December 9, 1999

MEMORANDUM

SUBJECT: Review of Draft Cancer Assessment Document on Tetraconazole

FROM: Sanjivani Diwan
Executive Secretary
Cancer Assessment Review Committee
Health Effects Division (7509C)

TO: Addressees

Attached is the draft of the Cancer Assessment Document for Tetraconazole. Please make your comments on the attached draft and send it to me by COB December 16th.

Addressees
L. Brunsman
W. Burnam
M. Copley
K. Dearfield
V. Dobozy
Y. Ioannou
N. McCarroll
J. Fletcher
E. Rinde
J. Rowland
J. Stewart
C. Swentzel
L. Taylor
CANCER ASSESSMENT DOCUMENT

EVALUATION OF THE CARCINOGENIC POTENTIAL OF TETRACONAZOLE

DRAFT REPORT

8-DECEMBER, 1999

CANCER ASSESSMENT REVIEW COMMITTEE
HEALTH EFFECTS DIVISION
OFFICE OF PESTICIDE PROGRAMS
DATA PRESENTATION:
David Nixon, Toxicologist

DOCUMENT PREPARATION:
Sanjivani Diwan, Executive Secretary

COMMITTEE MEMBERS IN ATTENDANCE: (Signature indicates concurrence with the assessment unless otherwise stated).

William Burnam
Marion Copley
Kerry Dearfield
Virginia Dobozy
Yiannakis Ioannou
Nancy McCarroll
Linda Taylor
Esther Rinde
Jess Rowland
Joycelyn Stewart
Clark Swentzel

NON-COMMITTEE MEMBERS IN ATTENDANCE (Signature indicates concurrence with the pathology report and statistical analysis of data, respectively)

John Fletcher Pathology Consultant
Lori Brunsman, Statistician

3
I. Introduction

II. Background Information ... 1

III. Evaluation of Carcinogenicity ... 1

1. Combined Chronic Toxicity & Carcinogenicity Study in Crl CD BR rats 1

2. Carcinogenicity Study in Crl:CD-1(ICR)BR Mice 3

IV. Toxicology .. 7

1. Metabolism .. 7

2. Mutagenicity .. 8

3. Structure Activity Relationship ... 9

4. Subchronic and Chronic Toxicity ... 13

5. Mode of Action Studies .. 14

VI. Committee’s Assessment of the Weight-of-the Evidence 15

VII. Classification of Carcinogenic Potential 17

VIII. Quantification of Carcinogenic Potential 17

IX. Bibliographys .. 18
EXECUTIVE SUMMARY

On November 10, 1999, the Cancer Assessment Review Committee (CARC) of the Health Effects Division of the Office of Pesticide Programs met to evaluate the carcinogenic potential of Tetracosanazole. The studies evaluated included a 2-year combined chronic toxicity/carcinogenicity study in Crl:CD (SD) rats and an 20-month carcinogenicity study in Crl:CD-1 (ICR) mice as well as mechanistic studies submitted by the Registrant to support the mode of action for the induction of liver tumors in mice. In carcinogenicity studies, Tetracosanazole was administered in the diet to rats (70/sex/group) at 0, 10, 80, 640 or 1280 ppm (0, 0.4, 3.4, 27.7 or 59.4 mg/kg/day for males, and 0, 0.6, 4.4 or 39.4 mg/kg/day for females; respectively) and to mice (60/sex/group) at 0, 1, 10, 90, 800 or 1250 ppm (0, 1.4, 12, 118 or 217 mg/kg/day for males and 0, 1.6, 14.8, 140 or 224 mg/kg/day for females, respectively).

The CARC concluded that:

- **Tetracosanazole was not carcinogenic to rats** because: 1) In males, although there was an increase in the incidence of thyroid follicular cell adenomas compared with control at ≥80 ppm (≥ 3.4 mg/kg/day), the increase was not statistically significant, lacked dose-response and was within the range for the historical controls; 2) There was no increase in thyroid or other tumors in females. The dosing at the highest dose in both sexes was considered to be adequate based on a decrease in body weight gains in females in a subchronic study, decreases in body weights at terminal sacrifice in both sexes at the highest dose, increased adrenal and pituitary weights and histopathological changes in bone, and liver in the present study. The CARC determined that the thyroid tumors in males were not treatment-related.

- **Tetracosanazole was carcinogenic to mice** because: 1) There was a statistically significant (p<0.01) increase by pair-wise comparisons of the 800 ppm (118 and 140 mg/kg/day, in males and females, respectively) and 1250 ppm dose groups (217 and 224 mg/kg/day, for males and females, respectively) with the controls for hepatocellular adenomas, carcinomas (1250 ppm groups only) and combined adenomas/carcinomas in both sexes. The incidences of these tumors exceeded the range of historical controls. There were also statistically significant (p<0.01) increasing trends in both sexes for hepatocellular adenomas, carcinomas, and combined adenomas/carcinomas; 2) There was a numerical increase in the incidence of ovarian luteomas in high-dose females which was thought to be biologically significant by some members of the Committee. A statistically significant (p< 0.01) increasing trend for luteomas was also evident. None of the high-dose females that died at 1 year developed luteomas. This resulted in an inflated incidence of tumors. The incidence of luteomas was considered by the CARC to be within the historical control range (0%-8%). The dosing at 1250 ppm was considered by the Committee to
be excessive due to increased mortality in both sexes. However, 800 ppm was considered to be adequate since mortality was comparable to controls and the tumor incidences were significantly increased in both sexes. In addition, there was a decrease in body weight gain, increased liver and kidney weights and presence of non-neoplastic changes in various organs including bone, liver, lungs, kidney, testes, epididymides or ovaries.

