RECORD NO. 268341

REVIEW NO. 10/24/1990

EEB REVIEW

DATE: IN 8-28-90 OUT __________

FILE OR REG. NO. __________ 90-OR-18

PETITION OR EXP. NO. __________

DATE OF SUBMISSION __________ 8-9-90

DATE RECEIVED BY EFED __________ 8-23-90

RD REQUESTED COMPLETION DATE __________ 9-5-90

EEB ESTIMATED COMPLETION DATE __________ 9-5-90

RD ACTION CODE/TYPE OF REVIEW __________ 510

TYPE PRODUCT(S) __________ HERBICIDE

DATA ACCESSION NO(S) __________

PRODUCT MANAGER, NO. __________ 41

PRODUCT NAME(S) __________ GOAL

COMPANY NAME __________ OREGON DEPT. OF AGRICULTURE

SUBMISSION PURPOSE __________ SECT. 18-TO CONTROL VARIOUS WEEDS IN GRASSES GROWN FOR SEED.

SHAUGHNESSEY NO. __________ 111601

CHEMICAL __________ OXYFLUORFEN

% A.I. __________
Oxyfluorfen

100 Section 18 Application

100.1 Nature and Scope of Emergency

The state of Oregon is requesting an emergency exemption (Section 18) for the use of Goal 1.6E Herbicide to control weeds in grasses grown for seed.

100.2 Target Organisms

Bromus carinatus

Poa trivialis

Vulpia myuros

Poa annua

Lollium multiflorum

Volunteer crop seedlings

100.3 Date, Duration

September 1, 1990 to January 15, 1991

100.4 Application Methods, Directions, Rates

(excerpted from the submission)

Proposed rates of oxyflourfen:

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Active Ingredient Rate</th>
<th>Total Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall fescue, orchardgrass, bentgrass, Kentucky bluegrass and perennial ryegrass</td>
<td>0.375 lbs. a.i./acre</td>
<td>67,688 lbs. total</td>
</tr>
<tr>
<td>Fine fescues</td>
<td>0.125 lbs. a.i./acre</td>
<td>875 lbs. total</td>
</tr>
<tr>
<td>Total all crops</td>
<td></td>
<td>68,563 lbs. total</td>
</tr>
</tbody>
</table>

b. Formulated product per acre and total in Oregon

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Rate</th>
<th>Total Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall fescue, orchardgrass, bentgrass, Kentucky bluegrass and perennial ryegrass</td>
<td>30 ounces/acre</td>
<td>42,305 gal. total</td>
</tr>
<tr>
<td>Fine fescues</td>
<td>10 ounces/acre</td>
<td>547 gal. total</td>
</tr>
<tr>
<td>Total all crops</td>
<td></td>
<td>42,852 gal. total</td>
</tr>
</tbody>
</table>
100.6 Precautionary Labeling

No precautionary labeling was provided with this submission. Although a copy of the first page of the 1990-91 proposed label was included in the package, the section regarding the environmental hazards was not included.

101 Hazard Assessment

101.1 Discussion

The State of Oregon is requesting an emergency exemption for the use of Goal 1.6E to control weeds and volunteer crops. (A similar request was made in 1989) Multiple applications are allowed but cannot exceed the maximum application rate of 30 oz. per acre (0.375 lbs a.i. per acre). Goal 1.6E is recommended for late preemergence through early postemergence control of annual broadleaf weeds, annual grasses, and the seedling stage of perennial grasses, including volunteer crops, in established perennial grasses grown for seed.

101.2 Likelihood of Adverse Effects on Nontarget Organisms

Environmental Fate Data (information obtained from Environmental Fate and Groundwater Branch (EFGWB) Pesticide Environmental Fate One Line Summary, last update, 10/12/89.)

(V) = validated study (S) = supplemental study

- Oxyfluorfen is stable to hydrolysis at pH 4, 7, and 10. (V)
- Oxyfluorfen is stable to photolysis. (S)
- Oxyfluorfen has a half life of 120 - 130 weeks in aerobic soils. (S)
- Oxyfluorfen degraded to 2-7% of the applied in 60 days. (S)
- Runoff study showed that oxyfluorfen will not translocate to nearby aquatic compartments.

Terrestrial organisms

Oxyfluorfen is considered to be practically nontoxic to moderately toxic to birds and practically nontoxic to
mammals (Northern bobwhite LC₅₀ 390 ppm; Mallard LC₅₀ >4000 ppm; Rat LD₅₀ >5000).

