US ERA ARCHIVE DOCUMENT

DATA EVALUATION RECORD ALGAE OR DIATOM EC₅₀ TEST §123-2 (TIER II)

1. CHEMICAL: Metsulfuron-methyl

Metabolite of Iodosulfuron-methyl

PC Code No.: 122010

2. TEST MATERIAL: AE F075736 Technical

Purity: 92.2%

3. CITATION:

Author: R. Heusel, O. Weller, and H. Gosch

<u>Title</u>: AE F075736 (Metsulfuron-methyl) substance, technical

Metabolite of AE F115008, Code AE F 075736 00 1C 92 0001; Algal growth inhibition- *Pseudokirchnerielia subcapitata*

Study Completion Date: October 22, 1998

Laboratory: Hoechst Schering AgrEvo GmbH

Umweltforschung Oekobiologie D-65926 Frankfurt am Main Federal Republic of Germany

Sponsor: Aventis CropScience USA LP

(Formerly AgrEvo USA Company)

Little Falls Centre One 2711 Centerville Road Wilmington, DE 19808

Laboratory Report ID: CE98/093

MRID No.: 45109108

DP Barcode: D266809

4. REVIEWED BY: Cheryl Nybro, Ph.D., Senior Staff Scientist, Dynamac Corporation

Signature:

Date:

APPROVED BY: Kathleen Ferguson, PhD., Senior Staff Scientist, Dynamac Corporation

Signature:

Date:

5. APPROVED BY: William Rabert, Biologist, OPP/EFED/ERB III

Signature: William Rabert

Date: /0/30/0/

6. STUDY PARAMETERS:

Scientific Name of Test Organism:

Pseudokirchneriella subcapitata

Initial Cell Count:

10,000 cells/mL

Definitive Test Duration:

96 hours

Type of Concentrations:

Mean measured

7. **CONCLUSIONS**:

The mean measured concentrations of AE F075736 Technical were reported as 14.47, 28.23, 58.40, 92.89, 180.78, 317.77, and 605. 85 μg ai./L. Based on these mean measured concentrations, the 96-hour EC₅₀ values are 130 μg ai./L for the area under the curve, 150 μg ai./L for cell growth rate and approximately 660 μg ai./L for the growth rate. The NOAEC for *Pseudokirchnerielia subcapitata* exposed to AE F075736 Technical was 14.5 μg ai./L for all three endpoints.

This study is deemed to be scientifically valid and fulfills the objectives for an algae EC_{50} toxicity test. This study is categorized as CORE.

Results Synopsis

	Area under the Curve	Cell Density	Growth Rate
EC ₅₀ (95% C.I.):	130 (88 - 210) μg ai./L	150 (100 - 220) μg ai./L	660* (580 - 740) μg ai./L
EC ₅ (95% C.I.):	16 (5.5 - 49) μg ai./L	22 (8.7 - 57) μg ai./L	110 (79 - 170) μg ai./L
Probit Slope:	1.79 (0.314)	1.99 (0.331)	2.17 (0.249)
NOAEC:	14.5 μg ai./L	14.5 μg ai./L	14.5 μg ai./L
* Toxicit	y value is not bracketed b	y the test levels, hence it is	an approximation.

8. ADEQUACY OF THE STUDY:

A. Classification: Core

B. Rationale: N/A

C. Repairability: N/A

9. GUIDELINE DEVIATIONS:

1. According to the guideline criteria, test duration should be 120 hours. However, 96 or 120 hour algal studies will be accepted according to the EPA Office of Prevention, Pesticides and Toxic Substances memorandum "Closure on Nontarget Plant Phytotoxicity Policy Issues" October 21, 1994.

10. SUBMISSION PURPOSE: To determine the effect of AE F075736 Technical in the growth inhibition of *Pseudokirchnerielia subcapitata*

11. MATERIALS AND METHODS:

A. Test Organisms

Guideline Criteria	Reported Information
Species: Skeletonema costatum Anabaena flos-aquae Selenastrum capricornutum Navicula pelliculosa	Pseudokirchneriella subcapitata previously known as Selenastrum capricornutum
Initial number of cells: 3,000 - 10,000 cells/mL	Yes, 10,000 cells/mL
Nutrients: Standard formula	Yes, Synthetic medium: 20XAAP