The genetic toxicology studies indicated that Tetracronazole was non-mutagenic in *Salmonella typhimurium*, cultured Chinese hamster ovary cells and mouse lymphoma assays. It was not clastogenic *in vitro* and *in vivo* and did not induce unscheduled DNA synthesis (UDS) in Human HeLa cells.

Structurally-related compounds include triadimefon, triadimenol, uniconazole, tebuconazole, propiconazole, cyproconazole, hexaconazole, etaconazole, bitertanol and azaconazole. Six of these ten structural analogs have been shown to induce hepatocellular tumors in one or both sexes of mice. Seven of these compounds test negative in mutagen assays and 3 are positive only in *in vitro* chromosomal aberration tests.

The Committee determined that the mechanistic studies do not support the proposed mode of action for the occurrence of liver tumors in mice.

In accordance with the EPA Draft Guidelines for Carcinogen Risk Assessment (July, 1999), the CARC classified Tetracronazole as "likely to be carcinogenic to humans" by the oral route based on the occurrence of liver tumors in male and female mice. For the quantification of human cancer risk, the Committee recommended a linear low-dose extrapolation approach based on the most potent incidence of combined liver tumors in male of female mice, which ever is more potent. This approach is supported by the lack of confirmation of the mode of action of Tetracronazole.
I. INTRODUCTION

On October 20, 1999, the Cancer Assessment Review Committee of the Health Effects Division of the Office of Pesticide Programs is scheduled to meet to evaluate the carcinogenic potential of tetryaconazole.

II. BACKGROUND INFORMATION

Tetryaconazole is a triazole fungicide. The PC Code is 120603 and the CAS Number is 112281-77-3. It is recommended for agricultural use on sugar beets and turf and has an import tolerance set for bananas. Future uses may be included on grapes, peanuts, and wheat.

III. EVALUATION OF CARCINOGENICITY STUDIES

1. Combined Chronic Toxicity/Carcinogenicity Study with tetryaconazole in Crl CD (SD) rats

A. Experimental Design

In a carcinogenicity toxicity study (MRID 44305304), tetryaconazole (94.6% a.i.) was administered to Crl:CD (SD) rats 50/sex/dose in the diet at dose levels of 0 (control) 10, 80, 640 and 1280 ppm for males and 0 (control), 10, 80 and 640 ppm for females for 2 years. This corresponds to 0, 0.6, 4.4, and 39.4 mg/kg/day for females and 0, 0.4, 3.4, 27.7 and 59 mg/kg/day for males. An additional 20 rats/sex/dose were sacrificed and examined at 12 months.

B. Discussion of Tumor Data

The statistical evaluation of mortality indicated significant decreasing trends with increasing doses of tetryaconazole in male and female rats. The dietary administration of tetryaconazole up to 1280 ppm in males and 640 ppm in females did not result in an overall treatment-related increased incidence of tumor formation in Crl:CD (SD) rats. The statistical analyses of tumors in male and female rats are presented in Table 1 for male rat tumor analysis results. Among
males, although an increase in the incidence of thyroid adenomas was noted at doses ≥80 ppm (4.2%, 9.1%, 13.8% and 11.6% at 0, 10, 80, 640 and 1260 ppm, respectively), these values did not achieve statistical significance and were well within the historical control range (mean of 9.7%; range of 0-19.6%).

Table 1. Male Rats: Thyroid Follicular Tumor Rates* and Peto's Prevalence Test Results.

<table>
<thead>
<tr>
<th>ppm</th>
<th>0</th>
<th>10</th>
<th>80</th>
<th>640</th>
<th>1280</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kg/day</td>
<td>0</td>
<td>0.4</td>
<td>3.4</td>
<td>27.7</td>
<td>59</td>
</tr>
<tr>
<td>Adenoma</td>
<td>1/24</td>
<td>1/29</td>
<td>3/33</td>
<td>4/29</td>
<td>5/43</td>
</tr>
<tr>
<td>%</td>
<td>(4)</td>
<td>(3)</td>
<td>(9)</td>
<td>(14)</td>
<td>(12)</td>
</tr>
<tr>
<td>p =</td>
<td>0.103</td>
<td>-</td>
<td>0.238</td>
<td>0.119</td>
<td>0.154</td>
</tr>
<tr>
<td>Carcinoma</td>
<td>0/24</td>
<td>1/29</td>
<td>0/33</td>
<td>2/29</td>
<td>1/43</td>
</tr>
<tr>
<td>%</td>
<td>(0)</td>
<td>(3)</td>
<td>(0)</td>
<td>(7)</td>
<td>(2)</td>
</tr>
<tr>
<td>p =</td>
<td>0.276</td>
<td>0.181</td>
<td>-</td>
<td>0.097</td>
<td>0.228</td>
</tr>
<tr>
<td>Combined</td>
<td>1/24</td>
<td>2/29</td>
<td>3/33</td>
<td>4*29</td>
<td>6/43</td>
</tr>
<tr>
<td>%</td>
<td>(4)</td>
<td>(7)</td>
<td>(9)</td>
<td>(14)</td>
<td>(14)</td>
</tr>
<tr>
<td>p =</td>
<td>0.089</td>
<td>0.336</td>
<td>0.238</td>
<td>0.119</td>
<td>0.106</td>
</tr>
</tbody>
</table>

*Number of tumor-bearing animals/Number of animals examined, excluding those that died or were sacrificed before observation of the first tumor.

First thyroid follicular cell adenoma and carcinoma observed at Week 105, in final sacrifice animals, concurrently in all dose groups.

*Two animals in the 640-ppm dose group had both an adenoma and a carcinoma.

Note: Interim sacrifice animals are not included in this analysis. There were no thyroid follicular cell adenomas or carcinomas in any interim sacrifice animals.

