US ERA ARCHIVE DOCUMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

2/28/2002

OFFICE OF PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT:

Review of Documents Related to the Equivalency of Racemic Metolachlor

(Metolachlor) and S-Metolachlor for Environmental Fate and Ecotoxicity

FROM:

Mark Corbin, Environmental Scientist

James Hetrick, Ph D., Senior Physical Scientist

2/28/02 ann G. Hetrick 2/28/02

THRU:

Dana Spatz, Acting Chief

Environmental Risk Branch 1

Environmental Fate and Effects Division (750)

. . . .

TO:

Donald Stubbs, Branch Chief

Herbicide Branch

Registration Division (7505C)

This memorandum provides clarification, reanalysis, and review of data on the equivalency of metolachlor and s-metolachlor with regard to environmental fate and ecotoxicity. Attached are completed reviews of documents to assess equivalency of metolachlor and s-metolachlor.

EFED concludes, based on Subdivision N laboratory data, there are sufficient bridging data to compare the environmental behavior of metolachlor to s-metolachlor. Metolachlor and s-metolachlor half-lives and degradation products in aerobic soil are similar. Additionally, the formation and degradation patterns of mobile degradation products, metolachlor ESA and metolachlor OA, were similar for metolachlor and s-metolachlor. The soil sorption affinity of metolachlor and s-metolachlor, expressed as K_f , K_d , or K_∞ , are not significantly different. This conclusion is based on a comparison of laboratory data without enantioselective chemical analysis. Therefore, the stereochemistry of degradation products is unknown.

Extensive ground and surface water monitoring data for metolachlor in the United States indicates metolachlor and its degradation products (metolachlor OA and metolachlor ESA) are detected in ground and surface waters. The degradation products are generally detected at higher concentration than metolachlor in ground water. The registrant's assessment on the

impact of switching from metolachlor to S-metolachlor on environmental loading is inconclusive because numerous variables (such as agricultural practices, climate, pesticide usage, etc) were not considered in the analysis. Registrant-sponsored monitoring data in Switzerland indicate the switch from metolachlor to S-metolachlor led to changes in enantiomeric ratios of metolachlor in surface water. This replacement, however, did not result in lower metolachlor concentrations. Additionally, preliminary retrospective field data from the Office of Research and Development (ORD)/National Exposure Research Laboratory (NERL) indicate preferential occurrence of s-metolachlor in deep soil samples and ground water at sites with historic metolachlor applications. This observation while still very preliminary may be attributed to preferential degradation of R enantiomers in anaerobic environments. Although there are extensive ground and surface water monitoring data of metolachlor in the United States, the available data are not sufficient to allow enantioselective differentiation of metolachlor. This type of information is needed to evaluate the direct impact of switching from metolachlor to s-metolachlor on water quality.

Available ground and surface water models such as GENEEC, SCI-GROW, PRZM-EXAMS predict that lower application rates of s-metolachlor will result in lower environmental concentrations when compared to metolachlor. Similar registrant modeling results were predicted for S-metolachlor concentrations in groundwater at GA and MN test sites. The significance of the modeling results is difficult to assess because the modeling was conducted using inadequate calibration techniques. Additionally, the Pesticide Root Zone Model (PRZM), which is based on linear processes, will predict lower concentrations with lower application rates regardless of the calibration technique.

The ecotoxicity data are supportive of bridging toxicity profiles of metolachlor and s-metolachlor. Although the ecotoxicity studies were not conducted using identical test conditions and procedures, the ecological effects of metolachlor and s-metolachlor are similar except for the risk to non-target plants. The very low avian toxicity for metolachlor suggest minimal expected differences between metolachlor and s-metolachlor. Also, there are adequate data to provide informed comparisons on toxicity for fish, plants, and invertebrates. The only difference in risk is associated with the slightly greater risk of s-metolachlor to non-target plants.

The uncertainties in this assessment are associated with the lack of enantioselective ground and surface water monitoring data to confirm the impact of s-metolachlor and metolachlor and their degradation products on water quality. Preliminary field data from ORD/ NERL indicate enantioselective occurrence of S-metolachlor in deep soil and groundwater samples at three sites with historic metolachlor applications. Additionally, enantioselective degradation of the metolachlor in surface soils was detected at some field sites. In order to address these uncertainties, environmental fate laboratory data are needed to clarify the equivalency of anaerobic aquatic/soil degradation for metolachlor and s-metolachlor. Also, any future ground and surface water monitoring for metolachlor and its degradation products should employ some enantioselective analysis techniques to confirm the potential loading and exposure of metolachlor stereoisomers and their degradation products.

Reevaluation of Existing Data on Equivalency of Metolachlor and S-Metolachlor for Environmental Fate

1.) Review of the Stereochemistry of Metolachlor

Metolachlor has four stable stereoisomers because there are two chiral centers. These stereoisomers exist as diastereomers (non-mirror images), enantiomers (mirror images), and atropisomers (conformation isomers). Enantiomers have the same chemical and physical properties (except for the direction they rotate plane polarized light), but can react differently with other chiral systems in the environment (e.g., soil metabolism rates and products could be different). This also can explain why one enantiomer may be more active than the other. Unlike enantiomers, diastereomers and atropisomers have different physical properties (i.e., solubility, melting point, density, etc.) and similar (not identical) chemical properties.

2.) Comparison of Metolachlor OA and Metolachlor ESA Degradate Formation and Decline Patterns for Racemic and S-Metolachlor

A reevaluation of the photodegradation on soil (MRID 43928935) and aerobic soil metabolism (MRID 43928936) studies indicate the isomer ratio of applied metolachlor (100% S isomer or racemic metalachlor) did not impact the formation or degradation rate of metolachlor ESA and metolachlor OA.

Figures 1 through 3 graphically summarize the data from the aerobic soil metabolism study for both the racemic and enriched isomer versions of parent metolachlor (and smetolachlor) as well as the corresponding degradates, ethanesulfonic acid (ESA) and oxanillic acid (OA). The data show that the degradation profile of metolachlor ESA and OA are similar for metolachlor and s-metolachlor.

Figures 4 through 7 graphically summarize the data for both the racemic and enriched isomer versions of parent Metolachlor (and s-metolachlor) as well as the corresponding oxanillic acid (OA) from the "Photodegradation of ¹⁴C-Metolachlor and ¹⁴C-CGA-77102 on Soil" (MRID 43928935). The degradate ESA was not detected in the Soil Photolysis study. The data show similar formation and decline patterns suggesting that neither the racemic nor the enriched isomer will form the OA degradate in greater amounts through photolysis on soil.

3) Review and Clarification of Batch Equilibrium Studies:

The Agency reevaluated the mobility assessment to provide 1) a formal review of all batch equilibrium data, 2) a statistical analysis for comparing sorption coefficients of S-metolachlor and metolachlor, and 3) reasons for relative differences in sorption coefficients for metolachlor and S-metolachlor.

The Agency reviewed the batch equilibrium data for S-metolachlor and metolachlor used for comparing equivalency in mobility (Table 1). The paired batch equilibrium data (Soil Behavior of Maize Chloroacetanilides, June 10, 1994 and Ecochemistry CGA-77102 Status Report July, 5 1994) were not reviewed because there was no documentation regarding the

experimental design, material and methods, and discussion of results. The non-guideline batch equilibrium studies provide ancillary data on the soil:water partitioning of metolachlor and S-metolachlor. The review of the batch equilibrium data indicate a miscalculation for Koc values reported in Burkhart, 1978. Recalculation of the data yielded Koc values ~ 3 fold higher than reported in the registrant's data submission. These calculation errors were verified with the registrant (Warner Phelps, Syngenta, 10/10/01).

Table 1: Review Summary of Submitted Batch Equilibrium Data for S-metolachlor and racemic metolachlor

nctoracmor		<u> </u>	
Succe	Žinos	Smilth of Oece	Solularsion (s Deficiency
Racemic			
Burkhart, 1978 MRID 00078291	Ancillary	Moderate	Analysis is not chemical specific; residue specific methods referenced were not described; tabular raw data were not provided
Spare, 1987 MRID 40496404	Acceptable 2/25/93	High	None
Soil Behavior of Maize Chloroacetanilides, June 10, 1994	Not Acceptable	Low	Paired soil study; simple partitioning coefficient at 1 ppm; no estimate of Freundlich coefficient
S-Metolachlor			
Ellgehausen, H. 1997	Supplemental	Moderate	Foreign soils
Spare, 1995 MRID 43928937	Acceptable 4/23/97	High	No enantiometric ratios reported
Ecochemistry CGA-77102 Status Report July, 5 1994	Not Acceptable	Low	Paired soil study; simple partitioning coefficient at 1 ppm; no estimate of Freundlich coefficient

The registrant (Syngenta) provided statistical analysis of batch equilibrium data for metolachlor and S-metolachlor. Their analysis indicate s-metolachlor had statistically higher organic carbon sorption coefficients (K_{∞}) than metolachlor in non-paired batch equilibrium studies. Conversely, there were no statistical differences in Koc values for s-metolachlor and metolachlor in paired batch equilibrium studies. The Agency notes the statistical comparison of non-paired data was conducted on uncorrected data. The Agency's review indicated the K_{∞} coefficients for metolachlor and S-metolachlor are similar. This conclusion was reached through a non-statistical comparison of slopes between Kd and percent soil OC. The Agency hypothesized earlier that the higher K_{∞} partitioning coefficients for S-metolachlor in non-paired studies was due to a higher range of organic carbon content in test soils. This is an erroneous statement because organic carbon partitioning coefficients (Koc) are normalized for organic carbon content. The exact reason for differences in partitioning coefficients in non-paired

batch equilibrium studies is difficult to assess at this time.

Additional statistical analysis of the batch equilibrium data were conducted to assess potential mobilities of S-metolachlor and racemic metolachlor. The data were analyzed using the following comparisons: 1) paired batch equilibrium data, 2) non-paired data from Subdivision N guideline batch equilibrium studies, and 3) all nonpaired batch equilibrium data. The paired batch equilibrium data were assessed separately because the test methods were not similar to the other studies, and the quality of the data are not known. The analysis indicates there are no statistical difference (P>0.05) in Freundlich adsorption coefficients (Kf) or organic carbon partitioning coefficients (Koc) for the metolachlor and S-metolachlor. This conclusion was consistent among the different data comparisons. It is important to recognize differences in average Koc values were pronounced in non-paired studies [135 (racemic) vs 219 (S-enriched)]. However, the small sample size (n= 8 to 9 samples) coupled with the high standard deviations (85 to 94) led to nonsignificant différences in the Koc values. A significant difference in Koc may or may not occur with more observations.

5) Contact experts on chiral environmental chemistry or environmental chemistry of metolachlor in ORD (Dr. Wayne Garrison, ORD/Athens), USDA (Drs. Laura McConnel and Walter Schmidt), USGS (Drs. Dana Kolpin and William Foreman)

Dr. Wayne Garrison has conducted preliminary research showing enantioselective occurrence of S-metolachlor in deep soil samples and ground water at field sites with historical racemic metolachlor use. These data suggest anaerobic degradation of metolachlor is enantioselective. Similar enantiometric ratios of metolachlor were observed in surface soils and runoff waters when compared to the enantiometric ratios in applied racemic metolachlor. However, more recent field data indicate enantioselective occurrence of S-metolachlor in surface soils. These data suggest enantioselective degradation of metolachlor may not be constant across different soil types.

6) Review Literature on Environmental Behavior and Stereochemistry of Metolachlor

Buser, H. R., T. Poiger, et al. (2000). "Changed enantiomer composition of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market." Environ. Sci. Technol. 34(13): 2690-2696

The study provides data on the impact of the use of S-metolachlor in the watersheds of two Swiss lakes on enantiomer/isomer composition of metolachlor in surface water. The monitoring was conducted from early 1998 to 1999, a period of time S-metolachlor was starting to replace racemic metolachlor. The data indicate the ratios of S enantiomer of metolachlor was increasing relative to the R enantiomer in surface water. The authors attribute this observation to the replacement of racemic metolachlor with S-metolachlor.

Müller, M. D. and H. R. Buser (1995). "Environmental behavior of acetamide pesticide stereoisomers. 2. Stereo- and enantioselective degradation in sewage sludge and soil." Environ. Sci. Technol. 29(8): 2031-2037

The authors concluded metolachlor has low to moderate enantioselective degradation in anaerobic sewage sludge and aerobic soil.

Figures

 $\int_{0}^{\infty} \frac{dx}{dx} \frac{dx}{dx} dx$

Metolachlor vs s-Metolachlor Degradate Formation

Figure 1. Comparison of Metolachlor and s-Metolachlor Decline from "Comparative Aerobic Soil Metabolism Study" (MRID 43928936)

Metolachlor vs s-Metolachlor Comparison of CGA-354743 Formation

Figure 2. Comparison of CGA-354743 (Metolachlor ESA) Formation and Decline from "Comparative Aerobic Soil Metabolism Study" (MRID 43928936).

Metolachior vs s-Metolachior Comparison of CGA-51202 (OA) Formation

Figure 3. Comparison of CGA-51202 (Metolachlor OA) Formation and Decline from "Comparative Aerobic Soil Metabolism Study" (MRID 43928936).

Metolachior vs s-Metolachior Comparison of Parent Decline from TLC Data (Irradiated)

Figure 4. Comparison of Parent Decline from "Comparative Photodegradation on Soil Study" (MRID 43928935) with Irradiated Soil.

Figure 5. Comparison of CGA-51202 Formation and Decline from "Comparative Photodegradation on Soil Study" (MRID 43928935) using Irradiated Soil.

Metolachlor vs s-Metolachlor Comparison of Parent Decline from TLC Data (NonIrradiated)

Figure 6. Comparison of Decline of Parent from "Comparative Photodegradation on Soil Study" (MRID 43928935) using Non-Irradiated Soil.

Metolachlor vs s-Metolachlor Comparison of Degradate Formation from TLC Data (NonIrradiated)

Figure 7. Comparions of CGA-51202 Formation and Decline from "Comparative Photodegradation on Soil Study" (MRID 43928935) using Non-Irradiated Soil.

DATA EVALUATION RECORD

I. Study Type: Batch Equilibrium

II. Citation:

Ellgehausen, H. 1995. Adsorption/Desorption of CGA 77102 in Various Soil Types. Submitted by Novartis Crop Protection AG,. Performed by Environmental Safety/ Ecochemistry, Basil, Switzerland. No MRID.

2/28/02

III. Reviewer:

Name: James A. Hetrick, Ph.D.

Title: Soil Chemist

Organization: Environmental Risk Branch #1

ERB1/EFED/OPP

IV. Approved by:

Name: Dana Spatz

Title: Acting Branch Chief

Organization: Environmental Risk Branch #1

ERB1/EFED/OPP

V. Conclusions:

The study provide supplemental data on the sorption of S-metolachlor to soil. The data are deemed as supplemental because foreign soils were not compared to U.S. soils.