B. Test System

Guideline Criteria	Reported Information
Solvent:	No solvent; algal growth medium
Temperature: Skeletonema: 20 ± 1°C Others: 24-25 ± 1°C	Yes, Desired range: 24 -25°C Observed range: 24.1-25.2°C
Light Intensity: Anabaena: 2.0 Klux (±15%) Others: 4.0-5.0 Klux (±15%)	Yes; Observed range:59.8 - 69.6 uE*m ⁻² *s ⁻¹ x 72 equals 4.3 - 5.0 Klux
Photoperiod: Skeletonema: 14 h light, 10 h dark, or 16 h light, 8 h dark Others: Continuous	Yes. Continuous Wide-spectrum white-type fluorescent tubes
Test Media pH: Skeletonema: approx. 8.0 Others: approx. 7.5	Test Medium pH: 7.5 7.7-9.1 (at 96 hours)

C. Test Design

Guideline Criteria	Reported Information
Dose range: 2x or 3x progression	Yes, 1.8x
Doses: at least 5	7 (nominal applications of 18, 32, 56, 100, 180, 320 and 560 μg technical/L)
Controls: Negative and/or solvent	Yes, Only negative controls needed
Replicates per dose: 3 or more	Yes, 3
Duration of test: 120 hours	Okay, 96 hours
Daily observations were made?	Yes, daily cell counts were made.
Method of observations:	Cell counts were performed using counting chambers and a microscope.
Maximum labeled rate:	Not reported for the parent compound.

12. <u>REPORTED RESULTS</u>:

Guideline Criteria	Reported Information
Initial and 120-hr. cell densities were measured?	Acceptable: Initial, 24-, 48-, 72- and 96-hour cell densities were measured.
Control cell count at 120-hr. ≥2x initial count?	Yes, 205x at 96 hours.
Initial chemical concentrations measured? (Optional)	Yes
Raw data included?	Yes

Dose Response:

Nominal Concentration (μg a.i./L)	Mean Measured Concentration (μg a.i./L)	96-Hour Mean Cell Count (x 10 ⁴)	Mean % Inhibition*	Mean 7-day pH*
Control	0.0	205.7		9.1
18	14.47	216.9	- 5.4	9.4

32	28.23	143.9	30.0	8.9
56	58.40	143.0	30.5	8.8
100	92.89	129.8	36.9	8.4
180	180.78	111.4	45.8	8.0
320	317.77	52.1	74.7	7.9
560	605.85	15.4	92.5	7.7

^{*} Reviewer-calculated mean values.

Other Significant Results: No observed effects reported on alga.

Statistical Results:

Statistical Methods: The (NOAEC) was determined ANOVA with DUNCAN's Multiple Range Test Procedures. The method used for determining the EC₅₀ values was not reported, but appears to be the Probit approach

Cell Density:

 EC_{50} : > 560 µg ai./L (96 hours)

95% C.I.: N/A

Probit Slope: N/A

NOAEC: 18 μg/L

Area Under the Growth Curve:

EC₅₀: 122 μg/L (96 hours)

95% C.I.: 0.121-0.124 mg/L

Probit Slope: N/A

NOAEC: 18 µg/L

Growth Rate:

 EC_{50} : > 560 µg/L (96 hours)

95% C.I.: not reported

Probit Slope: N/A

NOAEC: 18 µg technical/L

13. <u>VERIFICATION OF STATISTICAL RESULTS</u>:

Statistical Method: Normality was checked with Chi square and Shapiro Wilks tests. Homogeneity was tested with Hartley and Bartletts tests. The Bonferroni t-test and the Williams test was used to determine the NOAEC. EC₅₀ values were determined using non-linear regression as in Bruce and Versteeg (1992). Toxicity values based on mean measured test concentrations.

	Cell Density	Growth Rate	Area under the Curve
EC ₅₀ (95% C.I.): 150	(100 - 220) μg ai./L	660* (580 - 740) μg ai./L	130 (88 - 210) μg ai./L
EC ₅ (95% C.I.): 22	(8.7 - 57) µg ai./L	110 (79 - 170) μg ai./L	16 (5.5 - 49) μg ai./L

Probit Slope:

1.99 (0.331)

2.17 (0.249)

1.79 (0.314)

NOAEC:

14.5 μg ai./L

14.5 µg ai./L

14.5 μg ai./L

* Toxicity value is not bracketed by the test levels, hence it is an approximation.

14. REVIEWER'S COMMENTS:

There were minor inconsistencies with standard protocol. However, findings of this study are deemed to be scientifically valid and fulfill the objectives for an algae EC_{50} toxicity test. This study is categorized as CORE.

