MEMORANDUM

SUBJECT: Section 18 - Specific Exemptions for Use of Oxyfluorfen (Goal) For Chemical Pruning (Cane Suppression) of Primocanes in Raspberries Grown in Oregon and Washington --ACTION: MEMORANDUM--

FROM: Anne E. Lindsey, Director Registration Division

TO: Douglas D. Canpt, Director Office of Pesticide Programs

I. APPLICANT REQUEST:

APPLICANTS: Oregon Department of Agriculture Washington Department of Agriculture

CHEMICAL: Oxyfluorfen

PRODUCT: Goal 1.6E Herbicide, EPA Reg. No. 707-174, manufactured by Ronco and Hanex Company

SITE: Raspberries

PERT: Raspberry primocanes

RATE: At a maximum rate of 1.0 pint per acre equivalents to 0.1 lb ai., per acre

NO. OF APPL.: A single ground application made in a minimum of 30 gallons of water per acre, applied to primocanes in a 3-foot band over the row. A 50-day PHI will be observed;

ACREAGE: OR; 4,000 Acres in Washington, Multnomah, Clackamas, Linn, Benton, Polk, Lane, Marion and Douglas Counties;

WA 3,200 acres in counties west of the Cascade mountains

MAR 27 1990
POUNDAGE: OR: 1,000 gallons of product, equivalent to 1,600 lbs. a.i.
WA: 1,300 gallons of product, equivalent to 2,080 lbs. a.i.

USE-SEASON OR: March 1, 1990 through May 15, 1990
WA: March, 1990 through May, 1990

EMERGENCY/REG. ALT.: In the past, dinoseb was used by growers in Oregon and Washington for chemical pruning of raspberry primocanes. Since the suspension of dinoseb in October of 1986, extension personnel, processor and grower organizations, and private agricultural firms have been searching for economical and efficacious alternatives. Existing supplies of dinoseb have now been completely exhausted. According to the Applicants, research data show that oxyfluorfen provides the same benefits afforded by dinoseb.

Chemical pruning of raspberry primocanes is important for two reasons. First, mechanical harvesting, which now accounts for approximately 90% of harvested raspberries, requires that growth at the plant base be removed for proper operation of harvester catch plates which catch the falling fruit. Secondly, pruning of early season vegetative growth diverts nutrients to fruit buds and increases raspberry yields. The Applicants estimate that without an effective herbicide for chemical pruning of primocanes, growers will lose 1.2 to 1.9 tons or more of raspberries per acre.

Washington was granted a 24(c) registration for use of monocrotaline sulfuric acid (Enquilt) to suppress primocanes in 1989. However, this chemical is ineffective for the following reasons. Enquilt's activity is very temperature-dependent. Ambient temperatures are often not conducive to the degree of activity required to suppress primocanes. In addition, Enquilt often crippling the primocanes rather than suppressing them. These crippled canes continue to be a photosynthetic plant, competing with the berries for nutrients and obstructing machine harvesting operations.

According to the Applicants, hand pruning is not a realistic alternative. Pruning crews are not generally available in April and May. Also, the cost of labor for the time required for hand removal of new vegetative canes would be prohibitive, approximately $100 per acre. The additional costs of removing shoots up to 1.5 feet long at the bases of fruiting canes cannot be accurately estimated.

ECONOMICS: Oregon estimates that with the use of oxyfluorfen, growers can expect average yields of 6,000 pounds of raspberries per acre. The total value of Oregon's raspberry crop is expected to be $12 million. Without the use of oxyfluorfen, growers are
expect yield reductions of between 1.2 and 1.9 tons of raspberries per acre. Assuming an average price of $0.50 per pound and reduced yields of 1.2 tons per acre, economic losses in excess of $4.8 million are expected to occur over the entire affected 4,000 acres.

Washington estimates that yields will be reduced as much as 45% without an effective chemical means of primocane suppression. In 1989, raspberry yields in Washington averaged 5900 pounds per acre with an average price of $0.52 per pound. Based on these figures, yield reductions of 45% could result in economic losses of approximately $1,380 per acre or $7.2 million over the entire 5,200 acres.