Freundlich adsorption coefficients were 1.4 (1/n=0.90) for the Collombey loamy sand, 1.0 (1/n=.88) for the Speyer standard soil sand, 4.6 (1/n=0.97) for the Gartenacker silt loam, 11.5(1/n=1.00) for Vetroz silt loam, and 44.8 (0.92) for the Illarsaz humic silt loam. Freundlich desorption coefficients were 2.0 (1/n=0.92) for the Collombey soil, 1.7 (1/n=0.94) for the Speyer standard soil, 8.2(1/n=1.04) for the Gartenacker soil, 15.2 (1/n=1.02) for Vetroz soil, and 55.8 (1/n=0.93) for the Illarsaz soil.

VI. Materials and Methods:

Five foreign soils were evaluated in the batch equilibrium study. Physicochemical properties and origins of the test soils are shown in Table 1.

Preliminary Study

A preliminary study was conducted to assess the time required for reaching steady-state (equilibrium) conditions. Five grams of each test soil was placed into a centrifuge tube, suspended in 25 ml of 0.01 M CaCl2, and pre-equilibrated for approximately 2 days (weekend) at room temperature. After pre-equilibration, each soil slurry was centrifuged and supernatant

removed. The wet soil pellets were further suspended in 25 or 100 ml of stock solution containing 2 ug/ml of radiolabeled metolachlor and then shaken (equilibrated) for 0, 1, 2, 4,6, 8, and 24 hours. Soil solution ratios ranged from 5 to 20. After each equilibrium period, duplicate 100 μ L aliquot samples for each soil were removed for chemical analysis using LSC. At the termination of the study, radiolabeled residues in the 24 hour sample were determined using HPLC.

Definitive Adsorption/Desorption Study

In the definitive study, ten grams of each soil was placed into each of twelve 150ml centrifuge tubes, suspended in pesticide free aqueous phase (assume 0.01M CaCl2), and equilibrated for 24 hours. After the 24 hour pre-incubation, the supernatant was removed from each test system and then radiolabeled metolachlor stock solution plus 0.01M CaCl2 were added to obtain a final metolachlor concentrations of ~ 0.1 to 2.0 ug/ml. Soil solution ratios ranged from 2 to 20 depending on the soil type (Table 2).

The soil test systems were shaken at ~200 rpm at 20°C for 24 hours in the dark. After equilibration, the soil suspensions were centrifuged at 2500 rpm for 5 minute and aliquots for chemical analysis by LSC. The remaining supernatant was removed and the wet soil pellet was weighed. Pesticide free 0.01M CaCl₂ was added to each soil pellet at volumes equal to those used in the adsorption experiment. After addition of the 0.01M CaCl₂ solution, the soil test systems were shaken for 24 hours at 20°C in the dark. After the first desorption equilibration, the test systems were centrifuged and 2 aliquots of clear supernatant (1 ml) were taken for chemical analysis by LSC. The desorption process was sequentially repeated using a similar process.

After the desorption experiment, the radioactivity in each soil pellet was determined using combustion-LSC. Additionally, radioactivity adsorbed on the centrifuge walls was extracted using an acetone wash. The radioactivity in the acetone rinsate was determined by LSC.

After the adsorption step, soils in samples 1 and 2 were removed and extracted 3X with acetone/water. The radioactivity in the soil extracts was determined by LSC and thereafter combined for chemical analysis. Non-extractable radioactivity (remaining after a acetone/water extraction) in soil was determined by combustion-LSC.

The combined soil extracts were concentrated at 350C using vacuum rotary evaporator. The concentrated soil extracts were analyzed using HPLC. The HPLC system was equipped with a C18 column with a gradient solvent system of water/ acetone; UV/VIS and radioactive detectors were used for detection of residues.

Freundlich (non-linear sorption model) coefficients were estimated using a linearized Freundlich equation where the y intercept $= -\log Kf$ and slope = 1/n.

VII. Study Author's Comments:

Steady-state ("equilibrium") conditions were reached within 24 hours of equilibration (Figure 1). The percent adsorption, at a concentration of 2 ug/ml, ranged from 11.97% for Speyer soil to 55.07% for the Illarsaz soil. Therefore, the study was conducted using a 24 hour equilibration time.

Freundlich adsorption coefficients were 1.4 (1/n=0.90) for the Collombey loamy sand, 1.0 (1/n=.88) for the Speyer standard soil sand, 4.6 (1/n=0.97) for the Gartenacker silt loam, 11.5(1/n=1.00) for Vetroz silt loam, and 44.8 (0.92) for the Illarsaz humic silt loam. Freundlich desorption coefficients were 2.0 (1/n=0.92) for the Collombey soil, 1.7 (1/n=0.94) for the Speyer standard soil, 8.2(1/n=1.04) for the Gartenacker soil, 15.2 (1/n=1.02) for Vetroz soil, and 55.8 (1/n=0.93) for the Illarsaz soil.

VIII. Reviewer's Comments

1.) Foreign soils were used in the study. The registrant failed to cross-reference the foreign soils to comparable US soils.

81

Table 1: Origin and Properties of Soils used for the Adsorption/Desorption Experiments

	_	.		· · ·					7		_					
	5	Illarsaz		CH/VS/Les	Barges	4/75	Humic silt	loam	6.7	6.10	19.80	102.8		23.6	55.4	21.0
	4	Vetroz		CH/VS/Les	Barges	3/75	Silt loam		7.2	56.0	4.70	28.1		23.3	58.5	18.20
Soil	3	Gartenacker		CH/VS/Les	Barges	10/93	Silt loam		7.1	7.4	2.0	12.7		11.9	48.0	40.1
	2 .	Stand. Soil	Speyer 2.1	Lufa/Speyer/	FRG	SP 136	Sand		8.9	0.1	0:30	3.9		5.2	6.1	88.7
	1	Collombey		CH/VS/Les	Barges	SL / 1	Loamy sand		7.3	11.2	08'0	01'9		4.2	18.3	5.77
	Parameter Type	Name		Origin		Batch-No	Classification		Hd	CaCO, (%)	Organic carbon (%)	CEC (med / 100 g soil)	Particle size:	Clay (%)	Silt (%)	Sand (%)

Proprietary information of Novartis Crop Protection AG. Not to be disclosed to third parties without previous consent of Novartis Crop Protection AG.

Study No.: 97EH01 CGA 77 102

Novartis Crop protection AG Ecochemistry Table 2: Soil-Solution Ratio

Pre-test

•					
	Speyer	Collombey	Collombey Gartenacker	Vetroz	Illarsaz
Amount soil (g)	5.00	5.00	5.00	5.00	5.00
Aqueous phase (ml)	25.00	25.00	25.00	25.00	100.00

Adsorption/desorption Isotherms

		The second secon			
	Speyer	Collombey	Collombey Gartenacker	Vetroz	llarsaz
Amount soil (g)	10.00	10.00	10.00	10.00	5.00
Aqueous phase (ml)	20.00	20.00	50.00	50.00	100.00

Proprietary information of Novartis Crop Protection AG. Not to be disclosed to third parties without previous consent of Novartis Crop Protection AG.

Preparation of the Treatment Solution and Initial Concentrations of CGA 77 102 in 0.01 mole CaCl₂-Solution for Pre-Test

Table 3:

Sample	Soil		i e suo	Volumo	Amount	Elast Wateres	
!	Type	Amount (g)	Stock sol.	Stock sol.	CGA 77102	CaCI2	CODC: 8:1.
			(ug/ml)	[lm]	(Bn)	[m]	[lm/gn]
	Speyer 2.1	5.000	900.569	0.055	49.531	25.000	1.981
		5.000	900.569	0.055	49.531	25.000	1.981
	Collombey	5.000	900.569	0.055	49.531	25.000	1.981
		2.000	900.569	0.055	49.531	25,000	1.981
	Les Evouettes	5.000	900.569	0.055	49.531	25.000	1.981
		5.000	900.569	0.055	49.531	25.000	1.981
	Vetroz	. 5.000	900.569	0.055	49.531	25,000	1.981
		5.000	900.569	0.055	49.531	25.000	1.981
	Illarsaz	5.000	900.569	0.220	198.125	100.000	1.981
		5.000	900.569	0.220	198.125	100.000	1.981
		0.000	900.569	0.055	49.531	25.000	1.981
12		0.000	900.569	0.055	49,531	25.000	1.981
						The state of the s	

Proprietary information of Novartis Crop Protection AG. Not to be disclosed to third parties without previous consent of Novartis Crop Protection AG.

Study No.: 97EH01 CGA 77 102

Figure 1: Rate of Adsorption of CGA 77 102 in various Soils

Exposure Time (hrs.)	Gartenacker %	Collombey %	Speyer %	Vetroz %	Illarsaz %
0	0.00	0.00	0.00	0.00	0.00
1	21.87	14.22	11.67	35.17	31.61
2	23.04	10.30	11.85	37.72	36.67
4	24.22	12.97	9.58	40.87	41.75
6	23.90	14.78	11.20	42.35	43.65
8	26.23	16.59	12.31	42.70	47.38
24	27.31	13.03	11.97	45.98	55.07

Proprietary information of *Novartis Crop Protection AG*. Not to be disclosed to third parties without previous consent of *Novartis Crop Protection AG*.

Table 15: Adsorption- and Desorption Constants of CGA 77 102 for various Solls

Soil		1/0/ 00	Integrated at	Cloud (4(2)	0			0
Collombev	Adsorption	0.8 0.8	0.1426	0 9085	0 9984	4	174	3 5
	Desorption 1		0,3044	0.9254		2.0	252	146
	Desorption 2		0.4980	0.9598	0.9978	3.1	393	228
Speyer	Adsorption	0.3	-0.0199	0.8869	0.9871	1.0	318	185
	Desorption 1		0.2176	0.9449	0.9859	1.7	550	319
	Desorption 2		0.4902	0.9728	0.9921	3.1	1031	598
Gartenacker	Adsorption	2.0	0.6587	0.9711	0.9992	4.6	228	132
	Desorption 1		0.9148	1.0494	0.9981	8.2	411	238
	Desorption 2		1.2428	1.1399	0.9951	17.5	874	507
Vetroz	Adsorption	4.7	1.0591	1.0017	0.9984	11.5	244	141
	Desorption 1		1.1812	1.0289	0.9974	15.2	323	187
	Desorption 2	•	1.3094	1.0666	0.9960	20.4	434	252
Illarsaz	Adsorption	19.8	1.6512	0.9258	0.9996	44.8	226	131
	Desorption 1		1.7464	0.9315	0.9994	55.8	282	163
	Desorption 2		1.8156	0.9371	0.9993	65.4	330	192
Average (ads/des)				0.9767	0.9962		360	209
STDEV				0.0688	0.0044		179	104
Average Koc adsorption							238	
Average Q adsorption								138

Proprietary information of Novartis Crop Protection AG. Not to be disclosed to third parties without previous consent of Novartis Crop Protection AG.

Page 32 of 66

Novartis Crop protection AG Ecochemistry

(101) (130)

Study No.: 97EH01 CGA 77 102

Table 9: Balance of Radioactivity with Soil Gartenacker after Adsorption and Desorption (Values given in % of the Radioactivity applied)

Sample	Soil	CaCl2-Solution			Extractables Non-		Washings Total	Total
S				4		Extractables		
		Adsorption	Desorption 1	Desorption 2				
က	9.89	61.91	15.72	7.36	,	1	0.07	94.95
4	10.09	96.09	16.07	7.36		•	0.11	94.57
5	11.22	61.25	17.09	7.94	1		90.0	97.56
9	11.62	61.79	17.00	8.21	•		0.12	98.74
7	13.29	61.96	18.32	8.70			0.10	102.37
8	13.04	61.03	18.32	90'6			0.10	101.56
6	14.75	60.48	18.63	9.50	•		0.12	103.48
10	14.85	61.84	18.40	.9.51	1		0.07	104.67
11	16.87	99.89	18.92	9.75	1		0.13	104.23
12	16.85	58.73	19.22	9.77			0.10	104.67
Average	13.25	98.09	17.77	8.72	,		0.10	100 68
StDev	2.56	1.26	1.22	0.95		,	0.02	3.94

Proprietary information of Novartis Crop Protection AG. Not to be disclosed to third parties without previous consent of Novartis Crop Protection AG.

DATA EVALUATION RECORD

I. Study Type: Batch Equilibrium

II. Citation:

Burkhard, N.1978. Adsorption and Desorption of Metolachlor (Dual) in Various Soil Types. Submitted by Ciba-Geigy Limited. Performed by Biochemistry, Department R&D Plant Protection, Agrochemicals Division, Ciba-Geigy Limited, Basil, Switzerland. MRID 00078291.

III. Reviewer:

Name: James A. Hetrick, Ph.D.

Title: Soil Chemist

Organization: Environmental Risk Branch #1

ERB1/EFED/OPP

IV. Approved by:

Name: Dana Spatz

Title: Acting Branch Chief

Organization: Environmental Risk Branch #1

ERB1/EFED/OPP

V. Conclusions:

The study provides ancillary data on metolachlor residue partitioning in mineral soils. Deficiencies in the study are: 1.) the ionic strength of equilibration solutions was not controlled; 2.) Non-specific residue analysis was presented and used for calculation of Freundlich adsorption coefficients, 4.) Raw data of equilibrium concentration (Ce) and soil sorption (X/M) were not presented; and 5.) Foreign soils were used in the study. Although the data submission lacks detailed descriptions of the residue specific analysis and raw data, the data indicate metolachlor has a low sorption affinity for soil.

Estimated Freundlich coefficients for metolachlor, based on liquid scintillation counting, were 10 (1/n=.85) for Vetros soil, 3.18 (1/n=.85) for Les Evouettes soil, 1.54 (1/n=0.84) for Collombey soil, and 1.69 (1/n=0.85) for Lakeland soil. Reversible sorption of metolachlor is unlikely because the desorption coefficients for Les Evouettes silty loam are slightly higher than the adsorption coefficients

VI. Materials and Methods:

The study was conducted on slightly-acid to alkaline Swiss soils and a US soil (Table 1). Soil physical properties of test soils ranged pH 6.3 to 7.8, CaCO₃ 0 to 15%, OM% 1.2 to 5.6, and

CEC 3.7 to 29.4 meq/100 g soil. Isotopic dilution of analytical grade metolachlor with radiolabeled metolachlor (SA = 20.8 μ Ci) was used to make standard metolachlor solutions. Ten to fifty grams of soil were mixed with 100 ml water containing radiolabeled metolachlor concentrations of 1, 2.5, 5.0, and 10 μ g/ml. Solutions were mixed for 24 hours, filter extracted, and then analyzed using liquid scintillation and gas liquid chromatography Desorption studies were conducted on filtered soils from adsorption studies. Washed soil cakes were place into 100 ml of water and then mechanically shaken for 1 and 3 days at 20°C. After shaking, soil solutions were filter extracted and then analyzed by liquid scintillation. The extent of adsorption and desorption was determined by difference in concentrations from preequilibration and post-equilibration solutions. Freundlich (non-linear sorption model) coefficients were estimated using a linearized Freundlich equation where the y intercept = -log Kf and slope=1/n.