Based on mean measured concentrations of AE F075736 Technical, the 96-hour EC $_{50}$ values for *Pseudokirchnerielia subcapitata* are 130 µg ai./L (area under the curve), 150 µg ai./L (cell density) and approximately 660 µg ai./L (cell growth rate). The NOAEC was the same for all three assessments, 14.5 µg ai./L.

15. RESULTS OF STATISTICAL VERIFICATION:

Data were initially assessed for normality (i.e., Chi square and Shapiro Wilks tests) and homogeneity of variance (i.e., Hartley and Bartletts tests). Except for the "area under the curve," the data for endpoints were normally distributed and possessed homogenous variance. Results from Williams test and Ecx calculations are based on mean measured test concentrations and are presented below.

Area under the Curve:

An ANOVA test could not be run on data for the area under the curve, because the mean variance was zero.

EC₅₀ (95% C.I.): 130 (88 - 210) μ g ai./L EC₅ (95% C.I.): 16 (5.5 - 49) μ g ai./L

Probit Slope:

1.79 (0.314)

NOAEC:

14.5 ug ai./L

AE F075736 (Metsulfuron-methyl), a Iodosulfuron- methyl Metabolite Pseudokirchneriella subcapitata (cell numbers x 10⁴)

96-Hour EC₅₀ (95% C.I.):

150 (100 - 220) μg ai./L

96-Hour EC₅ (95% C.I.): Probit Slope (Std. Error):

605.85

22 (8.7 - 57) μg ai./L 1.99 (0..331)

NOAEC:

14.5 μg ai./L

TRANSF	ORM: NO TRANSFOI	RMATIO	N	NUMBER OF GROUPS: 8
GROUP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Control	1	231.4000	231.4000
1	Control	2	260.8000	260.8000
1	Control	3	136.4000	136.4000
1	Control	4	163.0000	163.0000
1	Control	5	209.6000	209.6000
1	Control	6	233.2000	233.2000
2	14.47	1	193.0000	193.0000
2	14.47	2	217.2000	217.2000
2	14.47	3	240.4000	240.4000
3	28.23	1	106.0000	106.0000
3 3	28.23	2	167.2000	167.2000
3	28.23	3	158.6000	158.6000
4	58.40	1	167.6000	167.6000
4	58.40	2	102.0000	102.0000
4	58.40	3	159.4000	159.4000
5	92.89	1	145.0000	145.0000
5	92.89	2	144.0000	144.0000
5	92.89	3	100.4000	100.4000
6	180.78	1 .	135.8000	135.8000
6	180.78	2	101.0000	101.0000
6	180.78	3	97.4000	97.4000
7	317.77	1	62.6000	62.6000
7	317.77	2	52.4000	52.4000
7	317.77	3	41.4000	41.4000
8	605.85	1	19.8000	19.8000
	605.85	2	13.4000	13.4000
8	605.85	3	13.0000	13.0000

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2 GROUP IDENTIFICATION MIN N MAX **MEAN** 1 Control 136.400 260.800 205.733 2 14.47 3 193.000 240.400 216.867 3 28.23 3 106.000 167.200 143.933 3 58.40 102.000 167.600 143.000 5 92.89 3 100.400 145.000 129.800 6 180.78 3 97.400 135.800 111.400 7 317.77 3 41.400 62.600 52.133

13.000

15.400

19.800

SUMN	<u>MARY STATISTICS OF</u>	<u> TRANSFORM</u>	<u> 1ED DAT</u>	A TABLE 2 of 2	_
GROUP	IDENTIFICATION	VARIANCE	SD	SEM	_
1.	Control	2218.747	47.104	19.230	
2	14.47	561.773	23.702	13.684	
3	28.23	1097.693	33.131	19.128	
4	58.40	1277.560	35.743	20.636	
5	92.89	648.520	25.466	14.703	
6	180.78	449.760	21.208	12.244	
7	317.77	112.413	10.603	6.121	
8	605.85	14.560	3.816	2.203	

	AN	OVA TABLE		
SOURCE	DF	SS	MS	F
Between	7	115795.227	16542.175	16.186
Within (Error)	19	19418.293	1022.015	
Total	26	135213,520		

Critical F value = 2.54 (0.05,7,19); Since F > Critical F REJECT Ho:All groups equal

DUNNETTS TEST ***** WARNING ******

This data set has unequal replicates. The Bonferroni T-test should be used instead of the Dunnetts test.

