
· .	insectivores	15	29.89	0.09		
	Grainvores	35	29.09	0.28		
	Chainvoices	1000	10.46	0.09		
		Marr vores/insectivores (gra	malian Classes an		i she as the se	
Dose-Based EECs	Herbi	voresi insectivores (gra	ms)	G	anivores(grams)	
(mg/kg-bw)	15	35	1000	15	35	
Short Grass	7.22	4.99	1.16			
Tall Grass	3.31	2.29	0.53			
Broadleaf plants/sm Insects Fruits/pods/seeds/lg insects	4.06	2.81	0.65	·	· · · ·	
Fruits/pousiseedang insects	0.45	0.31	0.07	0.10	0.07	
Dose-based RQs		mammal		i mammal	Large	
(Dose-based EEC/LD50 or NOAEL)	Acute	5 grams Chronic	Acute	grams Chronic	Acute	gram
Short Grass	0.24	27.36	0.21	23.37	0.11	12,010
Tail Grass	0.11	12.54	0.09	10.71	0.05	
Broadleaf plants/sm insects	0.14	15.39	0.12	13.15	0.06	
Fruits/pods/lg insects	0.02	1.71	0.01	1.46	0.01	
Seeds (granivore)	0.00	0.38	0.00	0.32	0.00	
· · · · · · · · · · · · · · · · · · ·	an an an an an an an Marant	mat ROs	7	•		
Dietary-based RQs	man	ina rus				
(Dietary-based EEC/LC50 or NOAEC	· 管理部的确定的新					
	Acute	Chronic				
Short Grass	#DIV/01	3.15	1			
Tall Grass	#DIV/01	1.45				
Broadleaf plants/sm insects	#DIV/01	1.77				
Fruits/pods/seeds/lg insects	#DIV/0!	0.20	1			
	·		,			

US EPA ARCHIVE DOCUMENT

125

Chemical Name:	abamectin
' Use	mint
Formulation	agri-mek SC
Application Rate	0.014 lbs a.i./acre
Half-life	35 days
Application Interval	7 days
Maximum # Apps./Year	3
Length of Simulation	1 year

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			
	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mallard duck)	LC50 (mg/kg-diet)	383.00
	Mallard duck	NOAEL(mg/kg-bw)	0.00
	Mallard duck	NOAEC (mg/kg-diet)	0.00
		LD50 (mg/kg-bw)	13.60
		LC50 (mg/kg-diet)	0.00
Mammals		NOAEL (mg/kg-bw)	0.12
		NOAEC (mg/kg-diet)	2.40
Dietary-based EECs (ppm)	Kenaga Values		
Short Grass	8.83		
Tail Grass	4.05		
Broadleaf plants/sm insects	4.97		
Fruits/pods/seeds/lg insects	0.55		

Avian Results

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fi (kg-diet/day)
Small	20	5 /	23	114	2.28E-02
Mid	100	13	65	· 65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	` 5	25	5.06E-03
Granivores	100	13	14	14	1.44E-02
	1000	58	65	6	6.46E-02

. Г	Avian Body	Adjusted LD50
	Weight (g)	(mg/kg-bw)
	20	44.13
	100	56.18
	1000	79.36

	Avian C	lasses and Body	Weights (grams)	When they have been	The St. Shingle have the
small	mid	large	G	ranivores(grams)	
20	100	1000	20	100	1000
10.06	5.74	2.57			
4.61	2.63	1.18			
5.66	3.23	1.44			
0.63	0.36	0.16	0.14	0.08	0.04
	20 10.06 4.61 5.66	small mid 20 100 10.06 5.74 4.61 2.63 5.66 3.23	small mid large 20 100 1000 10.06 5.74 2.67 4.61 2.63 1.18 5.66 3.23 1.44	20 100 1000 20 10.06 5.74 2.57 4.61 2.63 1.18 5.66 3.23 1.44 4 4	small mid large Granivores(grams) 20 100 1000 20 100 10.06 5.74 2.57 100 100 100 4.61 2.63 1.18 118 118 114 114

Dose-based RQs	Avian Acute RQs Size Class (grams)					
(Dose-based EEC/adjusted LD50)	20	100	1000			
Short Grass	0.23	0.10	0.03			
Tall Grass	0.10	0.05	0.01			
Broadleaf plants/sm insects	0.13	0.06	0.02			
Fruits/pods/seeds/lg insects	0.01	0.01	0.00			
Seeds (granivore)	0.00	0.00	0.00			

Dietary-based RQs	R	Qs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0.02	#DIV/0!
Tall Grass	0.01	#DIV/0!
Broadleaf plants/sm insects	0.01	#DIV/0!
Fruits/pods/seeds/lg insects	0.00	#DIV/0!

abamectin Mammalian Results

Upper bound Kenaga Residues

	Mammalian Class	Body Weight	Ingestion (Fdry) (g bwt/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fi (kg-diet/day)
	CLAT SHE IS I CARDON AND IN THE	15	3	14	95	1.43E-02
	Herbivores/	35	5	23	66	2.31E-02
	insectivores	1000	31	153	15	1.53E-01
		15	3	3	21	3.18E-03
	Grainvores	35	5	5	15	5.13E-03
		1000	31	34	3	3.40E-02
	Mammalian Class	Body Weight	Adjusted	Adjusted NOAEL	•	
		15	29.89	0.26		
	Herbivores/	35	24.18	0.21		
	insectivores	1000	10.46	0.09		
		15	29.89	0.26		
	Grainvores	35	24.18	0.21		
· · · ·		1000	10.46	0.09		
			malian Classes and		the state of the second se	the for the second of the
Dose-Based EECs	Herbive	ores/ insectivores (gra	ns)	G	anivores(grams)	
(mg/kg-bw)	15	35	1000	15	35	1000
Short Grass	8.42	5.82	1.35			
Tali Grass	3.86	2.67	0.62	· · ·		
Broadleaf plants/sm insects	4.74	3.27	0.76			
Fruits/pods/seeds/lg insects	0,53	0.36	0.08	0.12	0.08	0.02
	MARKE STREET	nammalFisk settings	-	mammal	·	nammal
						grams
Dose-based RQs		nrame and the state	的复数形式 计结构字段			
		grams Chronic	35 Acute	grams Chronic	Acute	Chronic
Dose-based EEC/LD50 or NOAEL)	1215-51-51-51-51-51-51-51-51-51-51-51-51-5					
(Dose-based EEC/LD50 or NOAEL) Short Grass	15 Acute	Chronic	Acute	Chronic	Acute	Chronic
Dose-based EEC/LD50 or NOAEL) Short Grass all Grass	Acute 0.28	Chronic 31.93	Acute 0.24	27.27	Acute 0.13	Chronic 14.62
Dose-based RQs (Dose-based EEC/LD50 or NOAEL) Short Grass Tall Grass Broadleaf plants/sm insects Fruits/pods/ng insects	15 Acute 0.28 0.13	Chronic 31.93 14.63	Acute 0.24 0.11	27.27 12.50	0.13 0.06	Chronic 14.62 6.70

Dietary-based RQs	Mamm	al RQs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	#DIV/01	3.68
Tall Grass	#DIV/0!	1.69
Broadleaf plants/sm insects	#DIV/0!	2.07
Fruits/pods/seeds/lg insects	#DIV/0!	0.23

min

127

US EPA ARCHIVE DOCUMENT

Chemical Name:	abamectin
Use	eleriac, cucurbit,fruit veg, herb,leafy veg,potal
Formulation	agri-mek SC
Application Rate	0.019 lbs a.i./acre
Half-life	35 days
Application Interval	7 days
Maximum # Apps./Year	33
Length of Simulation	1 year

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			
<u></u>	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mallard duck)	LC50 (mg/kg-diet)	383.00
	Mallard duck	NOAEL(mg/kg-bw)	0.00
	Mailard duck	NOAEC (mg/kg-diet)	0.00
		LD50 (mg/kg-bw)	13.60
Mammals		LC50 (mg/kg-diet)	0.00
ivialilitais		NOAEL (mg/kg-bw)	0.12
· · · · · · · · · · · · · · · · · · ·		NOAEC (mg/kg-diet)	2.40
Dietary-based EECs (ppm)	Kenaga Values		
Short Grass	11.99		. •
Tall Grass	5.49		
Broadleaf plants/sm insects	6.74		
Fruits/pods/seeds/lg insects	0.75		

Avian Results

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fl (kg-diet/day)
Small	20	5	23	114	2.28E-02
Mid	100	13.	65	65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	5	25	5.06E-03
Granivores	100	13	14	14	1.44E-02
	1000	58	65	6	6.46E-02

Avian Body	Adjusted LD50
Weight (g)	(mg/kg-bw)
20	44.13
100	56.18
1000	79.36

Real Provide EEA	学会語の	Avian C	lasses and Body	Weights (grams)	and the second strength and the	
Dose-based EECs	small	mid	large	G	iranivores(grams)	
(mg/kg-bw)	20	100	1000	20	100	1000
Short Grass	13.65	7.78	3.48			
Tall Grass	6.26	3.57	1.60			
Broadleaf plants/sm Insects	7.68	4.38	1.96			
Fruits/pods/seeds/lg insects	0.85	0.49	0.22	0.19	0.11	0.05

Dose-based RQs	P. P. 1 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Avian Acute RQs ize Class (grams)	
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.31	0.14	0.04
Tall Grass	0.14	0.06	0.02
Broadleaf plants/sm insects	0.17	0.08	0.02
Fruits/pods/seeds/lg insects	0.02	0.01	0.00
Seeds (granivore)	0.00	0.00	0.00

Dietary-based RQs	R	2s
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0,03	#DIV/01
Tall Grass	0.01	#DIV/01
Broadleaf plants/sm insects	0.02	#DIV/01
Fruits/pods/seeds/lg insects	0.00	#DIV/0!

abamectin Mammalian Results

celeriac, cucurbit,fruit eg, herb,leafy veg,potato

Upper bound Kenaga Residues

Mammalian Class	Body Weight	Ingestion (Fdry) (g bwt/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	FI (kg-diet/day
	15	3	14	95	1.43E-02
Herbivores/	35	5	23	66	2.31E-02
insectivores_	1000	31	153	15	1.53E-01
	15	3	3	21	3.18E-03
Grainvores	35	5	5 .	15	5.13E-03
	1000	31	34	3	3.40E-02
· · · ·		<u> </u>			
Mammalian Class	Body Weight	Adjusted LD50	Adjusted NOAEL		
The second	Body	Adjusted	Adjusted		
Class	Body Weight	Adjusted LD50	Adjusted NOAEL		
Class Herbivores/	Body Weight 15 35 1000	Adjusted LD50 29.89	Adjusted NOAEL 0.26 0.21 0.09		
Class Herbivores/ insectivores	Body Weight 15 35 1000 15	Adjusted LD50 29.89 24.18 10.46 29.89	Adjusted NOAEL 0.26 0.21 0.09 0.26		
and the second sec	Body Weight 15 35 1000	Adjusted LD50 29.89 24.18 10.46	Adjusted NOAEL 0.26 0.21 0.09	-	

	1997年月 11月1日 11月1日		malian Classes and	d Body weight	他们就是是一次一次的	物理学校的问题
Dose-Based EECs	Herbivo	ores/ insectivores (gran	o s)	G	ranivores(grams)	
(mg/kg-bw)	[1] 11:10:10:10:10:10:10:10:10:10:10:10:10:1	35	1000	15	35	1000
Short Grass	11.43	7.90	1.83		•	· · · · · · · · · · · · · · · · · · ·
Tali Grass	5.24	3.62	0.84			
Broadleaf plants/sm insects	6.43	4.44	1.03			
Fruits/pods/seeds/lg insects	0.71	0.49	0.11	0.16	0.11	0.03

Dose-based RQs	ALL LOUGH AND APPLICATING MERCHANIS	nammal grams	All State of Land State of the State of the	mammal grams	S 43	nammal orams
(Dose-based EEC/LD50 or NOAEL)	Acute	Chronic	Acute	Chronic	Acute	Chronic
Short Grass	0.38	43.33	0.33	37.01	0.18	19.84
Tall Grass	0.18	19.86	0.15	16.96	0.08	9.09
Broadleaf plants/sm insects	0.22	24.37	0.18	20.82	0.10	11.16
Fruits/pods/lg insects	0.02	2.71	0.02	2.31	0.01	1.24
Seeds (granivore)	0.01	0.60	0.00	0.51	0.00	0.28

Dietary-based RQs	Mamm	al RQs
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	#DIV/0!	4.99
Tall Grass	+ #DIV/0!	2.29
Broadleaf plants/sm insects	#DIV/0!	2.81
Fruits/pods/seeds/lg insects	#DIV/01	0.31

Chemical Name:	abamectin
Use	eleriac, cucurbit,fruit veg, herb,leafy veg,pota
Formulation	agri-mek SC
Application Rate	0.019 lbs a.i./acre
Half-life	35 days
 Application Interval 	7 days
Maximum # Apps./Year	2
Length of Simulation	1 year

Acute and Chronic RQs are based on the Upper Kenaga Residues.

The maximum single day residue estimation is u both the acute and reproduction RQs.

RQs reported as "0.00" in the RQ tables belo <0.01 in your assessment. This is due to rou figure issues in Excel.

Endpoints			
	Mallard duck	LD50 (mg/kg-bw)	85.00
Avian	Mailard duck)	LC50 (mg/kg-diet)	383.00
	Mallard duck	NOAEL(mg/kg-bw)	0.00
	Mallard duck	NOAEC (mg/kg-diet)	0.00
		LD50 (mg/kg-bw)	13.60
Mammals		LC50 (mg/kg-diet)	0.00
Wallina 5		NOAEL (mg/kg-bw)	0.12
`		NOAEC (mg/kg-diet)	2.40
Dietary-based EECs (ppm)	Kenaga Values		
Short Grass	8,53		
Tall Grass	3.91		
Broadleaf plants/sm Insects	4.80		
Fruits/pods/seeds/lg insects	0.53		

Avian Results

Avian Class	Body Weight (g)	Ingestion (Fdry) (g bw/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fl (kg-diet/day)
Small	20	5	23	114	2.28E-02
Mid	100	13	65	65	6.49E-02
Large	1000	58	291	29	2.91E-01
	20	5	5	25	5.06E-03
Granivores	100	13	14	14	1.44E-02
	1000	58	65	6	6.46E-02

Avian Body	Adjusted LD50
Weight (g)	(mg/kg-bw)
20	44.13
100	56.18
1000	79.36

Dose-based EECs	and the second second	Avian C	lasses and Body V	Veights (grams)		5, -17, 1876 Bar 2 11
Dose-based EECs	small	mid	large	G	ranivores(grams)	
(mg/kg-bw)	20	100	1000	20	100	1000
Short Grass	9.71	5,54	2.48			
Tall Grass	4.45	2.54	1.14			
Broadleaf plants/sm insects	5.46	3.12	1.40			
Fruits/pods/seeds/lg insects	0.61	0.35	0.16	0.13	0.08	0.03

Dose-based RQs		vian Acute RQs ze Class (grams)	
(Dose-based EEC/adjusted LD50)	20	100	1000
Short Grass	0.22	0.10	0.03
Tall Grass	0.10	0.05	0.01
Broadleaf plants/sm insects	0.12	0.06	0.02
Fruits/pods/seeds/lg insects	0.01	0.01	0.00
Seeds (granivore)	0.00	0.00	0.00

Dietary-based RQs	R	Qs.
(Dietary-based EEC/LC50 or NOAEC)	Acute	Chronic
Short Grass	0.02	#DIV/0!
Tall Grass	0.01	#DIV/0!
Broadleaf plants/sm insects	0.01`	#DIV/0!
Fruits/pods/seeds/lg insects	0.00	#DIV/01

abamectin Mammalian Results

celeriac, cucurbit,fruit veg, herb,leafy veg,potato

Upper bound Kenaga Residues

	Mammalian Class	Body Weight	Ingestion (Fdry) (g bwt/day)	Ingestion (Fwet) (g/day)	% body wgt consumed	Fi (kg-diet/day)
		15	3	14	95	1.43E-02
	Herbivores/	35	5	23	66	2.31E-02
	insectivores	1000	31	153	15	1.53E-01
•		15	3	3	21	3.18E-03
	Grainvores	35	5	5	15	5.13E-03
		1000	31	34	3	3.40E-02
	Mammalian Class	Body	Adjusted	Adjusted NOAEL		
	State Sciass	Weight 15	29.89	0.26		
	Herbivores/	35	29.69	0.26		
	insectivores	1000	10.46	0.09		
	msecuvores	15	29.89	0.26		
	Grainvores	35	24.18	0.21		
	Granivores	1000	10.46	0.09		
Dose-Based EECs	Herbiy	Mami ores/ insectivores (grar	malian Classes and ns)		anivores(grams)	
mg/kg-bw)	15	35	1000	15	35	1000
hort Grass	8.13	5.62	1.30	and the second secon	and an all the second	
all Grass	3.73	2.58	0,60			
roadleaf plants/sm insects	4.57	3.16	0.73			
ruits/pods/seeds/lg insects	0.51	0.35	0.08	0.11	0.08	0.02
						·
Dose-based RQs		nammal		mammal		nammal
		grams		grams		grams
Dose-based EEC/LD50 or NOAEL)	Acute	Chronic	Acute	Chronic	Acute	Chronic

Dose-based RQs	11 Bar Bar and a Real rates. The	grams	·····································	arams	1000	drams
(Dose-based EEC/LD50 or NOAEL)	Acute	Chronic	Acute	Chronic	Acute	Chronic
Short Grass	0.27	30,84	0.23	26.34	0.12	14.12
Tall Grass	0.12	14.13	0.11	12.07	0.06	6.47
Broadleaf plants/sm insects	0.15	· 17.34	0.13	14.82	0.07	7.94
Fruits/pods/lg insects	0.02	1.93	0.01	1.65	0.01	0.88
Seeds (granivore)	0.00	0.43	0.00	0.37	0.00	0.20

Dietary-based RQs	Marrin	nal RQs
(Dietary-based EEC/LC50 or NOAEC	Acute	Chronic
Short Grass	#DIV/0!	3,55
Tall Grass	#DIV/0!	1.63
Tali Glass	#D(V/0:	.00
Broadleaf plants/sm insects	#DIV/01	2.00

Appendix D. Summary of Toxicity Data for Abamectin

1 Oxicity studies of teenmean grade abameetin with aquate plants				
Organism	%	Endpoint (ppb)	Source (Study	
	ai	_	Classification)	
Duckweed (Lemna gibba),	91.4	14-d IC ₅₀ = 3900 (nominal, total form) ^(a)	00088787	
freshwater, static		(95% CL 2300-6500)	(Supplemental)	
		Visual Obsered NOAEC = 1,200		
Green algae (Selenastrum	91.4	9-d IC ₅₀ >100,000 (nominal, total form) ^(a, b)	00088780	
capricornutum), freshwater, static			(Supplemental)	
	.4 .4		1.	