If Oxyfluorfen is applied at 0.375 lbs. a.i./Acre, the following residues (ppm) are expected to occur on terrestrial food items immediately after treatment as calculated using a nomograph presented in Hoerger and Kenaga (1972) based on historical measured residue data.

Upper limits and typical limits of residue on differing groups of plants

<table>
<thead>
<tr>
<th></th>
<th>Upper Limit</th>
<th>Typical Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range Grass (short)</td>
<td>90.00</td>
<td>46.88</td>
</tr>
<tr>
<td>Grass (long)</td>
<td>41.25</td>
<td>34.50</td>
</tr>
<tr>
<td>Leaves and Leafy Crops (vegetables and fruit)</td>
<td>46.88</td>
<td>13.13</td>
</tr>
<tr>
<td>Forage Crops (alfalfa, clover)</td>
<td>21.75</td>
<td>12.38</td>
</tr>
<tr>
<td>Pods Containing Seeds (legumes)</td>
<td>4.50</td>
<td>1.13</td>
</tr>
<tr>
<td>Fruit (cherries, peaches, grapes, citrus)</td>
<td>2.63</td>
<td>0.56</td>
</tr>
</tbody>
</table>

The data indicate that Oxyfluorfen is not expected to pose hazard to nontarget mammals. The residue limits do surpass the trigger for presumed hazard to nontarget birds (1/5 lowest avian LC₅₀ of 390 ppm = 78 ppm), however due to the limited acreages involved this hazard is expected to be minimal.

Aquatic Organism

Oxyfluorfen may be characterized as highly to moderately toxic to fish and aquatic invertebrates, respectively (Bluegill sunfish (Lepomis macrochirus) LC₅₀ = 200 ppm; Rainbow trout (Oncorhyncus mykiss) LC₅₀ = 410 ppb; Channel catfish (Ictaluris punctatus) LC₅₀ = 400 ppb; Daphnia magna LC₅₀ = 1.5 ppm).

Assuming 1% runoff, an aquatic EEC was calculated using the formula for unincorporated ground application (see attached). An application rate of 0.375 lbs. a.i./Acre is estimated to result in an EEC of 2.29 ppb. a.i. in a 1 acre pond 6 ft. deep. Since this level is less than 1/10 the LC₅₀ values for fish and invertebrates, the proposed use of Oxyfluorfen should not pose an acute hazard to aquatic organisms. Since the EEC is less than the Fathead minnow (Pimephales promelas) MATC of >
38 ppb < 74 ppb, the proposed use of Oxyfluorfen should not pose a chronic hazard to aquatic organisms.

101.3 Endangered Species Considerations

Since maximum residues do not exceed the fish and aquatic invertebrate endangered species triggers, the proposed use of oxyfluorfen is not expected to pose hazard to endangered aquatic wildlife.

The proposed use of oxyfluorfen is expected to pose a significant hazard to endangered plants. There are three endangered plants in Oregon: Bradshaw's Lomatium, Malheur Wire-Lettuce, and MacFarlane's Four-O'Clock. Of these only the Bradshaw's Lomatium is expected to be adversely affected by the proposed use. To prevent hazard the applicant should abide by the recommendations set forth in the attached September 19, 1989 letter by Russell D. Petersen, Field Supervisor, United States Fish and Wildlife Service, Portland Field Office.

With maximum residues of 2 to 90 ppm of oxyfluorfen expected on plants the trigger for risk to endangered birds (1/10 of the northern bobwhite LC₅₀ (390 ppm) = 39 ppm) has been exceeded. Although there are several species of endangered birds in Oregon (American Peregrine Falcon, Bald Eagle, Brown Pelican, Northern Spotted Owl, and the Aleutian Canada Goose) the only one that has the potential to be impacted by the proposed use of Oxyfluorfen is the Aleutian Canada Goose. This goose has been found in association with grain and grass fields. However, due its large size and its closer similarity to the mallard duck as opposed to the northern bobwhite, the Aleutian Canada Goose LC₅₀ is expected to be nearer that of the mallard duck (LC₅₀ = >4000 ppm). Since the expected residues do not exceed 1/10 the mallard duck LC₅₀ (400 ppm) the proposed use of Oxyfluorfen is not expected to pose significant hazard to the Aleutian Canada Goose.