BONI	FERRONI T-TEST -	TABLE 1 OF 2	Ho:Co	ntrol <treatment< th=""><th></th><th></th></treatment<>		
		TRANSFORMED	MEAN	CALCULATED	T STAT	
GROUP	IDENTIFICATION	MEAN	ORIGINAL	IN UNITS	SIG	
1	Control	205.733	205.733			
2	14.47	216.867	216.867	-0.493		
3	28.23	143.933	143.933	2.734	*	
4	58.40	143.000	143.000	2.775	*	
5	92.89	129.800	129.800	3.359	*	
6	180.78	111.400	111.400	4.173	*	
7	317.77	52.133	52.133	6.795	*	
_8	605.85	15.400	15.400	8.420	*	

Bonferroni T table value = 2.70 (1 Tailed Value, P=0.05, df=19,7)

BONFE	BONFERRONI T-TEST - TABLE 2 OF 2 Ho:Control <treatment< th=""></treatment<>							
		NUM OF	Minimum Sig Diff	% of	DIFFERENCE			
GROUP	IDENTIFICATION	REPS	(IN ORIG. UNITS)	CONTROL	FROM CONTROL			
1	Control	6						
2	14.47	3	60.967	29.6	-11.133			
3	28.23	3	60.967	29.6	61.800			
4	58.40	3	60.967	29.6	62.733			
5	92.89	3	60.967	29.6	75.933			
6	180.78	3	60.967	29.6	94.333			
7	317.77	3	60.967	29.6	153.600			
_8	605.85	3	60.967	29.6	190.333			

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

		ORIGINAL	TRANSFORMED	ISOTONIZED	
IDENTIFICATION	N	MEAN	MEAN	MEAN	
Control	6	205.733	205.733	209.444	
14.47	3	216.867	216.867	209.444	
28.23	3	143.933	143.933	143.933	
58.40	3.	143.000	143.000	143.000	
92.89	3	129.800	129.800	129.800	
180.78	3	111.400	111.400	111.400	
317.77	3	52.133	52.133	52.133	
605.85	3	15.400	15.400	15.400	
	Control 14.47 28.23 58.40 92.89 180.78 317.77	Control 6 14.47 3 28.23 3 58.40 3 92.89 3 180.78 3 317.77 3	IDENTIFICATION N MEAN Control 6 205.733 14.47 3 216.867 28.23 3 143.933 58.40 3 143.000 92.89 3 129.800 180.78 3 111.400 317.77 3 52.133	IDENTIFICATION N MEAN MEAN Control 6 205.733 205.733 14.47 3 216.867 216.867 28.23 3 143.933 143.933 58.40 3 143.000 143.000 92.89 3 129.800 129.800 180.78 3 111.400 111.400 317.77 3 52.133 52.133	IDENTIFICATION N MEAN MEAN MEAN Control 6 205.733 205.733 209.444 14.47 3 216.867 216.867 209.444 28.23 3 143.933 143.933 143.933 58.40 3 143.000 143.000 143.000 92.89 3 129.800 129.800 129.800 180.78 3 111.400 111.400 111.400 317.77 3 52.133 52.133 52.133

WIL	WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2								
	IS	OTONIZED	CALC.	SIG	TABLE	DEGREES OF			
IDENTIFIC	CATION	MEAN	WILLIAMS	P=.05	WILLIAMS	FREEDOM	<u>.</u>		
Co	ntrol	209.444							
14.	47	209.444	0.164		1.73	k= 1, v=19			
28.	23	143.933	2.734	*	1.81	k= 2, v=19			
58.	40	143.000	2.775	*	1.84	k= 3, v=19			
92.	89	129.800	3.359	*	1.85	k= 4, v=19			
180.	78	111.400	4.173	*	1.86	k= 5, v=19			
317.	77	52.133	6.795	*	1.87	k= 6, v=19			
605.	85	15.400	8.420	*	1.87	k= 7, v=19			

s = 31.969; Note: df used for table values are approximate when v > 20.

AE F075736 (Metsulfuron-methyl), a Iodosulfuron-methyl Metabolite *Pseudokircheriella subcapitata* - Growth Rate

96-Hour EC50 (95% C.I.): 660* (580 - 740) μg ai./L 96-Hour EC5 (95% C.I.): 110 (79 - 170) μg ai./L

Probit Slope (Std. error): 2.17 (0.249) NOAEC: 14.5 μ g ai /L

^{*} Toxicity value is not bracketed by the test concentrations, hence the value is an approximation.