Significance of trend denoted at control.

Significance of pair-wise comparison with control denoted at dose level.

If *, then p < 0.05. If **, then p < 0.01.

C. Non-Neoplastic Changes

Packed cell volume, red blood cell counts and hemoglobin levels were reduced in both sexes at their respective high doses and also in males at 640 ppm. Absolute adrenal weights were decreased, compared to controls, 18 and 33.6% in the 640 and 1280 ppm males, respectively, but only 3.4% in the 640 ppm females. Adrenal weights, relative to body weights, were decreased 12.8 and 25.65 in 640 and 1280 ppm males and 175 in 640 ppm females. Absolute pituitary weights were decreased, compared to controls, 34.2 and 46.8% in 640 and 1280 ppm males but only 9.4% in 640 ppm females. Pituitary weights, relative to body weights, were decreased 13.4% and 23% at 640 and 1280 ppm in males but were not greatly altered in
females. Both sexes did show a statistically significant increase in liver weights at 640 and 1280 ppm from the males and 640 ppm for the females. Males, but not females, showed at the 1280 ppm dose (and to a much lesser extent the 640 ppm dose) necropsy findings of white cranium, thickened cranium and thickened parietal bones. Liver findings at necropsy consisted of pale subcapsular areas in both sexes (6, 7, 8, 24 and 29 in control through 1280 ppm male groups and 5, 9, 11, and 17 in control through 640 ppm female groups) as well as accentuated lobular markings in the males only (2, 4, 2, 14, 25 in control through 1280 ppm groups). Histopathology findings supported the liver findings at necropsy for both sexes. Hepatic findings at histopathology were indicative of cellular proliferation and hypertrophy. Some findings, such as centrilobular hypertrophy, (incidences were 0, 0, 17, 34, and 44 in control through 1280 ppm males and 0, 0 17 and 39 in control through 640 ppm females) were increased in the 80 ppm groups. Most hepatic findings, however, were confined mostly to the 640 and 1280 ppm males and 640 ppm females. Fine vacuolation of hepatocytes and inflammatory cell foci in males were not seen at all in controls but were seen in anywhere from 18 to 62% of the 640 and 1280 ppm males. The skull bone findings at necropsy were supported by the histopathology findings which found an increased incidence of osseous hypertrophy of the parietal bones (8 and 43 incidences at 640 and 1280 compared to zero in controls) and osseous hypertrophy of the cranium (8 and 45 at 640 and 1280 compared to zero in controls). Additionally, in males only, an increased incidence of cystic follicular atrophy in the thyroid was seen (6 in 1280 ppm and zero in all other groups).

The findings in the liver at doses less than 1280 ppm (cellular proliferation/hypertrophy) are indicative of an adaptive response rather than a toxicologic response. Only at the 1280 ppm dose, where increases in inflammatory foci are seen, can the liver responses be called toxicologically significant. The alterations in the skeletal system at 640 ppm in males can be considered toxicologically relevant.

D. Adequacy of the Dosing for Assessment of Carcinogenicity

The dosing at the highest dose was considered by the CARC to be adequate and not excessive based on decreased body weight gain (24% in both sexes at terminal sacrifice) in females at 640 ppm and in males at 1280 ppm, decreased absolute and relative adrenal and pituitary weights in males at 640 ppm and histopathological changes in the bone (osseous hypertrophy of the cranium/parietal bone) and liver (cellular proliferation, centrilobular hypertrophy, vacuolization of hepatocytes and inflammatory foci).

2. Carcinogenicity Study in Mice

A. Experimental Design

In a carcinogenicity study (MRID 44305305) M14360 (95.05% a.i.) was administered to 50 Crl:CD-1 (ICR) mice/sex/dose in their diet at dose levels of 0, 10, 90, 800, 1250 ppm (for males: 0, 1.4, 12, 118, 217 mg/kg/day; for females: 0, 1.6, 14.8, 140, 224 mg/kg/day) for 80 weeks.

B. Discussion of Tumor Data

The statistical evaluation of mortality indicated significant increasing trends with increasing doses of tetracazol in male and female mice. The results of tumor analyses for male and female mice are presented in Tables 4 and 5 for, respectively. A statistically significant increased incidence of combined benign and malignant liver tumors was observed at 1250 ppm (86% for males and 65% for females) and 800 ppm (49% for males and 22% for females) compared to the control (20% for males and 0% for females). The tumor incidence in animals receiving ≤90 ppm was found to be similar to that of controls. Statistical evaluation of liver tumors in both sexes revealed a significant increasing trend with differences in the pair-wise comparisons of the 1250-ppm dose group with the controls for benign, malignant and benign and/or malignant tumors combined, all at p < 0.01. There were also significant differences in the pair-wise comparisons of the 800-ppm dose group with the controls for liver benign tumors and for benign and/or malignant tumors combined, both at p < 0.01 (Tables 4 and 5). The increased incidence of liver tumors was well outside the range for the historical controls (the incidence of hepatocellular adenomas in historical controls ranged from 7.7% - 24% in male mice and 0% - 1.9% in females and the incidence of hepatocellular carcinomas ranged from 0% - 14% in males and was 0% in females).

Female mice had a significant increasing trend in ovarian benign luteomas at p < 0.01, but no significant differences in the pair-wise comparisons of any dose group (Table 6). The incidence of ovarian tumors was 4.8% and 12.5% at 800 ppm and 1250 ppm, respectively. The incidence at 1250 ppm was slightly outside the historical control range (0% to 8%). There was increased mortality in the 1250-ppm group, many of which died after 1 year post-dosing, in which none of the decedents had any incidences of luteomas. This may have resulted in an inflated percentage of luteoma incidences in the high dose group, however, the incidence of 4 such tumors at the highest dose along with a positive trend was considered by some members to be biologically significant.
Table 4. Male Mice: Liver Tumor Rates* and Peto’s Prevalence Test Results.