VII. Study Author's Comments:

The registrant stated the batch equilibrium data demonstrate "that metolachlor is not very strongly adsorbed to soil particles". Estimated Freundlich coefficients, based on liquid scintillation counting, were 10 (1/n=.85) for Vetros soil, 3.18 (1/n=.85) for Les Evouettes soil, 1.54 (1/n=0.84) for Collombey soil, and 1.69 (1/n=0.85) for Lakeland soil (Table 2). Similar adsorption coefficients were reported for liquid gas chromatography analysis. (Reviewer Note: The data submission does not provide raw data to confirm residue specific Freundlich coefficients.) Desorption data for the Les Evouettes silty loam soil demonstrated that desorption occurred at slower rate than absorption (Fig 2). Also, reversible sorption of metolachlor is unlikely because the desorption coefficients are slightly higher than the adsorption coefficients.

VIII. Reviewer's Comments

- 1.) Equilibration were conducted in water rather than 0.01 M CaCl2 solution. As per Subdivision N guidelines, a 0.01 M CaCl2 solution is required to control ionic strength of the equilibration solution. Schwarzenbach, et al., 1993 states that changes of typical levels of dissolved salts is not expected cause major changes in estimating the organic matter partitioning coefficients (K_{om}). Because the metolachlor exhibited low sorption affinity to the test soils, it is unlikely the use of 0.01 M CaCl2 solution will alter study results and hence interpretation of metolachlor mobility.
- 2.) There was no detailed description of specific residue methods such as liquid gas chromatography (LGC) in the study submission. The lack of residue specific data limits the ability to confirm the presence of metolachlor in batch equilibrium studies.
- 3.) Foreign soils were used in the study. The registrant failed to cross-reference the foreign soils to comparable US soils.

Table Origin and properties of solis used for adsorption measurements Origin and properties of solis used for adsorption measurements Origin and properties of solis used for adsorption measurements Origin and properties of solis Origin and solis Origin and solid Origin an			t X Sand X	10.2 87.0 19.6 57.8 49.4 26.4 2.1 96.4	(T)
Table I Origin and properties of soils used for adsorption assumed for adsorption and projection of soils used for adsorption and projection of soils used for adsorption and soils and projection of soils used for adsorption and soils an	Section 1		Clay & 311		
Table I Origin and properties of solls use Table I Origin and properties of solls use Origin and properties of solls use Origin and Table I	of for adaorption men	Catlon exchange	ospacity [meg/100 g moil]	14.0 89.4 9.0 7.2	
Origin Table I Origin and properties Origin Origin Origin Origin Origin Origin and properties (**) Use Collombey V3, Switzerland Origin Origin and properties (**) Use Evouettes V3, Switzerland Origin and properties (**) Use Evouettes V3, Switzerland Origin and properties (**)	on alter se	Organio	Hatter [X]	2.2 5.6 3.6	
Table I Origin and Table Vetros, VS, Switzerland 7 Vetros, VS, Switzerland 6 Les Evouettes VS, Switzerland 6 Les Evouettes VS, Switzerland 6 Lekeland, Florids, U.S.A. 6	S S S S S S S S S S S S S S S S S S S				
	-			1	

Aven less	erch Tale 10-36	8/ 1				(10)	
					· •	×	
	rotor	1-0	0.85 (0.79) 0.85 (0.87) 0.84 (0.89) 0.85 (0.78)				
	Constants from Preundlich adsorption isotherms for metalachor with various soils	LE . E . Jrganio matter	(225) (105) (76) (176)			•	
* 4	ich adsorption isot	0 1 0 1 1 1 1 1 1 1	179 (225) 88 (105) 75 (76) 141 (176)	ements.			
	with with	k g-1 of soil]	10.0 (12.6)* 3.18 (3.78) 1.54 (1.67) 1.69 (2.11)	Values in brackets obtained by GLC measure			
4	Constants fr	1.8 . 8.1	t	nokets obtained		•	•
l licen	Table II	lio.	Vetros Les Evouettes Collombey Lakeland	• Values in bre		c	
1 American	F 1	•		•	•		
	<u> </u>					·	

- 11 o Vetroz sandy loam 50 Evouettes silty loam □ Lakeland sand Δ Collombey sand 20 -10 x.m-1 [µg.g-1soil] ce [hd·cwg] 10 0.5-**C.5** 0.2 100

Data Evaluation Report on the aerobic biotransformation of (S)-metolachlor (CGA-77102) in

PMRA Submission Number {.....}

EPA MRID Number 45499606

Data Requirement: PMRA Data Code:

EPA DP Barcode: OECD Data Point: EPA Guideline: 162-1

Test material:

Common name: (S)-Metolachlor.

Chemical name

IUPAC:

mixture of 80-100% (aRS,1S)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-methoxy-1methylethyl)acetamide and 20-0% (aRS,1R)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-

methoxy-1-methylethyl)acetamide.

CAS name: 2-Chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-methoxy-1-

methylethyl]acetamide.

CAS No:

87392-12-9.

Synonyms: CGA-77102; (S)-2-Chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-

methylethyl)acetamide; Dual Magnum.

SMILES string:

Primary Reviewer: Lynne Binari

Signature: Date:

OC Reviewer: Kathleen Ferguson

Dynamac Corporation

Dynamac Corporation

Signature:

Date:

Secondary Reviewer: James Hetrick

EPA

Signature: James a. Hetrich
Date: 2/28/02

Company Code:

[for PMRA]

Active Code:

[for PMRA]

Use Site Category:

[for PMRA]

EPA PC Code: 108800

CITATION: Moore, P. 2000. Soil metabolism of 14C-[phenyl]-CGA-77102 under aerobic and non-irradiated incubation conditions following surface and homogenous dosing. Unpublished study performed and sponsored by Novartis Crop Protection, Inc., Greensboro, NC. Laboratory Study ID: Novartis Number 342-97. Study initiated June 30, 1997 and completed November 15, 2000 (pp. 1, 13).

Data Evaluation Report on the aerobic biotransformation of (S)-metolachlor (CGA-77102) in

PMRA Submission Number {.....}

EPA MRID Number 45499606

Data Requirement: PMRA Data Code:

EPA DP Barcode: OECD Data Point: EPA Guideline: 162-1

Test material:

Common name: (S)-Metolachlor.

Chemical name

IUPAC:

mixture of 80-100% (aRS,1S)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-methoxy-1methylethyl)acetamide and 20-0% (aRS,1R)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-

methoxy-1-methylethyl)acetamide.

CAS name: 2-Chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-methoxy-1-

methylethyllacetamide.

CAS No: 87392-12-9.

Synonyms: CGA-77102; (S)-2-Chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-

methylethyl)acetamide; Dual Magnum.

SMILES string:

Primary Reviewer: Lynne Binari

Dynamac Corporation

QC Reviewer: Kathleen Ferguson

Dynamac Corporation

Signature: Lynne Benare
Date: 12/19/01
Signature: Kathlee Jeignson
Date: 12/19/01

Secondary Reviewer: Mark Corbin

EPA

Signature:

Date:

Company Code:

Active Code:

[for PMRA]

[for PMRA]

Use Site Category:

[for PMRA]

EPA PC Code: 108800

CITATION: Moore, P. 2000. Soil metabolism of ¹⁴C-[phenyl]-CGA-77102 under aerobic and non-irradiated incubation conditions following surface and homogenous dosing. Unpublished study performed and sponsored by Novartis Crop Protection, Inc., Greensboro, NC. Laboratory Study ID: Novartis Number 342-97. Study initiated June 30, 1997 and completed November 15, 2000 (pp. 1, 13).

EXECUTIVE SUMMARY:

The biotransformation of [phenyl-U-14C]-(S)-2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-ethyl-6-methylphenyl)-N-(2-ethyl-6-methylphenyl)-N-(2-ethyl-6-methylphenyl) methoxy-1-methylethyl)acetamide [(S)-metolachlor, CGA-77102) was studied in sandy clay loam soil (pH 7.5, organic carbon 2.55%) from Maryland for 48 days under aerobic conditions in darkness at 25 ± 1°C and soil moisture of 75% of 1/3 bar. [14C](S)-Metolachlor was applied at the nominal rate of 1.3 mg a.i./kg soil (equivalent to 1.5 kg a.i./ha). This experiment was conducted in accordance with USEPA Subdivision N Guideline §162-1 (1982) and in compliance with USEPA GLP Standards (40 CFR, Part 160, 1989). The test systems consisted of sealed vials containing a thin (ca. 2-4 mm) layer of soil or sealed bottles containing a thick (ca. 15 mm) layer of soil. One set of thin soil layers was surface-treated with [14C](S)metolachlor. Additional soil was treated with [14C](S)-metolachlor, homogenously mixed, then incubated as thin and thick layers. CO2 and volatile organics were collected at the time of sampling by flushing the sample headspace through volatile traps. Soil samples were analyzed after 0, 1, 4, 7, 11, 14, 19, 33 and 48 days of incubation. Soil samples were extracted with acetonitrile:water (80:20, v:v), and extracts were analyzed by normal-phase two-dimensional TLC with identifications of [14C](S)-metolachlor and its transformation products based on comparison to R_f values of unlabeled reference standards. Identifications of parent [14C](S)metolachlor and its transformation products were confirmed using reverse-phase HPLC, GC/MS and LC/MS.

Overall material balances averaged $106.2 \pm 2.5\%$ (range 99.6-109.0%, n = 18) of the applied radioactivity in thin layer/surface-treated soil, $100.0 \pm 4.4\%$ (range 93.7-108.8%) in thin layer/homogenous-treated soil, and $100.5 \pm 5.8\%$ (range 81.5-108.4%) in thick layer/homogenous-treated soil (reviewer-calculated data; values differ slightly from study author); there was no consistent decline in material balances during the 48-day study. [14 C](S)-Metolachlor degraded more slowly in the surface-treated soil than in the homogenous-treated soil. In surface-treated thin layer soil, [14 C](S)-metolachlor decreased from an average $98.0 \pm 0.3\%$ (n = 2) of the applied at day 0 posttreatment to $52.8 \pm 4.3\%$ at 48 days. In both thin and thick-layered homogenous-treated soil, [14 C](S)-metolachlor decreased from 93.6-99.3% (n = 4) at day 0 to 54.1-59.0% at 7 days, 28.4-30.1% at 19 days and 8.8-10.4% at 48 days. Half-lives (linear, first order kinetics) of [14 C](S)-metolachlor were 50 days ($r^2 = 0.788-0.823$) in surface-treated soil and 14-15 days ($r^2 = 0.966-0.975$) in homogenous-treated soil.

There were no major transformation products of [phenyl-U- 14 C](S)-metolachlor. Four minor transformation products, CGA-40172, NOA-436611, CGA-354743 and CGA-51202, were positively identified and one minor transformation product, CGA-46576, was tentatively identified. CGA-40172 was detected at $\leq 11.6\%$ of the applied, NOA-436611 at $\leq 9.4\%$, CGA-354743 at $\leq 11.6\%$, CGA-51202 at $\leq 11.3\%$ and CGA-46576 at $\leq 3.6\%$. Two unidentified [14 C]compounds were also detected in soil extracts of all three treatments each at $\leq 3.5\%$ of applied. Extractable [14 C]residues in surface-treated soil decreased from 99.9-103.5% of the applied at 0-1 days to 81.5-86.9% at 33-48 days, and nonextractable [14 C]residues increased from

Page 2 of 19

Data Evaluation Report on the aerobic biotransformation of (S)-metolachlor (CGA-77102) in soil

PMRA Submission Number {.....}

EPA MRID Number 45499606

3.8-5.0% to 20.2-24.6% during the same period. Extractable [14 C]residues in homogenous-treated soil decreased from 95.8-103.1% of the applied at 0-1 days to 47.0-53.2% at study termination, and nonextractable [14 C]residues increased from 5.3-6.6% to 40.8-45.5% during the same period. Evolution of 14 CO₂ and volatile organics was not significant for any treatment totaling \leq 4.7% and \leq 0.1% of the applied, respectively, at study termination.

In biotransformation pathways proposed by the registrant, (S)-metolachlor can degrade by substitution of the -Cl with -OH to form CGA-40172 [2-OH-acetamide of (S)-metolachlor] then oxidize to form CGA-51202 [oxalamide], or conjugate to form CGA-46576 [cysteine conjugate] and through oxidation and decarboxylation of transitory sulfoxide precursors form NOA-436611 [sulfoxide of thioglycolic acid] and CGA-354743 [sulfonate].

Results Synopsis:

Soil type: Maryland sandy clay loam.

Half-life, DT50 and DT90 values:

thin soil layer/surface-treated: linear/first order: 50.1-50.3 days ($r^2 = 0.788-0.823$).

DT₉₀ (calcuated): 167.1 days.

DT50, non-linear/one compartment: 42.2 days.

DT50, non-linear/two compartment:

initial: 15.2 days. secondary: 47.7 days.

thin soil layer/homogenous-treated:

linear/first order: $14.9 \text{ days } (r^2 = 0.966).$

DT₉₀ (calcuated): 49.6 days. DT50, non-linear/one compartment: 10.7 days.

DT50, non-linear/two compartment:

initial: 4.9 days. secondary: 22.2 days.

thick soil layer/homogenous-treated:

linear/first order: $13.9 \text{ days } (r^2 = 0.975).$

DT₉₀ (calcuated): 46.1 days. DT50, non-linear/one compartment: 10.2 days.

DT50, non-linear/two compartment:

initial: 4.3 days.

secondary: 18.2 days
Major transformation products: None.

Minor transformation products: CGA-40172 [2-OH-acetamide of (S)-metolachlor].

NOA-436611 [sulfoxide of thioglycolic acid].

CGA-354743 [sulfonate]. CGA-51202 [oxalamide].

Page 3 of 19

PMRA Submission Number {.....}

EPA MRID Number 45499606

CGA-46576 (cysteine conjugate, tentative). Two unidentified [14C]compounds.

Study Acceptability: This study provides supplemental data on the aerobic soil metabolism of smetolachlor. The data are deemed as supplemental because the vessels containing the treated soil were sealed for long-periods of time (1 to 15 days) and it was not demonstrated that aerobic conditions were maintained throughout the 48-day incubation. However, the half-lives of smetolachlor and its degradation products (except NOA-436611) appear to consistent with reported data in aerobic soil metabolism studies (MRID 43928936).

I. MATERIALS AND METHODS

GUIDELINE FOLLOWED:

This study was conducted in accordance with USEPA Subdivision N Guideline §162-1 (1982). A significant deviations from the Subdivision N Guideline §162-1 is:

The treated soil was incubated in sealed containers and it was not demonstrated that aerobic conditions were maintained. This does not affect the validity of the study.