TRANSF	ORM: NO TRANSFO	RMATIO	ON	NUMBER OF GROUPS: 8
GROUP	IDENTIFICATION	REP	VALUE	TRANS VALUE
			x 10 ⁻²	x 10 ⁻²
1	Control	1	5.6710	5.6710
1	Control	. 2	5.7960	5.7960
1	Control	3	5.1200	5.1200
1	Control	4	5.3060	5.3060
1	Control	5	5.5680	5.5680
1	Control	6	5.6790	5.6790
2	14.47	1	5.4820	5.4820
2	14.47	2	5.6050	5.6050
2	14.47	3	5.7110	5.7110
3	28.23	1	4.8580	4.8580
3	28.23	2	5.3320	5.3320
3	28.23	3	5.2770	5.2770
4	58.40	1	5.3350	5.3350
4	58.40	2	4.8180	4.8180
4	58.40	3	5.2830	5.2830
5	92.89	. 1	5.1840	5.1840
5	92.89	2	5.1780	5.1780
5	92.89	3	4.8010	4.8010
6	180.78	1	5.1160	5.1160
6	180.78	2	4.8070	4.8070
6	180.78	3	4.7700	4.7700
7	317.77	1	4.3090	4.3090
7 .	317.77	2	4.1240	4.1240
7	317.77	3	3.8780	3.8780
8	605.85	. 1	3.1100	3.1100
8	605.85	2	2.7030	2.7030
8	605.85	3	2.6720	2.6720

SUMN	MARY STATISTICS O	N TI	RANSFOR	MED DATA	TABLE 1 of 2	
GROUP	IDENTIFICATION	N	MIN	MAX	MEAN	
1	Control	6	0.5120	0.5796	0.5523	
2	14.47	3	0.5482	0.5711	0.5599	
3	28.23	3	0.4818	0.5335	0.5145	
5	92.89	3	0.4801	0.5184	0.5054	
6	180.78	3	0.4770	0.5116	0.4898	
7	317.77	3	0.3878	0.4309	0.4104	
8	605.85	3	0.2672	0.3110	0.2828	

SUMI	MARY STATISTICS O	N TRANSFORM	MED DAT	TA TABL	E 2 of 2
GROUP	IDENTIFICATION	VARIANCE	SD	SEM	
1	Control	0.066	0.258	0.105	
2	14.47	0.013	0.115	0.066	
3	28.23	0.067	0.259	0.150	
4	58.40	0.081	0.285	0.164	
5	92.89	0.048	0.219	0.127	
6	180.78	0.036	0.190	0.110	
7	317.77	0.047	0.216	0.125	
8	605.85	0.060	0.244	0.141	

	ANC	VA TABLE		
SOURCE	DF	SS	MS	F
Between	7	19.000	2.714	49.345
Within (Error)	19	1.037	0.055	
Total	26	20.037	-	

Critical F value = 2.54 (0.05,7,19); Since F > Critical F REJECT Ho:All groups equal

BONI	FERRONI T-TEST -	TABLE 1 OF 2	Ho:Co	ontrol <treatment< th=""><th></th></treatment<>	
		TRANSFORMED	MEAN	CALCULATED	T STAT
GROUP	IDENTIFICATION	MEAN	ORIGINAL	IN UNITS	SIG
1	Control	0.5523	0.5523		
2	14.47	0.5599	0.5599	-0.458	
3	28.23	0.5156	0.5156	2.217	
4	58.40	0.5145	0.5145	2.279	
5	92.89	0.5054	0.5054	2.828	*
6	180.78	0.4898	0.4898	3.773	*
7	317.77	0.4104	0.4104	8.561	*
88	605.85	0.2828	0.2828	16.251	*

Bonferroni T table value = 2.70 (1 Tailed Value, P=0.05, df=19,7)

BONI	FERRONI T-TEST -	TABLE 2	OF 2 Ho:Co	ntrol <treatn< th=""><th>nent</th></treatn<>	nent
		NUM OF	Minimum Sig Diff	% of	DIFFERENCE
GROUP	IDENTIFICATION	REPS	(IN ORIG. UNITS)	CONTROL	FROM CONTROL
1	Control	6			
2	14.47	3	0.447	8.1	-0.076
3	28.23	3	0.447	8.1	0.368
4	58.40	3	0.447	8.1	0.378
5	92.89	3	0.447	8.1	0.469
6.	180.78	3	0.447	8.1	0.626
7	317.77	3	0.447	8.1	1.420
_8	605.85	3	0.447	8.1	2.695