Toxicity studies of technical grade abamectin with aquatic plants

^(a) Concentrations tested were above the solubility in water (7.8 ppb in distilled). Acetone was used to increase solubility in water.

^(b) Precipitate was observed at concentrations of 25,000 ppb and above.

Acute toxicity studies of technical grade abamectin with aquatic invertebrates

Organism	% ai	Endpoint (ppb)	Source (Study Classification)
Water flea (Daphnia magna) age	91.43	$48 \text{ hr EC}_{50} = 0.34$	00088784
<24 hr, static		(effect measured is immobilization as	(Acceptable)
		surrogate for mortality)	
		(95% CL 0.28-0.41)	/
		slope = 10.1	
Mysid (Americamysis bahia) age	91	96 hr $LC_{50} = 0.21$	00150565
N.R., static		(95% CL 0.1-0.32)	(Acceptable)
Eastern oyster (Crassostrea	90.5	48 hr IC ₅₀ = 430 (nominal, total form) ^(a)	00159158
virginica), age embryos, static		(95% CL 280-580)	(Supplemental)
Mysid (Americamysis bahia) age	Tritium	96 hr $LC_{50} = 0.020$ (measured)	40856305
<24 hr, flow through	labeled	(95% CL 0.015-0.027)	(Acceptable)
Mysid (Americamysis bahia) age	Tritium	96 hr $LC_{50} = 0.024$ (measured)	40856305
4 days, flow through	labeled		(Acceptable)
Mysid (Americamysis bahia) age	Tritium	96 hr $LC_{50} = 0.032$ (measured)	40856305
10 days, flow through	labeled		(Acceptable)
Mysid (Americamysis bahia) age	Tritium	96 hr $LC_{50} = 0.033$ (measured)	40856305
21 days, flow through	labeled		(Acceptable)

^(a) Concentrations tested were above the solubility in water (7.8 ppb in distilled). Acetone was used to increase solubility in water.

Acute toxicity studies of abamectin formulations with aquatic invertebrates

Organism	Formulation	Endpoint	Source (Study
	% ai		Classification)
Water flea (D. magna) age	Fire Ant Bait	$48 \text{ hr EC}_{50} = 1.68 \text{ ppb ai}$	00088785
<24 hr, static	0.022 ^(a)	(7600 ppb product)	(Supplemental)
		(95% CL 1.3 -2.18 ppb ai)	
		slope = 5.0	

^(a) 100 mg abamectin/100 lbs of product * 100 = 0.022% abamectin

Acute toxicity studies of abamectin degradates with aquatic invertebrates

Organism	% Purity	Endpoint	Source (Study
			Classification)
Water flea (D. magna) age	Moderately polar	$48 \text{ hr EC}_{50} = 6.3$	ACC258746
<24 hr, static	photodegradate group	(95% CL 2.5-16)	(Acceptable)
	87.7%	slope =1.3	

Water flea (D. magna) age	Polar photodegradate	48 hr $EC_{50} = 4.2$	ACC258746
<24 hr, static	group		(Acceptable)
	94.3%		
Water flea (D. magna) age	Non-polar photodegradate	$48 \text{ hr } \overline{\text{EC}_{50}} = 25.9$	ACC258746
<24 hr, static	group		(Acceptable)
	94.3%		
Water flea (D. magna) age	8α – hydroxy abermectin	48 hr $EC_{50} = 25.54$	00153540
<24 hr, static	B1 (major soil metabolite)	(95% CL 18-32)	(Acceptable)

Acute toxicity studies of technical grade abamectin with freshwater and marine/ estuarine fish

Organism	% ai	Endpoint (ppb)	Source (Study Classification)
Carp (<i>Cyprinus carpio</i>), freshwater, size 5.34 g, flow through	97	96 hr $LC_{50} = 42$ (nominal, total form) ^a (95% CL =32-56)	00153797 (Supplemental)
Rainbow trout (Oncorhynchus mykiss), freshwater, size 0.31 g, static	91.4	96 hr $LC_{50} = 3.6$ (nominal, total form) ^(b) (95% CL =2.2-6)	00088780 (Supplemental)
Bluegill sunfish (Lepomis macrochirus), freshwater size 0.34 g, static	91	96 hr $LC_{50} = 9.6$ (nominal, total form) ^(b) (95% CL =5.8-16)	00088782 (Supplemental)
Sheepshead minnow (Cyprinodon variegatus), estuarine/marine, size 41 mg, static renewal	91	96 hr $LC_{50} = 15$ (nominal, total form) ^(b) (95% CL =11-20)	00150910 (Supplemental)
Channel catfish (<i>Ictalurus punctatus</i>), freshwater size 0.8 g, static	91	96 hr $LC_{50} = 24$ (nominal, total form) ^(c) (95% CL =18-32)	00153588 (Supplemental)

^(a) Concentrations tested were above the solubility in water (7.8 ppb in distilled, <1 ppb in tap). No solvent was used to increase solubility in water.

^(b) Concentrations tested were above the solubility in water (7.8 ppb in distilled, ≤ 1 ppb in tap). Acetone was used to increase solubility in water.

^(c) Concentrations tested were above the solubility in water (7.8 ppb in distilled, < 1 ppb in tap). DMF was used to increase solubility in water.

Acute toxicity studies of 10	ormulations of	abamectin wi	th fish
<u> </u>			• •

Organism	Formulation,	Endpoint	Source (Study
	% ai		Classification)
Rainbow trout (O. mykiss),	Fire Ant Bait	96 hr $LC_{50} = 5.06$ ppb ai	00088781
freshwater, size 0.14 g, static	$0.022^{(a)}$	(23,000 ppb product)	(Supplemental)
		(95% CL 3.52 -7.04 ppb ai)	
		slope = 3.7	
Bluegill sunfish (L.	Fire Ant Bait	96 hr $LC_{50} = 57.2$ ppb ai	00088783
macrochirus), freshwater, size		(260,000 ppb product)	(Supplemental)
0.34 g, static		(95% CL	
		39.6-85.8 ppb ai) slope = 2.14	

^(a) 100 mg abamectin/100 lbs of product * 100 = 0.022% abamectin

Fish early life stage and invertebrate life cycle studies with abamectin

Organism	% ai	Endpoint (ppb)	Source (Study Classification)
Rainbow trout (O. mykiss),	Tech	NOAEC=0.52	40069609
freshwater, flow through		LOAEC 0.96	(Acceptable)
		Based on wet weight	
Water flea (D. magna),	91.43 (tritium	21-d NOAEC = 0.03	00153570
freshwater, flow through	labeled)	LOAEC 0.093	(Acceptable)
Mysid (A. bahia),	>99% (tritium	28 - d NOAEC = 0.0035	40856306
estuarine/marine, flow through	labeled)	LOAEC=0.0093	(Supplemental)

Acute and sub-acute toxicity studies with abamectin technical grade

Organism	% ai	Endpoint	Source (Study Classification)
Mallard duck (<i>Anas</i> platyrhynchos), age 5 months, oral dosing	91.4	14-d (post-dosing observation) $LD_{50} = 85 \text{ mg/kg-bw}$ (95% CL 67-120) slope = 7.3	ACC246358 (Supplemental)
Bobwhite quail (C. virginianus), age 12 months, oral dosing	91	14 D (post-dosing observation) $LD_{50} = >2000 \text{ mg/kg-bw}$	ACC250762 (Acceptable)
Mallard duck (<i>Anas platyrhynchos</i>), age 10 days, dietary dosing	91	8-d (3-d post-dosing observation) $LC_{50} = 383 \text{ ppm}$ (95% CL 302-487) slope = 7.25	ACC250761 (Acceptable)
Bobwhite quail (C. virginianus), age 14 days, dietary dosing	91	8 D (3 day post-dosing observation) $LC_{50} = 3102 \text{ ppm}$ (95% CL 2344 - 4415) slope = 4.4	ACC250763 (Acceptable)

Avian reproduction studies with abamectin technical grade

Organism	% ai	Endpoint		Source (Study
				Classification)
Mallard duck (Anas	94.7	NOAEL = 12 ppm		40318601
platyrhynchos), dietary		LOAEL = 64 ppm (from pilot	t study)	(Acceptable)

Terrestrial invertebrate toxicity studies with abamectin

Organism	% ai	Endpoint	Source (Study
			Classification)
Honey bee (Honey bee),	Tech	48 hr (3 day post-dosing observation)	00159162
age Worker, contact		$LD_{50} = 0.41 \ \mu g \ ai/bee$	(Acceptable)
Honey bee (Honey bee),	FORM	8 hr (3 day post-dosing observation)	00159161
age Adult, foliar residues		$LD_{50} = \langle 0.05 \text{ lbs ai}/\text{A} \rangle$	(Acceptable)
Earthworm (Earthworm),	97	$28 \text{-d LC}_{50} = 18 \text{ ppm ai} (95\% \text{ CL } 14 \text{-} 32)$	40318603
age Adult, soil exposure			(Supplemental)

Mammalian toxicity profile of abamectin^(a)

Guideline No./	Results	MRID #, Study
Study Type		Classification, Dosage

Guideline No./ Study Type	Results	MRID #, Study Classification, Dosage
81-1 Acute oral – rat (sesame oil vehicle)	$LD_{50} = 13.6 \text{ mg/kg-bw}$	006894
81-1 Acute oral – rat (methyl cellulose vehicle)	$LD_{50} = 214 - 232 \text{ mg/kg-bw}$	45607202
81-2 Acute Dermal – rabbit	$LD_{50} = 2000 \text{ mg/kg-bw}$	0025978
81-3 Acute Inhalation – rat	$LC_{50} \leq 0.21 \text{ mg/L} \text{ (nose only)}$	45623501
81-4 Primary Eye Irritation	Not an irritant	45063501
81-5 Primary Skin Irritation	Slight irritation	41123904
81-6 Dermal Sensitization	Negative in Buehler	
81-8 Acute Neurotoxicity	None	None
870.3700a Prenatal developmental in rodents-rats	<u>Maternal NOAEL</u> > 1.6 mg/kg-bw/day <u>Maternal LOAEL</u> = not established <u>Developmental NOAEL</u> > 1.6 mg/kg-bw/day <u>Developmental LOAEL</u> = not established	Accession: 249152 (1982) Acceptable/guideline 0, 0.4, 0.8, 1.6 mg/kg- bw/day
870.3700a Prenatal developmental in rodents-CD-1 mouse	<u>Maternal NOAEL</u> = 1.5 mg/kg-bw/day <u>Maternal LOAEL</u> = 3.0 mg/kg-bw/day based on hind limb splay <u>Developmental NOAEL</u> < 0.75 mg/kg-bw/day <u>Developmental LOAEL</u> = 0.75 mg/kg-bw/day based on cleft palate and hindlimb extension	44179901 (1999) Acceptable/Non-Guideline 0, 0.75, 1.5, 3.0 mg/kg- bw/day
870.3700b Prenatal developmental in nonrodentsrabbits	<u>Maternal NOAEL</u> = 1.0 mg/kg-bw/day <u>Maternal LOAEL</u> = 2.0 mg/kg-bw/day based on decreased body weight, food consumption and water consumption <u>Developmental NOAEL</u> = 1.0 mg/kg-bw/day <u>Developmental LOAEL</u> = 2.0 mg/kg-bw/day based on cleft palate, clubbed foot, delayed ossification of sternebrae, metacarpals, phalanges	Accession: 249152 (1989) Acceptable./Guideline 0, 1.0, 2.0 mg/kg-bw/day
870.3800a 2-Generation Reproduction and fertility effects-rat	Parental/Systemic NOAEL = 0.40 mg/kg/day Parental/systemics LOAEL =not established Reproductive NOAEL = 0.40 mg/kg/day Reproductive LOAEL = not established Offspring NOAEL = 0.12 mg/kg-bw/day Offspring LOAEL = 0.40 mg/kg-bw/day based on increased retinal folds, increased dead pups at birth, decreased viability and lactation indices, decreased pup body weight	00164151 (1984) Acceptable/Guideline 0, 0.05, 0.12, 0.40 mg/kg-bw/day

Guideline No./ Study Type	Results	MRID #, Study Classification, Dosage
870.3800b 1-Generation Reproduction and fertility effects-rat	Parental/Systemic NOAEL = 1.0 mg/kg-bw/day. Parental/Systemic LOAEL=1.5/2.0 mg/kg- bw/day based on whole body tremors, ataxia, ptyalis, ocular/nasal discharges and mortality <u>Reproductive NOAEL</u> = 3.0 mg/kg-bw/day <u>Offspring NOAEL</u> < 0.5 mg/kg/day <u>Offspring LOAEL</u> = 0.5 mg/kg/day based on decreased pup survival and body weight between days 1-21 and delay in opening of eyes	00096450 Unacceptable/Non- Guideline 0, 0.5, 1.0, 1.5/2.0 mg/kg-bw/day
870.3800c 1-Generation Reproduction and fertility effects- rat	Parental/Systemic NOAEL = 0.4 mg/kg-bw/day Parental/Stemic LOAEL = not established Reproductive NOAEL = 0.4 mg/kg-bw/day Offspring NOAEL =0.1 mg/kg-bw/day Offspring LOAEL = 0.2 mg/kg-bw/day based on reduced pup weight, spastic movements, delayed incisor eruption	00096451 Unacceptable/Non- guideline 0, 0.1, 0.2, 0.4 mg/kg-bw/day
870.3800c 1-Generation Reproduction and fertility effects- rat	Parental/Systemic NOAEL = 0.4 mg/kg-bw/day Parental/Systemic LOAEL = not established Reproductive NOAEL = 0.4 mg/kg-bw/day Offspring NOAEL = 0.4 mg/kg-bw/day LOAEL = not established	40713404 (1988) Acceptable/Nonguideline 0, 0.1, 0.2, 0.4 mg/kg- bw/day with delta-8,9 isomer 0, 0.06, 0.12, 0.40 mg/kg-bw/day
870.4300a Combined Chronic toxicity/carcinogenicity- rats	NOAEL = 1.5 mg/kg-bw/day LOAEL = 2.0 mg/kg-bw/day based on tremors No evidence of carcinogenicity	40069601, 40375511, 40517801 (1985) Acceptable/Guideline 0, 0.75, 1.5, 2.0 mg/kg-bw/day
870.3150a Subchronic toxicity dogs	NOAEL = 0.25 mg/kg-bw/day LOAEL = 0.50 mg/kg/day based on body tremors, one death, liver pathology, decreased body weight	00131082 Acceptable/Guideline 0, 0.25, 0.5, 2.0, 8.0 mg/kg/day
870.4100b Chronic toxicity dogs	40375510 (1987) Acceptable/Guideline 0, 0.25, 0.5, 1.0 mg/kg-bw/day	NOAEL = 0.25 mg/kg/day LOAEL = 0.5 mg/kg/day based on mydriasis, death 1.0 mg/kg/day
870.4300b Combined Chronic toxicity/Carcinogenicity- mice	NOAEL = 4.0 mg/kg-bw/day LOAEL = 8.0 mg/kg-bw/day based on increased mortality in males, tremors, body weight decreases in females, dermatitis in males, extramedullary hematopoiesis in spleen of males No evidence of carcinogenicity	40069602, 40375512, 40517801 (1985) Acceptable/Guideline 0, 2, 4, 8 mg/kg-bw/day