II. BACKGROUND:

This is the first year this use of oxyfluorfen has been requested under Section 18 of FIFRA.

Registration Standard/Special Review considerations

Oxyfluorfen is a List B chemical for which a Registration Standard is not currently available.

A Special Review of oxyfluorfen was completed in January of 1982. The review was initiated due to concerns over contamination of oxyfluorfen with perchloroethylene (PCE), a carcinogen. A decision was made to continue use of the herbicide subject to restriction of the contaminant PCE (not to exceed 200 ppm) in the formulated product.

Progress towards registration

In 1984, the PPQ has been initiated to generate data in support of a tolerance for residues of oxyfluorfen in or on raspberries. The 1983 field data from Oregon have been sent to PPQ headquarters for analysis.

III. EPA EVALUATION

BEAD REVIEW

BEAD reviewed the request from Oregon and Washington and concluded that an urgent, non-routine situation exists, since this will be the first growing season that the caneberry producers have not had dinoseb available for this use. BEAD also concluded that substantial yield and harvesting loss are expected to occur without an adequate alternative. There are no registered alternatives for this use, except dinoseb which is registered under Section 2(c) for use in Washington only. BEAD agreed with Washington's assertion that dinoseb is not an effective alternative to dinoseb, due to its temperature
sensitivity. Enquik is only effective when the weather is unusually warm at the time of first treatment. Applications of Enquik when the weather is too cold may actually be counterproductive. BEAD also agreed with the Applicants' assertion that head-pruning of primocanes was not an economically feasible alternative to chemical control.

According to BEAD's estimates, growers can expect yield reductions as high as 2 tons per acre if an effective alternative to dinoseb is not found. Even the more conservative loss estimate of 1.2 tons per acre in Oregon's submission would cause a revenue loss of $1,200 per acre, roughly equivalent to 40% of the 5-year average per acre revenue of $2,975. Such a loss would be well outside the "normal" range in profitability.

Residue Chemistry Review

Dietary Exposure Branch reviewed this request and concluded that residues of oxyfluorfen and its metabolites containing the diphenyl ether linkage are not expected to exceed 0.05 ppm in or on raspberries as a result of the proposed use. Residues in meat, milk, poultry, and eggs are not expected to result, since no animal feed items are involved. Adequate methodology for enforcement purposes may be found in PAM II, and reference standards are available from the Pesticides and Industrial Chemicals Repository at RTP, N.C.

Toxicological Review

Toxicology Branch I (TOX) reviewed this request for use of oxyfluorfen on raspberries. BEAD has established an RfD for oxyfluorfen of 0.003 mg/kg/day, based on the NOEL of 0.1 mg/kg/day from a 20-month mouse feeding study with an uncertainty factor of 100. Existing uses of oxyfluorfen result in a TMD (Theoretical Maximum Residue Contribution) of 0.000985 mg/kg/day for the overall U.S. population, which utilizes 20% of the RfD. The proposed use on raspberries would increase the TMD by 0.00000014 mg/kg/day and result in a negligible increase in RfD utilization. The only DRE population subgroup with a TMD in excess of the RfD is non-nursing infants, less than 1 year old. The TMD for this group is 0.004537 mg/kg/day, which utilizes 151% of the RfD. A recent DRE analysis incorporating available anticipated residue and parent crop treated data calculated an AEC (Anticipated Exposure Contribution) for this subgroup of 0.000027 mg/kg/day, which utilizes only 0.01% of the RfD. The proposed use on raspberries is not expected to measurably increase dietary exposure to oxyfluorfen for infants, since infant consumption of raspberries is negligible.

BEAD's Peer Review Committee has classified oxyfluorfen as a Group C (possible human carcinogen with an apparent potency 1/10th to 1/50th that of Group B chemicals) with a carcinogenic potency index of 0.000001.
(mg/kg/day)\(^{-1}\). TOX deferred to the Science Analysis and Coordination Branch (SACB) and the Non-Dietary Exposure Branch (NDEB) for dietary and non-dietary exposure analyses, respectively. The results of these analyses are discussed below.

