DATA EVALUATION RECORD

STUDY 1

CHEM 109101       MEPQUAT CHLORIDE       §161-3

STUDY ID 4189009


DIRECT REVIEW TIME - 2.2 days

REVIEWED BY: G. Maske
TITLE: Chemist
ORG: EFCWB/EPED/OPP
TEL: 305-5245

SIGNATURE: [Signature]

7 OCT 1993

Approved by: F. Nastragon
TITLE: Chief, Section 1
ORG: EFCWB/EPED/OPP
TEL: 305-5335

7 OCT 1993

CONCLUSIONS:

Photodegradation on soil

The photodegradation on soil study is of uncertain value and cannot be used to fulfill the data requirement (161-3). In order to validate the TLC analysis, EFCWB prefers a confirmatory method such as MS in addition to comparison to the RF of reference standards. In addition, the vitality and moisture content of soil were not monitored during the testing period. It appears there was low microbial activity in the soil since there was a discrepancy between the reported half-lives (stable vs. 1-21 days) for mepquat chloride in the photodegradation on soil control results and the aerobic soil metabolism (MRID 00127749-tk=1.17 days and 42412103-tk=3.21 days) and the aerobic portion of the anaerobic soil metabolism (MRID 4189009) results.

Mepquat chloride was reported by the registrant to be photolytically stable when applied to sandy loam soil and exposed to an intermittent light source. At termination of the study, mepquat chloride recovered in light exposed samples and dark control samples was 85.5% and 88.6%, respectively.

MATERIALS AND METHODS:

Test Material: 1,1-dimethylpiperidinium chloride was used which was reported to have a specific activity of 6.11 Ci/mole, radiochemical purity of 97.2% and chemical purity of >95%.

Soil: A sandy loam soil collected from the BASF Research Station in Dinuba, CA was used which had the following characteristics:

- pH: 6.4
- CEC(meq/100g): 18.79

-1.1-
% Organic matter: 4.3
% Field moisture: 14.22
Bulk density (g/cm³): 1.26
% Sand: 54
% Silt: 32.4
% Clay: 10.4

Sampling: Light exposed soil samples and volatile traps were
sampled at 0, 7, 14, 22, and 30 days posttreatment.
The dark control samples were sampled at 0, 14, and
30 days posttreatment.

Test System: See Figures 1 and 2.

METHODOLOGY:

Five gram soil samples were weighed into each half of the
glass trays and 5.0 mL of methanol containing 32.17 µg of
mepiquat chloride was added to each. The methanol was allowed to evaporate to give a 2-mm thick soil
layer with a surface area of 10.62 sq. cm in each half of
the tray. Fertilization of soil was equivalent to 0.28 kg/ha (0.31 lb/A).

The trays were sealed in the reaction vessels and exposed to an intermittent
light source at 1800 µE/m² sec using a xenon arc lamp
equipped with filters to mimic natural sunlight (wavelengths <290 nm were
filtered out). A light intensity of 1800 µE/m² sec is equivalent
to that at noon on a cloudless day in the middle of November at the
Research Triangle Park, NC. The samples were exposed to the light source
for 12 hours followed by 12 hour dark period which was repeated for
a total of 30 cycles.

To maintain the soil at a constant temperature of 25±1°C, water at 25±1°C
from a cooling bath was circulated through the water jacket at each reaction
vessel.

To collect any volatiles produced during the study, air was drawn through
the reaction vessels and a series of scrubbing bottles containing 150 mL of
liquid. On the outlet side was water to moisten the air, and on the outlet
side was carbital, which is a general solvent for organic volatiles. Sulfuric
acid solution (0.5N) was used to trap basic volatiles, and 0.5N NaOH
was used to trap CO₂.

At intermediate intervals of 7 cycles, a soil sample and the volatile
traps were removed for analysis. Liquid samples were radioassayed by
liquid scintillation. Soil samples were radioassayed by combustion. The
aliquots of carbital and sulfuric acid traps (1 mL) and NaOH traps (0.1 mL)
were analyzed directly.