<table>
<thead>
<tr>
<th>ppm</th>
<th>0</th>
<th>10</th>
<th>90</th>
<th>800</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kg/day</td>
<td>0</td>
<td>1.4</td>
<td>12</td>
<td>118</td>
<td>217</td>
</tr>
<tr>
<td>Benign</td>
<td>9/49</td>
<td>8/50</td>
<td>6/49</td>
<td>22/49</td>
<td>34/49</td>
</tr>
<tr>
<td>%</td>
<td>(18)</td>
<td>(16)</td>
<td>(12)</td>
<td>(45)</td>
<td>(69)</td>
</tr>
<tr>
<td>p =</td>
<td>0.000**</td>
<td>-</td>
<td>0.003**</td>
<td>0.000**</td>
<td>0.000**</td>
</tr>
<tr>
<td>Malignant</td>
<td>1/48</td>
<td>2/47</td>
<td>2/47</td>
<td>4/48</td>
<td>20/45</td>
</tr>
<tr>
<td>%</td>
<td>(2)</td>
<td>(4)</td>
<td>(4)</td>
<td>(8)</td>
<td>(44)</td>
</tr>
<tr>
<td>p =</td>
<td>0.000**</td>
<td>0.398</td>
<td>0.059</td>
<td>0.134</td>
<td>0.000**</td>
</tr>
<tr>
<td>Combined</td>
<td>10/49</td>
<td>9/50</td>
<td>7/33</td>
<td>24/49</td>
<td>42/49</td>
</tr>
<tr>
<td>%</td>
<td>(20)</td>
<td>(18)</td>
<td>(14)</td>
<td>(49)</td>
<td>(86)</td>
</tr>
<tr>
<td>p =</td>
<td>0.000**</td>
<td>-</td>
<td>-</td>
<td>0.002**</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

*Number of tumor-bearing animals/Number of animals examined, excluding those that died or were sacrificed before observation of the first tumor.

*First liver benign tumor observed at Week 34, 1250 ppm.

*First liver malignant tumor observed at Week 50, dose 1250 ppm.

*One animal in each of the 10- and 90-ppm dose groups had both an adenoma and a carcinoma.

*Two animals in the 800-ppm dose group had both an adenoma and a carcinoma.

Twelve animals in the 1250-ppm dose group had both an adenoma and a carcinoma.

Note: Significance of trend denoted at control.
Significance of pair-wise comparison with control denoted at dose level.
If *, then p < 0.05. If **, then p < 0.01.
Table 5. **Female Mice: Liver Tumor Rates** and Peto’s Prevalence Test Results.

<table>
<thead>
<tr>
<th>ppm</th>
<th>0</th>
<th>10</th>
<th>90</th>
<th>800</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kg/day</td>
<td>0</td>
<td>1.6</td>
<td>14.8</td>
<td>140</td>
<td>224</td>
</tr>
<tr>
<td>Benign</td>
<td>0/49</td>
<td>0/49</td>
<td>0/50</td>
<td>11/49</td>
<td>26/49</td>
</tr>
<tr>
<td>%</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(22)</td>
<td>(53)</td>
</tr>
<tr>
<td>p =</td>
<td>0.000**</td>
<td>-</td>
<td>-</td>
<td>0.000**</td>
<td>0.000**</td>
</tr>
<tr>
<td>Malignant</td>
<td>0/48</td>
<td>0/47</td>
<td>0/50</td>
<td>1/49</td>
<td>17/44</td>
</tr>
<tr>
<td>%</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(2)</td>
<td>(39)</td>
</tr>
<tr>
<td>p =</td>
<td>0.000**</td>
<td>-</td>
<td>-</td>
<td>0.162</td>
<td>0.000**</td>
</tr>
<tr>
<td>Combined</td>
<td>0/49</td>
<td>0/49</td>
<td>0/50</td>
<td>11/49</td>
<td>32/49</td>
</tr>
<tr>
<td>%</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(22)</td>
<td>(65)</td>
</tr>
<tr>
<td>p =</td>
<td>0.000**</td>
<td>-</td>
<td>-</td>
<td>0.000**</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

*Number of tumor-bearing animals/Number of animals examined, excluding those that died or were sacrificed before observation of the first tumor.

*aFirst liver benign tumor observed at Week 57, 1250 ppm.

*bFirst liver malignant tumor observed at Week 64, dose 1250 ppm.

*cOne animal in the 800-ppm dose group had both an adenoma and a carcinoma.

*dEleven animals in the 1250-ppm dose group had both an adenoma and a carcinoma.

Note: Significance of trend denoted at control.
Significance of pair-wise comparison with control denoted at dose level.
If *, then p < 0.05. If **, then p < 0.01.

Table 6. **Female Mice: Ovarian Tumor (Luteomas) Rates** and Peto’s Prevalence Test Results.

<table>
<thead>
<tr>
<th>ppm</th>
<th>0</th>
<th>10</th>
<th>90</th>
<th>800</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kg/day</td>
<td>0</td>
<td>1.6</td>
<td>14.8</td>
<td>140</td>
<td>224</td>
</tr>
<tr>
<td>Benign</td>
<td>2/41</td>
<td>0/39</td>
<td>0/41</td>
<td>2/42</td>
<td>4/32</td>
</tr>
<tr>
<td>%</td>
<td>5%</td>
<td>(0)</td>
<td>(0)</td>
<td>(5)</td>
<td>(12)</td>
</tr>
<tr>
<td>p =</td>
<td>0.006**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.121</td>
</tr>
</tbody>
</table>

*Number of tumor-bearing animals/Number of animals examined, excluding those that died or were sacrificed before observation of the first tumor.