WIL	LIAMS TEST (Isotonic	regr	ession model)	TABLE 1 OF 2	
			ORIGINAL	TRANSFORMED	ISOTONIZED
GROUP	IDENTIFICATION	N	MEAN	MEAN	MEAN
1	Control	6	0.5523	0.5523	0.5549
2	14.47	3	0.5599	0.5599	0.5549
3	28.23	3	0.5156	0.5156	0.5156
4	58.40	3	0.5145	0.5145	0.5145
5	92.89	3	0.5054	0.5054	0.5054
6	-180.78	3	0.4898	0.4898	0.4898
7	317.77	3	0.4104	0.4104	0.4104
8	605.85	3	0.2828	0.2828	0.2.828

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2							
	ISOTONIZED	CALC.	SIG	TABLE	DEGREES OF		
<u>IDENTIFICATION</u>	MEAN	WILLIAMS	P=.05	WILLIAMS	FREEDOM		
Control	0.5549	,					
14.47	0.5549	0.153		1.73	k=1, v=19		
28.23	0.5156	2.226	*	1.81	k=2, v=19		
58.40	0.5145	2.289	*	1.84	k=3, v=19		
92.89	0.5054	2.840	*	1.85	k=4, v=19		
180.78	0.4898	3.788	*	1.86	k=5, v=19		
317.77	0.4104	8.596	*	1.87	k=6, v=19		
605,85	0.2828	16.318	*	1.87	k= 7, v=19		

s = 0.234; Note: df used for table values are approximate when v > 20.

6. STUDY PARAMETERS:

Definitive Study Duration: 96 hours

7. CONCLUSIONS:

The nominal concentrations of AE F075736 at test initiation were 0.018, 0.032, 0.056, 0.1, 0.18, 0.32, and 0.56 mg technical/L. Based on nominal concentrations, the 96-hour EC_{50} for cell growth rate was greater than 0.56 mg/L. The NOAEC (cell growth rate) for Pseudokirchnerielia subcapitata exposed to AE F075736 Technical was 0.018 mg technical/L.

There were minor inconsistencies with standard protocol. The pH was higher than required and the maximum labeled rate was not provided. However, findings of this study are deemed to be scientifically valid and fulfill the objectives for an algae EC₅₀ toxicity test. This study is categorized as CORE.

Results Synopsis

Cell Density:

EC₅₀: not reported

Probit Slope: N/A

Calculate 95% C.I.: not reported

NOAEC: 0.018 mg technical/L (calculated

using Williams test)

Area Under the Growth Curve:

EC₅₀: 0.122mg technical/L (96 hours)

95% C.I.: 0.121 - 0.124 mg technical/L

NOAEC: 0.018 mg technical/L

Growth Rate:

EC₅₀: >0.56 mg technical/L (96 hours)

95% C.I.: undetermined

Probit Slope: N/A

Probit Slope: N/A

NOAEC: 0.018 mg technical/L

8. ADEQUACY OF THE STUDY:

A. Classification: Core

B. Rationale: N/A

C. Repairability: N/A

9. GUIDELINE DEVIATIONS:

pH refers to the steet medium at the beginning

1. The pH ranged from 7.7 to 9.1. This pH is 0.2 to 1.4 units higher than that of the guideline criteria.

- 2. According to the guideline criteria, test duration should be 120 hours. However, 96 or 120 hour algal studies will be accepted according to the EPA Office of Prevention, Pesticides and Toxic Substances memorandum "Closure on Nontarget Plant Phytotoxicity Policy Issues" October 21, 1994.
- 3. According to the guideline criteria, cell densities should be measured at the beginning of the study and after 120 hr. However, 96 or 120 hour algal studies will be accepted according to the EPA Office of Prevention, Pesticides and Toxic Substances memorandum "Closure on Nontarget Plant Phytotoxicity Policy Issues" October 21, 1994.
- 4. According to the guideline criteria, control cell count should be done at 120 hr. However, 96 or 120 hour algal studies will be accepted according to the EPA Office of Prevention, Pesticides and Toxic Substances memorandum "Closure on Nontarget Plant Phytotoxicity Policy Issues" October 21, 1994.
- 5. The maximum label use rate was not provided. In MRID 45052217, the stated maximum label rate is 2 lb/A.
- **10. SUBMISSION PURPOSE:** To determine the effect of AE F075736 Technical in the growth inhibition of *Pseudokirchnerielia subcapitata*

buy.