COMPLIANCE:

This study was conducted in compliance with USEPA GLP Standards (40 CFR, Part 160, 1989, p. 3). Signed and dated Data Confidentiality, GLP, and Quality Assurance statement were provided (pp. 2, 3, 5). A study certification of authenticity statement was not provided.

A. MATERIALS:

1. Test Materials:

 $[Phenyl-U-^{14}C]-(S)-2-Chloro-N-(2-ethyl-6-methylphenyl)-N-(2-ethyl-6-me$

methoxy-1-methylethyl)acetamide.

Chemical Structure:

Description:

Technical, odorless, white to tan liquid (pp. 17, 38).

Purity:

Radiochemical purity: 98.1% (p. 17).

Lot No.: CAS-X-81.

Specific activity: 82.9 µCi/mg.

Storage conditions of

Page 4 of 19

Data Evaluation Report on the aerobic biotransformation of (S)-metolachlor (CGA-77102) in soil

PMRA Submission Number {.....}

EPA MRID Number 45499606

test chemicals:

Frozen (temperature not specified) until preparation of test solution (p. 20).

Table 1: Physico-chemical properties of (S)-metolachlor (CGA-77102).

Parameter	Values	Comments
Molecular weight:	283.8 g/mol.	
Water solubility:	480 mg/L.	
Vapor pressure/volatility:	3.66 x 10 ⁻⁸ atm. at 25°C.	
UV absorption:	Not reported.	
pK ₄ :	Not reported.	
K _{ow} /log K _{ow} :	Not reported.	
Stability of compound at room temperature:	Not reported.	

Data obtained from p. 38 of the study report.

2. Soil Characteristics:

Table 2: Description of soil collection and storage.

Description	Details
Geographic location:	Buckeystown, Frederick County, Maryland.
Pesticide use history at the collection site:	Not reported.
Collection date:	May 27, 1997.
Collection procedures:	Not reported.
Sampling depth:	0- to 6-inch depth.
Storage conditions:	Soil was moistened then stored in a plastic bag at 25°C.
Storage length:	44 days; experimental start date July 10, 1997.
Preparation:	2-mm sieved and moisture content brought to 75% of field moisture capacity at 1/3 bar prior to treatment.

Data obtained from pp. 13, 17, 93 of the study report.

PMRA Submission Number {.....}

EPA MRID Number 45499606

Table 3: Properties of the soil.

Property	Details
Textural classification:	Sandy clay loam.
% sand:	60
% silt:	19
% clay:	21
pH: • ·	7.5
Organic carbon¹ (%):	2.55
Organic matter (%):	4.4
CEC (meq/100 g):	14.3
Moisture at 1/3 bar (%):	16.2
Bulk density, disturbed (g/cm³):	1.48
Soil Taxonomic classification:	Sequatchie series. [Fine-loamy, siliceous semiactive thermic Humic Hapludults (description obtained from the National Cooperative Soil Survey)]
Soil Mapping Unit:	Not reported.

Determined by Dynamac reviewer using equation % organic carbon = % organic matter/1.724 (p. 18). Data obtained from pp. 17, 18 of the study report.

B. EXPERIMENTAL CONDITIONS:

1. Preliminary experiments: None.

2. Experimental conditions:

Table 4: Study design.

Parameter	Details				
Duration of the test:	48 days.				
Soil condition (air dried/fresh):	Fresh.				
Soil (g/replicate):	thin (ca. 2-4 mm) layer: ca. 7 g wet wt.				
	thick (ca. 15 mm) layer: ca. 25 g wet wt.				
Nominal application rate:	1.3 mg a.i./kg; 1.5 kg a.i./ha.				
Control conditions, if used:	Untreated controls; thin and thick soil layers.				

Page 6 of 19

PMRA Submission Number {.....}

EPA MRID Number 45499606

Parameter		Details					
No. of	Controls, if used:	Not reported.					
Replications:	Treatments:	Duplicate samples at each collection interval.					
Test apparatus (Type/material		thin (ca. 2-4 mm) layer: Clear, silylated, borosilicate vials (25-30 mL) sealed with a Teflon septum-type cap.					
		thick (ca. 15 mm) layer: An with a Teflon septum-type ca	nber, silylated, glass bottles (125 mL) sealed ap.				
Details of trap volatiles, if an	s for CO ₂ and organic y:	Upon collection of the incubation containers at the 7-, 14-, 19-, 33- and 48-day sampling intervals, volatiles were collected by drawing filtered air (0.5-1 hour; flow rate not specified) through the headspace of each container then sequentially through ethylene glycol (one trap) and 10% potassium hydroxide (two traps).					
If no traps wer closed/open?	e used, is the system	Closed. Volatiles traps were sampling.	e used to sample headspace air at the time of				
Identity and	Identity:	Acetonitrile.					
concentration of co-solvent:	Final concentration:	0.8%.					
Test material	Vol. of test solution	thin layer/surface-treated: 0.055 mL of 166.9 µg/mL test solution.					
application:	used/treatment:	thin and thick layer homogenous mix: 5.9 mL of 166.9 µg/mL test solution.					
	Application method:	surface-treated: Applied using a Hamilton syringe to surface of 4 mm, ca. 7 g) soil layer contained in incubation bottle.					
		homogenous mix: Test solution (5.9 mL) applied to walls of a large jar and the solvent evaporated. Soil (750.0 g) was added to the jar and roller mixed for ca. 2.3 hours. Aliquots of the treated soil were placed in incubation containers to achieve either a thin (ca. 2-4 mm, ca. 7 g) or thick (ca. 15 mm, ca. 25 g) soil layer.					
	Co-solvent	surface application: No.					
	evaporated:	homogenous mix: Yes.					
Any indication of the test material adsorbing to the walls of the test apparatus?		Not indicated.					
	nass/population of	Initial:	Final:				
control soil:		Not reported.	Not reported.				
Microbial bion treated soil:	nass/population of	Initial (prior to treatment):	Final (respiration rate at 33 days and plate counts at 14 days posttreatment):				
via glı	cose respiration rate:	424.9 mg C/kg dry wt. soil.	314.6 mg C/kg dry wt. soil.				

PMRA Submission Number {.....}

EPA MRID Number 45499606

Parametei	•	Details	Details				
tota	al microbial population:	1.43 x 104 CFU/g soil.	5.67 x 10 ⁴ CFU/g soil.				
fungi:		4.67 x 101 CFU/g soil.	2.3 x 10 [!] CFU/g soil.				
actinomycetes:		2.7 104 CFU/g soil.	9.35 x 10 ⁴ CFU/g soil.				
Experimen	, , , , , , , , , , , , , , , , , , , ,	25 ± 1°C. Samples incubated in a constant temperature room.					
conditions:	Moisture content: Moisture maintenance method:	75% of 1/3 bar. None.					
	Continuous darkness (Yes/No):	Yes.					
Other deta	ls, if any:	None.					

Data obtained from pp. 18-22, 27, 28 of the study report.

- 3. Aerobic conditions: It was not established that aerobic conditions were maintained throughout the study. The incubation containers were sealed until sampled, and no measurement of aerobicity such as redox potentials were made.
- 4. Supplementary experiments: None.
- 5. Sampling:

PMRA Submission Number {......}

EPA MRID Number 45499606

Table 5: Sampling details.

Criteria		Details
Sampling intervals:		0, 1, 4, 7, 11, 14, 19, 33 and 48 days.
Sampling method:	Controls:	Not reported.
	Treated:	Duplicate samples were collected at each interval.
Method of collection of CO ₂ and volatile organic compounds:		Upon collection, filtered air was drawn (flow rate not specified) through the headspace of each incubation container for 0.5-1 hour and through the trapping solutions described above.
Sampling intervals/ti Sterility check, if ste used: Moisture content: Redox potential/othe	rile controls are	Sterile controls were not used. Soil weights of 0- and 48-day samples compared. Not determined.
Sample storage before analysis:		Soil samples were extracted within 1 day of collection; soil was stored frozen (temperature not specified) if not extracted the day collected. Soil extracts were stored frozen up to 42 days prior to TLC analysis.
Other observations,	if any:	None.

Data obtained from pp. 19, 21, 175-179 of the study report.

C. ANALYTICAL METHODS:

Extraction/clean up/concentration methods: An aliquot (ca. 6 g and 23 g for thin and thick layer samples, respectively) of each soil sample was extracted twice with acetonitrile:water (80:20, v:v) with soil:solvent ratios of ca. 1:2 and 1:1 for the first and second extractions, respectively (pp. 20, 21, 155-168). For each extraction, the soil:solvent mixture was shaken (method and interval not specified), then the soil and extract were separated by centrifugation (speed and interval not specified). Extracts were combined and concentrated under a nitrogen stream.

Total ¹⁴C measurement: For all sampling intervals, triplicate aliquots (volume not specified) of soil extracts and trapping solutions were analyzed for total radioactivity by LSC (pp. 22, 23, 147-149, 151-153). Aliquots (0.1-0.5 g) of the soil prior to and after extraction were analyzed for total radioactivity by LSC following combustion; combustion efficiencies during analysis of extracted soil were >93% (pp. 19, 22, 23, 155-168). Extracted soil samples were air-dried, then ground using a mortar and pestle to homogenize prior to combustion analysis; preparation of pre-extracted soil samples was not reported (p. 22). Total ¹⁴C was determined by summing ¹⁴C residues in the various sample fractions.

PMRA Submission Number {.....

EPA MRID Number 45499606

Nonextractable residue determination: The concentration of nonextractable residues in the soil was determined by LSC following combustion as described. The nature of the nonextractable [14C]residues was not determined.

Derivatization method, if used: A derivatization method was not employed.

Identification and quantification of parent compound: Soil extracts were analyzed using normal-phase one-dimensional TLC on silica gel plates developed with chloroform:methanol:ammonium hydroxide:water (80:30:4:2, v:v; pp. 23, 24, 29, 64) and also by two-dimensional TLC with plates developed in the first direction using the previous solvent combination followed by toluene:acetone:formic acid (75:25:4, v:v; pp. 55-63). Following development, areas of radioactivity were detected using either a Packard Instant-Imager or Fujix Bioimager BAS 1000 and quantified by LSC analysis of silica gel removed from the plates. Parent [14C](S)-metolachlor (CGA-77102) in the soil extracts was identified by comparison to the R_f values of unlabeled reference standard (S)-metolachlor detected under UV light (254 nm; pp. 24, 54).

Selected extracts were analyzed by reverse-phase HPLC under the following conditions: YMC ODS-AQ C18 column (4.6 x 250 mm, particle size not specified), gradient mobile phase combining (A) 0.05 M ammonium acetate and (B) acetonitrile [percent A:B at 0-5 min. 100:0 (v:v), 5-30 min. 75:25, 30-35 min. 75:25, 35-50 min. 35:65, 50-55 min. 35:65, 55-60 min. 0:100, 60-63 min. 0:100, 63-68 min. 90:10], injection volume not specified, flow rate 1 mL/minute, UV (254 nm) and radioactivity detection (p. 25). Quantitation was achieved via the radioactivity detector and also through collection of fractions at 1.0-minute intervals and analyzed by LSC. [\frac{1}{4}C](S)-metolachlor in soil extracts was identified by comparison to the retention time of unlabeled reference standard (pp. 25, 65-68). HPLC column recoveries were reported as generally between 90-110%.

In addition, the 0-day soil extract was analyzed by GC/MS and/or LC/MS (pp. 110-141). GC conditions could not be determined from the information provided. Reverse-phase HPLC conditions were as follows: Inertsil ODS-2 column (2 x 150 mm, particle size not specified) or Genesis C-8 column (3 x 100 mm, 4 µm particle size), flow rate 0.4 mL/minute; additional conditions could not be determined. MS conditions were as follows: TSQ-7000 MS, ESI mode, positive and negative ion; additional conditions could not be determined.

Identification and quantification of transformation products: Refer to previous section, "Identification and quantification of parent compound". Transformation products in soil extracts were identified and quantified by two-dimensional normal phase TLC as described above. Identifications of transformation products were confirmed in selected samples using reverse-phase HPLC, GC/MS and/or LC/MS analyses as described above. Prior to MS analyses, (S)-metolachlor transformation products were separated by normal-phase one-dimensional TLC of

Page 10 of 19

PMRA Submission Number {.....}

EPA MRID Number 45499606

soil extracts on silica gel plates developed with ethyl acetate:toluene:formic acid:water (87:3:5:5, v:v), extracted from the silica with methanol, and concentrated.

Detection limits (LOD, LOQ) for the parent compound: The Limit of detection (LOD) for LSC analyses was *ca.* 60 dpm (0.0003 μg, p. 23). Detection limits for the HPLC and MS analyses were not reported.

Detection limits (LOD, LOQ) for the parent compound and transformation products: Refer to "Detection limits (LOD, LOQ) for the parent compound".

II. RESULTS AND DISCUSSION:

A. TEST CONDITIONS: It was not established that aerobic conditions were maintained throughout the 48-day incubation. The vials and bottles containing the treated soil were sealed and no determinations were made, such as redox potentials, to verify that aerobic conditions were maintained throughout the study. It was not established that soil moisture was maintained at 75% of 1/3 bar throughout the incubation; net soil weight differentials between 0- and 48-day samples were reported as $\leq 5.4\%$, indicating minimal moisture loss, but recorded soil weights at sample collection were not provided for review (p. 27). The treated soil samples were maintained at $25 \pm 1^{\circ}$ C during incubation (p. 181).

B. MATERIAL BALANCE: During the 48-day incubation, overall recoveries of radiolabeled material averaged $106.2 \pm 2.6\%$ (range 99.7-109.0%) of the applied in thin layer/surface-treated soil, $100.0 \pm 4.5\%$ (93.5-108.8%) in thin layer/homogenous-treated soil, and $100.5 \pm 5.9\%$ (81.5-108.4%) in thick layer/homogenous-treated soil (study author's calculated data; pp. 28, 147-149). There was no consistent decline in material balances in any sample set.

Page 11 of 19

PMRA Submission Number {.....}

EPA MRID Number 45499606

Table 6: Biotransformation of [phenyl-U- 14 C](S)-metolachlor (CGA-77102), expressed as percentage of applied radioactivity (mean \pm s.d., n = 2) 1* , in thin layer/surface-treated (Treatment A) sandy clay loam soil under aerobic conditions.