I. Dietary Risk Assessment:

SACB has estimated a lifetime dietary risk of \(1.1 \times 10^{-4}\) from existing uses of oxyfluorfen, based on tolerance level residues and assuming 100 percent of the registered crops are treated. SACB recently provided a revised risk assessment, which incorporates available anticipated residue and percent crop treated information. SACB’s revised lifetime dietary risk estimate is \(1.4 \times 10^{-4}\). Assuming a residue level of 0.05 ppm in raspberries, the proposed use would result in a lifetime dietary carcinogenic risk of \(1.6 \times 10^{-6}\).

II. Non-Dietary Exposure Assessment:

NDEB does not have exposure data available to quantify the exposure from the use of pesticides on caneberris. However, NDEB has no objection to issuance of the exemption, provided proper protective clothing is required via the section 18 label. The use of fabric (such as cotton) overalls over a long sleeve shirt and long pants will be required during the mixing, loading, and application of oxyfluorfen. In addition, chemical-resistant gloves and boots will be required. According to NDEB, the use of protective clothing, combined with the low pressure directed spray, would be expected to yield a low exposure potential.

NDEB further recommends that exposure to handlers of oxyfluorfen or other herbicides be monitored, if possible, to perform a quantified exposure risk assessment of herbicide use on caneberris in the future.

Ecological Effects Review/Environmental Fate Review

NDEB reviewed the request from Oregon and concluded that the proposed use is not expected to pose an unreasonable risk of adverse effect on birds, mammals, or aquatic organisms, but does pose a risk to non-target plant species, the endangered plant, Bradshaw's lomatium, occurs in the willamette valley of Oregon. NDEB recommends that applications of oxyfluorfen be prohibited within 100 yards of fish-inland prairie communities, all wetlands, and all other aquatic habitats including drainages, courses, and other water ways. In clark, lane, mason, marion, and polk counties to minimize risk of exposure of this endangered plant.

NDEB also reviewed the request from Washington and concluded that the proposed use should not adversely affect natural, birds,
aquatic organisms, and nontarget plants, including endangered species.

Oxyfluorfen does not appear on EFGWB's list of chemicals with ground water concerns.

IV. RECOMMENDATION:

I recommend that the Oregon Department of Agriculture and Washington Department of Agriculture be granted specific exemptions for use of oxyfluorfen for chemical pruning of raspberry primocanes. This recommendation is based on the following:

1. Dinooseb has been used in the past for chemical pruning of raspberry primocanes. Dinooseb was suspended in 1986, and existing supplies are now exhausted. There are no other effective registered alternatives available for use.

2. Without the use of oxyfluorfen this season, growers are expected to suffer significant economic losses of approximately $1,720 per acre or $4.5 million over the entire 4,000 acres in Oregon and $6.3 million over the entire 5,200 acres in Washington.

3. Residues of oxyfluorfen are not expected to exceed 0.05 ppm in or on raspberries as a result of the proposed use. This level can be toxicologically supported. Existing uses of oxyfluorfen utilize 29.8% of the RfD for the overall U.S. population and 19% (or 0.91 using anticipated residues and percent crop treated information) of the RfD for non-nursing infants. The proposed use on raspberries would result in a negligible increase in dietary exposure for the U.S. population and all of the OREAL population subgroups.

Existing uses of oxyfluorfen result in a lifetime dietary carcinogenic risk of 1.1 x 10^-4, based on tolerance level residues, and 1.4 x 10^-2, based on available anticipated residues and percent crop treated data. The proposed use on raspberries would result in a negligible increase in risk (10^-3).

Although non-dietary exposure cannot currently be quantified, use of protective clothing, in combination with use of low pressure directed sprays, should minimize exposure.
4. The proposed use should not pose an unreasonable risk of adverse effects on non-target birds, mammals, or aquatic organisms. The use does pose a risk of adverse effects on the endangered plant, Bradshaw's lomatium, found in certain counties in Oregon. Applications will be prohibited within 100 yards of the habitat of this species to minimize risk of exposure.

5. Progress toward registration of the proposed use appears to have been made. An IR-4 project is underway to collect data in support of a permanent raspberry tolerance.

Approve: [Signature]

Disapprove: [Signature]

Date: MAR 26 1990