11. MATERIALS AND METHODS:

A. Test Organisms

Guideline Criteria	Reported Information
Species: Skeletonema costatum Anabaena flos-aquae Selenastrum capricornutum Navicula pelliculosa	Pseudokirchneriella subcapitata previously known as Selenastrum capricornutum
Initial number of cells: 3,000 - 10,000 cells/mL	10,000 cells/mL
Nutrients: Standard formula	AA 20 XAAP, standard Synthetic medium

B. Test System

B. Test System		7
Guideline Criteria	Reported Information	
Solvent:	algal growth medium	·
Temperature: Skeletonema: 20°C Others: 24-25°C	Desired range: 24 -25°C Observed range: 24.1-25.2°C	_
Light Intensity: Anabaena: 2.0 Klux (±15%) Others: 4.0-5.0 Klux (±15%)	Desired range: $4000 - 5000 \text{ lux}$ Observed range: $59.8-69.6 \text{ uE*m}^{-2*}\text{s}^{-1} = 4.3$	Inx -5.0 Klex
Photoperiod: Skeletonema: 14 h light, 10 h dark, or 16 h light, 8 h dark Others: Continuous	Continuous cool white fluorescent tubes	
pH (dlgsl snehimm) Skeletonema: approx. 8.0 Others: approx. 7.5	7.5 7.7-9.1 (at 96 hours)	

C. Test Design

Guideline Criteria	Reported Information
Dose range: 2x or 3x progression	1.8 X 2/x
Doses: at least 5	7 (nominal applications of 0.018, 0.032, 0.056, 0.1, 0.18, 0.32, and 0.56 mg technical/L)
Controls: Negative and/or solvent	Negative
Replicates per dose: 3 or more	3
Duration of test: 120 hours	96 hours
Daily observations were made?	Yes
Method of observations:	Cell counts were performed (using an electronic particle counter) from collected test medium samples.
Maximum labeled rate:	Not reported

12. <u>REPORTED RESULTS</u>:

Guideline Criteria	Reported Information			
Initial and 120-hr. cell densities were measured?	Initial and 96-hour cell densities were measured.			
Control cell count at 120-hr. ≥2x initial count?	Control cell count at 96 hours ≥2x initial count. Yes (1.,205 X)			
Initial chemical concentrations measured? (Optional)	Yes			
Raw data included?	Yes			

Dose Response

Initial Measured Concentration (mg technical/L)	Avg. Cell Density	% Reduction	96-hour pH
Negative Control	2,057,000		9.3
0.018 mg/l	2,169,000	-5.4	9.5
0.032 mg/l 01295	1,439,000	30.0	9.0
0.056 mg/l 0.05163	1,430,000	30.5	8.9
0.1 mg/l 0.0922	1,299,000	36.8	8.4
0.18 mg/l (1.189.91)	1,114,000	45.8	8.1
0.32 mg/L	521,000	74.7	7.9
0.56 mg/L	293,000	85.8	7.7

Other Significant Results:

Statistical Results

Statistical Method: The (NOEC) was determined ANOVA with DUNCAN's Multiple Range Test Procedures. The method used for determining the EC₅₀ values was not reported, but appears to be the Probit approach

Cell Density:

EC₅₀: N/A 95% C.I.: N/A Probit Slope: N/A NOAEC: N/A

Area Under the Growth Curve:

EC₅₀: 0.122 mg technical/L (96 hours) 95% C.I.: 0.121-0.124 mg technical/L NOAEC: 0.018 mg technical/L

Growth Rate:

EC₅₀: >0.56 mg technical/L (96 hours) 95% C.I.: not reported

Probit Slope: N/A NOAEC: 0.018 mg technical/L

13. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method: Williams test for mean separation. EC_{50} values were determined using non-linear regression as in Bruce and Versteeg (1992).

Cell Density:

EC₅₀: 0.15 mg technical/L

95% C.I.: 0.11 - 0.22 mg technical/L

Probit Slope: N/A

NOAEC: 0.018 mg technical/L

Area Under the Growth Curve:

EC₅₀: 0.14 mg technical/L

95% C.I.: 0.09 - 0.21 mg technical/L

Probit Slope: N/A

NOAEC: 0.018 mg technical/L

Growth Rate: ***

EC₅₀: 0.60 mg technical/L

95% C.I.: 0.54 - 0.68 mg technical/L

Probit Slope: N/A

NOAEC: 0.018 mg technical/L

14. REVIEWER'S COMMENTS:

There were minor inconsistencies with standard protocol. The pH was higher than required and the maximum labeled rate was not provided. However, findings of this study are deemed to be scientifically valid and fulfill the objectives for an algae EC₅₀ toxicity test. This study is categorized as CORE.