	Sampling times (days)										
Compound	0	1	4	7	11	14	19	33	48		
(S)-Metolachlor (CGA-77102)	98.0 ± 0.3	99.7 ± 1.2	84.0 ± 1.8	78.4 ± 0.5	75.9 ± 7.6	71.7 ± 0.7	56.8 ± 3.8	53.7 ± 0.5	52.8 ± 4.3		
CGA-40172	ND²	ND	1.7 ± 0.5	6.6 ± 0.1	6.0 ± 2.9	9.0 ± 0.3	10.7 ± 0.9	10.4 ± 0.2	10.6 ± 0.7		
NOA-436611	ND	ND	1.1 ± 0.2	0.6 ± 0.6	0.9 ± 0.4	1.3 ± 0.3	3.4 ± 0.8	4.1 ± 0.1	3.2 ± 0.7		
CGA-354743	ND	ND	0.5 ± 0.5	0.4 ± 0.4	1.9 ± 1.9	0.4 ± 0.4	1.6 ± 0.2	2.5 ± 0.0	2.0 ± 0.4		
CGA-51202	ND	ND	0.8 ± 0.3	2.4 ± 1.4	2.0 ± 1.0	3.6 ± 0.3	4.0 ± 0.4	4.3 ± 0.4	6.1 ± 0.4		
CGA-46576	ND	ND	0.1 ± 0.2	2.1 ± 1.5	0.5 ± 0.2	0.9 ± 0.2	0.9 ± 0.2	0.9 ± 0.2	1.3 ± 0.2		
Unknown (zone 4)	ND	ND-1	1.1-1.6	ND -	ND	ND	ND	ND	ND		
Unknown (zone 8)	ND	ND	ND-0.5	ND	ND-0.8	1.3-1.6	ND-1.9	3.3-3.5	ND-1.6		
Total extractable residues	100.3 ± 0.4	102.9 ± 0.7	92.3 ± 0.7	95.2 ± 0.1	92.8 ± 4.7	92.8 ± 1.1	85.1 ± 3.5	83.7 ± 0.3	84.2 ± 2.7		
CO ₂	NA³	NA	NA	ND	NA	ND	<0.1	<0.1	<0.1		
Organic volatiles	NA	NA	NA	<0.1	NA	<0.1	<0.1	<0.1	<0.1		
Non-extractable residues	3.9 ± 0.1	4.9 ± 0.1	9.0 ± 1.0	12.6 ± 0.4	12.6 ± 2.1	15.2 ± 0.1	22.1 ± 2.2	24.4 ± 0.3	22.0 ± 1.8		
Total % recovery	104.2 ± 0.5	107.8 ± 0.5	101.3 ± 1.6	107.8 ± 0.3	105.4 ± 2.6	108.0 ± 1.0	107.2 ± 1.4	108.1 ± 0.1	106.3 ± 0.9		

Standard deviations calculated by Dynamac reviewer (Attachment 2).

Data obtained from pp. 34, 35, 151, 170 of the study report and Attachment 2.

^{*} Except where range or single value given

Not detected; LSC limit of detection 0.003% of the applied radioactivity.

³Not analyzed.

PMRA Submission Number {.....}

EPA MRID Number 45499606

Table 7: Biotransformation of [phenyl-U- 14 C](S)-metolachlor (CGA-77102), expressed as percentage of applied radioactivity (mean \pm s.d., n = 2) 1* , in thin layer/homogenous-treated (Treatment B) sandy clay loam soil under aerobic conditions.

	Sampling times (days)										
Compound	0	1	4	7	11	14	19	33	48		
(S)-Metolachlor (CGA-77102)	95.4 ± 1.8	91.3 ± 1.1	67.0 ± 0.2	57.6 ± 1.5	41.9 ± 0.0	35.9 ± 1.8	29.8 ± 0.4	16.2 ± 0.1	10.4 ± 0.0		
CGA-40172	ND²	1.5 ± 0.0	3.1 ± 0.1	4.4 ± 0.2	5.0 ± 0.1	5.3 ± 0.1	5.8 ± 0.1	5.7 ± 0.1	5.7 ± 0.0		
NOA-436611	ND	1.1 ± 0.1	2.4 ± 0.0	3.8 ± 0.5	6.3 ± 1.2	5.6 ± 0.4	7.7 ± 0.1	8.1 ± 1.3	8.5 ± 0.8		
CGA-354743	ND	0.9 ± 0.0	2.7 ± 0.0	4.6 ± 0.1	5.9 ± 0.7	8.9 ± 0.1	7.4 ± 0.2	10.2 ± 1.4	9.4 ± 0.1		
CGA-51202	ND	1.2 ± 0.0	3.0 ± 0.1	5.4 ± 0.2	7.2 ± 0.3	9.1 ± 0.3	9.1 ± 0.5	10.2 ± 0.1	10.8 ± 0.5		
CGA-46576	ND	0.4 ± 0.0	0.9 ± 0.2	1.4 ± 0.3	1.8 ± 0.4	1.8 ± 0.2	1.9 ± 0.0	1.6 ± 0.2	1.6 ± 0.2		
Unknown (zone 4)	ND	0.9	ND	ND-1.7	ND	ND	ND	ND	ND		
Unknown (zone 8)	ND	ND-0.4	0.8-1.0	1.0-1.4	1.2-1.5	ND-1.6	1.2-1.4	1.6-1.9	1.3-1.5		
Total extractable residues	98.4 ± 1.8	98.6± 1.1	82.4 ± 0.2	82.1 ± 1.8	72.8 ± 2.2	71.6 ± 0.3	67.8 ± 0.9	57.7 ± 0.3	52.7 ± 0.5		
CO ₂	NA³	NA	NA	0.254 ± 0.022	NA	0.417 ± 0.133	0.426 ± 0.153	0.594 ± 0.020	1.188 ± 0.473		
Organic volatiles	NA	NA	NA	ND	NA	ND	ND	ND	ND		
Non-extractable residues	6.3 ± 0.3	9.0 ± 0.1	15.4 ± 0.6	19.8 ± 0.4	26.0 ± 2.1	28.3 ± 1.1	29.4 ± 0.8	37.9 ± 2.4	40.9 ± 0.1		
Total % recovery	104.7 ±	107.6 ± -	97.8 ± 0.8	102.1 ±	98.8 ± 4.2	100.3 ±	97.7 ± 0.2	96.2 ± 2.7	94.8 ± 1.1		

¹Standard deviations calculated by Dynamac reviewer (Attachment 2).

Data obtained from pp. 34, 35, 152, 171 of the study report and Attachment 2.

^{*} Except where range or single value given

²Not detected; LSC limit of detection 0.003% of the applied radioactivity.

³Not analyzed.

PMRA Submission Number {.....}

EPA MRID Number 45499606

Table 8: Biotransformation of [phenyl-U- 14 C](S)-metolachlor (CGA-77102), expressed as percentage of applied radioactivity (mean \pm s.d., n = 2) 1 *, in thick layer/homogenous-treated (Treatment C) sandy clay loam soil under aerobic conditions.

	Sampling times (days)									
Compound	0 .	1	4	7	11	14	19	33	48	
(S)-Metolachlor (CGA-77102)	98.2 ± 1.1	88.7 ± 1.4	70.6 ± 0.5	54.7 ± 0.5	41.4 ± 0.1	36.4 ± 0.0	28.9 ± 0.5	14.6 ± 0.3	8.9 ± 0.1	
CGA-401-72	ND²	1.4 ± 0.0	3.2 ± 0.1	4.2 ± 0.0	4.9 ± 0.2	5.5 ± 0.2	5.5 ± 0.1	5.6 ± 0.0	5.4 ± 0.2	
NOA-436611	ND	2.3 ± 0.4	2.6 ± 0.0	4.0 ± 0.0	5.3 ± 0.4	5.1 ± 0.1	7.5 ± 0.1	9.1 ± 0.0	8.6 ± 0.3	
CGA-354743	ND	0.4 ± 0.4	2.6 ± 0.1	4.1 ± 0.1	6.4 ± 0.4	7.6 ± 0.3	7.4 ± 0.2	9.2 ± 0.1	9.0 ± 0.1	
CGA-51202	ND	ND	3.2 ± 0.1	5.5 ± 0.0	7.2 ± 0.5	8.0 ± 0.3	9.0 ± 0.3	9.4 ± 0.1	7.8 ± 0.0	
CGA-46576	ND	0.4 ± 0.0	1.1 ± 0.1	1.4 ± 0.3	1.8 ± 0.4	1.8 ± 0.2	1.9 ± 0.0	1.6 ± 0.2	1.3 ± 0.1	
Unknown (zone 4)	ND-0.7	1.0-1.2	ND-0.8	ND	ND	ND	ND	ND	ND	
Unknown (zone 8)	ND	0.4-0.5	0.8-1.2	1.1-1.2	1.2-1.5	1.2-1.4	1.3-1.3	1.7-1.7	0.8-1.1	
Total extractable residues	101.8 ± 1.3	96.6 ± 0.8	86.7 ± 0.4	78.4 ± 1.4	73.4 ±	69.3 ± 0.3	65.9 ± 0.1	55.8 ± 0.2	47.5 ± 0.5	
CO ₂	NA³	NA	NA	0.382 ± 0.002	NA	0.950 ± 0.108	0.703 ± 0.087	1.571 ± 0.121	4.595 ± 0.110	
Organic volatiles	NA	NA	NA	ND	NA .	ND	ND	ND	ND	
Non-extractable residues	5.7 ± 0.4	9.0 ± 0.4	16.0 ± 0.4	22.6 ± 0.6	27.3 ± 1.0	29.6 ± 0.7	33.9 ± 0.1	32.6 ± 8.6	43.9 ± 1.6	
Total % recovery	107.5 ± 0.9	105.7 ± 0.4	102.8 ± 0.0	101.4 ± 2.0	100.6 ± 2.0	99.8 ± 1.0	100.5 ± 0.1	90.0 ± 8.5	96.0 ± 1.3	

¹Standard deviations calculated by Dynamac reviewer (Attachment 2).

C. TRANSFORMATION OF PARENT COMPOUND: Parent [phenyl-U- 14 C](S)-metolachlor degraded more slowly in the surface-treated soil than in the homogenous-treated soil (pp. 35, 69 and Attachment 2). In thin layer/surface-treated soil (Treatment A), [14 C](S)-metolachlor decreased from an average 98.0 \pm 0.3% (97.7-98.3%, n = 2) of the applied radioactivity at day 0 posttreatment to 52.8 \pm 4.3% (48.5-57.0%) at 48 days. In thin layer/homogenous-treated soil (Treatment B), [14 C](S)-metolachlor decreased from 95.4 \pm 1.8% (93.6-97.2%) of the applied at

^{*} Except where range or single value given

²Not detected; LSC limit of detection 0.003% of the applied radioactivity.

Not analyzed

Data obtained from pp. 34, 35, 153, 172 of the study report and Attachment 2.

day 0 to $57.6 \pm 1.5\%$ (56.1-59.0%) at 7 days, $29.8 \pm 0.4\%$ (29.4-30.1%) at 19 days and $10.4 \pm 0.0\%$ (10.3-10.4%) at 48 days. In thick layer/homogenous-treated soil (Treatment C), [14 C](S)-metolachlor decreased from $98.2 \pm 1.1\%$ (97.1-99.3%) of the applied at day 0 to $54.7 \pm 0.5\%$ (54.1-55.2%) at 7 days, $28.9 \pm 0.5\%$ (28.4-29.4%) at 19 days and $8.9 \pm 0.1\%$ (8.8-9.0%) at 48 days.

HALF-LIFE/DT₅₀: Half-life values of [phenyl-U-\frac{14}{C}](S)-metolachlor were determined by the study author using linear regression analysis based on first-order kinetics calculated by Excel version 7.0. The study author's calculations were confirmed by the reviewer using Quattro Pro 8 software. DT50 values were determined by the study author using non-linear analysis based on one- and two-compartment models calculated by Origin version 5.0 (pp. 26, 27, 70-78). DT₉₀ (90% decline time) values were determined using the first-order kinetic equation and calculated k value, then DT₉₀ = -(ln 10/k).

Table 9: Half-life $(t_{1/2})$ values of (S)-metolachlor (CGA-77102) in aerobic sandy clay loam soil

calculated using linear regression analysis and first-order kinetics.

Soil		DT _{so}	DT _{s0}		
layer/treatment	half-life (days)	Regression equation	R²	(days)	(days)
thin/surface	50.3	Linear form $y = mx + b$ as $lnC = -kt + lnC_0$; lnC_0 is initial	0.823	ND²	167.1
thin/homogenous	14.9	concentration (b = y intercept), lnC is concentration at time t (y), k is the slope	0.966	ND	49.6
thick/homogenous	13.9	(m), t is time (x) or kt = $\ln C_0$ - $\ln C$. Half-life (t $\frac{1}{2}$) = -($\ln 2/k$).	0.975	ND	46.1

Determined by Dynamac reviewer as registrant did not report correlation coefficient (r²) values (Attachment 2).

Data obtained from p. 37.

Table 10: DT50 values of (S)-metolachlor (CGA-77102) in aerobic sandy clay loam soil

calculated using non-linear analysis based on one-compartment model.

Soil layer/treatment		70m	D.T.		
	half-life (days)	Equation	R²	DT ₅₀ (days)	DT ₉₀ (days)
thin/surface	42.2	one-compartment $C = C_1 * exp((-k_1) * x)$ C = concentration of parent at any time	0.854	ND1	ND
thin/homogenous	10.7	C ₁ = initial concentration of parent exp = exponential values of	0.982	ND	ND
thick/homogenous	10.2	k_1 = initial rate constant of dissipation (slope of line) and x = sampling time	0.987	ND	ND

Not determined.

Data obtained from pp. 37, 73, 75, 77.

²Not determined.

PMRA Submission Number {......}

EPA MRID Number 45499606

Table 11: DT50 values of (S)-metolachlor (CGA-77102) in aerobic sandy clay loam soil calculated using non-linear analysis based on two-compartment model.

Soil layer/						
treatment	half-life (d	days)	Equation	R²	DT ₅₀ (days)	DT ₉₀ (days)
thin/surface	initial	15.2	two-compartment $C = C_1 * exp((-k_1)*x) +$	0.977	ND¹	ND
	secondary	47.7	C - concentration of parent at any time			
thin/	initial	4.9	C_1 = initial concentration of parent C_2 = secondary phase concentration of parent exp = exponential values of k_1 = initial rate constant of dissipation (slope of line)	0.997	ND	ND
homogenous seco	secondary	22.2				
thick/	initial	4.3	k ₂ = secondary phase rate constant of dissipation (slope) and x = sampling time		ND	ND
homogenous	secondary	18.2				

Not determined.

Data obtained from p. 37, 74, 76, 77.

TRANSFORMATION PRODUCTS: There were no major transformation products of [phenyl-U-14C](S)-metholachlor. Four minor transformation products, CGA-40172, NOA-436611, CGA-354743 and CGA-51202, were positively identified and one minor transformation product, CGA-46576, was tentatively identified in soil extracts of all three treatments. In soil extracts from thin layer/surface-treated soil, CGA-40172 was detected at a maximum 11.6% of the applied at 19 days, NOA-436611 at 4.2% at 33 days, CGA-354743 at 2.5% at 33 days, CGA-51202 at 6.6% at 48 days and CGA-46576 at 3.6% at 7 days (p. 170). In soil extracts from thin layer/homogenous-treated soil, CGA-40172 was detected at a maximum 5.9% at 19-33 days, NOA-436611 at 9.4% at 33 days, CGA-354743 at 11.6% at 33 days, CGA-51202 at 11.3% at 48 days and CGA-46576 at 2.2% at 11 days (p. 171). In soil extracts from thick layer/homogenous-treated soil, CGA-40172 was detected at a maximum 5.7% at 14 and 33 days, NOA-436611 at 9.1% at 33 days, CGA-354743 at 9.3% at 33 days, CGA-51202 at 9.5% at 33 days and CGA-46576 at 2.1% at 19 days (p. 172). Two unidentified [14C]compounds (HPLC zones 4 and 8) were also detected in soil extracts of all three treatments each at ≤3.5% of applied.