101.4 Adequacy of Data

The available data were adequate to quantify the risks of this section 18.

101.5 Adequacy of Labeling

The following labeling would be required on any Oxyfluorfen label.
"This product is toxic to birds and aquatic invertebrates. Birds feeding in treated areas may be killed. Cleanup spilled product to reduce exposure to wildlife. Do not apply directly to water or swamps, bogs, marshes and potholes. Runoff may be hazardous to aquatic organisms in neighboring areas. Do not contaminate water when disposing of equipment washwater or rinsate."

Conclusions

The data indicate that Oxyfluorfen is not expected to pose hazard to nontarget mammals.

Although the expected residues do surpass the trigger for presumed hazard to nontarget birds (1/5 lowest avian LC$_{50}$ of 390 ppm = 78ppm), due to the limited acreages involved this hazard is expected to be minimal.

The data indicate that the proposed use of Oxyfluorfen should not pose an acute hazard or chronic hazard to aquatic organisms.

The proposed use of oxyfluorfen is expected to pose a significant hazard to endangered plants. There are three endangered plants in Oregon; Bradshaw's Lomatium, Malheur Wire-Lettuce, and MacFarlane's Four-O'Clock. Of these only the Bradshaw's Lomatium is expected to be adversely affected by the proposed use. To prevent hazard the applicant should abide by the recommendations set forth in the attached September 19, 1989 letter by Russell D. Petersen, Field Supervisor, United States Fish and Wildlife Service, Portland Field Office.

With maximum residues of 2 to 90 ppm of oxyfluorfen expected on plants the trigger for risk to endangered birds (1/10 of the northern bobwhite LC$_{50}$ (390 ppm) = 39 ppm) has been exceeded. Although there are several species of endangered birds in Oregon (American Peregrine Falcon, Bald Eagle, Brown Pelican, Northern Spotted Owl, and the Aleutian Canada Goose) the only one that has the potential to be impacted by the proposed use of Oxyfluorfen is the Aleutian Canada Goose. This goose has been found in association with grain and grass fields. However, due its large size and its closer similarity to the mallard duck as opposed to the northern bobwhite, the Aleutian Canada Goose LC$_{50}$ is expected to be nearer that of the mallard duck (LC$_{50}$ = >4000 ppm). Since the expected residues
do not exceed 1/10 the mallard duck LC$_{50}$ (400 ppm) the proposed use of Oxyfluorfen is not expected to pose significant hazard to the Aleutian Canada Goose.

Harry A. Winnik
Ecological Effects Branch
Environmental Fate and Effects Division (H7507C)

Henry Craven, Head, Section IV
Ecological Effects Branch
Environmental Fate and Effects Division (H7507C)

James W. Akerman, Chief
Ecological Effects Branch
Environmental Fate and Effects Division (H7507C)

Attachments
AQUATIC EEC CALCULATION SHEET FOR Oxyfluorfen

I. For un-incorporated ground application

A. Runoff

\[0.375 \text{ lb(s)} \times 0.01 \times 10 = 0.0375 \text{ lb(s)}\]

(from 10 A drainage basin)

EEC of 1 lb a.i. direct application to 1 A pond 6 feet deep = 61 ppb

Therefore EEC = 61 ppb \times 0.0375 = 2.2875 ppb

II. For Incorporated ground application

A. Runoff

\[\text{--- \text{lb(s)} \times \text{--- \text{cm} \times \text{--- \text{X} 10(A) = 0 \text{lb(s)}}\]}

(depth of \ (% runoff) \ (10 A \ (total runoff) \ (total runoff)

incorporation) \ drainage basin)

Therefore, EEC = 61 ppb \times 0 \ (lbs) = 0 ppb

III. For aerial application (or mist blower)

A. Runoff

\[\text{--- \text{lb(s)} \times \text{0.6 \ \text{X} \ --- \text{X} 10(A) = 0 \text{lb(s)}}\]

(application \ (% runoff) \ (10 A \ (total runoff) \ (total runoff)

efficiency) \ drainage basin)

B. Drift

\[\text{--- \text{lb(s)} \times 0.05 = 0 \text{lb(s)} \ (total drift)}\]

(5\% drift)

Total loading = 0 lb(s) + 0 lb(s) = 0 lb(s)

Therefore, EEC = 61 ppb \times 0 lbs = 0 ppb