The nominal concentrations of AE F075736 at test initiation were 0.018, 0.032, 0.056, 0.1, 0.18, 0.32, and 0.56 mg technical/L.

Based on nominal concentrations, the 96-hour EC₅₀ and NOAEC (cell growth rate) for *Pseudokirchnerielia subcapitata* exposed to AE F075736 Technical was >0.56 mg technical/L and 0.018 mg technical/L, respectively.

The light intensity was not measured in Klux and the pH was 1.6 units higher than the guideline criteria. However, the increase in pH may have been due to the presence of the organisms.

^{**} EC₅₀ slightly outside of the response of the highest concentration treatment group; values should be considered approximate.

15. RESULTS OF STATISTICAL VERIFICATION:

Data were initially assessed for normality and homogeneity of variance. Data for all endpoints are normally distributed and possess homogenous variance. Results from Williams test and Ecx calculations are presented below.

451091-08 algal percent inhibition

CELL DENSITY NOEC

DP Barcode D266809

Williams Test

[One-Sided Test for Decrease, alpha = 0:050000]

Dose	Isotone Means	T-bar	P-value	Significance
0	209			
0.018	209	-0.1641	N.S.	
0.032	144	2.733	0.0072	*
0.056	143	2.775	0.0066	*
0.1	130	3.356	<0.005	*
0.18	111	4.172	<0.005	*
0.32	52.1	6.794	<0.005	*
0.56	15.4	8.419	<0.005	*

[&]quot;*"=Significant; "N.S."=Not Significant.

0.15

CELL DENSITY ECX

EC50

Estimates of EC%

0.22

-----95% Bounds Std.Err. Lower Bound Parameter Estimate Lower Upper /Estimate 0.010 0.063 0.017 0.082 0.041 0.13 EC5 0.025 0.19 0.40 EC10 0.037 0.17 0.45 EC25 0.073 0.12 0.56

Slope = 2.09 Std.Err. = 0.358

0.11

0.077

0.69

AREA UNDER THE GROWTH CURVE NOEC

Williams Test

[One-Sided Test for Decrease, alpha = 0.050000]

Dose	Isotone Means	T-bar	P-value	Significance
0	4.13E+03			
0.018	4.13E+03	-0.3905	N.S.	
0.032	2.75E+03	2.415	0.014	*
0.056	2.75E+03	2.415	0.015	*
0.1	2.34E+03	3.243	<0.005	*. *
0.18	2.05E+03	3.83	<0.005	*
0.32	980	6.009	<0.005	*
0.56	360	7.27	<0.005	*

[&]quot;*"=Significant; "N.S."=Not Significant.

AREA UNDER THE GROWTH CURVE ECX

Estimates of EC%

Parameter	 Estimate	95% Bou	inds	Std.Err.	Lower Bound	
		Lower	Upper		/Estimate	
EC5	0.019	0.0064	0.054	0.22	0.35	
EC10	0.029	0.012	0.072	0.19	0.40	
EC25	0.061	0.031	0.12	0.14	0.52	
EC50	0.14	0.091	0.21	0.088	0.66	

Slope = 1.89 Std.Err. = 0.334

Goodness of fit: p = 0.094 based on DF= 5.0 19.

GROWTH RATE NOEC

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Williams Test		
fo		

[One-Sided Test for Decrease, alpha = 0.050000 ]

Dose	Isotone Means	T-bar	P-value	Significance
0	0.0555			·
0.018	0.0555	-0.1534	N.S.	
0.032	0.0516	2.226	0.021	*
0.056	0.0515	2.289	0.019	*
0.1	0.0505	2.84	0.0058	*
0.18	0.049	3.788	<0.005	* .
0.32	0.041	8.596	<0.005	*
0.56	0.0283	16.32	<0.005	*

[&]quot;*"=Significant; "N.S."=Not Significant.

#### GROWTH RATE ECx

Estimates of EC%

Parameter	Estimate	95% Bou	nds	Std.Err.	Lower Bound	
		Lower	Upper		/Estimate	
EC5	0.13	0.091	0.18	0.071	0.71	
EC10	0.18	0.14	0.23	0.054	0.77	
EC25	0.32	0.28	0.37	0.029	0.87	
EC50	0.60	0.54	0.68	0.024	0.89	
•						

Slope = 2.43 Std.Err. = 0.290

# 15. <u>REFERENCE</u>:

Bruce, R.D. and D.J. Versteeg. 1992. "A Statistical Procedure for Modeling Continuous Toxicity Data". *Environmental Toxicology and Chemistry* 11:1485-1494.