NONEXTRACTABLE AND EXTRACTABLE RESIDUES: In thin layer/surface-treated soil, extractable [¹⁴C]residues decreased from 99.9-103.5% of the applied at 0-1 days to 81.5-86.9% at 33-48 days, while non-extractable [¹⁴C]residues increased from 3.8-5.0% to 20.2-24.6% during the same period (p. 147). In thin layer/homogenous-treated soil, extractable [¹⁴C]residues decreased from 96.7-100.2% of the applied at day 0 to 52.2-53.2% at 48 days, while non-extractable [¹⁴C]residues increased from 5.9-6.6% to 40.8-41.0% (p. 148). In thick layer/homogenous-treated soil, extractable [¹⁴C]residues decreased from 100.6-103.1% of the applied at day 0 to 47.0-48.0% at 48 days, while non-extractable [¹⁴C]residues increased from 5.3-6.1% to 42.2-45.5% (p. 149).

PMRA Submission Number {.....}

EPA MRID Number 45499606

VOLATILIZATION: Volatilization of ¹⁴CO₂ was not significant for any treatment, totaling 0.017-0.07% of the applied for thin layer/surface-treated soil, 0.714-1.660% for thin layer/homogenous-treated soil and 4.485-4.704% for thick layer/homogenous-treated soil at study termination (pp. 151-153). Organic volatiles were <0.1% of applied at any sampling interval for all three treatments.

TRANSFORMATION PATHWAY: Biotransformation pathways for the degradation of (S)-metolachlor in an aerobic soil were proposed by the registrant (pp. 32, 88). Biotransformation included substitution of the -Cl with -OH to form CGA-40172 then oxidation to form CGA-51202, or cysteine conjugation to form CGA-46576 then oxidation and decarboxylation of transitory sulfoxide precursors to form NOA-436611 then CGA-354743.

Table 12: Chemical names for identified transformation products of (S)-metolachlor (CGA-77102) in aerobic sandy clay loam soil.

Code	Chemical Name
CGA-40172	2-OH-Acetamide of (S)-metolachlor.
NOA-436611	Sulfoxide of thioglycolic acid of (S)-metolachlor.
CGA-354743	Sulfonate of (S)-metolachlor.
CGA-51202	Oxalamide of (S)-metolachlor.
CGA-46576 ¹	Cysteine conjugate of (S)-metolachlor.

Tentative identification.

Data obtained from pp. 39, 40 of the study report.

D. SUPPLEMENTARY EXPERIMENT-RESULTS: None performed.

III. STUDY DEFICIENCIES: This study is supplemental but cannot be used to fulfill Subdivision N Guideline §162-1 data requirements at this time because no data were provided to demonstrate that aerobic conditions were maintained throughout the 48-day incubation. The vials and bottles containing the treated soil layers were sealed until the time of sample collection. No determinations such as redox potentials were made to verify that aerobic conditions were maintained. It is possible, especially with the thick soil layer, that pockets of anaerobicity developed.

IV. REVIEWER'S COMMENTS:

1. No results were provided to demonstrate that soil moisture was maintained at 75% of 1/3 bar throughout the incubation. There was no attempt to maintain soil moisture during the 48-day

incubation. It was reported that net soil weight differentials between the 0- and 48-day samples were ≤5.4%, indicating minimal moisture loss, but recorded soil weights at sample collection were not provided for review.

- 2. The study author calculated half-life values (linear and non-linear) for (S)-metolachlor using mean values of metolachlor (percent of applied radioactivity) detected at each sampling interval (pp. 70-78). It is preferred that individual replicate values be used for calculations to more accurately reflect the behavior of the compound. However, similar half-life values (linear) for metolachlor were determined by the Dynamac reviewer using [14C]metolachlor concentration in each replicate sample at all sampling intervals and least squares linear regression analysis assuming degradation followed first order kinetics as calculated by Corel Ouattro Pro 8 software (Attachment 2).
- 3. Soil extracts were stored up to 42 days prior to TLC analysis. Re-analysis by TLC of a day 0 extract from thick layer/homogenous-treated soil indicates that (S)-metolachlor was stable during 69 days of frozen (temperature not specified) storage comprising 97.1% of applied at initial analysis and 98.0% after 69 days (pp. 46, 47).
- 4. HPLC column recoveries were reported as generally between 90-110%; however, individual column recoveries were not provided for review.
- 5. Detection limits for the HPLC and MS analyses were not reported.
- GC/MS and LC/MS methods were not adequately described. The methods should have been summarized in the study text.
- 7. Peaks on the HPLC chromatograms should have been labeled as to compound (pp. 66-68).
- 8. Results from combustion and LSC analysis of non-extracted soil samples (total radioactivity prior to extraction) were not provided for review.
- 9. It would have been useful to determine the nature of the non-extractable [14C]residues; residues associated with fulvic acid, humic acid and humin fractions of the soil.
- 10. The 1.3 mg a.i./kg treatment rate was selected to approximate the concentration of (S)-metolachlor that would be present in the 0- to 6-inch soil layer following application and/or incorporation of the maximum single field use rate of 2-3 lb a.i./A assuming an average soil bulk density of 1.5 g/cm³ (p. 14).
- 11. (S)-Metolachlor chemical name mixture of 80-100% (aRS,1S)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-methoxy-1-methylethyl)acetamide and 20-0% (aRS,1R)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-methoxy-1-methylethyl)acetamide was identified as the IUPAC name by the Compendium

of Pesticide Common Names (http://www.hclrss.demon.co.uk/s-metolachlor.html). Additional IUPAC name mixture of 80-100% (aRS,1S)-2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)acet-o-toluidide and 20-0% (aRS,1R)-2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)acet-o-toluidide and CAS name 2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-methoxy-1-methylethyl]acetamide were also obtained from the Compendium of Pesticide Common Names. The following additional (S)-metolachlor synonyms were obtained from USEPA/OPP Chemical Databases (http://www.cdpr.ca.gov/cgi-bin/epa/chemidetriris.pl?pccode=108800 and (http://www.cdpr.ca.gov/cgi-bin/mon/bycode.pl?p_chemcode=5133): chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide; 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-,(S)-*, acetamide* and R-enantiomer; and acetamide, 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-,(S)-** and R-enantiomer. The registrant used the chemical name (S)-2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (p. 38).

V. REFERENCES: The following references were cited in the study:

- Anderson and Domsch. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. Vol. 10: 215-221. MRID 43883401.
- Clark, A. 1995. Comparative aerobic soil metabolism of phenyl ¹⁴C-CGA-77102 and phenyl ¹⁴C-metolachlor in a sandy loam soil. Ciba-Geigy ABR-95102, Study #338-94. MRID 43928936.
- 3. Lamoureux, G. and D. Rusness. 1989. Propachlor metabolism in soybean plants, excised soybean tissues, and soil. Pest. Biochem. Physiol. Vol. 34: 187-204.
- Merritt, A. 1995. Photodegradation of ¹⁴C-metolachlor and ¹⁴C-CGA-77102 on soil under artificial light. Ciba-Geigy ABR-95128. MRID 43928935.
- Moore, P. 1997. Field corn and soybean metabolism of dimethenamid. WSSA Mtg. Abstracts. Vol. 37: 166.

Attachment 1 -

Quattro Pro Graphs and Spreadsheets Excel Spreadsheets Aerobic Metabolism of [14 C]S-Metolachlor (CGA-77102) in Sandy Clay Loam Soil. MRID 45499606

Treatment A - Thin Layer/Surface-Treated Soil.

enyl-U-14C]S-Metolachlor

nalf-life I	Determ	ination
S-M	etolaci	hlor
Day	%AR	Ln(%AR)
0	97.7	4.5819
0	98.3	4.58802
1	100.9	4.61413
1	98.5	4.59006
4	82.2	4.40916
4	85.8	4.45202
7	77.9	4.35543
7	78.9	4.36818
11	68.3	4.22391
- 11	83.5	4.42485
14	71.1	4.26409
14	72.4	4.28221
19	53.0	3.97029
19	60.6	4.10429
33	54.2	3.99268
33	53.3	3.97594
48	57.0	4.04305
48	48.5	3.88156

Regression Output:

Constant 4.495
1 Err of Y Est 0.115
Squared 0.788
No. of Observations 18
Degrees of Freedom 16

X Coefficient(s) -0.01382 Std Err of Coef. 0.00179

half-life 50.1 days

*AR = Applied Radioactivity
Linear regression analysis performed using Corel Quattro Pro 8.
Results from p. 170 of study report.

ism of [14C]S-Metolachlor (CGA-77102) in Sandy Clay Loam S Aerobic Met MRID 45499606

Treatment B - Thin Layer/Homogenous-Treated Soil.

Treatment C - Thick Layer/Homogenous-Treated Soil. [Phenyl-U-¹⁴C]S-Metolachlor

Phenyl-U- ¹⁴ CJS-Metolachlor Half-life Determination

S-Metolachlor Day %AR Ln(%AR) 0 93.6 4.53903 0 97.2 4.57677 1 90.2 4.50203 1 92.4 4.52613 4 67.2 4.2017 7 59.0 4.07754 7 56.1 4.02714 11 41.9 3.73529 14 37.8 3.73529 14 37.8 3.5231 19 30.1 3.40453 33 16.3 2.77882 48 10.4 2.34181 48 10.3 2.33214	_	à														-				
	ılor	Ln(%AR)	4.53903		4.50203		4.20767	4.2017	4.07754	4.02714	~	7	3.5293	3.63231	3.38099		791	2.77882	2.34181	2.33214
	etolac	%AR	93.6	97.2	90.2		67.2	8.99	59.0	56.1		-	34.1			30.1		16,1	10.4	10.3
		Day	0	0	_	*-	4	4	7	7	=	Ξ	14	14	19	19	33	33	48	48

(% s) II (

Output:	4.392	0.14	0.966	18	16
Regression Output	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom

X Coefficient(s) -0.04646 Std Err of Coef. 0.00219

14.9 days

half-life

*AR = Applied Radioactivity
Linear regression analysis performed using Corel Quattro Pro 8.
Results from pp. 171, 172 of study report.

%AR Ln(%AR) 97.1 4.57574 99.3 4.59815 87.3 4.46935 90.1 4.50092 71.1 4.26409 3.72328 3.59457 3.59457 3.38099 3.99083 2.69463 4.01096 3,72086 3,34639 4.24992 Haff-life Determination S-Metolachlor 70.1 55.2 54.1 41.3 41.4 36.4 36.4 44 48 33 33 48 48 8 45 homogenous aerobic Sa Cl Lo soil 8 [14C]Metolachlor thin layer/

32

8

25 Days

8

5

2

4.413 0.129 0.975 18 Regression Output: Constant

-0.04993 0.00201 Degrees of Freedom X Coefficient(s) Std Err of Coef.

R Squared No. of Observations

Std Err of Y Est

13.9 days half-life

Aerobic Met sm of [¹⁴C]S-Metolachlor (CGA-77102) in Sandy Clay Loam S

Verification of Registrant's Half-life Values.

reatment C hin Layer/Homogenous-Treated Soil. Mean S-Metolachlor Day %AR Ln(%AR) 0 98.2 4.58701 1 88.7 4.48526 4 70.6 4.25703 7 54.7 4.00186 11 41.4 3.72328 14 36.4 3.59457 19 28.9 3.36384 33 14.6 2.68102 48 8.9 2.18605	4.413 0.1368 0.975 9
C/Homogenous-Tr-Metolachlor/AR Ln(%AR) 98.2 4.58701 98.7 4.48526 70.6 4.25703 54.7 4.00186 41.4 3.72328 3.59457 28.9 3.36384 14.6 2.68102 8.9 2.18605	Regression Output: Y Est I servations f Freedom ant(s) -0.0499 Coef. 0.00302
in Layer/Homogenou Mean S-Metolachlor Web %AR Ln(% y %AR Ln(% 1 88.7 4.48 4 70.6 4.25 7 54.7 4.00 11 41.4 3.72 14 36.4 3.59 19 28.9 3.36 33 14.6 2.68 8.9 2.18	Regressi Y Est servation of Freedo ent(s) Coef.
Treatment C Thin Layer/H Mean S-N Day 0 1 1 1 11 11 18 33	Regression Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom X Coefficient(s) Std Err of Coef. (
Soil.	•
reated 5	nt: 4.391 0.148 0.966 9
Treatment B Nean S-Metolachlor Nean S-Metolachlor Jay	Regression Output: Y Est Servations of Freedom of Freedom of Freedom 14.9 days
in Layer/Homogenol Mean S-Metolachlor y %AR Ln(%A 0 91.3 4.514 1 91.3 4.514 4 67.0 4.204 7 57.6 4.053 11 41.9 3.735 14 35.9 3.580 19 29.8 3.394 33 16.2 2.785 48 10.4 2.341	Regression Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom X Coefficient(s) -0.0 Std Err of Coef. 0.0
Treatment B Thin Layer/H Mean S-M Day %6 1 9 9 1 1 4 6 1 1 4 7 1 1 9 33 11 14 83	Regre Constant Std Err of Y Est R Squared No. of Observat Degrees of Free X Coefficient(s) Std Err of Coef.
-	4.495 0.109 0.823 7
Treatment A Treated Soil Mean S-Metolachior Mean S-Mean S	n Output: .01377 .00241
In Layer/Surface-Treate Mean S-Metolachlor Mean S-Metolachlor Mean S-Metolachlor 0 98.0 4.58497 1 99.7 4.60217 4 84.0 4.43082 7 78.9 4.32942 11 77.9 4.32942 14 77.7 4.27249 19 56.8 4.03954 33 53.7 3.98341 48 52.8 3.96651	Regression C Fet ervations Freedom nt(s) -0.01 coef. 0.00
Treatment A Thin Layer/S Mean S-M Day % 0 1 1 1 11 11 14 48	
F F [0]]]]	

*AR = Applied Radioactivity
Linear regression analysis performed using Corel Quattro Pro 8.
Results from p. 35 of study report.

Aerobic Metabolism of [14C]S-Metolachlor (CGA-77102) in Sandy Clay Loam Soil. MRID 45499606

Determination of Means/Standard Deviations for Applied Radioactivity in Extractable/Unextractable C]Residues in Soil and Volatiles.

eatment A - Thin Layer/Surface-Treated Soil.