US EPA ARCHIVE DOCUMENT

Guideline No./ Study Type	Results	MRID #, Study Classification, Dosage
Gene Mutation 870.5100 Ames/Salmonella E.coli/mammalian gene mutation assay	negative both with and without S-9	Accession: 246894, 265568 265569 (1986) Acceptable/Guideline Three studies: (1) 0, 3, 10, 30, 100, 1000 ug/plate, (2) 0, 100, 300, 1000, 3000, 10,000 ug/plate both with and without S-9, (3) doses not specified
Gene Mutation 870.5100 Ames/Salmonella E.coli/mammalian gene mutation assay	negative both with and without S-9 up to 3000 ug/plate	40713402 (1988) Acceptable/Guideline doses not specified up to 3000 ug/plate both with and without S-9 using delta-8,9 isomer
Gene Mutation 870.5100 Ames/SalmonellaE.coli/ mammalian gene mutation assay	negative both with and without S-9	40713405 (1988) Acceptable/Guideline doses up to 10,000 ug/plate both with and without S-9 using polar degradates
Gene Mutation 870.5300 CHO/HGPRT Forward Mutation Assay	Negative	265570 (1986) Acceptable/Guideline both with and without S-9
Gene Mutation 870.5300 Mammalian cells in culture in V79 cells	Not mutagenic for V79 cells in absence of S-9, but in the presence of S-9 appeared to have a mutagenic potential, provided the test cells had an appropriate level of sensitivity	MRID Unavailable 1983 Acceptable/Guideline
Cytogenetics 870.5395 in vivo micronucleus assay -male mice	No chromosomal aberrations in male mice, but females not tested $'$	MRID Unavailable Acceptable/non-Guideline 0, 1.2, 12.0 mg/kg i.p.
Other Effects 870.5550	single strand DNA breaks at 0.3 and 0.6 mM in rat hepatocytes in vitro, but negative when hepatocytes from rat at LD50 dose level was used	MRID Unavailable (1983) 0.3 and 0.6 mM
Metabolism	Avermectin B1a did not bioaccumulate in rat tissues. Half-life slightly longer in females than in males for several tissues.	No MRID (1985) Nonguideline
Metabolism	The metabolism of avermectin B1 in rats results in the formation of 24-OH-Me-B1a and accounts for most of the radiolabeled residues. Avermectin B1a does not bioaccumulate.	No MRID (1985) Nonguideline

US EPA ARCHIVE DOCUMENT

Guideline No./ Study Type	Results	MRID #, Study Classification, Dosage
870.7600 Dermal penetration	Dermal penetration is 1%	Accession: 265590 (1986) Acceptable/Nonguideline in Monkeys.

^(a) Source: Rourke *et al.* November 2, 1994 Human Health Risk Assessment for New uses on Plums/Prunes, Leafy Vegetables, Fruiting Vegetables, Herb Subgroup (except chives), Avocado, Mint, and Food Handling Establishments. DB Barcode: D297225

Appendix E. RQ Method and LOCs

Risk Presnapado .	RO TATA IN INC.	-BQC
-	Birds and Wild Mammals	
Acute Risk	Dietary based: EEC ^a (ppm ^b) / LC ₅₀ (ppm)	0.5
	Dose based: EEC (mg/kg-bw/d) / LD ₅₀ (mg/kg-bw/d [°])	
Acute Restricted Use	Dietary based: EEC (ppm) / LC ₅₀ (ppm)	0.2
	Dose based: EEC (mg/kg-bw/d) / LD ₅₀ (mg/kg-bw/d)	
Acute Listed Species	Dietary based: EEC (ppm) / LC ₅₀ (ppm)	0.1
	Dose based: EEC (mg/kg-bw/d) / LD ₅₀ (mg/kg-bw/d)	
Chronic Risk	Dietary based: EEC (ppm) / NOAEC (ppm)	1.0
· .	Dose based: EEC (mg/kg-bw/d) / NOAEL (mg/kg-bw/d)	
	Aquatic Animals	
Acute Risk	EEC (ppm) / (LC ₅₀ (ppm) or EC ₅₀ (ppm))	0.5
Acute Restricted Use	EEC (ppm) / (LC ₅₀ (ppm) or EC ₅₀ (ppm))	0.1
Acute Listed Species	EEC (ppm) / (LC ₅₀ (ppm) or EC ₅₀ (ppm))	0.05
Chronic Risk	EEC (ppm) / NOAEC (ppm)	1.0
·]	Ferrestrial Plants and Plants Inhabiting Semi-Aquatic Areas	
Acute Risk	EEC (lbs ai/A) / EC ₂₅ (lbs ai/A)	1.0
Acute Listed Use	EEC (lbs ai/A) / (EC ₀₅ or NOAEC (lbs ai/A))	1.0
	Aquatic Plants	•
Risk	EEC (ppm) / EC ₅₀ (ppm)	1.0
Listed Species	EEC (ppm) / (EC ₀₅ or NOAEC (ppm))	1.0

^a EEC = estimated environmental concentration ^b ppm = parts per million ^c mg/kg-bw/d = milligrams per kilogram of body weight per day

JS EPA ARCHIVE DOCUMENT

Appendix F. Locates Output

All Medium Types Reported

Mammal, Marine mml, Bird, Amphibian, Reptile, Crustacean, Bivalve, Gastropod, Arachnid, Insect, Dicot, Monocot, Ferns, Conf/cycds, Coral, Lichen

almonds, walnuts, english, apples, avocados, avocados (PR), citrus fruit, all, cotton, all, cantaloups, cucumbers and pickles, honeydew melons, pumpkins, squash, watermelons, eggplant, peppers, bell, peppers, chile (all peppers - excluding bell), pimientos, tomatoes, grapes, dill for oil, dill for oil (irrigated), herbs and spice plants harvested for sale (PR),

herbs, dried, herbs, fresh cut, mustard seed, parsley, amaranth, celery, escarole and endive, lettuce, all, rhubarb, spinach, mint for oil, all (irrigated), mint for oil, peppermint (irrigated), mint for oil, spearmint (irrigated), pears, all, plums and prunes, potatoes

AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, ME, MD, MA,

MI, MN, MS, MO, MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK, OR, PA, PR, RI, SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, WY

1145 Species Affected:

Inverse Name:	Taxa:	Co. occurence:
Status:		
Abalone, White	Gastropod	118
Endangered		
Abutilon eremitopetalum (ncn)	Dicot	20
Endangered		
Abutilon sandwicense (ncn)	Dicot	17
Endangered		
Achyranthes mutica (ncn)	Dicot	20
Endangered		
Achyranthes splendens var. rotundata (ncn)	Dicot	17
Endangered		
A'e (Zanthoxylum dipetalum var. tomentosum)	Dicot	20
Endangered		
A'e (Zanthoxylum hawaiiense)	Dicot	56
Endangered		
'Aiea (Nothocestrum breviflorum)	Dicot	20
Endangered		
'Aiea (Nothocestrum peltatum)	Dicot	16
Endangered		· •••
'Akepa, Hawaii	Bird	20
Endangered	D : 1	•
'Akepa, Maui	Bird	20
Endangered	Diel	16
'Akia Loa, Kauai (Hemignathus procerus)	Bird	16
Endangered	Bird	20
'Akia Pola'au (Hemignathus munroi)	Bird	20
Endangered 'Akoko (Chamaesyce celastroides var. kaenana)	Dicot	17
Endangered	Dicot	17
'Akoko (Chamaesyce deppeana)	Dicot	17
Endangered	Dicot	17
'Akoko (Chamaesyce herbstii)	Dicot	17
Endangered	Dieot	1,
'Akoko (Chamaesyce kuwaleana)	Dicot	17
Endangered	Direct	
'Akoko (Chamaesyce rockii)	Dicot	17
Endangered		
'Akoko (Chamaesyce skottsbergii var. skottsbe	Dicot	37
Endangered		
'Akoko (Euphorbia haeleeleana)	Dicot	33
• • /		

Endangered Alani (Melicope adscendens) Endangered Alani (Melicope balloui) Endangered Alani (Melicope haupuensis) Endangered Alani (Melicope knudsenii) Endangered Alani (Melicope lydgatei) Endangered Alani (Melicope mucronulata) Endangered Alani (Melicope munroi) Endangered Alani (Melicope ovalis) Endangered Alani (Melicope pallida) Endangered Alani (Melicope quadrangularis) Endangered Alani (Melicope reflexa) Endangered Alani (Melicope saint-johnii) Endangered Alani (Melicope zahlbruckneri) Endangered Albatross, Short-tailed Endangered Allocarya, Calistoga Endangered Alopecurus, Sonoma Endangered Alsinidendron obovatum (ncn) Endangered Alsinidendron trinerve (ncn) Endangered Alsinidendron viscosum (ncn) Endangered Amaranthus brownii (ncn) Endangered Ambersnail, Kanab Endangered Ambrosia, San Diego Endangered Ambrosia, South Texas Endangered Amphipod, Illinois Cave Endangered Amphipod, Kauai Cave Endangered Amphipod, Noel's Endangered Amphipod, Peck's Cave Endangered 'Anaunau (Lepidium arbuscula) Endangered 'Anunu (Sicyos alba) Endangered Aristida chaseae (ncn) Endangered Arrowhead, Bunched Endangered Asplenium fragile var. insulare (ncn) Endangered Aster, Florida Golden Endangered

Dicot	20
Dicot	20
Dicot	16
Dicot	36
Dicot	17
Dicot	20
Dicot	20
Dicot	20
Dicot	16
Dicot	16
Dicot	20
Dicot	17
Dicot .	20
Bird	17
Dicot	21
Monocot	.44
Dicot	17
Dicot	17
Dicot	16
Dicot	17
Gastropod	23
Dicot	54
Dicot	43
Crustacean	27
Crustacean	16
Crustacean	4
Crustacean	75
Dicot	17
Dicot	20
Monocot	3
Monocot	4 1
Ferns	20
Dicot	29

1/28/2010 10:49:31 AM Ver. 2.10.4

Page 108 of 128

Aster, Ruth's Golden Dicot Endangered Auerodendron pauciflorum (ncn) Dicot Endangered Aupaka (Isodendrion hosakae) Dicot Endangered Aupaka (Isodendrion laurifolium) Dicot Endangered Avens, Spreading Dicot Endangered 'Awikiwiki (Canavalia molokaiensis) Dicot Endangered 'Awiwi (Centaurium sebaeoides) Dicot Endangered 'Awiwi (Hedyotis cookiana) Dicot Endangered Ayenia, Texas Dicot Endangered Barberry, Island Dicot Endangered Barberry, Nevin's Dicot Endangered Bariaco Dicot Endangered Bat, Gray Mammal Endangered Bat, Hawaiian Hoary Mammal Endangered Bat, Indiana Mammal Endangered Bat, Lesser (=Sanborn's) Long-nosed Mammal Endangered Bat, Mexican Long-nosed Mammal Endangered Bat, Ozark Big-eared Mammal Endangered Bat, Virginia Big-eared Mammal Endangered Beardtongue, Penland Dicot Endangered Beargrass, Britton's Monocot Endangered Bear-poppy, Dwarf Dicot Endangered Bedstraw, El Dorado Dicot Endangered Bedstraw, Island Dicot Endangered Beetle, American Burying Insect Endangered Beetle, Coffin Cave Mold Insect Endangered Beetle, Comal Springs Dryopid Insect Endangered Beetle, Comal Springs Riffle Insect Endangered Beetle, Helotes Mold Insect Endangered Beetle, Hungerford's Crawling Water Insect Endangered Beetle, Kretschmarr Cave Mold Insect Endangered Beetle, Mount Hermon June Insect Endangered Beetle, Ohlone Tiger Insect Endangered Beetle, Salt Creek Tiger Insect Endangered Beetle, Tooth Cave Ground Insect Endangered

5

2

20

33

111

20

36

36

41

25

53

7

1801

73

9735

154

28

49

259

2

51

13

20

25

450

16

75

75

17

17

13

22

22

35

29

Bellflower, Brooksville	Dicot	7
Endangered		
Bird's-beak, Palmate-bracted	Dicot	133
Endangered		~-
Bird's-beak, Pennell's Endangered	Dicot	27
Bird's-beak, salt marsh	Dicot	142
Endangered		142
Bird's-beak. Soft	Dicot	62
Endangered		-
Bittercress, Small-anthered	Dicot	39
Endangered		
Blackbird, Yellow-shouldered	Bird	19
Endangered		
Bladderpod, Kodachrome	Dicot	3
Endangered	-	
Bladderpod, San Bernardino Mountains Endangered	Dicot	25
Bladderpod, Spring Creek	Dicot	12
Endangered	Dicot	12
Bladderpod, White	Dicot	6
Endangered	Dicot	U
Bladderpod, Zapata	Dicot	12
Endangered		
Blazing Star, Scrub	Dicot	19
Endangered		
Bluegrass, Hawaiian	Monocot	16
Endangered		
Bluegrass, Mann's (Poa mannii)	Monocot	16
Endangered	Manual d	
Bluegrass, Napa Endangered	Monocot	21
Bluegrass, San Bernardino	Monocot	51
Endangered	Monocot	51
Blue-star, Kearney's	Dicot	18
Endangered	21001	10
Bluet, Roan Mountain	Dicot	50
Endangered		
Boa, Puerto Rican	Reptile	24
Endangered		
Bobwhite, Masked	Bird	18
Endangered	-	
Bonamia menziesii (ncn)	Dicot	73
Endangered		

1/28/2010 10:49:42 AM Ver. 2.10.4

Page 109 of 128

Boxwood, Vahl's	Dicot	4
Endangered Broom, San Clemente Island	Dicot	25
Endangered Buckwheat, Cushenbury	Dicot	25
Endangered Buckwheat, Ione (incl. Irish Hill)	Dicot	14
Endangered		
Buckwheat, Steamboat Endangered	Dicot	8
Bulrush, Northeastern (=Barbed Bristle) Endangered	Monocot	268
Bush-mallow, San Clemente Island Endangered	Dicot	25
Bush-mallow, Santa Cruz Island	Dicot	25
Endangered Buttercup, Autumn	Dicot	6
Endangered Butterfly, Behren's Silverspot	Insect	48
Endangered		
Butterfly, Callippe Silverspot Endangered	Insect	. 30
Butterfly, El Segundo Blue Endangered	Insect	25
Butterfly, Fender's Blue Endangered	Insect	83
Butterfly, Karner Blue	Insect	552
Endangered Butterfly, Lange's Metalmark	Insect	18
Endangered Butterfly, Lotis Blue	Insect	21
Endangered		
Butterfly, Mission Blue Endangered	Insect	36
Butterfly, Mitchell's Satyr Endangered	Insect	273 -
Butterfly, Myrtle's Silverspot Endangered	Insect	44
Butterfly, Palos Verdes Blue	Insect	25
Endangered Butterfly, Quino Checkerspot	Insect	54
Endangered Butterfly, Saint Francis' Satyr	Insect	25
Endangered Butterfly, San Bruno Elfin	Insect	19
Endangered Butterfly, Schaus Swallowtail	Insect	15
Endangered		
Butterfly, Smith's Blue Endangered	Insect	27
Butterfly, Uncompangre Fritillary Endangered	Insect	23
Button-celery, San Diego	Dicot	54
Endangered Cactus, Arizona Hedgehog	Dicot	47
Endangered Cactus, Bakersfield	Dicot	25
Endangered	Dicot	33
Cactus, Black Lace Endangered		
Cactus, Brady Pincushion Endangered	Dicot	9
Cactus, Key Tree Endangered	Dicot	1
Cactus, Knowlton	Dicot	23
Endangered Cactus, Kuenzler Hedgehog	Dicot	29
Endangered Cactus, Nellie Cory	Dicot	15
Endangered		

Cactus, Nichol's Turk's Head
Endangered
Cactus, Peebles Navajo
Endangered
Cactus, Pima Pineapple
Endangered
Cactus, San Rafael
Endangered
Cactus, Sneed Pincushion
Endangered
Cactus, Star
Endangered
Cactus, Tobusch Fishhook
Endangered
Cactus, Wright Fishhook
Endangered
Campeloma, Slender
Endangered
Campion, Fringed
Endangered
Capa Rosa
Endangered
Caribou, Woodland
Endangered
Catesbaea Melanocarpa (ncn)
Endangered
Cat's-eye, Terlingua Creek
Endangered
Cavesnail, Tumbling Creek
Endangered
Ceanothus, Coyote
Endangered
Ceanothus, Pine Hill
Endangered
Chaffseed, American
Endangered
Chamaecrista glandulosa (ncn)
Endangered
Chamaesyce Halemanui (ncn)
Endangered
Checker-mallow, Keck's
Endangered
Checker-mallow, Kenwood Marsh
Endangered
•

Dicot	38
Dicot	4
Dicot	25
Dicot	5
Dicot	43
Dicot	40
Dicot	47
Dicot	19
Gastropod	14
Dicot	45
Dicot	4
Mammal	21
Dicot	1
Dicot	15
Gastropod	5
Dicot	20
Dicot	20
Dicot	243
Dicot	5
Dicot	16
Dicot	53
Dicot	 27