First ovarian benign luteomas observed at Week 81, in final sacrifice animals, concurrently at all doses.
C. Non-neoplastic Changes

Gross pathology revealed slight to severe changes in the liver which correlated with the dose given. At 90 ppm, the liver appeared pale with accentuated lobular markings. At higher concentrations (800-1250 ppm), masses were found with raised, pale, or dark subcapsular areas. Masses were also found in the kidneys of males receiving 1250 ppm. Dose-related increases in liver weights were noted in mice of both sexes given ≥90 ppm of the test material. Kidney weights were also found to increase slightly (9-11% above controls) in males receiving ≥90 ppm.

Histopathological findings revealed liver toxicity including hepatocyte vacuolation, fat deposition, granulomatous inflammation, pigmented macrophages, generalized hepatocyte enlargement, and bile duct hyperplasia in mice receiving 800 and 1250 ppm of the test material. In addition, at the high dose of 1250 ppm, non-neoplastic changes were noted in the brain, lungs, kidneys, testes, epididymides, and ovaries. Thickening of compact bone of the cranium, in the ribs, collar bone (females only), and femur (females only) at 800 and 1250 ppm also appears to be treatment related.

D. Adequacy of Dosing for Assessment of Carcinogenicity

The dosing at the highest dose was considered by the CARC to be excessive due to significantly increased mortality in both sexes. However, 800 ppm was considered to be adequate since mortality was comparable to controls and the tumor incidences were significantly increased in both sexes. In addition, there was a decrease in body weight gain, increased liver and kidney weights and the presence of non-neoplastic changes in various organs including bone, liver, lungs, kidney, testes, epididymides or ovaries.

IV. TOXICOLOGY

1. Metabolism

Single oral doses of [14C] triazole ring labeled M-14360 (MRID 44268117) were administered in a 0.75% (w/v) methylcellulose/HPLC water suspension to ten Sprague-Dawley rats of each sex at dose levels of 5 or 60 mg/kg/10 mL. The treated animals were placed individually in Nalgene® metabolism cages. Urine and feces were collected from five rats/sex/dose for 168 hours at which time these animals were killed and their tissues and organs were harvested. The remaining five animals/sex/group were killed at peak blood levels of radioactivity occurring at 8-28 hours of post dosing and their tissues and organs were harvested. Radioactivity was measured in urine, feces, blood, tissues, organs, carcasses and cage washes from all animals.

Average total recovered radioactivity for either high or low single oral dose in males or females ranged from 95% to 102% of the administered dose (AD). Most of the radioactivity
(75%) was recovered in the urine after 7 days. Recovered radioactivity in the feces ranged from 15% (high dose) to 18% (low dose) of the AD. In the urine and fecal samples, triazole was the major metabolite for both dose levels and sexes. M-14360 acid along with minor metabolites of M-14360 alcohol and its glucuronide conjugate (M3) were also isolated from the urine. In the feces minor amounts of the parent material M-14360, the acid and alcohol were also isolated.

Radioactivity in the tissues was minimal after 7 days and accounted for less than 1.5% of the AD. The data indicate that M-14360 or its metabolites are not accumulated in rat tissues following a single oral dose.

The metabolic cleavage of M-14360 to yield triazole appears to be the major step in M-14360 metabolism. The study authors postulate that this step is glutathione mediated. A metabolic pathway was proposed where the initial step is the formation of an aldehyde intermediate of M-14360 following dealkylation of the fluoro-alkyl group of the molecule.

Following a single oral low or high dose, male rats produced in the urine more triazole than females (65-67% of the AD vs 48% in females), while urine from females had more of M-14360 acid (7-13% vs 3.5-4% for males), M-3 (2-4% vs 0.0-0.6% for males), and M-14360 alcohol (1.4-2.4% vs 0.0% for males). The same pattern, though not as pronounced, was also seen in the multiple dosing study.

There were also dose and sex differences in the quantitative and qualitative nature of the metabolites in the feces from single and repeated dose animals. In the multiple dosing, triazole (3.2-3.9% of the AD for males and females at the low dose vs 6.5-6.8% for the high dose), M-14360 acid, M-14360 alcohol, M-14360, M6 and others were reported while in the single dosing only triazole (5.6 - 10.4% of the administered low and high doses in both sexes), M-14360 acid and M-14360 were reported.

2. Mutagenicity:

Six acceptable genetic toxicology studies were available for review. The results from these studies indicate that tetraconazole was not mutagenic in Salmonella typhimurium (MRID 44335511), in cultured Chinese hamster ovary (CHO) cells (MRID 44335507), or in mouse lymphoma cells (MRID 44335508). There was also no evidence of clastogenicity in vitro (MRID 44335507) or in vivo (MRID 44335509) and tetraconazole did not induce unscheduled DNA synthesis (UDS) in human HeLa cells (MRID 44335510).