. cauii	CIIL Y -	HIIIII LO	yensu		realeu										
	Soil p	re-extra	action	Sc	oil extra	ct	Unext	ractable	∍ [14C]	Vola	tilized [14C]	Mater	ial Bala	nces'
Day	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.
0	99.5			100.7			4.0			NA ²			104.7		
0	87.6	93.6	6.0	99.9	100.3	0.4	3.8	3.9	0.1	NA			103.7	104.2	0.5
1	96.4			103.5			4.8			NA			108.3		
1	94.5	95.5	0.9	102.2	102.9	0.7	5.0	4.9	0.1	NA	l		107.2	107.8	0.5
4	96.8			93.0			9.9			NA			102.9		
4	96.9	96.9	0.1	91.6	92.3	0.7	8.0	9.0	1.0	NA			99.6	101.3	1.6
7	96.8			95.1			13.0			0.000			108.1		
7	94.4	95.6	1.2	95.3	95.2	0.1	12.2	12.6	0.4	0.066	0.033	0.033	107.6	107.8	0.3
11	107.8			88.1			14.7			NA			102.8		
- 11	96.0	101.9	5.9	97.5	92.8	4.7	10.5	12.6	2.1	NA			108.0	105.4	2.6
14	100.0			91.7			15.3			0.002			107.0		
14	96.1	98.1	1.9	93.9	92.8	1.1	15.1	15.2	0.1	0.003	0.003	0.000	109.0	108.0	1.0
19	119.7			81.6			24.3			0.006			105.9		
19	102.6	111.2	8.5	88.7	85.2	3.5	20.0	22.2	2.2	0.007	0.007	0.000	108.7	107.3	1.4
33	108.9	-		83.3			24.6			0.018		-,,	107.9		
33	113.3	111.1	2.2	84.0	83.7	0.3	24.1	24.4	0.3	0.048	0.033	0.015	108.1	108.0	0.1
48	122.0			86.9			20.2			0.021			107.1		
48	106.8	114.4	7.6	81.5	84.2	2.7	23.8	22.0	1.8	0.101	0.061	0.040	105.4	106.3	0.9
Materi	al balan	ce = su	m of so	il extrac	t. unext	ractable	e [14C]	and vola	atiles.			Ov	erall	106.2	2.5

andard deviations calculated using Corel Quattro Pro 8 program equation @std(A1..A2).

Determination of Means/Standard Deviations for Applied Radioactivity in Extractable/Unextractable [14C]Residues in Soil and Volatiles.

Treatment B - Thin Layer/Homogenous-Treated Soil.

	Soil p	re-extra	action	Sc	oil extra	ct	Unext	ractable	[14C]	Vola	tilized [14C]	Mater	ial Bala	inces ¹
Day	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.
0	90.9			96.7			6.6			NA ²			103.3		
0	78.4	84.7	6.3	100.2	98.5	1.8	5.9	6.3	0.3	NA			106.1	104.7	1.4
1	93.7			97.5			8.9			NA			106.4		
1	94.6	94.2	0.4	99.7	98.6	1.1	9.1	9.0	0.1	NA			108.8	107.6	1.2
4	99.3			82.6			16.0			NA			98.6	:	
4	88.4	93.9	5.5	82.2	82.4	0.2	14.9	15.5	0.6	NA			97.1	97.9	0.8
7	98.3			83.9			19.4			0.275			103.6		
7	86.4	92.4	6.0	80.3	82.1	1.8	20.2	19.8	0.4	0.232	0.254	0.022	100.7	102.2	1.4
11	101.9			75.0			28.0	1		NA			103.0		
11	96.0	99.0	2.9	70.7	72.9	2.2	23.9	26.0	2.1	NA			94.6	98.8	4.2
14	96.5			71.3			27.1			0.550			99.0		
14	93.6	95.1	1.5	71.9	71.6	0.3	29.4	28.3	1.1	0.284	0.417	0.133	101.6	100.3	1.3
19	99.3			67.0			30.2			0.273			97.5		
19	105.6	102.5	3.2	68.7	67.9	0.9	28.6	29.4	0.8	0.579	0.426	0.153	97.9	97.7	0.2
33	98.4			58.0			40.3			0.613			98.9		
33	94.6	96.5	1.9	57.4	57.7	0.3	35.5	37.9	2.4	0.574	0.594	0.020	93.5	96.2	2.7
48	95.3			53.2			41.0			1.661			95.9		
48	92.7	94.0	1.3	52.2	52.7	0.5	40.8	40.9	0.1	0.714	1.188	0.473	93.7	94.8	1.1
Mater	ial balar	ce = su	m of so	il extrac	t. unext	ractable	e [14C]	and vol	atiles.			Ov	erall	100.0	44

A = not analyzed.

 $^{^{2}}NA = not analyzed.$

Results (% AR) from pp. 147, 151 of the study report.

Means calculated using Corel Quattro Pro 8 program equation @avg(A1..A2).

Results (% AR) from pp. 148, 152 of the study report.

Means calculated using Corel Quattro Pro 8 program equation @avg(A1..A2).

Standard deviations calculated using Corel Quattro Pro 8 program equation @std(A1..A2).

Aerobic Metabolism of [14C]S-Metolachlor (CGA-77102) in Sandy Clay Loam Soil. MRID 45499606

Determination of Means/Standard Deviations for Applied Radioactivity in Extractable/Unextractable

'C]Residues in Soil and Volatiles. eatment C - Thick Layer/Homogenous-Treated Soil.

Cutill	ent C -								1110			4401			71
1 1	Soil p	re-extra	ection	Sc	oil extra	ct	Unext	ractable	1146		tilized [14C		ial Bala	inces.
Day	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.	% AR	Mean	s.d.
0	99.9			100.6			6.1			NA ²			106.7		
0	95.7	97.8	2.1	103.1	101.9	1.3	5.3	5.7	0.4	NA			108.4	107.5	0.9
1	100.1			95.8			9.5			NA			105.3		
1	99.0	99.6	0.5	97.5	96.7	0.8	8.6	9.1	0.4	NA			106.1	105.7	0.4
4	99.2			87.1			15.6	1		NA			102.7		
4	91.2	95.2	4.0	86.3	86.7	0.4	16.4	16.0	0.4	NA	2		102.7	102.7	0.0
7	100.4			79.8			23.2			0.384			103.4		
7	101.8	101.1	0.7	77.0	78.4	1.4	22.0	22.6	0.6	0.380	0.382	0.002	99.4	101.4	2.0
11	98.2			72.3			26.3			NA			98.6		
- 11	120.9	109.6	11.3	74.4	73.4	1.1	28.2	27.3	1.0	NA		1	102.6	100.6	2.0
14	94.3		1.7.	69.6			30.2			1.058			100.9		
14	114.7	104.5	10.2	69.1	69.4	0.3	28.9	29.6	0.7	0.841	0.950	0.108	98.8	99.8	1.0
19	95.0			66.0			33.8	ł		0.616			100.4		
19	104.4	99.7	4.7	65.8	65.9	0.1	34.0	33.9	0.1	0.790	0.703	0.087	100.6	100.5	0.1
33	94.0			55.6			41.2			1.692			98.5		
33	126.0	110.0	16.0	56.0	55.8	0.2	24.0	32.6	8.6	1.450	1.571	0.121	81.5	90.0	8.5
48	92.1			48.0			42.2			4.485			94.7		
48	92.7	92.4	0.3	47.0	47.5	0.5	45.5	43.9	1.6	4.704	4.595	0.110	97.2	95.9	
¹ Materi	al balan	ce = su	m of sc	oil extrac	t, unext	ractab!	9 [14C]	and vol	itiles.	-		Ov	erall	100.5	5.8

 $^{2}NA = not analyzed.$

Results (% AR) from pp. 149, 153 of the study report.

Means calculated using Corel Quattro Pro 8 program equation @avg(A1..A2).

Indard deviations calculated using Corel Quattro Pro 8 program equation @std(A1..A2).

Aerobic M olism of [¹⁴C]S-Metolachlor (CGA-77102) in Sandy Clay Loam 1. MRID 4549...J6

2) and Degradates in Soil Extracts.	
Б	
2) a	
100	
schlor (CGA-77102)	
S	
÷	
훙	
olat	
⁴ C]Met	
יון	
s fo	
ü	
iati	
Dev	
臣	
anda	
Stai	
us/	
fea	
2	
tion of Means/Sta	
natik	
m	
Detern	
å	

9	S		ᅴ		허		ᆲ		_		2		_	-	ᇷ		ᇹ		ι.
A-4657	Mean		ŏ		ŏ		0						-			,	-		Ψ-
၁	% AR	<0.01	<0.01	~ 0.01	<0.01	0.3	0.0	9.0	3.6	0.7	0.3	0.8	1.1	0.7	1.0	0.7	1.2	Ξ	1.5
2	s.d.		0.0		0.0		0.3		1.4		1.0		0.3		0.4		0.4		0.4
3A-5120	Mean		0.0		0.0		0.8		2.4		2.0		3.6		4.0		4.3		6.2
ၓ	% AR	<0.01	<0.01	<0.01	<0.01	1.0	0.5	3.7	1.0	2.9	1.0	3.3	3.9	3.6	4.4	3.9	4.7	9.9	5.7
43	s.d.		0.0		0.0		0.5		0.4		1.9		0.5		0.2		0.0		0.4
A-3547	Mean		0.0		0.0		0.5		0.4		1.9		0.5		1.7		2.5		2.0
၅	% AR	<0.01	<0.01	<0.01	<0.01	6.0	0.0	0.8	20.0	0.0	3.8	<0.01	0.9	- 8.	1.5	2.4	2.5	1.6	2.4
11	s.d.		0.0				0.2				0.4		0.3		0.8		0.1		0.7
A-4366	Mean		0.0		0.0		-		9.0		0.9		6.		3.4		4.1		3.2
NO	% AR	<0.01	<0.01	<0.01	<0.07	1.3	6.0	1.2	0.0	1.2	0.5	1.0	1.5	4.1	2.6	4.0	4.2	2.5	3.8
2	s.d.		0.0		0.0		0.5		0.1		2.9		0.3		0.0		0.2		0.7
3A-4017	Mean		0.0		0.0		1.7		9.9		0.9		9.0		10.7		10.4		10.7
ၓ	% AR	<0.01	<0.01	<0.01	<0.01	<u>L</u>		6.5				9.3	8.7	9.6	11.6	10.2	10.6	9.6	_
ō	s.d.				1.2		1.8		0.5		-			1			0.5		4.3
tolach	Mean			1								1				1	53.8		52 B
Me	% AR	97.7	98.3	100.9	98.5	82.2	85.8	77.9	78.9	68.3	83.5	<u>l</u>				54.2	53.3		
	Dav	H	0		_	4	4	7	7	-	7	14	14	19	6	33	33	48	48
	CGA-40172 NOA-436611 CGA-354743 CGA-51202	Metolachlor	Metolachlor CGA-40172 NOA-436611 CGA-354743 CGA-51202 CGA-4657 % AR Mean s.d. % A	Metolachlor CGA-40172 NOA-436611 CGA-354743 CGA-51202 CGA-4557 % AR Mean s.d. % A	Metolachlor CGA-40172 NOA-436611 CGA-354743 CGA-51202 CGA-4557 % AR Mean s.d. % AR Mean s.d.<	Metolachlor CGA-40172 NOA-436611 CGA-354743 CGA-51202 CGA-4557 % AR Mean s.d. % AR Mean s.d. % AR Mean s.d. % AR Mean s.d. % AR Mean 0 97.7 c0.01 c0.01 <td>Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-4557 % AR Mean s.d. % AR Mean s.d. % AR Mean s.d. % AR Mean s.d. % AR Mean 0 97.7 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 1 100.9 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 4 82.2 c2.2 c3.2 c3.2 c3.3 c3.0 c3.2 c3.3 c3.0 c3.3 c3.0 c3.3 c3.0 c3.0</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-455202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-455202 CGA-44557 CGA-455202 CGA-45520 CGA-455202 CGA-455202 CGA-455202 CGA-455202 CGA-455202 CGA-455202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-451202 CGA-4455 (GA-455) % AR Mean s.d. % AR Mea</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-44557 % AR Mean s.d. % AR Mea</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4857 % AR Mean s.d. % AR Mean</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-455202 CGA-445502 CGA-455202 CGA-4552</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4857 % AR Mean s.d. % AR Mean</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4455 (GA-4552) % AR Mean s.d. %</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4857 % AR Mean s.d. % AR Mean</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-51202 CGA-44b5 value % AR Mean s.d. s.d.</td> <td>Metolachlor CGA-40172 NOA-436611 CGA-34743 CGA-51202 CGA-51202 CGA-51202 CGA-4050 % AR Mean s.d. s.d.</td> <td>% AR Mean S.d. Metolachlor CGA-351202 CGA-351202 CGA-351202 CGA-451202 CGA-6011 CGA-61202 CGA-61202 CGA-61202 CGA-61202 CGA-61202 CGA-61202 CGA-61202<</td>	Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-4557 % AR Mean s.d. % AR Mean s.d. % AR Mean s.d. % AR Mean s.d. % AR Mean 0 97.7 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 1 100.9 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 4 82.2 c2.2 c3.2 c3.2 c3.3 c3.0 c3.2 c3.3 c3.0 c3.3 c3.0 c3.3 c3.0 c3.0	Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-455202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202	Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-455202 CGA-44557 CGA-455202 CGA-45520 CGA-455202 CGA-455202 CGA-455202 CGA-455202 CGA-455202 CGA-455202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202 CGA-45202	Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-451202 CGA-4455 (GA-455) % AR Mean s.d. % AR Mea	Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-44557 % AR Mean s.d. % AR Mea	Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4857 % AR Mean s.d. % AR Mean	Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-451202 CGA-455202 CGA-445502 CGA-455202 CGA-4552	Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4857 % AR Mean s.d. % AR Mean	Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4455 (GA-4552) % AR Mean s.d. %	Metolachlor CGA-40172 NOA-436611 CGA-35443 CGA-51202 CGA-451202 CGA-4857 % AR Mean s.d. % AR Mean	Metolachlor CGA-40172 NOA-436611 CGA-354143 CGA-51202 CGA-51202 CGA-44b5 value % AR Mean s.d. s.d.	Metolachlor CGA-40172 NOA-436611 CGA-34743 CGA-51202 CGA-51202 CGA-51202 CGA-4050 % AR Mean s.d. s.d.	% AR Mean S.d. Metolachlor CGA-351202 CGA-351202 CGA-351202 CGA-451202 CGA-6011 CGA-61202 CGA-61202 CGA-61202 CGA-61202 CGA-61202 CGA-61202 CGA-61202<

5.

0.2

0.0 0.0 0.2 0.2 0.2 0.2

0.2

48I 48.5I 52.8I 4.3II 11.4I 10.7I 3.8I 3.2I 0.7II 2.4I 2. Detection limit 0.0003 µg (0.003% of applied).
Results (% AR) from pp. 170 of the study report.
Means calculated using Corel Quattro Pro 8 program equation @avg(A1.A2).
Standard deviations calculated using Corel Quattro Pro 8 program equation @std(A1.A2).