1/28/2010 10:49:54 AM Ver. 2.10.4

Page 110 of 128

Endangered

Dicot Checker-mallow, Pedate Endangered Checker-mallow, Wenatchee Mountains Dicot Endangered Dicot Chupacallos Endangered Lichen Cladonia, Florida Perforate Endangered Dicot Clarkia, Pismo Endangered Clarkia, Presidio Dicot Endangered Clarkia, Vine Hill Dicot Endangered Cliffrose, Arizona Dicot Endangered Clover, Leafy Prairie Dicot Endangered Clover, Monterey Dicot Endangered Clover, Running Buffalo Dicot Endangered Clover, Showy Indian Dicot Endangered Combshell, Southern (=Penitent mussel) Bivalve Endangered Combshell, Upland Bivalve Endangered Condor, California Bird Endangered Coneflower, Smooth Dicot Endangered Coneflower, Tennessee Purple Dicot Endangered Coot, Hawaiian (=Alae keo keo) Bird Endangered Cordia bellonis (ncn) Dicot Endangered Coyote-thistle, Loch Lomond Dicot Endangered Crane, Mississippi Sandhill Bird Endangered Crane, Whooping Bird Endangered Cranichis Ricartii Monocot Endangered Crayfish, Cave (Cambarus aculabrum) Crustacean Endangered Crayfish, Cave (Cambarus zophonastes) Crustacean Endangered Crayfish, Nashville Crustacean Endangered Cravfish, Shasta Crustacean Endangered Creeper, Hawaii Bird Endangered Creeper, Molokai (Kakawahie) Bird Endangered Creeper, Oahu (Alauwahio) Bird Endangered Crow, Hawaiian ('Alala) Bird Endangered Crownscale, San Jacinto Valley Dicot Endangered Curlew, Eskimo Bird Endangered Dicot Cyanea undulata (ncn) Endangered Conf/cycds Cypress, Santa Cruz

146

25

10

6

58

24

11

27

68

140

27

519

44

30

93

214

447

33

73

2

18

13

2256

4

18

3

19

22

20

20

17

20

28

42

16

Daisy, WillametteDicotEndangeredDicotDaphnopsis hellerana (ncn)DicotEndangeredDicotDawn-flower, Texas Prairie (=Texas Bitterweed)DicotEndangeredDicotDeer, Columbian White-tailedMammalEndangeredDeer, KeyDeer, KeyMammalEndangeredDicotEndangeredDicotDelissea rhytodisperma (ncn)DicotEndangeredDiellia crecta (ncn)FernsFernsEndangeredDiellia falcata (ncn)Diellia falcata (ncn)FernsEndangeredDiellia pallida (ncn)Diellia pallida (ncn)FernsEndangeredSernsEndangeredSernsDiellia pallida (ncn)Ferns	113 2 42 94 1
Daphnopsis hellerana (ncn)DicotEndangeredDicotDawn-flower, Texas Prairie (=Texas Bitterweed)DicotEndangeredMammalDeer, Columbian White-tailedMammalEndangeredMammalDeer, KeyMammalDeer, KeyDicotDeer, KeyDicotDelissea rhytodisperma (ncn)DicotEndangeredDicotDelissea rhytodisperma (ncn)FernsDiellia crecta (ncn)FernsEndangeredDiellia falcata (ncn)Diellia falcata (ncn)FernsEndangeredDiellia pallida (ncn)	42 94
EndangeredDawn-flower, Texas Prairie (=Texas Bitterweed)DicotEndangeredMammalDeer, Columbian White-tailedMammalEndangeredMammalDeer, KeyMammalDeer, KeyDicotDeer, KeyDicotEndangeredDicotDelissea rhytodisperma (nen)DicotEndangeredDicotDiellia crecta (nen)FernsEndangeredDiellia falcata (nen)Diellia falcata (nen)FernsEndangeredDiellia pallida (nen)	42 94
Dawn-flower, Texas Prairie (=Texas Bitterweed)DicotEndangeredMammalDeer, Columbian White-tailedMammalEndangeredMammalEndangeredDicotDeer, KeyMammalEndangeredDicotDelissea rhytodisperma (ncn)DicotEndangeredDicotDiellia crecta (ncn)FernsEndangeredDiellia falcata (ncn)Diellia falcata (ncn)FernsEndangeredDiellia pallida (ncn)Diellia pallida (ncn)Ferns	94
EndangeredMammalDeer, Columbian White-tailedMammalEndangeredMammalDeer, KeyMammalEndangeredDicotDelissea rhytodisperma (ncn)DicotEndangeredEndangeredDiellia crecta (ncn)FernsEndangeredDiellia falcata (ncn)EndangeredFernsDiellia falcata (ncn)FernsEndangeredDiellia pallida (ncn)Diellia pallida (ncn)Ferns	94
Deer, Columbian White-tailedMammalEndangeredMammalDeer, KeyMammalEndangeredDicotDelissea rhytodisperma (ncn)DicotEndangeredDicotDiellia crecta (ncn)FernsEndangeredDiellia falcata (ncn)Diellia falcata (ncn)FernsEndangeredDiellia pallida (ncn)Diellia pallida (ncn)Ferns	
EndangeredMammalDeer, KeyMammalEndangeredDicotDelissea rhytodisperma (ncn)DicotEndangeredEndangeredDiellia recta (ncn)FernsEndangeredDiellia falcata (ncn)EndangeredFernsDiellia pallida (ncn)Ferns	
Deer, Key Mammal Endangered Dicot Delissea rhytodisperma (ncn) Dicot Endangered Diellia crecta (ncn) Diellia crecta (ncn) Ferns Endangered Endangered Diellia falcata (ncn) Ferns Endangered Diellia pallida (ncn)	1
Endangered Dicot Delissea rhytodisperma (ncn) Dicot Endangered Endangered Diellia crecta (ncn) Ferns Endangered Endangered Diellia falcata (ncn) Ferns Endangered Endangered Diellia falcata (ncn) Ferns Endangered Ferns	1
Delissea rhytodisperma (ncn) Dicot Endangered Ferns Diellia crecta (ncn) Ferns Endangered Ferns Diellia falcata (ncn) Ferns Endangered Ferns Diellia pallida (ncn) Ferns	
Endangered Diellia crecta (ncn) Endangered Diellia falcata (ncn) Endangered Diellia pallida (ncn) Ferns	
Diellia crecta (ncn)FernsEndangeredFernsDiellia falcata (ncn)FernsEndangeredFernsDiellia pallida (ncn)Ferns	16
Endangered Diellia falcata (ncn) Endangered Diellia pallida (ncn) Ferns	
Diellia falcata (ncn) Ferns Endangered Diellia pallida (ncn) Ferns	57
Endangered Diellia pallida (ncn) Ferns	
Diellia pallida (ncn) Ferns	17
Endengered	16
Endangerou	
Diellia unisora (ncn) Ferns	37
Endangered	
Diplazium molokaiense (ncn) Ferns	20
Endangered	
Dogweed, Ashy Dicot	16
Endangered	
Dragonfly, Hine's Emerald Insect	163
Endangered	
Dropwort, Canby's Dicot	272
Endangered	•
Dubautia latifolia (ncn) Dicot	16
Endangered	
Dubautia pauciflorula (ncn) Dicot	16
Endangered	10
Duck, Hawaiian (Koloa) Bird	53
Endangered	
Duck, Laysan Bird	17
Endangered	
Dudleya, Santa Clara Valley Dicot	128
Endangered	120
Elepaio, Oahu Bird	17
Endangered	
Elktoe, Appalachian Bivalve	97
Endangered	
Erubia	
Endangered	2
	2

1/28/2010 10:50:05 AM Ver. 2.10.4

Page 111 of 128

Eugenia Woodburyana	Dicot
Endangered	Dicot
Evening-primrose, Antioch Dunes Endangered	Dicot
Evening-primrose, Eureka Valley	Dicot
Endangered Fairy Shrimp, Conservancy Fairy	Crustacean
Endangered	Cautom
Fairy Shrimp, Longhorn Endangered	Crustacean
Fairy Shrimp, Riverside	Crustacean
Endangered Fairy Shrimp, San Diego	Crustacean
Endangered	
Falcon, Northern Aplomado Endangered	Bird
Fanshell	Bivalve
Endangered Fern, Adiantum vivesii	Ferns
Endangered	1 01115
Fern, Aleutian Shield	Ferns
Endangered Fern, Elaphoglossum serpens	Ferns
Endangered	
Fern, Pendant Kihi (Adenophorus periens) Endangered	Ferns
Fern, Thelypteris inabonensis	Ferns
Endangered Fern, Thelypteris verecunda	Ferns
Endangered	rems
Fern, Thelypteris yaucoensis	Ferns
Endangered Ferret, Black-footed	Mammal
Endangered	
Fiddleneck, Large-flowered Endangered	Dicot
Finch, Laysan	Bird
Endangered Finch, Nihoa	Bird
Endangered	
Flannelbush, Mexican Endangered	Dicot
Flannelbush, Pine Hill	Dicot
Endangered Fly, Delhi Sands Flower-loving	Insect
Endangered	moot
Flycatcher, Southwestern Willow	Bird
Endangered Fox, San Joaquin Kit	Mammal
Endangered Fox, San Miguel Island	Mammal
Endangered	Mammai
Fox, Santa Catalina Island	Mammal
Endangered Fox, Santa Cruz Island	Mammal
Endangered	
Fox, Santa Rosa Island Endangered	Mammal
Frankenia, Johnston's	Dicot
Endangered Fringe Tree, Pygmy	Dicot
Endangered	
Fringepod, Santa Cruz Island Endangered	Dicot
Fritillary, Gentner's	Monocot
Endangered Frog, Dusky Gopher (Mississippi DPS)	Amphibian
Endangered	-
Frog, Mountain Yellow-legged Endangered	Amphibian

Gahnia Lanaiensis (ncn)	Monocot	20
Endangered		
Gecko, Monito	Reptile	2
Endangered	1	
Geranium, Hawaiian Red-flowered	Dicot	20
Endangered		
Gerardia, Sandplain	Dicot	119
Endangered		. *
Gilia, Hoffmann's Slender-flowered	Dicot	25
Endangered		
Gilia, Monterey	Dicot	27
Endangered		
Goetzea, Beautiful (Matabuey)	Dicot	4
Endangered	·	
Golden Sunburst, Hartweg's	Dicot	76
Endangered	-	
Goldenrod, Short's	Dicot	63
Endangered	D	
Goldfields, Burke's	Dicot	66
Endangered		1.00
Goldfields, Contra Costa Endangered	Dicot	166
Goose, Hawaiian (Nene)	Bird	56
Endangered	Bliu	30
Gouania hillebrandii (ncn)	Dicot	20
Endangered	Dicot	20
Gouania meyenii (ncn)	Dicot	33
Endangered	Dicot	55
Gouania vitifolia (ncn)	Dicot	17
Endangered	21001	11
Gourd, Okeechobee	Dicot	22
Endangered		
Grass, California Orcutt	Monocot	79
Endangered		
Grass, Eureka Dune	Monocot	6
Endangered		
Grass, Fosberg's Love	Monocot	17
Endangered		
Grass, Hairy Orcutt	Dicot	200
Endangered		
Grass, Sacramento Orcutt	Dicot	37
Endangered		
Grass, Solano	Monocot	48
Endangered		

1/28/2010 10:50:16 AM Ver. 2.10.4

Page 112 of 128

	Grass, Tennessee Yellow-eyed	Monocot	46
	Endangered Grasshopper, Zavante Band-winged	Insect	22
	Endangered		
	Ground-plum, Guthrie's Endangered	Dicot	21
	Haha (Cyanea acuminata)	Dicot	17
	Endangered Haha (Cyanea asarifolia)	Dicot	16
	Endangered		
	Haha (Cyanea copelandii ssp. copelandii) Endangered	Dicot	20
	Haha (Cyanea copelandii ssp. haleakalaensis) Endangered	Dicot	20
	Haha (Cyanea Crispa) (=Rollandia crispa) Endangered	Dicot	17
	Haha (Cyanea dunbarii)	Dicot	20
	Endangered Haha (Cyanea glabra)	Dicot	20
	Endangered		
	Haha (Cyanea grimesiana ssp. grimesiana) Endangered	Dicot	37
	Haha (Cyanea grimesiana ssp. obatae) Endangered	Dicot	17
	Haha (Cyanea hamatiflora ssp. carlsonii)	Dicot	20
	Endangered Haha (Cyanea hamatiflora ssp. hamatiflora)	Dicot	20
	Endangered	Dicot	20
	Haha (Cyanea humboldtiana)	Dicot	17
	Endangered Haha (Cyanea koolauensis)	Dicot	17
	Endangered	D : (17
	Haha (Cyanea longiflora) Endangered	Dicot	17
	Haha (Cyanea Macrostegia var. gibsonii)	Dicot	20
	Endangered Haha (Cyanea mannii)	Dicot	20
	Endangered		
	Haha (Cyanea mceldowneyi) Endangered	Dicot	20
	Haha (Cyanea pinnatifida)	Dicot	17
	Endangered Haha (Cyanea platyphylla)	Dicot	20
	Endangered		
	Haha (Cyanea procera) Endangered	Dicot	20
	Haha (Cyanea remyi)	Dicot	16
`	Endangered Haha (Cyanea shipmanii)	Dicot	20
	Endangered		
	Haha (Cyanea stictophylla) Endangered	Dicot	20
	Haha (Cyanea St-Johnii) (=Rollandia St-Johnii)	Dicot	17
	Endangered Haha (Cyanea superba)	Dicot	17
	Endangered		17
	Ha'Iwale (Cyrtandra crenata) Endangered	Dicot	17
	Ha'Iwale (Cyrtandra dentata)	Dicot	17
	Endangered Ha'lwale (Cyrtandra giffardii)	Dicot	20
	Endangered Ha'lwale (Cyrtandra munroi)	Dicot	20
	Endangered Ha'lwale (Cyrtandra polyantha)	Dicot	17
	Endangered		
	Ha'Iwale (Cyrtandra subumbellata) Endangered	Dicot	17
	Ha'Iwale (Cyrtandra tintinnabula)	Dicot	17
	Endangered		

Ha'Iwale (Cyrtandra viridiflora)	Dicot	17
Endangered		
Hala Pepe (Pleomele hawaiiensis)	Monocot	20
Endangered		
Haplostachys Haplostachya (ncn)	Dicot	20
Endangered		
Harebells, Avon Park	Dicot	19
Endangered		
Harperella	Dicot	260
Endangered		
Harvestman, Bee Creek Cave	Arachnid	41
Endangered		
Harvestman, Bone Cave	Arachnid	29
Endangered		
Harvestman, Robber Baron Cave	Arachnid	17
Endangered		
Hau Kauhiwi (Hibiscadelphus woodi)	Dicot	16
Endangered		
Hau Kuahiwi (Hibiscadelphus distans)	Dicot	16
Endangered		
Hawk, Hawaiian (Io)	Bird	20
Endangered		
Hawk, Puerto Rican Broad-winged	Bird	4
Endangered		
Hawk, Puerto Rican Sharp-shinned	Bird	6
Endangered		
Heau (Exocarpos luteolus)	Diçot	16
Endangered		
Hedyotis degeneri (ncn)	Dicot	17
Endangered		
Hedyotis parvula (ncn)	Dicot	17
Endangered		
Hedyotis StJohnii (ncn)	Dicot	16
Endangered		
Hesperomannia arborescens (ncn)	Dicot	37
Endangered		
Hesperomannia arbuscula (ncn)	Dicot	37
Endangered		N
Hesperomannia lydgatei (ncn)	Dicot	16
Endangered		
Hibiscus, Clay's	Dicot	16
Endangered		
Higuero De Sierra	Dicot	7
Endangered		

1/28/2010 10:50:28 AM · Ver. 2.10.4

Page 113 of 128

Endangered

Hilo Ischaemum (Ischaemum byrone) Endangered Holei (Ochrosia kilaueaensis) Endangered Holly, Cook's Endangered Honeycreeper, Crested ('Akohekohe) Endangered Hypericum, Highlands Scrub Endangered 'Ihi'Ihi (Marsilea villosa) Endangered Ilex sintenisii (ncn) Endangered Iliau (Wilkesia hobdyi) Endangered Ipomopsis, Holy Ghost Endangered Irisette, White Endangered Isopod, Lee County Cave Endangered Isopod, Socorro Endangered Jacquemontia, Beach Endangered Jaguar Endangered Jaguarundi, Gulf Coast Endangered Jaguarundi, Sinaloan Endangered Jewelflower, California Endangered Jewelflower, Tiburon Endangered Kamakahala (Labordia cyrtandrae) Endangered Kamakahala (Labordia lydgatei) Endangered Kamakahala (Labordia tinifolia var. lanaiensis) Endangered Kamakahala (Labordia tinifolia var. wahiawaen) Endangered Kamakahala (Labordia triflora) Endangered Kamanomano (Cenchrus agrimonioides) Endangered Kanaloa kahoolawensis (ncn) Endangered Kangaroo Rat, Fresno Endangered Kangaroo Rat, Giant Endangered Kangaroo Rat, Morro Bay Endangered Kangaroo Rat, San Bernardino Merriam's Endangered Kangaroo Rat, Stephens' Endangered Kangaroo Rat, Tipton Endangered Kauila (Colubrina oppositifolia) Endangered Kaulu (Pteralyxia kauaiensis) Endangered Kidneyshell, Triangular Endangered Kio'Ele (Hedyotis coriacea)