Overall, the data indicate that tetraconazole is negative for mutagenicity in vitro and in vivo. The acceptable studies satisfy the 1991 mutagenicity guideline requirements.
3. Structure-Activity Relationship

Structurally related compounds include triadimefon, triadimenol, uniconazole, tebuconazole, propiconazole, cyproconazole, hexaconazole, etaconazole, bitertanol and azaconazole. Seven of these ten structural analogs have been shown to induce hepatocellular tumors in one or both sexes of mice (Table 6).
<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Carcinogenic Effect</th>
<th>Carcinogen Class/Mutagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayleton PC 109901 Tx.# 862AA</td>
<td></td>
<td>NMRI Mouse Only hepatocellular adenoma, at 1800 in (22%)♂ & (18%)♀ p<0.05 for trend and paired comps. Hist. Conts.: 18.4% ♂, and 2.0% ♀.
 Wistar rat Do. rel. trend in TFC adenomas in ♂ & comb. w. cystic hyperplasia in ♂ & ♀; Pairwi. comparisons not significant.</td>
<td>C NQ (7/31/90). Negative for mutagenicity</td>
</tr>
<tr>
<td>Baytan PC 127201 T.# 074A</td>
<td></td>
<td>CF1-W74 mouse, 2000 ppm: Hepatocellular adenomas and hyperplastic nodules (p<0.01) in ♀. No increase in ♂. Adrenal adenomas noted in ♀ LDT and HDT but not in hist. conts. No elevation in carcinomas.
 Rat, 125-2000 ppm, increases in thyroid adenoma.</td>
<td>Weak C SAP 12/23/87. Negative for mutagenicity</td>
</tr>
<tr>
<td>Baycor PC 112403 T.# 087AA</td>
<td></td>
<td>Mouse: up to 500 ppm: (-)
 Rat: up to 500 ppm : (-)</td>
<td>Negative for mutagenicity</td>
</tr>
<tr>
<td>Uniconazol PC 128976 T.# 207H</td>
<td></td>
<td>CrI:CD-1(ICR)BR mouse Incr. incidence of hepatocell. adenomas and carcinomas in HDT males only.
 CrI:CD-1(ICR)SD rat No increase in neoplastic findings</td>
<td>C NQ
 Positive in vitro chrom. aberration W S9</td>
</tr>
<tr>
<td>Molecule</td>
<td>Description</td>
<td>Cancer Assessment Document</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Propiconazole
PC 122101
T# 323EE</td>
<td>
CD-1 mouse Statistically significant trend and pairwise comparisons in liver adenomas and combined. For carcinomas 2 pathologists were significant, the third was not.</td>
<td>C NQ
Negative for mutagenicity</td>
<td></td>
</tr>
<tr>
<td>Etaconazole
PC</td>
<td>
Mouse, 25,100 & 400 ppm. There is the question of whether the MTD was reached. No oncogenicity effect.</td>
<td>Negative in performed gene tox tests: Ames, dominant lethal</td>
<td></td>
</tr>
<tr>
<td>Azaconazole
PC 128882
T# 321A</td>
<td>
Mouse, 25,100 & 400 ppm. There is the question of whether the MTD was reached. No oncogenicity effect.</td>
<td>Negative for mutagenicity except positive in vitro CHO aberration (acentric fragments) only S9</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Carcinogenic Effect</td>
<td>Carcinogen Class/Mutagenicity</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Hexaconazole</td>
<td></td>
<td>CD-1/Alpk mouse, 5, 40 & 200 ppm. No oncogenicity effect. Should be seen with caution because MTD was not reached. No oncogenicity effect. Alpk:APfSD (Wistar derived) rats, 10, 100, 1000 ppm. There was a significant (p<0.01) dose-related trend and a significant pairwise comparison with controls at the HDT for benign Leydig cell tumors in the testes. The incidence at the HDT (16%) exceeded historical control values of up to 6.0%.</td>
<td>C Q Mutagenicity Negative: Ames Microsome UDS HL</td>
</tr>
<tr>
<td>PC 128925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T# 480G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyproconazole</td>
<td></td>
<td>CD-1 mouse, 5,15, 100 & 200 ppm. Significant incidence of adenomas & carcinomas at the MDT and HDT in males and at the HDT in females.</td>
<td>B2 Mutagenicity negative for mutagenicity except positive in vitro chrom aberration (dicentric)</td>
</tr>
<tr>
<td>PC 128993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T# 272E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraconazole</td>
<td></td>
<td>CD-1 mouse, 10, 90, 800 & 1250 ppm. Significant increasing trend in both sexes with differences in the pair-wise comparisons of the 1250-ppm dose group with the controls for benign, malignant and benign and/or malignant tumors combined, all at p < 0.01. There were also significant differences in the pair-wise comparisons of the 800-ppm dose group with the controls for liver benign tumors and for benign and/or malignant tumors combined in both sexes, both at p < 0.01.</td>
<td>Not Classified Mutagenicity Negative: Ames Micronucleus UDS HL</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12
4. Subchronic Toxicity

Rat

In a subchronic oral toxicity study (MRID 44335504), treatment-related increases in liver weights relative to body weight were seen in the 60 ppm (females only) and in 360 ppm treated males and females. Kidney weights relative to body weight were also significantly increased in the 360 ppm females rats. Macroscopic post mortem examination revealed two males at 360 ppm with enlarged livers and two males at 360 ppm and a single female at 10 ppm with swollen liver. Histological examinations revealed minimal centrilobular hepatocyte enlargement in all rats receiving 360 ppm and 5/10 males and a single female receiving 60 ppm.

Mouse

In a subchronic mouse range-finding oral toxicity study (MRID 44778701), increased serum SGPT (+165% above controls) and SGOT (+56%), decreased serum BUN (-19%), slightly increased mean/absolute liver weights (15%/15%) and microscopic liver lesions (4/10 single cell necrosis, 1/10 necrosis, and 1/10 single cell degeneration vs. 0 in controls) were observed in females at 125 ppm (most of these findings showed a dose-related increase at 625 ppm). Two of ten males had single liver cell degeneration and only a slight (+39%; not significant) increase in SGPT. At 625 ppm, increased serum SGPT (+103%), decreased BUN (-15%) and increased absolute/relative liver weights (+77%/+75%), along with single cell necrosis and areas of necrosis (each 2/10), were also observed in males. In addition, midzonal hepatocyte hypertrophy and vacuolization in females (4/10 and 3/10, respectively) and liver cell degeneration in 1/10 females were also observed. Although the incidence of centrilobular hepatocyte hypertrophy was increased in both sexes at 25 ppm and higher, it was not considered toxicologically significant at that dose level, based on minimal severity and lack of other liver effects. Females appeared to be more sensitive at 125 ppm while significant changes in liver parameters and histopathology occurred in males at 625 ppm only.