Soil samples were extracted immediately after the sampling interval. Each
sample was transferred to an Erlenmeyer flask, and then 25 mL of water and
100 mL of DCM containing 7.5 mg of dipicrylamine were added. The flask was
shaken for one hour and the slurry filtered. After separation of the DCM
extract, it was made up to exactly 100.0 mL and radioassayed.

When a second extraction was necessary, the soil and the aqueous solution
from the first extraction was combined with an additional 100 mL of DCM
containing 7.5 mg of dipicrylamine in a blender. After 22 days a third
extraction was performed. The extraction sequence is depicted in Figure 3.

TLC was performed using Solvent System A: acetonitrile:methanol:conc. hy-
drochloric acid (60:39:1); Solvent system B: methanol:acetic acid:water
(25:4:8) and Solvent System C: butanol:acetic acid:water (40:10:50) to
develop.

Control experiments were also performed in which samples were kept in the
dark at 25±1°C.

Material balances are shown in Table 1 for the dark control soils and in
Table 2 for the light exposed soils.

**DATA SUMMARY:**

Mepiquat chloride appears to be photolytically stable under the test condi-
tions. Therefore, the registrant stated that a photolytic half-life for mepi-
quat chloride on soil could not be determined.

All combined DCM extract were examined by TLC using System A. The samples
appeared to contain only mepiquat chloride as the radioactive residue. How-
ever, this finding was confirmed with System C. The registrant noted that the
complex of mepiquat chloride with dipicrylamine in DCM decomposed to mepiquat
chloride during the conditions employed in TLC.

Data in Tables 1 and 2 show that with time the mepiquat chloride was more
strongly bound to the soil. Initially a single extraction with a mixture of
water and dichloromethane containing the ion-pairing reagent dipicrylamine was
sufficient to remove most of the applied mepiquat chloride into the organic
layer. Later two such extractions were required. After 22 days, a third
extraction was required in which the soil was boiled with 0.5N NaOH before
addition of the extractant.

The extractability averaged 95.0% for the light exposed soils and 95.9% for
the dark control soils (See Tables 3 and 4).

Volatile residue produced during light exposure appeared to be negligible.
Volatile results are shown in Table 5.

The material balance averaged 95.7% for the light exposed soils and 94.3% for
the dark control soils. See Table 2 and Table 1

**COMMENTS:**

1. EFGWB prefers that [14C]residues in samples be separated by chromato-
graphic methods (such as TLC, HPLC, and GC) with solvent systems of differ-
ent polarity, and that specific compounds isolated by chromatography be
identified using a confirmatory method such as MS in addition to compar-
ison to the RF of reference standards.

   In this study, the samples were analyzed using TLC using three solvent
   systems. Radioactive areas on the TLC plates identified only by compar-
  ison to the location of known reference standards.

2. The soil moisture content was not monitored during the testing period. A
   soil moisture content of 75% of 1/4 bar field capacity should be maintained
during the testing period.

3. Methanol was used as the pesticide solvent for treatment of the test soil.
   In other studies, water has been the pesticide solvent.

4. Vitality of the soil was not monitored.

5. There is a discrepancy between the half-lives of mepiquat chloride report-
ed for the photodegradation on soil study and the aerobic soil metabolism
study. The half-life reported for mepiquat chloride when applied to sandy
loam soil and exposed to a light source and dark was stable (no degradation). The half-lives reported for mepiquat chloride when applied to sandy loam soil and clay loam soil and incubated in the dark under aerobic conditions were reported to be 1 to 17 days.

6. Control samples were taken at every other sampling interval. EFCWB prefers that control samples be taken at each sampling interval.
Page ____ is not included in this copy.
Pages 5 through 14 are not included in this copy.

The material not included contains the following type of information:

____ Identity of product inert ingredients.
____ Identity of product impurities.
____ Description of the product manufacturing process.
____ Description of quality control procedures.
____ Identity of the source of product ingredients.
____ Sales or other commercial/financial information.
____ A draft product label.
____ The product confidential statement of formula.
____ Information about a pending registration action.
\(\checkmark\) FIFRA registration data.

____ The document is a duplicate of page(s) _____.
____ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.