Monocot	56
Dicot	20
Dicot	4
Bird	20
Dicot	19
Ferns	37
Dicot	4
Dicot	16
Dicot	7
Monocot	51
Crustacean	9
Crustacean	11
Dicot	40
Mammal	92
Mammal	156
Mammal	108
Dicot	146
Dicot	17
Dicot	17
Dicot	16
Dicot	20
Dicot	16
Dicot	20
Monocot	37
Dicot	20
Mammal	93
Mammal	219
Mammal	24
Mammal	53
Mammal	79
Mammal	68
Dicot	20
Dicot	16
Bivalve	167
Dicot	40

Kiponapona (Phyllostegia racemosa)	Dicot	20
Endangered	D : 1	1.50
Kite, Everglade Snail	Bird	179
Endangered Kabila (Kabia damaniaidae)	Dicot	. 20
Koki'o (Kokia drynarioides)	Dicot	20
Endangered	Direct	16
Koki'o (Kokia kauaiensis)	Dicot	16
Endangered Kalala Kalalada (Ulbiana anattiona an immorphism)	Dicot	20
Koki'o Ke'oke'o (Hibiscus arnottianus ssp. immaculatus)	Dicol	20
Endangered	Direct	16
Koki'o Ke'oke'o (Hibiscus waimeae ssp. hannerae)	Dicot	. 16
Endangered	Dist	. 17
Kolea (Myrsine juddii)	Dicot	17
Endangered	D	
Ko'oko'olau (Bidens micrantha ssp. kalealaha)	Dicot	20
Endangered		
Ko'oko'olau (Bidens wiebkei)	Dicot	20
Endangered		
Ko'oloa'ula (Abutilon menziesii)	Dicot	40
Endangered		
Kopa (Hedyotis schlechtendahliana var. remyi)	Dicot	20
Endangered		
Kuawawaenohu (Alsinidendron lychnoides)	Dicot	16
Endangered		
Kulu'I (Nototrichium humile)	Dicot	37
Endangered		
Ladies'-tresses, Canelo Hills	Monocot	26
Endangered	•	
Ladies'-tresses, Navasota	Monocot	131
Endangered		
Larkspur, Baker's	Dicot	44
Endangered		
Larkspur, San Clemente Island	Dicot	25
Endangered		
Larkspur, Yellow	Dicot	44
Endangered		
Lau'ehu (Panicum niihauense)	Monocot	16
Endangered		
Laukahi Kuahiwi (Plantago hawaiensis)	Dicot	20
Endangered		
Laukahi Kuahiwi (Plantago princeps)	Dicot	53
Endangered	2.000	
Laulihilihi (Schiedea stellarioides)	Dicot	16
Endangered	2.000	10
1/28/2010 10:50:39 AM Ver. 2.10.4		

Page 114 of 128

Layia, Beach Endangered Lead-plant, Crenulate Endangered Leather-flower, Alabama Endangered Leather-flower, Morefield's Endangered Lepanthes eltorensis (ncn) Endangered Lessingia, San Francisco Endangered Lichen, Rock Gnome Endangered Lily, Minnesota Trout Endangered Lily, Pitkin Marsh Endangered Lily, Western Endangered Limpet, Banbury Springs Endangered Lipochaeta venosa (ncn) Endangered Liveforever, Santa Barbara Island Endangered Lizard, Blunt-nosed Leopard Endangered Lo'ulu (Pritchardia affinis) Endangered Lo`ulu (Pritchardia kaalae) Endangered Lo`ulu (Pritchardia munroi) Endangered Lo'ulu (Pritchardia napaliensis) Endangered Lo'ulu (Pritchardia remota) Endangered Lo'ulu (Pritchardia schattaueri) Endangered Lo'ulu (Pritchardia viscosa) Endangered Lobelia monostachya (ncn) Endangered Lobelia niihauensis (ncn) Endangered Lobelia oahuensis (ncn) Endangered Lomatium, Bradshaw's Endangered Lomatium, Cook's Endangered Loosestrife, Rough-leaved Endangered Lousewort, Furbish Endangered Lupine, Clover Endangered Lupine, Nipomo Mesa Endangered Lupine, Scrub Endangered Lyonia truncata var. proctorii (ncn) Endangered Lysimachia filifolia (ncn) Endangered Lysimachia lydgatei (ncn) Endangered

Lysimachia maxima (ncn)

Endangered

Dicot	89
Dicot	14
Dicot	. 37
Dicot	15
Monocot	4
Dicot	19
Lichen	125
Monocot	44
Monocot	27
Monocot	29
Gastropod	29
Dicot	20
Dicot	25
Reptile	264
Monocot	. 20
Monocot	17
Monocot	20
Monocot	16
Monocot	17
Monocot	. 20
Monocot	16
Dicot	17
Dicot	33
Dicot	. 17
Dicot	113
Dicot	39
Dicot	237
Dicot	20
Dicot	93
Dicot	24
Dicot	19
Dicot	. 3
Dicot	33
Dicot	37
Dicot	20

· · · ·	
Mahoe (Alectryon macrococcus)	Dicot
Endangered	
Malacothrix, Island	Dicot
Endangered	
Malacothrix, Santa Cruz Island	Dicot
Endangered	
Mallow, Kern	Dicot
Endangered	
Mallow, Peter's Mountain	Dicot
Endangered	
Manatee, West Indian	Marine mml
Endangered	
Manioc, Walker's	Dicot
Endangered	
Manzanita, Del Mar	Dicot
Endangered	
Manzanita, Santa Rosa Island	Dicot
Endangered	
Ma'o Hau Hele (Hibiscus brackenridgei)	Dicot
Endangered	
Ma'oli'oli (Schiedea apokremnos)	Dicot
Endangered	
Ma'oli'oli (Schiedea kealiae)	Dicot
Endangered	
Mapele (Cyrtandra cyaneoides)	Dicot
Endangered	
Mariscus fauriei (ncn)	Monocot
Endangered	
Mariscus pennatiformis (ncn)	Monocot
Endangered	
Marstonia, Royal (=Royal Snail)	Gastropod
Endangered	o-bhopen
Meadowfoam, Butte County	Dicot
Endangered	
Meadowfoam, Large-flowered Woolly	Dicot
Endangered	21001
Meadowfoam, Sebastopol	Dicot
Endangered	21000
Meadowrue, Cooley's	Dicot
Endangered	Dicot
Mehamehame (Flueggea neowawraea)	Dicot
Endangered	Diot
Meshweaver, Braken Bat Cave	Arachnid
Endangered	Alayinnu
Lindangereu	
1/28/2010 10:50:50 AM Ver. 2.10.4	

Page 115 of 128

Milkpea, Small's Endangered Milk-vetch, Applegate's Endangered Milk-vetch, Braunton's Endangered Milk-vetch, Clara Hunt's Endangered Milk-vetch, Coachella Valley Endangered Milk-vetch, Coastal Dunes Endangered Milk-vetch, Cushenbury Endangered Milk-vetch, Holmgren Endangered Milk-vetch, Jesup's Endangered Milk-vetch, Lane Mountain Endangered Milk-vetch, Mancos Endangered Milk-vetch, Osterhout Endangered Milk-vetch, Sentry Endangered Milk-vetch, Shivwits Endangered Milk-vetch, Triple-ribbed Endangered Milk-vetch, Ventura Marsh Endangered Millerbird, Nihoa Endangered Mint, Garrett's Endangered Mint, Lakela's Endangered Mint, Longspurred Endangered Mint, Otay Mesa Endangered Mint, San Diego Mesa Endangered Mint, Scrub Endangered Mitracarpus Maxwelliae Endangered Mitracarpus Polycladus Endangered Monardella, Willowy Endangered Monkey-flower, Michigan Endangered Moorhen, Hawaiian Common Endangered Morning-glory, Stebbins Endangered Moth, Blackburn's Sphinx Endangered Mountain Beaver, Point Arena Endangered Mountainbalm, Indian Knob Endangered Mountain-mahogany, Catalina Island Endangered Mouse, Alabama Beach Endangered

Mouse, Anastasia Island Beach

Endangered

Dicot	14
Dicot	14
Dicot	67
Dicot	48
Dicot	28
Dicot	27
Dicot	25
Dicot	27
Dicot	29
Dicot	25
Dicot	29
Dicot	2
Dicot	9
Dicot	13
Dicot	53
Dicot	50
Bird	17
Dicot	8
Dicot	11
Dicot	12
Dicot	54
Dicot	26
Dicot	8
Dicot	4
Dicot	4
Dicot	26
Dicot	59
Bird	53
Dicot	20
Insect	40
Mammal	21
Dicot	24
Dicot	25
Mammal	18
Mammal	8

Mouse, Choctawhatchee Beach	Mammal	18
Endangered		
Mouse, Key Largo Cotton	Mammal	1
Endangered		
Mouse, Pacific Pocket	Mammal	68
Endangered		
Mouse, Perdido Key Beach	Mammal	25 /
Endangered		
Mouse, Salt Marsh Harvest	Mammal	156
Endangered		
Mucket, Pink (Pearlymussel)	Bivalve	1006
Endangered		
Munroidendron racemosum (ncn)	Dicot	16
Endangered		
Mussel, Acornshell Southern	Bivalve	48
Endangered		
Mussel, Black (=Curtus' Mussel) Clubshell	Bivalve	13
Endangered		
Mussel, Clubshell	Bivalve	732
Endangered		
Mussel, Coosa Moccasinshell	Bivalve	74
Endangered		
Mussel, Cumberland Combshell	Bivalve	174
Endangered		
Mussel, Cumberland Elktoe	Bivalve	66
Endangered		
Mussel, Cumberland Pigtoe	Bivalve	25
Endangered		
Mussel, Dark Pigtoe	Bivalve	41
Endangered		
Mussel, Dwarf Wedge	Bivalve	566
Endangered	•	
Mussel, Fine-rayed Pigtoe	Bivalve	239
Endangered		
Mussel, Flat Pigtoe (=Marshall's Mussel)	Bivalve	10
Endangered		
Mussel, Gulf Moccasinshell	Bivalve	145
Endangered		
Mussel, Heavy Pigtoe (=Judge Tait's Mussel)	Bivalve	72
Endangered		:
Mussel, Heelsplitter Carolina	Bivalve	116
Endangered		
Mussel, Ochlockonee Moccasinshell	Bivalve	21
Endangered		
1/28/2010 10:51:01 AM Ver 2 10 4		

1/28/2010 10:51:01 AM Ver. 2.10.4

Page 116 of 128

US EPA ARCHIVE DOCUMENT

Mussel, Oval Pigtoe	Bivalve	184
Endangered Mussel, Ovate Clubshell	Bivalve	190
Endangered Mussel, Oyster	Bivalve	207
Endangered		
Mussel, Ring Pink (=Golf Stick Pearly) Endangered	Bivalve	416
Mussel, Rough Pigtoe	Bivalve	518
Endangered Mussel, Scaleshell	Bivalve	178
Endangered Mussel, Shiny Pigtoe	Bivalve	198
Endangered		
Mussel, Shiny-rayed Pocketbook Endangered	Bivalve	150
Mussel, Southern Clubshell Endangered	Bivalve	190
Mussel, Southern Pigtoe	Bivalve	98
Endangered Mussel, Speckled Pocketbook	Bivalve	7
Endangered Mussel, Winged Mapleleaf	Bivalve	105
Endangered		
Mustard, Carter's Endangered	Dicot	26
Mustard, Slender-petaled Endangered	Dicot	25
Myrcia Paganii	Dicot	4
Endangered Na'ena'e (Dubautia herbstobatae)	Dicot	17
Endangered Na'ena'e (Dubautia plantaginea ssp. humilis)	Dicot	20
Endangered -		
Nani Wai'ale'ale (Viola kauaensis var. wahiawaensis) Endangered	Dicot	16
Nanu (Gardenia mannii) Endangered	Dicot	17
Na'u (Gardenia brighamii)	Dicot	37
Endangered Naupaka, Dwarf (Scaevola coriacea)	Dicot	20
Endangered Navarretia, Few-flowered	Dicot	139
Endangered		
Navarretia, Many-flowered	Dicot	139
Nehe (Lipochaeta fauriei) Endangered	Dicot	16
Nehe (Lipochaeta kamolensis)	Dicot	20
Endangered Nehe (Lipochaeta lobata var. leptophylla)	Dicot	17
Endangered Nehe (Lipochaeta micrantha)	Dicot	16
Endangered		
Nehe (Lipochaeta tenuifolia) Endangered	Dicot	17
Nehe (Lipochaeta waimeaensis) Endangered	Dicot	16
Neraudia angulata (ncn)	Dicot	17
Endangered Neraudia ovata (ncn)	Dicot	20
Endangered Neraudia sericea (ncn)	Dicot	40
Endangered	Bird	13
Nightjar, Puerto Rico Endangered		
Nioi (Eugenia koolauensis) Endangered	Dicot	17
Niterwort, Amargosa Endangered	Dicot	20
THROUGH .		

Nohoanu (Geranium multiflorum)	Dicot	40
Endangered		
Nuku Pu'u	Bird	. 36
Endangered		
Ocelot	Mammal	214
Endangered		
'Oha (Delissea rivularis)	Dicot	16
Endangered		
'Oha (Delissea subcordata)	Dicot	17
Endangered		
'Oha (Delissea undulata)	Dicot	20
Endangered	D	
'Oha (Lobelia gaudichaudii koolauensis)	Dicot	17
Endangered	Dist	
'Oha Wai (Clermontia drepanomorpha)	Dicot	20
Endangered	Direct	40
'Oha Wai (Clermontia lindseyana)	Dicot	40
Endangered	Dicot	20
'Oha Wai (Clermontia oblongifolia ssp. brevipes) Endangered	Dicot	20
Oha Wai (Clermontia oblongifolia ssp. mauiensis)	Dicot	20
Endangered	Dicot	20
Oha Wai (Clermontia peleana)	Dicot	20
Endangered	Dicot	20
'Oha Wai (Clermontia pyrularia)	Dicot	20
Endangered	Dicot	20
'Oha Wai (Clermontia samuelii)	Dicot	20
Endangered		
'Ohai (Sesbania tomentosa)	Dicot	. 73
Endangered		
'Ohe'ohe (Tetraplasandra gymnocarpa)	Dicot	17
Endangered		
'Olulu (Brighamia insignis)	Dicot	16
Endangered		
Onion, Munz's	Monocot	28
Endangered	,	
'O'o, Kauai (='A'a)	Bird	16
Endangered		
Opuhe (Urera kaalae)	Dicot	17
Endangered		
'O'u (Honeycreeper)	Bird	· 36
Endangered		
Oxytheca, Cushenbury	Dicot	25
Endangered		
1/28/2010 10:51:12 AM Ver. 2.10.4		

Page 117 of 128

Paintbrush, San Clemente Island Indian	Dicot	25
Endangered Paintbrush, Soft-leaved	Dicot	25
Endangered		
Paintbrush, Tiburon Endangered	Dicot	58
Palila	Bird	20
Endangered Palo Colorado (Ternstroemia luquillensis)	Dicot	2
Endangered		_
Palo de Jazmin Endangered	Dicot	2
Palo de Nigua	Dicot	11
Endangered Palo de Rosa	Dicot	7
Endangered		
Pamakani (Viola chamissoniana ssp. chamissoniana) Endangered	Dicot	17
Panicgrass, Carter's (Panicum fauriei var carteri)	Monocot	37
Endangered Panther, Florida	Mammal	106
Endangered		
Parrot, Puerto Rican Endangered	Bird	2
Parrotbill, Maui	Bird	20
Endangered Pauoa (Ctenitis squamigera)	Ferns	37
Endangered		
Pawpaw, Beautiful Endangered	Dicot	25
Pawpaw, Four-petal	Dicot	28
Endangered Pawpaw, Rugel's	Dicot	11
Endangered		
Pearlymussel, Alabama Lamp Endangered	Bivalve	51
Pearlymussel, Appalachian Monkeyface	Bivalve	86
Endangered Pearlymussel, Birdwing	Bivalve	185
Endangered		
Pearlymussel, Cracking Endangered	Bivalve	220
Pearlymussel, Cumberland Bean	Bivalve	215
Endangered Pearlymussel, Cumberland Monkeyface	Bivalve	.166
Endangered		
Pearlymussel, Curtis' Endangered	Bivalve	18
Pearlymussel, Dromedary	Bivalve	255
Endangered Pearlymussel, Fat Pocketbook	Bivalve	379
Endangered	,	
Pearlymussel, Green-blossom Endangered	Bivalve	114
Pearlymussel, Higgins' Eye	Bivalve	514
Endangered Pearlymussel, Little-wing	Bivalve	211
Endangered		
Pearlymussel, Orange-footed Endangered	Bivalve	440
Pearlymussel, Pale Lilliput	Bivalve	69
Endangered Pearlymussel, Purple Cat's Paw	Bivalve	129
Endangered	Divoluci	247
Pearlymussel, Tubercled-blossom Endangered	Bivalve	347
Pearlymussel, Turgid-blossom	Bivalve	89
Endangered Pearlymussel, White Cat's Paw	Bivalve	34
Endangered		