5) Chronic Toxicity

Dog

In a chronic toxicity study (MRID No. 44305303), Tetraconazole as M 14360 (94.6%) was administered to groups of four male and four female Beagle dogs/dose in the diet, at dose levels of 0, 22.5, 90, or 360 ppm (equivalent to achieved intakes of 0, 0.73, 2.95 or 12.97 for males or 0, 0.82, 3.33 or 14.50 mg/kg/day for females) for 52 weeks.

Exposure to M 14360 had no effect on feed consumption, hematological parameters or urinalysis. Treatment-related effects at the high dose included slight but nonsignificant body weight reductions in both sexes from study week 3 to termination; significantly increased alkaline phosphatase, γ-glutamyltransferase, alanine aminotransferase and ornithine
carbamoyl transferase in both sexes from study week 13 to 52, increased absolute and relative liver and kidney weights for both sexes, and histopathological changes in both organs. In the mid-dose group, effects were manifested as increased absolute and relative kidney weights for males correlated with histopathological findings in the males (apparent hypertrophy in cortical tubules of the kidneys-1 male). No adverse effects were seen at the low dose.

Based on these findings, the NOAEL is 22.5 ppm (equivalent to achieved intakes of 0.73 mg/kg/day for males or 0.82 mg/kg/day for females) and the LOAEL is 90 ppm (equivalent to achieved intakes of 2.95 mg/kg/day for males or 3.33 mg/kg/day for females), based on increased absolute and relative kidney weights and histopathological changes in the male kidney.

5. Mode of Action Studies

Liver Enzyme Induction

In a mouse subchronic toxicity study (MRID 44751309), tetraconazole 96.3% ai, Batch number FCF/T/113-94) was administered to 18 male and female Crl:CD-1 (ICR)BR mice per dose level at levels of 0, 20, 800, or 1250 ppm (0, 3.9, 150, or 225 mg/kg/day in males, 0, 4.6, 175, or 293 mg/kg/day in females) in the diet. [Attachment 8] The positive control was Phenobarbital (Na) salt, 75 mg/kg/day.

The results of this study indicate that tetraconazole administration for 4 weeks results in liver enzyme induction. Statistically significant increases were apparent in females at the 20 ppm dose level based on increases in microsomal protein, cytochrome P450, and ethylmorphine N-demethylase. At all dose levels in males and females, 7-pentoxysorufin O-depentylase values were statistically elevated. At 800 and 1250 ppm, statistically significant findings were typically noted. However, dose response increases were not apparent in these findings at the 1250 ppm level as compared to the lower 800 ppm level.

In a rat subchronic toxicity study (MRID 44751310), tetraconazole 95.2% ai, Batch number FCF/T/122-95) was administered to 6 male and female Crl:CD BR rats per dose level at levels of 0, 10, 80, or 640 ppm (0, 0.8, 6.6, or 54.6 mg/kg/day in males, 0, 0.9, 7.6, or 57.6 mg/kg/day in females) in the diet. [Attachment 9] The positive control was Phenobarbital (Na) salt, 75 mg/kg/day.

Tetraconazole administration for 4 weeks results in liver enzyme induction at dose levels of 80 and 640 ppm. Induction at the 640 ppm dose level was similar to that induced by phenobarbital at 75 mg/kg/day.

Neither of these studies demonstrate a threshold level for initiation of hepatic carcinogenesis in the mouse as a result of oral administration of tetraconazole. Even though they show induction of Phase I and Phase II enzymes in the rat liver, no mechanism was demonstrated to explain the progression from enzyme induction to tumor formation in the mouse.
V. COMMITTEE'S ASSESSMENT OF THE WEIGHT-OF-THE-EVIDENCE

1. Carcinogenicity:

- The CARC concluded that Tetraconazole was not carcinogenic in male and female rats because: 1) Although, males had increased incidences of thyroid follicular cell adenomas at ≥80 ppm (3/33, 9%, 4/29, 14% and 5/43, 13% at 80, 640 and 1250 ppm or 3.4, 27.7 and 59 mg/kg/day, respectively, vs 1/24, 4% in controls), the increase was not statistically significant when analyzed by pair-wise comparison. Moreover, the incidences of tumors were within the range for the historical controls (0-19.6%; mean: 9.7%); 2) There was no increase in thyroid tumors in females. The dosing at the highest dose in both sexes was considered to be adequate based on a decrease (32%) in body weight gains in females in a subchronic study, decreases in body weights (24%) at terminal sacrifice in both sexes at the highest dose, increased adrenal and pituitary weights and histopathological changes in bone, and liver in the present study. Increased mortality was noted in both sexes. The CARC determined that the thyroid tumors in males were not treatment-related.