Pearlymussel, White Wartyback	Bivalve	246
Endangered		
Pearlymussel, Yellow-blossom	Bivalve	177 .
Endangered		
Pebblesnail, Flat	Gastropod	20
Endangered		
Pelos del Diablo	Monocot	7
Endangered		
Penny-cress, Kneeland Prairie	Dicot	20
Endangered		
Pennyroyal, Todsen's	Dicot	27
Endangered	_*.	
Penstemon, Blowout	Dicot	12
Endangered		
Pentachaeta, Lyon's	Dicot	50
Endangered		
Pentachaeta, White-rayed	Dicot	58
Endangered		
Peperomia, Wheeler's	Dicot	2
Endangered		
Petrel, Hawaiian Dark-rumped	Bird	56
Endangered		
Phacelia, Clay	Dicot	16
Endangered	D	25
Phacelia, Island	Dicot	25
Endangered	Diat	27
Phlox, Texas Trailing	Dicot	37
Endangered Phlox, Yreka	Dicot	20
Endangered	Dicot	20
Phyllostegia hirsuta (ncn)	Dicot	17
Endangered	Dicot	17
Phyllostegia kaalaensis (ncn)	Dicot	17
Endangered	Dicot	17
Phyllostegia knudsenii (ncn)	Dicot	16
Endangered	Dicot	10
Phyllostegia mannii (ncn)	Dicot	20
Endangered	Dicot	20
Phyllostegia mollis (ncn)	Dicot	37
Endangered	Dicot	51
Phyllostegia parviflora (ncn)	Dicot	17
Endangered	Dieve	17
Phyllostegia velutina (ncn)	Dicot	20
Endangered	2.000	. ~ 0

1/28/2010 10:51:23 AM Ver. 2.10.4

Page 118 of 128

Phyllostegia waimeae (ncn)	Dicot
Endangered Phyllostegia warshaueri (ncn)	Dicot
Endangered Phyllostegia wawrana (ncn)	Dicot
Endangered Pigeon, Puerto Rican Plain	Bird
Endangered	Dicot
Pilo (Hedyotis mannii) Endangered	
Pinkroot, Gentian Endangered	Dicot
Piperia, Yadon's Endangered	Monocot
Pitaya, Davis' Green	Dicot
Endangered Pitcher-plant, Alabama Canebrake	Dicot
Endangered Pitcher-plant, Green	Dicot
Endangered Pitcher-plant, Mountain Sweet	Dicot
Endangered	
Platanthera holochila (ncn) Endangered	Monocot
Plover, Piping Endangered	Bird
Plum, Scrub Endangered	Dicot .
Poa siphonoglossa (ncn)	Monocot
Endangered Po'e (Portulaca sclerocarpa)	Dicot
Endangered Polygala, Lewton's	Dicot
Endangered Polygala, Tiny	Dicot
Endangered	
Polygonum, Scott's Valley Endangered	Dicot
Polystichum calderonense (ncn) Endangered	Ferns
Pondberry Endangered	Dicot
Pondweed, Little Aguja Creek	Monocot
Endangered Po'ouli	Bird
Endangered Popcornflower, Rough	Dicot
Endangered Popolo 'Aiakeakua (Solanum sandwicense)	Dicot
Endangered	
Popolo Ku Mai (Solanum incompletum) Endangered	Dicot
Poppy, Sacramento Prickly Endangered	Dicot
Poppy-mallow, Texas Endangered	Dicot
Potentilla, Hickman's	Dicot
Endangered Prairie-chicken, Attwater's Greater	Bird
Endangered Prickly-apple, Fragrant	Dicot
Endangered Prickly-ash, St. Thomas	Dicot
Endangered	Mammal
Pronghorn, Sonoran Endangered	
Pseudoscorpion, Tooth Cave Endangered	Arachnid
Pteris lidgatei (ncn) Endangered	Ferns

Pua'ala (Brighamia rockii) Endangered Purple Bean Endangered Pu'uka'a (Cyperus trachysanthos) Endangered Pygmy-owl, Cactus Ferruginous Endangered Quillwort, Black-spored Endangered Quillwort, Louisiana Endangered Quillwort, Mat-forming Endangered Rabbit, Lower Keys Marsh Endangered Rabbit, Pygmy Endangered Rabbit, Riparian Brush Endangered Rabbitsfoot, Rough Endangered Rail, California Clapper Endangered Rail, Light-footed Clapper Endangered Rail, Yuma Clapper Endangered Rattleweed, Hairy Endangered Reed-mustard, Barneby Endangered Reed-mustard, Shrubby Endangered Remya kauaiensis (ncn) Endangered Remya montgomeryi (ncn) Endangered Remya, Maui Endangered Rhadine exilis (ncn) Endangered Rhadine infernalis (ncn) Endangered

Dicot 20 Bivalve 109 Monocot 33 Bird 130 Ferns 54 Ferns 124 Ferns 33 Mammal 1 Mammal 79 Mammal 24 Bivalve 64 Bird 207 Bird 118 Bird 172 Dicot 22 Dicot 11 Dicot 23 Dicot 16 Dicot 16 Dicot 20 Insect 17 17 Insect

1/28/2010 10:51:34 AM Ver. 2.10.4

Page 119 of 128

Dicot Rhododendron, Chapman Endangered Mammal Rice Rat (=Silver Rice Rat) Endangered Ridge-cress (=Pepper-cress), Barneby Dicot Endangered Riffleshell, Northern Bivalve Endangered Bivalve Riffleshell, Tan Endangered Gastropod Riversnail, Anthony's Endangered Rock-cress, Hoffmann's Dicot Endangered Rock-cress, Large (=Braun's) Dicot Endangered Rock-cress, McDonald's Dicot Endangered Rock-cress, Santa Cruz Island Dicot Endangered Rock-cress, Shale Barren Dicot Endangered Rock-cress, Small Dicot Endangered Rock-pocketbook, Ouachita (=Wheeler's pm) Bivalve Endangered Rocksnail, Plicate Gastropod Endangered Rosemary, Etonia Dicot Endangered Dicot Rosemary, Short-leaved Endangered Dicot Rush-pea, Slender Endangered Amphibian Salamander, Barton Springs Endangered Salamander, California Tiger Amphibian Endangered Salamander, Desert Slender Amphibian Endangered Salamander, Santa Cruz Long-toed Amphibian Endangered Salamander, Shenandoah Amphibian Endangered Salamander, Sonora Tiger Amphibian Endangered Amphibian Salamander, Texas Blind Endangered Sandalwood, Lanai (='Iliahi) Dicot Endangered Dicot Sandlace Endangered Sand-verbena, Large-fruited Dicot Endangered Dicot Sandwort, Cumberland Endangered Dicot Sandwort, Marsh Endangered Dicot Sanicula mariversa (ncn) Endangered Sanicula purpurea (ncn) Dicot Endangered Schiedea haleakalensis (ncn) Dicot Endangered Schiedea helleri (ncn) Dicot Endangered Dicot Schiedea hookeri (ncn) Endangered Schiedea kaalae (ncn) Dicot Endangered

164

20

1

13

362

254

66

25

67

21

25

81

46

38

25

8

19

6

28

480

28

49

39

26

75

20

36

38

36

24

17

20

20

16

17

Schiedea kauaiensis (ncn)	Dicot
Endangered	
Schiedea lydgatei (ncn)	Dicot
Endangered	
Schiedea membranacea (ncn)	Dicot
Endangered	Dicot
Schiedea nuttallii (ncn) Endangered	Dicot
Schiedea sarmentosa (ncn)	Dicot
Endangered	
Schiedea spergulina var. leiopoda (ncn)	Dicot
Endangered	
Schiedea verticillata (ncn)	Dicot
Endangered	
Schiedea, Diamond Head (Schiedea adamantis)	Dicot
Endangered	Dentile
Sea turtle, green Endangered	Reptile
Sea turtle, hawksbill	Reptile
Endangered	Repute
Sea turtle, Kemp's ridley	Reptile
Endangered	
Sea turtle, leatherback	Reptile
Endangered	
Sea-blite, California	Dicot
Endangered	
Seal, Caribbean Monk	Marine mml
Endangered Seal, Hawaiian Monk	Marine mm
Endangered	what the tilter
Sedge, Golden	Monocot
Endangered	
Sedge, White	Monocot
Endangered	
Sheep, Peninsular Bighorn	Mammal
Endangered	·
Sheep, Sierra Nevada Bighorn	Mammal
Endangered Shray Buone Viete Leke Ornete	Mammal
Shrew, Buena Vista Lake Ornate Endangered	IVIAIIIIIIAI
Shrike, San Clemente Loggerhead	Bird
Endangered	2010
Shrimp, Alabama Cave	Crustacean
Endangered	

1/28/2010 10:51:46 AM Ver. 2.10.4

Page 120 of 128

Shrimp, California Freshwater Endangered	Crustacean	65
Shrimp, Kentucky Cave	Crustacean	31
Endangered Silene alexandri (ncn)	Dicot	20
Endangered	Dicot	72
Silene lanceolata (ncn) Endangered	Dicot	73
Silene perlmanii (ncn) Endangered	Dicot	17
Silversword, Ka'u (Argyroxiphium kauense)	Dicot	20
Endangered Silversword, Mauna Kea ('Ahinahina)	Dicot	40
Endangered	Turnet .	19
Skipper, Carson Wandering Endangered	Insect	. 19
Skipper, Laguna Mountain Endangered	Insect	26
Snail, Armored	Gastropod	14
Endangered Snail, Iowa Pleistocene	Gastropod	78
Endangered	•	
Snail, Lioplax Cylindrical Endangered	Gastropod	. 20
Snail, Morro Shoulderband	Gastropod	24
Endangered Snail, O'ahu Tree (Achatinella abbreviata)	Gastropod	17
Endangered Snail, O'ahu Tree (Achatinella apexfulva)	Gastropod	17-
Endangered	•	
Snail, O'ahu Tree (Achatinella bellula) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella buddii)	Gastropod	17
Endangered Snail, O'ahu Tree (Achatinella bulimoides)	Gastropod	17
Endangered Snail, O'ahu Tree (Achatinella byronii)	Gastropod	17
Endangered	•	
Snail, O'ahu Tree (Achatinella caesia) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella casta) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella cestus)	Gastropod	17
Endangered Snail, O'ahu Tree (Achatinella concavospira)	Gastropod	17
Endangered	•	17
Snail, O'ahu Tree (Achatinella curta) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella decipiens) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella decora)	Gastropod	17
Endangered Snail, O'ahu Tree (Achatinella dimorpha)	Gastropod	17
Endangered	•	
Snail, O'ahu Tree (Achatinella elegans) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella fulgens) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella fuscobasis)	Gastropod	17
Endangered Snail, O'ahu Tree (Achatinella juddii)	Gastropod	17
Endangered	Gastrand	17
Snail, O'ahu Tree (Achatinella juncea) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella lehuiensis) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella leucorraphe)	Gastropod	17
Endangèred Snail, O'ahu Tree (Achatinella lila)	Gastropod	17
Endangered		

Snail, O'ahu Tree (Achatinella livida) Endangered	Gastropod	17
Snail, O'ahu Tree (Achatinella lorata)	Gastropod	17
Endangered	Odshopod	17
Snail, O'ahu Tree (Achatinella mustelina)	Gastropod	17
Endangered		
Snail, O'ahu Tree (Achatinella papyracea)	Gastropod	17
Endangered		
Snail, O'ahu Tree (Achatinella phaeozona)	Gastropod	17
Endangered	1 . ·	
Snail, O'ahu Tree (Achatinella pulcherrima)	Gastropod	17
Endangered	a	
Snail, O'ahu Tree (Achatinella pupukanioe)	Gastropod	17
Endangered Snail, O'ahu Tree (Achatinella rosea)	Gastropod	17
Endangered	Gasuopou	17
Snail, O'ahu Tree (Achatinella sowerbyana)	Gastropod	17
Endangered	Clashopou	17
Snail, O'ahu Tree (Achatinella spaldingi)	Gastropod	17
Endangered	oushopou	. 17
Snail, O'ahu Tree (Achatinella stewartii)	Gastropod	17
Endangered	\ I	
Snail, O'ahu Tree (Achatinella swiftii)	Gastropod	17
Endangered		
Snail, O'ahu Tree (Achatinella taeniolata)	Gastropod	17
Endangered		
Snail, O'ahu Tree (Achatinella thaanumi)	Gastropod	17
Endangered		
Snail, O'ahu Tree (Achatinella turgida)	Gastropod	17
Endangered	0	
Snail, O'ahu Tree (Achatinella valida) Endangered	Gastropod	17
Snail, Pecos Assiminea	Gastropod	15
Endangered	Gastropod	15
Snail, Snake River Physa	Gastropod	52
Endangered	Gusuopou	52
Snail, Tulotoma	Gastropod	63
Endangered		
Snail, Utah Valvata	Gastropod	35
Endangered		
Snail, Virginia Fringed Mountain	Gastropod	7
Endangered		
Snake, San Francisco Garter	Reptile	41
Endangered		
1/28/2010 10:51:57 AM Ver. 2.10.4		

Page 121 of 128

Snakeroot Endangered Snowbells, Texas Endangered Sparrow, Cape Sable Seaside Endangered Sparrow, Florida Grasshopper Endangered Spermolepis hawaiiensis (ncn) Endangered Spider, Government Canyon Cave Endangered Spider, Kauai Cave Wolf Endangered Spider, Madla's Cave Endangered Spider, Robber Baron Cave Endangered Spider, Spruce-fir Moss Endangered Spider, Tooth Cave Endangered Spider, Vesper Cave Endangered Spineflower, Ben Lomond Endangered Spineflower, Howell's Endangered Spineflower, Orcutt's Endangered Spineflower, Robust Endangered Spineflower, Scotts Valley Endangered Spineflower, Slender-horned Endangered Spineflower, Sonoma Endangered Spinymussel, James River Endangered Spinymussel, Tar River Endangered Springsnail, Alamosa Endangered Springsnail, Bruneau Hot Endangered Springsnail, Koster's Endangered Springsnail, Roswell Endangered Springsnail, Socorro Endangered Spurge, Deltoid Endangered Squirrel, Carolina Northern Flying Endangered Squirrel, Delmarva Peninsula Fox Endangered Squirrel, Mount Graham Red Endangered Stenogyne angustifolia (ncn) Endangered Stenogyne bifida (ncn) Endangered Stenogyne campanulata (ncn) Endangered Stenogyne kanehoana (ncn) Endangered Stickseed, Showy

Endangered

Dicot	28
Dicot	40
Bird	27
Bird	46
Dicot	73
Arachnid	17
Arachnid	16
Arachnid	17
Arachnid	17
Arachnid	67
Arachnid	13
Arachnid	17
Dicot	22
Dicot	21
Dicot	43
Dicot	49
Dicot	22
Dicot	104
Dicot	44
Bivalve	176
Bivalve	90
Gastropod	11
Gastropod	9
Gastropod	4
Gastropod	4
Gastropod	11
Dicot	15
Mammal	132
Mammal	178
Mammal	14
Dicot	20
Dicot	20
Dicot	16
Dicot	17
Dicot	10

Stickyseed, Baker's	Dicot	27
Endangered		
Stilt, Hawaiian (=Ac'o)	Bird	73
Endangered		
Stirrupshell	Bivalve	28
Endangered		100
Stonecrop, Lake County	Dicot	139
Endangered Stork, Wood	Bird	1428
Endangered	Bild	1420
Sumac, Michaux's	Dicot	292
Endangered		
Sunflower, San Mateo Woolly	Dicot	19
Endangered		
Sunflower, Schweinitz's	Dicot	193
Endangered		
Tadpole Shrimp, Vernal Pool	Crustacean	484
Endangered	-	
Taraxacum, California	Dicot	25
Endangered	Diant	25
Tarplant, Gaviota	Dicot	25
Endangered Tectaria Estremerana	Ferns	2
Endangered	rems	2
Tem, California Least	Bird	239
Endangered	Dire	200
Tern, Interior (population) Least	Bird	1622
Endangered		
Tern, Roseate	Bird	208
Endangered		
Ternstroemia subsessilis (ncn)	Dicot	2
Endangered		
Tetramolopium arenarium (ncn)	Dicot	20
Endangered	Dist	20
Tetramolopium capillare (ncn)	Dicot	20
Endangered	Dicot	17
Tetramolopium filiforme (ncn) Endangered	Dicot	17,
Tetramolopium lepidotum ssp. lepidotum (ncn)	Dicot	17
Endangered	Dicot	17
Tetramolopium remyi (ncn)	Dicot	20
Endangered		
Thistle, Chorro creek Bog	Dicot	24
Endangered		

1/28/2010 10:52:08 AM Ver. 2.10.4

Page 122 of 128

Thistle, Fountain Endangered Thistle, La Graciosa Endangered Thistle, Suisun Endangered Thornmint, San Mateo Endangered Threeridge, Fat (Mussel) Endangered Thrush, Large Kauai Endangered Thrush, Molokai (Oloma'o) Endangered Thrush, Small Kauai (Puaiohi) Endangered Toad, Arroyo Southwestern Endangered Toad, Houston Endangered Torreya, Florida Endangered Tree Fern, Elfin Endangered Trematolobelia singularis (ncn) Endangered Trillium, Persistent Endangered Trillium, Relict Endangered Tuctoria, Green's Endangered Turtle, Alabama Red-bellied Endangered Turtle, Plymouth Red-bellied Endangered Uhiuhi (Caesalpinia kavaiensis) Endangered Ulihi (Phyllostegia glabra var. lanaiensis) Endangered Umbel, Huachuca Water Endangered Uvillo Endangered Vernonia Proctorii (ncn) Endangered Vetch, Hawaiian (Vicia menziesii) Endangered Vigna o-wahuensis (ncn) Endangered Viola helenae (ncn) Endangered Viola lanaiensis (ncn) Endangered Viola oahuensis (ncn) Endangered Vireo, Black-capped Endangered Vireo, Least Bell's Endangered Vole, Amargosa Endangered Vole, Florida Salt Marsh Endangered Vole, Hualapai Mexican Endangered Wahane (Pritchardia aylmer-robinsonii)

Endangered

Endangered

Wahine Noho Kula (Isodendrion pyrifolium)

Dicot	64
Dicot	49
Dicot	23
Dicot	19
Bivalve	31
Bird	16
Bird	20
Bird	16
Amphibian	219
Amphibian	157
Conf/cycds	30
Ferns	2
Dicot	17
Monocot	32
Monocot	89
Dicot	202
Reptile	33
Reptile	17
Dicot	57
Dicot	20
Dicot	44
Dicot	6
Dicot	3
Dicot	20
Dicot	56
Dicot	16
Dicot	20
Dicot	17
Bird	590
Bird	253
Mammal	31
Mammal	8
Mammal	23
Monocot	16
Dicot	20

Wallflower, Ben Lomond	Dicot	22
Endangered		
Wallflower, Contra Costa	Dicot	18
Endangered		
Wallflower, Menzie's	Dicot	76
Endangered		
Walnut, Nogal	Dicot	. 2
Endangered		
Warbler (=Wood), Golden-cheeked	Bird	359
Endangered		
Warbler (=Wood), Kirtland's	Bird	229
Endangered		
Warbler, Bachman's	Bird	50
Endangered		
Warea, Wide-leaf	Dicot	28
Endangered		
Watercress, Gambel's	Dicot	125
Endangered		
Water-willow, Cooley's	Dicot	7
Endangered		
Wawae'lole (Phlegmariurus (=Huperzia) mannii)	Ferns	40
Endangered		
Wawae'Iole (Phlegmariurus (=Lycopodium) nutans)	Ferns	17
Endangered		
Whale, Finback	Marine mml	87
Endangered	· .	
Whale, Humpback	Marine mml	90
Endangered		
Whale, northern right	Marine mml	18
Endangered	• • •	
Wild-buckwheat, Clay-loving	Dicot	29
Endangered		
Wild-rice, Texas	Monocot	75
Endangered		
Wire-lettuce, Malheur	Dicot	1
Endangered		
Wireweed	Dicot	19
Endangered		
Woodland-star, San Clemente Island	Dicot	25
Endangered		
Woodpecker, Ivory-billed	Bird	35
Endangered		20
Woodpecker, Red-cockaded	Bird	3401
Endangered	214	5101
Ditam Derva		
1/28/2010 10:52:10 AM Vár 2 10 4		

1/28/2010 10:52:19 AM Vér. 2.10.4

US EPA ARCHIVE DOCUMENT

Page 123 of 128

Woodrat, Key Largo Endangered Woodrat, Riparian Endangered Woolly-star, Santa Ana River Endangered Woolly-threads, San Joaquin Endangered Xylosma crenatum (ncn) Endangered Yerba Santa, Lompoc Endangered Ziziphus, Florida Endangered Adobe Sunburst, San Joaquin Threatened Amaranth, Seabeach Threatened Amole, Cammatta Canyon Threatened Amole, Purple Threatened Amphianthus, Little Threatened Aster, Decurrent False Threatened Aupaka (Isodendrion longifolium) Threatened Baccharis, Encinitas Threatened Bankclimber, Purple Threatened Barbara Buttons, Mohr's Threatened Beaked-rush, Knieskern's Threatened Bear, Grizzly Threatened Bear, Louisiana Black Threatened Beetle, Delta Green Ground Threatened Beetle, Northeastern Beach Tiger Threatened Beetle, Puritan Tiger Threatened Beetle, Valley Elderberry Longhorn Threatened Birch, Virginia Round-leaf Threatened Birds-in-a-nest, White Threatened Bladderpod, Dudley Bluffs Threatened Bladderpod, Lyrate Threatened Bladderpod, Missouri Threatened Blazing Star, Ash Meadows Threatened Blazing Star, Heller's Threatened Bluecurls, Hidden Lake Threatened Boa, Mona Threatened Bonamia, Florida Threatened Brodiaea, Chinese Camp

Threatened

Mammal	1
Mammal	24
Dicot	70
Dicot	169
Dicot	16
Dicot	25
Dicot	19
Dicot	.76
Dicot	171
Monocot	24
Monocot	51
Dicot	174
Dicot	301
Dicot	33
Dicot	43
Bivalve	126
Dicot	66
Monocot	93
Mammal	371
Mammal	679
Insect	23
Insect	119
Insect	73
Insect	377
Dicot	10
Dicot	6
Dicot	1
Dicot	31
Dicot	66
Dicot	14
Dicot	51
Dicot	25
Reptile	2
Dicot	82
Monocot	9

Brodiaea, Thread-leaved	Monocot	12
Threatened Buckwheat, Scrub	Dicot	5
Threatened	Dicot	5
Buckwheat, Southern Mountain Wild	Dicot	2
Threatened	Dicot	2
Butterfly Plant, Colorado	Dicot	1
Threatened	Dicot	1
Butterfly, Bay Checkerspot (Wright's euphydryas)	Insect	6
Threatened	liiseet	0
Butterfly, Oregon Silverspot	Insect	6
Threatened	hisect	0
Butterweed, Layne's	Dicot	2
Threatened	Dicol	2
Butterwort, Godfrey's	Dicot	~ (
Threatened	Dicot	<u> </u>
Cactus, Bunched Cory	Dicot	1
Chreatened	Dicot	1
	Direct	1
Cactus, Chisos Mountain Hedgehog	Dicot	1
Threatened Cactus, Cochise Pincushion	Direct	. I
,	Dicot	· 1
Threatened	Direct	
Cactus, Lee Pincushion	Dicot	. 8
Threatened	Direct	2
Cactus, Lloyd's Mariposa	Dicot	2
Threatened	Dicot	
Cactus, Mesa Verde	Dicot	- 2
Threatened	Direct	2
Cactus, Siler Pincushion	Dicot	3
Threatened	Direct	
Cactus, Uinta Basin Hookless	Dicot	8
Threatened	Diaut	
Cactus, Winkler	Dicot	. 1
Threatened	D' 1	
Caracara, Audubon's Crested	Bird	14
Threatened	Direct	
Catchfly, Spalding's	Dicot	11
Threatened		
Ceanothus, Vail Lake	Dicot	2
Threatened		-
Centaury, Spring-loving	Dicot	2
Threatened		
Checker-mallow, Nelson's	Dicot	16
Threatened		

Page 124 of 128

. 173

Chumbo, Higo Threatened Clarkia, Springville Threatened Clover, Fleshy Owl's Threatened Clover, Prairie Bush Threatened Cobana Negra Threatened Coqui, Golden Threatened Crocodile, American Threatened Crownbeard, Big-leaved Threatened Cycladenia, Jones Threatened Cypress, Gowen Threatened Daisy, Lakeside Threatened Daisy, Maguire Threatened Daisy, Parish's Threatened Dudleya, Conejo Threatened Dudleya, Marcescent Threatened Dudleya, Santa Cruz Island Threatened Dudleva, Santa Monica Mountains Threatened Dudleya, Verity's Threatened Dwarf-flax, Marin Threatened Eagle, Bald Threatened Elimia, Lacy Threatened Evening-primrose, San Benito Threatened Fairy Shrimp, Vernal Pool Threatened Fatmucket, Arkansas Threatened Fern, Alabama Streak-sorus Threatened Fern, American hart's-tongue Threatened Fleabane, Zuni Threatened Four-o'clock, Macfarlane's Threatened Frog, California Red-legged Threatened Frog, Chiricahua Leopard Threatened Fruit, Earth (=geocarpon) Threatened Gesneria pauciflora (ncn) Threatened Gnatcatcher, Coastal California Threatened Goldenrod, Blue Ridge Threatened

Goldenrod, Houghton's

Threatened

Dicot	2
Dicot	24
Dicot	149
Dicot	1054
Dicot	5
Amphibian	2
Reptile	46
Dicot	43
Dicot	38
Conf/cycds	27
Dicot	59
Dicot	11
Dicot	53
Dicot	25
Dicot	67
Dicot	25
Dicot	67
Dicot	25
Dicot	17
Bird	115
Gastropod	11
Dicot	23
Crustacean	615
Bivalve	33
Ferns	10
Ferns	114
Dicot	27
Dicot	22
Amphibian	478
Amphibian	174
Dicot	· 115
Dicot	3
Bird	146
Dicot	35
Dicot	78

Goldenrod, White-haired Threatened Gooseberry, Miccosukee Threatened Grass, Colusa Threatened Grass, San Joaquin Valley Orcutt Threatened Grass, Slender Orcutt Threatened Groundsel, San Francisco Peaks Threatened Guajon Threatened Gumplant, Ash Meadows Threatened Haha (Cyanea recta) Threatened Ha'Iwale (Cyrtandra limahuliensis) Threatened Heartleaf, Dwarf-flowered Threatened Heather, Mountain Golden Threatened Howellia, Water Threatened Iguana, Mona Ground Threatened Iris, Dwarf Lake Threatened Isopod, Madison Cave Threatened Ivesia, Ash Meadows Threatened Joint-vetch, Sensitive Threatened Kolea (Myrsine linearifolia) Threatened Ladies'-tresses, Ute Threatened Liveforever, Laguna Beach Threatened Lizard, Coachella Valley Fringe-toed Threatened

Dicot	20
Dicot	29
Monocot	139
Monocot	185
Dicot	1•56
Dicot	9
Amphibian	4
Dicot	20
Dicot	16
Dicot	16
Dicot	119
Dicot	13
Dicot	108
Reptile	2
Monocot	113
Crustacean	34
Dicot	20
Dicot	273
Dicot	16
Monocot	1 42
Dicot	17
Reptile	28

1/28/2010 10:52:42 AM Ver. 2.10.4

Page 125 of 128

Lizard, Island Night	Reptile	75
Threatened Locoweed, Fassett's	Dicot	31
Threatened		
Lupine, Kincaid's Threatened	Dicot	139
Lynx, Canada	Mammal	286
Threatened	Dist	50
Makou (Peucedanum sandwicense) Threatened	Dicot	53
Manaca, palma de	Monocot	11
Threatened Manzanita, Ione	Dicot	. 31
Threatened	Dicot	. 51
Manzanita, Morro Threatened	Dicot	24
Manzanita, Pallid	Dicot	29
Threatened		
Milk-vetch, Ash Meadows Threatened	Dicot	14
Milk-vetch, Deseret	Dicot	16
Threatened Milk-vetch, Fish Slough	Dicot	17
Threatened	Dicot	17
Milk-vetch, Heliotrope	Dicot	16
Threatened Milk-vetch, Pierson's	Dicot	21
Threatened		21
Milkweed, Mead's Threatened	Dicot	315
Milkweed, Welsh's	Dicot	12
Threatened	Dist	017
Monkshood, Northern Wild Threatened	Dicot	217
Moth, Kern Primrose Sphinx	Insect	25
Threatened Mouse, Preble's Meadow Jumping	Mammal	92
Threatened	. Ivianinai	12
Mouse, Southeastern Beach Threatened	Mammal	18
Mucket, Orangenacre	Bivalve	107
Threatened		
Murrelet, Marbled Threatened	Bird	643
Mussel, Alabama Moccasinshell	Bivalve	142
Threatened Mussel, Fine-lined Pocketbook	Bivalve	269
Threatened	Bivalve	209
Mussel, Heclsplitter Inflated	Bivalve	131
Threatened Naucorid, Ash Meadows	Insect	14
Threatened		
Navarretia, Spreading Threatened	Dicot	79
Oak, Hinckley	Dicot	21
Threatened Orchid, Eastern Prairie Fringed	Monocot	822
Threatened	Without	822
Orchid, Western Prairie Fringed Threatened	Monocot	1161
Otter, Northern Sea	Marine mml	3
Threatened	Marina	70
Otter, Southern Sea Threatened	Marine mml	73
Owl, Mexican Spotted	Bird	591
Threatened Owl, Northern Spotted	Bird	893
Threatened		
Paintbrush, Ash-grey Indian Threatened	Dicot	25

Paintbrush, Golden	Dicot
Threatened	•
Pearlshell, Louisiana	Bivalve
Threatened	
Pink, Swamp	Monocot
Threatened	Ri-4
Plover, Western Snowy Threatened	Bird
Pogonia, Small Whorled	Monocot
Threatened	Wohocot
Potato-bean, Price's	Dicot
Threatened	2100
Prairie Dog, Utah	Mammal
Threatened	
Primrose, Maguire	Dicot
Threatened	
Pussypaws, Mariposa	Dicot
Threatened	
Rattlesnake, New Mexican Ridge-nosed	Reptile
Threatened Reed-mustard, Clay	Dicot
Threatened	Dicot
Rocksnail, Painted	Gastropod
Threatened	Gustopou
Rocksnail. Round	Gastropod
Threatened	1
Rosemary, Cumberland	Dicot
Threatened	
Roseroot, Leedy's	Dicot
Threatened	
Rush-rose, Island	Dicot
Threatened	Amphibian
Salamander, Cheat Mountain Threatened	Amphibian
Salamander, Flatwoods	Amphibian
Threatened	
Salamander, Red Hills	Amphibian
Threatened	
Salamander, San Marcos	Amphibian
Threatened	
Sandwort, Bear Valley	Dicot
Threatened	
Schiedea spergulina var. spergulina (ncn)	Dicot
Threatened	

1/28/2010 10:52:53 AM Ver. 2.10.4

Page 126 of 128

Schoepfia arenaria (ncn) Threatened Scrub-Jay, Florida Threatened Sea turtle, loggerhead Threatened Sea turtle, olive ridley Threatened Seagrass, Johnson's Threatened Seal, Guadalupe Fur Threatened Sea-lion, Steller (eastern) Threatened Sedge, Navajo Threatened Shagreen, Magazine Mountain Threatened Shearwater, Newell's Townsend's Threatened Shrimp, Squirrel Chimney Cave Threatened Silene hawaiiensis (ncn) Threatened Silversword, Haleakala ('Ahinahina) Threatened Skink, Blue-tailed Mole Threatened Skink, Sand Threatened Skipper, Pawnee Montane Threatened Skullcap, Large-flowered Threatened Slabshell, Chipola Threatened Snail, Bliss Rapids Threatened Snail, Chittenango Ovate Amber Threatened Snail, Flat-spired Three-toothed Threatened Snail, Newcomb's Threatened Snail, Noonday Threatened Snail, Painted Snake Coiled Forest Threatened Snail, Stock Island Tree Threatened Snake, Atlantic Salt Marsh Threatened Snake, Concho Water Threatened Snake, Eastern Indigo Threatened Snake, Giant Garter Threatened Snake, Lake Erie Water Threatened Snake, Northern Copperbelly Water Threatened Sneezeweed, Virginia Threatened Sparrow, San Clemente Sage Threatened Spineflower, Monterey Threatened Spiraea, Virginia

Threatened

Dicot	4
Bird	310
Reptile	816
Reptile	96
Monocot	51
Marine mml	27
Marine mml	5
Monocot	28
Gastropod	13
Bird	53
Crustacean	19
Dicot	20
Dicot	40
Reptile	25
Reptile	56
Insect	22
Dicot	58
Bivalve	17
Gastropod	43
Gastropod	17
Gastropod	22
Gastropod	16
Gastropod	4
Gastropod	3
Gastropod	1
Reptile	25
Reptile	78
Reptile	1251
Reptile	208
Reptile	27
Reptile	136
Dicot	59
Bird	25
Dicot	49
Dicot	372

Spurge, Garber's		 Dicot
Threatened		
Spurge, Hoover's		Dicot
Threatened		
Spurge, Telephus	<u>`</u>	Dicot
Threatened		Dicot
Squirrel, Northern Idaho Ground		Mammal
		Mammai
Threatened		
Staghorn coral		Coral
Threatened		-
Sunflower, Pecos		Dicot
Threatened		
Sunray, Ash Meadows		Dicot
Threatened		
Tarplant, Otay		Dicot
Threatened		
Tarplant, Santa Cruz		Dicot
Threatened		
Tetramolopium rockii (ncn)		Dicot
Threatened		2
Thelypody, Howell's Spectacular		Dicot
Threatened		Dicot
Thistle, Pitcher's		Dicot
Threatened		Dicot
Thistle, Sacramento Mountains		Direct
		Dicot
Threatened		D
Thornmint, San Diego		Dicot
Threatened		
Toad, Puerto Rican Crested		Amphibian
Threatened		
Tortoise, Desert		Reptile
Threatened		
Tortoise, Gopher	· ·	Reptile
Threatened		
Towhee, Inyo Brown	X 1	Bird
Threatened		
Townsendia, Last Chance		Dicot
Threatened		
Turtle, Bog (Northern population)		Reptile
Threatened		
Turtle, Flattened Musk		Reptile
Threatened		Keptile
Turtle, Ringed Sawback		Pantila
Threatened		Reptile
Theatenet		
1/28/2010 10:53:04 AM Ver 2:10.4		

1/28/2010 10:53:04 AM Ver. 2.10.4

Page 127 of 128

Turtle, Yellow-blotched Map	Reptile	68
Threatened		
Twinpod, Dudley Bluffs	Dicot	1
Threatened		
Vervain, California	Dicot	9
Threatened		
Water-plantain, Kral's	Monocot	34
Threatened		
Whipsnake (=Striped Racer), Alameda	Reptile	29
Threatened		
Whitlow-wort, Papery	Dicot	44
Threatened		
Wild-buckwheat, Gypsum	Dicot	11
Threatened		
Wings, Pigeon	Dicot	30
Threatened		
Yellowhead, Desert	Dicot	6
Threatened		

No species were selected for exclusion.