- Tetraconazole was carcinogenic to mice because: 1) Males and females had significant increases in the pair-wise comparisons of the 800 and 1250 ppm (118 and 217 mg/kg/day, respectively) dose groups with the controls for hepatocellular adenomas (males: 22/49, 45%, and 34/49, 69%, p < 0.01 vs 9/40, 18%; females: 11/49, 22% and 26/49, 53%, p<0.01 vs 0/49 0% in controls), carcinomas (at 1250 ppm only: males: 20/45, 44%, p<0.01 vs 1/48, 2% in controls; females: 17/44, 39%, p<0.1 vs 0/48, 0% in controls) and for combined hepatocellular adenomas/ carcinomas (males: 24/49, 49% and 42/49, 86%, p<0.01 vs 10/49, 20% in controls; females: 11/49, 22% and 32/49, 65, p<0.01 vs 0/49, 0% in controls). There were significant (p < 0.01) increasing trends for hepatocellular adenomas, carcinomas and combined adenomas/carcinomas in both sexes. The increased incidence of carcinomas at 800 ppm (4/48, 8% vs 1/48, 2% in controls) was considered by the CARC to be biologically significant. The incidences of hepatocellular adenomas and carcinomas in males were outside the historical control range (adenomas: males: 7.7%-24%; females: 0%-1.9%; carcinomas: males: 0%-14%; females: 0%); 2) There was a numerical increase in the incidence of ovarian luteomas in high-dose females. There was a statistically significant (p<0.01) increasing trend for luteomas. The incidence of luteomas was not considered by the CARC to exceed the historical control range (0%-8%) because none of the high-dose females that died at 1 year developed luteomas. This resulted in an artificially inflated higher incidence of tumors. However, these tumors were thought to be biologically significant by some members of the Committee because of the significant trend and the occurrence of 4 luteomas at the highest dose. Although there was significantly increased mortality in both sexes at 1250 ppm, sufficient number of animals survived at 15 and 18 months to develop tumors. The highest dose was considered to be excessive by the CARC based on significantly increased mortality in both sexes. However, 800 ppm was considered to be adequate since mortality was comparable
to controls and the tumor incidences were significantly increased in both sexes. In addition, there was a decrease in body weight gain, increased liver and kidney weights and presence of non-neoplastic changes in various organs including bone, liver, lungs, kidney, testes, epididymides or ovaries. The CARC determined that the liver tumors in male and female mice were treatment-related.

2. Mutagenicity

- The submitted genetic toxicology studies indicate that Tetraconazole is not mutagenic in bacteria (Salmonella typhimurium) or cultured mammalian cells (Chinese hamster ovary cells). There is also no evidence of clastogenicity in in vivo or in vitro assays. Similarly, Tetraconazole did not induce unscheduled DNA synthesis (UDS) in Human HeLa cells. These submitted studies satisfy the 1991 mutagenicity guideline requirements and therefore, no additional studies were recommended by the CARC.

3. Structure Activity Relationship

- Structurally-related compounds include triadimefon, triadimenol, uniconazole, tebuconazole, propiconazole, cyproconazole, hexaconazole, etaconazole, bitertanol and azaconazole. Seven of these ten structural analogs have been shown to induce hepatocellular tumors in one or both sexes of mice. Structurally-related compounds include triadimefon, triadimenol, uniconazole, tebuconazole, propiconazole, cyproconazole, hexaconazole, etaconazole, bitertanol and azaconazole. Six of these ten structural analogs have been shown to induce hepatocellular tumors in one or both sexes of mice. Seven of these compounds test negative in mutagen assays and 3 are positive only in in vitro chromosomal aberration tests.

4. Mode of Action

- The CARC evaluated the mechanistic studies submitted by the Registrant. The Registrant contended that these studies demonstrate the presence of a threshold level for hepatocarcinogenesis in mice. In a mouse subchronic study, Tetraconazole induced microsomal proteins, cytochrome P450 (especially pentoxyresorufin O-depentylylase), and ethylmorphine N-demethylase similar to Phenobarbital, a known tumor promoter. In another subchronic study, Tetraconazole was an inducer of Phase I and II liver enzymes in the rat liver.

The CARC determined that the submitted studies do not support the proposed mode of action for liver carcinogenicity for Tetraconazole based on the fact that although the enzymes were induced in rats and mice, liver tumors were observed in mice only which raises an uncertainty about the mechanism of tumorigenesis in mice.

The CARC concluded that induction of cytochrome p-450 enzymes may be involved in altering the liver metabolism leading to cell proliferation and resulting in liver tumor
induction but the Registrant did not provide information to support their hypothesis. The lack of liver tumors in rats raises uncertainty regarding the role of liver enzyme induction in mouse hepatocarcinogenesis. No dose-related association of liver enzyme activity with increase in liver tumors in mice was demonstrated. The CARC, therefore, concluded that these studies do not support the proposed mode of action for the occurrence of liver tumors in mice.

VI. CLASSIFICATION OF CARCINOGENIC POTENTIAL

In accordance with the EPA Draft Guidelines for Carcinogen Risk Assessment (July, 1999), the Committee classified Tetraconazole as "likely to be carcinogenic to humans" by the oral route based on the following weight-of-the-evidence considerations:

1. Increased incidences of liver tumors in male and female mice.
2. The relevance of the observed tumors to human exposure cannot be discounted.
3. Structurally related compounds are hepatocarcinogens in mice.

VIII. QUANTIFICATION OF CARCINOGENIC POTENTIAL

For human cancer risk assessment, the Committee recommended a linear low-dose extrapolation approach based on the combined hepatocellular tumors in male or female mice, whiever is more potent. This approach is supported by the lack of confirmation of the mode of action of Tetraconazole.
<table>
<thead>
<tr>
<th>MRID No.</th>
<th>CITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>44335510</td>
<td>Proudlock, R.J. (1988). Assessment of Unscheduled DNA Repair Synthesis in Mammalian Cells After Exposure to M 14360; Huntingdon Research Centre Ltd., Cambridgeshire, England; Study</td>
</tr>
</tbody>
</table>

44335509

44305302

44335504

44778701

44305303

44751309

44751310