Dispersed species included in report. 1/28/2010 10:53:15 AM Ver. 2.10.4 Page 128 of 128

Species in Counties by State and Taxa

No species were excluded

Minimum of 1 Acre

All Medium Types Reported

Amphibian, Reptile, Crustacean, Bivalve, Gastropod, Arachnid, Insect, Dicot, Monocot, Ferns

root celery (PR)

AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, ME, MD, MA, MI, MN, MS, MO, MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK, OR, PA, PR, RI, SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, WY

28 Species Affected:

1				
Inverse Name:	·	·	Taxa:	Co. occurence:
Status:				
Bariaco			Dicot	2
Endangered				
Boa, Puerto Rican			Reptile	4
Endangered				
Capa Rosa			Dicot	1
Endangered				
Chupacallos			Dicot	1
Endangered				
Erubia			Dicot	1
Endangered	2			
Fern, Elaphoglossum serpens			Ferns	1
Endangered				
Fern, Thelypteris inabonensis			Ferns	2
Endangered				

Fern, Thelypteris yaucoensis Endangered Higuero De Sierra Endangered Holly, Cook's Endangered Ilex sintenisii (ncn) Endangered Lepanthes eltorensis (ncn) Endangered Palo Colorado (Ternstroemia luquillensis) Endangered Palo de Jazmin Endangered Palo de Nigua Endangered Palo de Rosa Endangered Prickly-ash, St. Thomas Endangered Sea turtle, green Endangered Sea turtle, hawksbill Endangered Sea turtle, leatherback Endangered Tree Fern, Elfin Endangered Uvillo Endangered Walnut, Nogal Endangered Cobana Negra Threatened Coqui, Golden Threatened Guajon Threatened Manaca, palma de Threatened

Ferns
Dicot
Dicot
Dicot
Monocot
Dicot
Reptile
Reptile
Reptile
Ferns
Dicot
Dicot
Dicot
Amphibian
Amphibian
Monocot
Amphibian

2

1

2

1

1

1

1

4

1

1

2

2

3

1

2

1

1

1

1

1

No species were selected for exclusion.

Toad, Puerto Rican Crested

Threatened

Dispersed species included in report.

1/28/2010 11:23:03 AM Ver. 2.10.4

Page 2 of 2

Species in Counties by State and Taxa

No species were excluded Minimum of 1 Acre

Freshwater

Fish

apples, citrus fruit, all, cotton, all, grapes, potatoes, cantaloups, cucumbers and pickles, honeydew melons, pumpkins, squash, watermelons, eggplant, peppers, bell, peppers, chile

(all peppers - excluding bell), pimientos, tomatoes, amaranth, celery, lettuce, all, escarole

and endive, lettuce, head, lettuce, leaf, lettuce, romaine, parsley, rhubarb, spinach, root celery (PR)

AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, ME, MD, MA, MI MN MS MO MT NE NV NH NI NM NV NC ND OH OK OP PA PP PI SC SD

MI, MN, MS, MO, MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK, OR, PA, PR, RI, SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, WY

140 Species Affected: **Inverse Name:** Taxa: Co. occurence: Status: Cavefish, Alabama Fish 11 Endangered Fish Chub, Bonytail 148 Endangered Fish Chub, Gila 105 Endangered Fish Chub, Humpback 78 Endangered Chub, Mohave Tui Fish 88 Endangered Chub, Oregon Fish 104 Endangered Chub, Owens Tui Fish 13 Endangered Chub, Pahranagat Roundtail Fish 1 Endangered Chub, Virgin River Fish 30 Endangered Fish Chub, Yaqui 16 Endangered Fish Cui-ui 7 Endangered Fish Dace, Ash Meadows Speckled 16 Endangered Dace, Clover Valley Speckled Fish 1 Endangered Fish Dace, Independence Valley Speckled 1 Endangered Dace, Kendall Warm Springs Fish 1 Endangered Dace, Moapa Fish 10 Endangered Darter, Amber Fish 47 Endangered Darter, Bluemask (=jewel) Fish 23 Endangered Darter, Boulder Fish 31 Endangered Darter, Duskytail Fish 29

JS EPA ARCHIVE DOCUMENT

Endangered			
Darter, Etowah	Fish	28	
Endangered			
Darter, Fountain	Fish	71	• •
Endangered Darter, Maryland	Fish	18	
Endangered	1 1511	10	
Darter, Okaloosa	Fish	- 23	
Endangered	T: 1	10	
Darter, Relict Endangered	Fish	10	
Darter, Vermilion	Fish	8	
Endangered			
Darter, Watercress	Fish	8 .	
Endangered Gambusia, Big Bend	Fish	12	
Endangered	FISH	12	
Gambusia, Clear Creek	Fish	2	
Endangered			
Gambusia, Pecos	Fish	25	
Endangered Gambusia, San Marcos	Fish	62	
Endangered	1 150	02	
Goby, Tidewater	Fish	307	
Endangered			
Logperch, Conasauga Endangered	Fish	24	
Logperch, Roanoke	Fish	125	
Endangered			
Madtom, Pygmy	Fish	16	
Endangered Madtom, Scioto	Fish	45	
Endangered	FISH	45	
Madtom, Smoky	Fish	15	
Endangered			
Minnow, Rio Grande Silvery	Fish	108	
Endangered Poolfish, Pahrump (= Pahrump Killifish)	Fish	25	
Endangered	1 1511	25	
Pupfish, Ash Meadows Amargosa	Fish	11	
Endangered		10	
Pupfish, Comanche Springs Endangered	Fish	19	
Pupfish, Desert	Fish	198	
Endangered			
Pupfish, Devils Hole	Fish	21	
Endangered Pupfish, Leon Springs	Fish	7	
Endangered	F ISH	/	
Pupfish, Owens	Fish	13	
Endangered			
Pupfish, Warm Springs	Fish	11 · · ·	
Endangered Salmon, Atlantic	Fish	73	
Endangered	1 1511	, , , , , , , , , , , , , , , , , , , ,	
Salmon, Chinook (Sacramento River Winter Run)	Fish	249	
Endangered		•••	
Salmon, Chinook (Upper Columbia River Spring) Endangered	Fish	209	,
Salmon, Coho (Central California Coast population)	Fish	109	
Endangered			
Salmon, Sockeye (Snake River population)	Fish	187	
Endangered Sawfish, Smalltooth	Fish	50	
Endangered	L IZII	50	
Shiner, Cahaba	Fish	49	
Endangered			

2/4/2010 9:33:11 AM Ver. 2.10.4

Page 19 of 21

Shiner, Cape Fear	Fish	65
Endangered Shiner, Palezone	Fish	42
Endangered		
Shiner, Topeka Endangered	Fish	294
Spinedace, White River	Fish	15
Endangered	12.1	2
Springfish, Hiko White River Endangered	Fish	3
Springfish, White River	Fish	1
Endangered Squawfish, Colorado	Fish	185
Endangered	. 1.121	165
Steelhead, (Southern California population)	Fish	126
Endangered Stickleback, Unarmored Threespine	Fish	88
Endangered	1 150	00
Sturgeon, Alabama	Fish	33
Endangered Sturgeon, Pallid	Fish	915
Endangered		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sturgeon, Shortnose	Fish	1090
Endangered Sturgeon, White	Fish	8
Endangered	,	
Sucker, June Endangered	Fish	13
Sucker, Lost River	Fish	25
Endangered		
Sucker, Modoc Endangered	Fish	9
Sucker, Razorback	Fish	282
Endangered Sucker, Shortnose	Fish	13
Endangered	risn	13
Topminnow, Gila (Yaqui)	Fish	124
Endangered Trout, Gila	Fish	49
Endangered		47
Woundfin Endangered	Fish	30
Catfish, Yaqui	Fish	16
Threatened		
Cavefish, Ozark Threatened	Fish	87
Chub, Chihuahua	Fish	12
Threatened	D' 1	0
Chub, Hutton Tui Threatened	Fish	8
Chub, Slender	Fish	76
Threatened Chub, Sonora	Fish	7
Threatened	1 1511	/
Chub, Spotfin	Fish	200
Threatened Dace, Blackside	Fish	81
Threatened		
Dace, Desert Threatened	Fish	6
Dace, Foskett Speckled	Fish	1
Threatened	Eich	10
Darter, Bayou Threatened	Fish	18
Darter, Cherokee	Fish	28
Threatened Darter, Goldline	Fish	32
Threatened		
Darter, Leopard	Fish	30
Threatened		

Darter, Niangua	Fish	103
Threatened		
Darter, Slackwater	Fish	59
Threatened		
Darter, Snail	Fish	187
Threatened		
Madtom, Neosho	Fish	48
Threatened		
Madtom, Yellowfin	Fish	. 93 .
Threatened	· · ·	
Minnow, Devils River	Fish	3
Threatened		
Minnow, Loach	Fish	123
Threatened		
Salmon, Chinook (California Coastal Run)	Fish	60
Threatened		10
Salmon, Chinook (Central Valley Fall Run)	Fish	40
Threatened		
Salmon, Chinook (Central Valley Spring Run)	Fish	319
Threatened	Pi-t-	110
Salmon, Chinook (Lower Columbia River) Threatened	Fish	119
Salmon, Chinook (Puget Sound)	Fish	171
Threatened	. FISH	1/1
Salmon, Chinook (Snake River Fall Run)	Fish	190
Threatened	11511	190
Salmon, Chinook (Snake River spring/summer)	Fish	206
Threatened	1 1511	200
Salmon, Chinook (Upper Willamette River)	Fish	212
Threatened		2.5
Salmon, Chum (Columbia River population)	Fish	90
Threatened		
Salmon, Chum (Hood Canal Summer population)	Fish	52
Threatened		
Salmon, Coho (Southern OR/Northern CA Coast)	Fish	164
Threatened	· ,	
Salmon, Sockeye (Ozette Lake population)	Fish	7
Threatened		
Sculpin, Pygmy	Fish	10
Threatened		
Shiner, Arkansas River	Fish	260
Threatened		
Shiner, Beautiful	Fish	42
Threatened		

· 2/4/2010 9:33:14 AM Ver. 2.10.4

Page 20 of 21

Shiner, Blue	Fish	73
Threatened	T'al-	10
Shiner, Pecos Bluntnose Threatened	Fish	18
Silverside, Waccamaw	Fish	12
Threatened		
Smelt, Delta	Fish	82
Threatened	Ti-t-	100
Spikedace Threatened	Fish	123
Spinedace, Big Spring	Fish	1
Threatened		-
Spinedace, Little Colorado	Fish	21
Threatened	T'-1	10
Springfish, Railroad Valley Threatened	Fish	13
Steelhead, (California Central Valley population)	Fish	394
Threatened		
Steelhead, (Central California Coast population)	Fish	151
Threatened		
Steelhead, (Lower Columbia River population)	Fish	136
Threatened Steelhead, (Middle Columbia River population)	Fish	195
Threatened	1 1511	195
Steelhead, (Northern California population)	Fish	99
Threatened		
Steelhead, (Snake River Basin population)	Fish	219
Threatened Steelhead, (South-Central California population)	Fish	102
Threatened	I ISII	102
Steelhead, (Upper Columbia River population)	Fish	210
Threatened	•	
Steelhead, (Upper Willamette River population)	Fish	197
Threatened Steelbased Duget Sound	Fish	107
Steelhead, Puget Sound Threatened	Fish	197
Sturgeon, green	Fish	75
Threatened		
Sturgeon, Gulf	Fish	587
Threatened	Tish	05
Sucker, Santa Ana Threatened	Fish	85
Sucker, Warner	Fish	8
Threatened		•
	Fish	43
Threatened	D' 1	-10
	Fish	712
Threatened Trout, Bull (Columbia River population)	Fish	508
Threatened	1 1511	500
Trout, Bull (Klamath River population)	Fish	505
Threatened		
,	Fish	53
Threatened Trout, Lahontan Cutthroat	Fish	129
Threatened	1 1511	12)
Trout, Little Kern Golden	Fish	44
Threatened		
Trout, Paiute Cutthroat	Fish	50
Threatened	X	
No species were selected for exclusion.		

No species were selected for exclusion.

Page 21 of 21

Species in Counties by State and Taxa

No species were excluded Minimum of 1 Acre

All Medium Types Reported

Mammal, Marine mml, Bird, Amphibian, Reptile, Crustacean, Bivalve, Gastropod, Arachnid, Insect, Dicot, Monocot, Ferns, Conf/cycds, Coral, Lichen

hops, sugarbeets for sugar (irrigated)

aging Affagtade 10 0-

Inverse Name:	Taxa:	Co. occurence:
Status:		
Bat, Indiana	Mammal	11
Endangered Butterfly, Fender's Blue	Insect	· 1
Endangered	lisect	· 1
Butterfly, Karner Blue	Insect	2
Endangered	histor	2
Butterfly, Mitchell's Satyr	Insect	1
Endangered		
Cactus, Wright Fishhook	Dicot	· 1
Endangered		
Caribou, Woodland	Mammal	1
Endangered		
Crane, Whooping	Bird	12
Endangered		_
Daisy, Willamette	Dicot	2
Endangered		10
Ferret, Black-footed	Mammal	16
Endangered Limpet, Banbury Springs	Control	2
Endangered	Gastropod	2
Lomatium, Bradshaw's	Dicot	2
Endangered	Dicot	. 2
Penstemon, Blowout	Dicot	4
Endangered	Diete	
Plover, Piping	Bird	10
Endangered		
Rabbit, Pygmy	Mammal	2
Endangered	· · · · · · · · · · · · · · · · · · ·	
Riffleshell, Northern	Bivalve	1
Endangered		
Snail, Snake River Physa	Gastropod	4
Endangered		
Snail, Utah Valvata	Gastropod	3
Endangered		
Springsnail, Bruneau Hot	Gastropod	1_{μ}
Endangered	Bird	7
Fern, Interior (population) Least Endangered	Bild	/
Bear, Grizzly	Mammal	7
Threatened	Wallina	
Butterfly Plant, Colorado	Dicot	3
Threatened	Dicti	
Checker-mallow, Nelson's	Dicot	. 3
Threatened		· ·
Clover, Prairie Bush	Dicot	1
Threatened		
Daisy, Lakeside	Dicot	1
Threatened		
Ladies'-tresses, Ute	Monocot	3

Threatened	
Lupine, Kincaid's	Dicot
Threatened	
Milk-vetch, Heliotrope	Dicot
Threatened	
Mouse, Preble's Meadow Jumping	Mammal
Threatened	
Murrelet, Marbled	Bird
Threatened	
Orchid, Eastern Prairie Fringed	Monocot
Threatened	
Orchid, Western Prairie Fringed	Monocot
Threatened	
Owl, Mexican Spotted	Bird
Threatened	
Owl, Northern Spotted	Bird
Threatened	
Prairie Dog, Utah	Mammal
Threatened	
Snail, Bliss Rapids	Gastropod
Threatened	
Snake, Lake Erie Water	Reptile
Threatened	
Thelypody, Howell's Spectacular	Dicot
Threatened	
Thistle, Pitcher's	Dicot
Threatened	
Townsendia, Last Chance	Dicot
Threatened	
Yellowhead, Desert	Dicot
Threatened	

No species were selected for exclusion.

Dispersed species included in report. 1/28/2010 11:13:28 AM Ver. 2.10.4 Page 4 of 5 1/28/2010 11:13:33 AM Ver. 2.10.4 Page 5 of 5

US EPA ARCHIVE DOCUMENT