Aerobic M olism of [¹4C]S-Metolachlor (CGA-77102) in Sandy Clay Loam MRID 45495-0-06

Detern	nination	Determination of Means/Standard Deviations for [¹⁴C]Metolachlor (CGA-77102) and Degradates in Soil Extracts. Treatment B. Thin I aver/Homogenous-Treated Soil.	าร/Stan ver/Hor	idard De	viation us-Trea	is for [¹ ated So	⁴CJMetα II.	olachlor	(CGA-7	7102) aı	nd Degr	adates	in Soil	Extrac	S			
Lean	M	Metolachlor		CC	CGA-40172	72		NOA-436611	1	S C C	CGA-354743	3	ပ	CGA-51202)2	/9S	CGA-46576	2
)av	% AR	% AR Mean Is.d.	s.d.	% AR Mean	Mean	s.d.	% AR	% AR Mean s.d.	s.d.	% AR Mean		s.d.	% AR	% AR Mean	s.d.	% AR	% AR Mean s.d.	s.d.
	03.6			<0.01			<0.0>			<0.01			<0.01			₹ 0.01		
-	97.2	95.4	1.8	1.8 < 0.01	0.0		0.0 <0.01	0.0		0.0 <0.01	0.0	0.0	0.0 <0.01	0.0	0.0	ô	0.0	0.0
	90.2	1		1.5						0.0	-,-	,	1.2			0.4	,	ć
. 4-	92.4	91.3	1.	1.5	1.5	0.0	1.0	1.1	0.1	0.0	0.0	0.0	1.2	1.2	0.0	0.4	0.4	0.0
	67.2	١		3.0			2.4			2.6			2.9			0.7		,
4	868	67.0	0.2		3.1	0.7	2.5	2.5	0.0	2.7	2.7	0.0	3.1	3.0	6		0.0	0.2
_	59.0			4.6			4.3			4.5			5.6			1.7		
7	56.1	57.6	1.5	4.3	4.5	0.2	3.3	3.8	0.5	4.7	4.6	0.1	5.2	5.4	0.2		1.4	0.3
-	419			5.0			7.4			6.7			7.4			2.2		
	419	419	00		5.0	0.1	5.0	6.2	1.2	5.2	6.0	0.7	6.8	7.1	0.3		1.9	0.4
14	L	L					6.0			9.0			9.4					
14		36.0	1.8		5.3	0.1	5.2	5.6	0.4	8.8	8.9	0.1	8.8	9.1	0.3		1.8	0.2
19	1	1		5.7			7.5			7.6			8.5			_		
19		29.8	0.4	5.9	5.8	0.1	7.8	7.7	0.1	7.2	7.4	0.2	9.6	9.1	0.5		1.9	0.0
33	l			5.9						1.6			10.2			0.0		c
33	16.1	16.2	0.1	5.6	5.7	0.1	9.4	8.1	1.3	8.8	10.2	1.4	10.1	10.2	0	20.0	7:1	7.0
48	L			5.6			9.3			9.5	***		10.3					
48		10.4	0.0	5.7	5.7	0.0	7.7	8.5	0.8	9.4	9.5	0.1	11.3	10.8	0.5	1.8	1.6	0.7

Aerobic Me lism of [¹4CjS-Metolachlor (CGA-77102) in Sandy Clay Loam : MRID 454995000

14 150

	ĺ,	d.		8		9	,	5		8		0.2		0		6	•	0.0		0.1
	9229 (.	an s.d.		0.0)	0.5		1.1	-	1.4	-	1.8		1.9		2.1		9:		1.3
	CGA-46576	% AR Mean	_	5	0.5	0.4	0.1	1.2	ان	4.4	9.1	1.9	1.7	2.0	2.1	2.0	9.	1.5	4.	=
·		/ %	<0.0	힣																
ts.	32	s.d.	٠	0.0		0.0		0		0:0		0.5		0.3		0.3		0.1		0.0
Extrac	CGA-51202	Mean		0.0		0.0		3.3	٠.	5.6		7.3		8.0		9.0		9.4		7.8
in Soil	စ်သ	% AR Mean s.d.	<0.01	<0.01	<0.01	40.0	 —	3.4	5.6	5.5	6.7	7.8	8.3	7.7	6.3	8.7	9.3	9.5	7.8	7.8
dates	_		ľ	0.0	<u>v</u> .	0.4		5		9.		0.4		0.3	-	0.2		0.1		0.1
d Degra	CGA-354743	Mean s.d.		0.0		0.4		2.6		4.1		6.5		7.6		7.4		9.5		9.1
02) and	CGA	% AR M	.01	.01	8.0	0.0	2.5	2.7	4.2	4.0	0	8.9	7.3	7.8	7.5	7.2	9.3	0.6	9.2	8.9
4-777	F	8	<0.01	0.0 < 0.01		0.4	-	0.0		0.0		0.4		0.1		0.1	خسند	0.0		0.3
r (cG/	611	s.d.											_						_	
lachlo	NOA-436611	Mean		0.0		2.3		2.6		4.0		5.3		5.1		7.6		9.1		8.6
C]Meto	1	% AR Mean s.d.	<0.0	0.0 < 0.01	1.9	2.7	2.6	2.6	4.0	4.0	4.9	5.7	5.2	5.0	7.7	7.4	9.1	9.1	8.2	8.9
for [14		T	Γ	0.0		0.0		0.1		0.0		0.2	Γ	0.2		0.1		0.0		0.2
iations	CGA-40172	lean Is		0.0		1.4		3.3		4.2	_	6.4		5.5		5.5		5.7		5.5
Determination of Means/Standard Deviations for [14C]	N S S	% AR Mean s.d.	40.041	<0.0	1.4	6.	3.3	3.2	4.2	4.2	4.7	5.1	5.3	5.7	5.4	5.5	5.7	5.6	5.6	5.3
s/Stand	7	-	Ť	+		1.4		0.5		0.5		0.1		0.0		0.5		03		0.1
of Mean	Motolophor	dean s		98.2		88.7		9.07		54.7		414		36.4		28.9		14.6		8.9
nation c	10 M	% AR Mean	07.4	003	87.3	90.1	71.1	70.1	55.2	54.1	413	414	36.4	36.4	28.4	29.4	143	14.8	0	8.8
Determination of Means/Standard Deviations for [14C]Metolachlor (CGA-77102) and Degradates in Soil Extracts.	Leanne	٥	1	o c	-		4	4	7	7	F		14	4	9	0	3	3 8	3 8	48

**Note of the study report. **

Attachment 2

Structures of Parent and Transformation Products

S-metolachlor Chemical Structures

* = Uniformly labeld phenyl ring (UL)

= Chiral center

CGA-77102

IUPAC Name: mixture of 80-100% (aRS, 1S)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-methoxy-1-methylethyl)acetamide and 20-0% (aRS, 1S)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-methoxy-1-methylethyl) acetatmide, or mixture of 80-100% (aRS, 1S)-2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)acet-o-toluidide and 20-0% (aRS, 1R)-2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl-acet-o-toluidide

CAS Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-methoxy-1-methylethyl]acetamide

Other names: Chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide; 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-,(S)-*,acetamide* and R-enantiomer:

(S)-2-chloro-N-(2-ethyl-6methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide; acetamide, 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-, (S)-** and R-enantiomer

Degradates

= Chiral center

CGA-77102 S-isomer of metolachlor

CGA-24705

Metolachlor

CGA-51202 Oxalamide

CGA-46576 Cysteine conjugate

CGA-NOA-436611 Sulfoxide of thioglycolic acid

CGA-40919

5

CGA-382594

CGA-110186 Thiolactic acid

Attachment 3 -

Degradation Pathway Presented by Registrant

FIGURE 46. PROPOSED DEGRADATION PATHWAY OF CGA-77102 UNDER AEROBIC SOIL CONDITIONS

Novartis Number 342-97

Page 88 of 188

6

DATA EVALUATION RECORD

PC No. 108801

Metolachlor

DP Barcode D278934

FORMULATION-00-ACTIVE INGREDIENT

STUDY ID 45527503

Chen, Wenlin, 2001. Concentration Trend of Metolachlor and S-Metolachlor Resulting from the Reduced Use Rate of S-Metolachlor in Ohio Lake Erie Tributary Drainage Basins. Syngenta Crop Protection Report No. 1663-01. Unpublished study performed and submitted by Syngenta Crop Protection, Inc., Greensboro, NC.

REVIEWED BY: Mark Corbin TITLE: Environmental Scientist

ORG: ERBI/EFED/OPP TEL: 703/605-0033

SIGNATURE: - W

DATE: 2/28/02

James G. Hetrid

APPROVED BY: James Hetrick, Ph.D.

TITLE: Senior Scientist ORG: ERBI/EFED/OPP TEL: 703/305-5237

SIGNATURE:

DATE: 2/28/02_

ABSTRACT

This study is a non-guideline study and therefore does not satisfy any of the requirements of Subdivision N. The study author has utilized trend analysis to compare atrazine concentrations in surface water with concurrent metolachlor concentrations from two watersheds in the Lake Erie Drainage Basin using data collected between 1994 and 2000. The intent of the study is to correlate the change in metolachlor concentrations with the phaseout and replacement of racemic metolachlor with s-metolachlor. Several important points to note about this study follow:

 Regression analysis is being used to demonstrate a cause and effect relationship between trends in atrazine and metolachlor. Without detailed information on the usage history of atrazine and metolachlor and the potential impact of other factors (climatic data, hydrologic data, and agricultural patterns) on trends in metolachlor concentrations EFED cannot confirm the conclusions of the study.

- 2. The study author does not explain the rational for selecting only data from 1994, 1997, and 2000. No explanation is given why data from 1995, 1996, 1998, and 1999 were not included in the analysis.
- 3. No enantioselective monitoring data in the United States are available to document the effect of loadings on the transition from racemic metolachlor to s-metolachlor.
- 4. No degradates of metolachlor were analyzed in the data. Degradates have been found at higher concentrations and frequencies than parent metolachlor in ground water.

The study author reports that by 2000, s-metolachlor represented 44% of the total metolachlor used in the study area. The study author also reports that total metolachlor market share remained stable from 1994 to 2000 at between 30% and 34%. Regression of metolachlor concentrations with atrazine concentrations yielded r² values between 0.66 and 0.92, while regression of loadings (concentrations converted to mass flow) yielded r² between 0.88 and 0.92 indicating that between 60% and 92% of the variation between atrazine and metolachlor concentrations could be accounted for by the regression. The study author indicates that the data indicate a reduction in metolachlor concentrations in 2000 relative to 1994/1997 data by comparing the slopes of the regression from 1994, 1997 and 2000. A reduced slope would indicate that metolachlor concentrations (when plotted on the y-axis) are generally lower relative to the concurrent atrazine concentrations, or alternatively, that atrazine concentrations increased relative to metolachlor.

The slope of the regression for the 2000 data (slope = 0.40) is less than the 1994 data for both concentration and mass loading (slope = 0.76 for concentration data and 0.90 for mass loading data) and the 1997 data (slope = 0.62 for the concentration data and 0.74 for mass loadings). The study author infers from this comparison that metolachlor concentrations were reduced in 2000. However, the author does not address the alternative possibility that atrazine concentrations increased. The study author also does not address the decrease in slopes between 1994 and 1997 when s-metolachlor was not yet on the market.

A total of 603 analytical results were reported for metolachlor (an unknown number of reported results represent averages when multiple samples were collected on a given day) between 1994 and 2000 from the Maumee River. A total of 629 analytical results were reported for metolachlor between 1994 and 2000 from the Sandusky River. EFED separated the data by tributary and analyzed each years worth of data separately. The maximum concentration of metolachlor detected in the Maumee River was 27.6 ppb (1997) while the maximum concentration of metolachlor detected in the Sandusky River was 33.3 ppb (1997). However, as the study author notes, an unknown number of reported daily values in the dataset represent averages where multiple samples were collected and analyzed on any given day. Therefore, these maximum concentrations from the data may under predict the actual maximum concentration detected in the entire dataset.

MATERIALS AND METHODS

Product use and market share data for racemic metolachlor and s-metolachlor for the three Ohio Crop Reporting Districts (CRD 1, 2, and 4) that overlay the two watersheds were obtained from Doane Marketing Research. Similar data were collected for atrazine from the same period from the Doane data. No s-metolachlor data was available prior to 1998. The study author relied on a qualitative comparison of the Doane data for metolachlor and atrazine. Ratios of combined metolachlor (racemic metolachlor and s-metolachlor) to atrazine were plotted. Apparently, no statistics were generated to compare metolachlor and atrazine use data to indicate if use patterns correlate. Additionally, none of the Doane data were provided with the study.

Surface water monitoring data for metolachlor and atrazine were obtained from the outlets of two Lake Erië tributaries. The tributaries are the Maumee and Sandusky Rivers. Surface water samples were collected from 1994 to 2000 by the Water Quality Laboratory of Heidelberg College in Ohio. The monitoring program by Heidelberg College was begun in 1983 for many compounds. The sampling frequency was designed to collect more samples during high runoff periods (April 15 to August 15) and typically consisted of three samples per day. Less frequent sampling occurred during the remainder of the year (typically two samples per month). Days with multiple samples were averaged for use in the regression. Daily water flow data were available from USGS gauging stations at the sampling sites and were incorporated into the tables.

The study author elected not to perform direct analysis of the metolachlor data. The author reports that uncertainty associated with the short use history for s-metolachlor (only on market since 1998) and "The overwhelmingly complicated impact of temporal variability in hydrological events (e.g., magnitude and timing of thunderstorms) and agricultural practices on surface water residues" necessitated a different approach. Instead, the study author elected to use the atrazine data as a "reference compound" since the two pesticides are applied within a similar window (reported by the study author as being applied within two to three weeks apart), on similar crops (corn), and used as pre-emergent herbicides. Thus, the study author performed regression analysis of co-occurring atrazine and metolachlor concentrations using SigmaPlot statistical software. The study author also regressed atrazine versus metolachlor loadings using mass flow data. The authors do not explain how atrazine is not subject to the same "temporal variability" in hydrologic events and agricultural practices as is metolachlor. The study authors also do not attempt to explain the difference between the 1994 and 1997 data.

RESULTS/DISCUSSION

The study author reports (from Doane data) that s-metolachlor comprised 44% of the total amount of metolachlor applied in 2000, while the overall market share for combined metolachlor remained stable at approximately 30%. Finally, using Doane data the author reports that overall pounds of metolachlor used declined in 2000 by about 30%.

Regression of metolachlor concentrations with atrazine concentrations yielded r^2 values between 0.66 and 0.92, while regression of loadings (concentrations converted to mass flow) yielded r^2 between 0.88 and 0.92. The study author indicates that the data indicate a reduction in

metolachlor concentrations in 2000 relative to 1994/1997 data by comparing the slopes of the regression from 1994, 1997 and 2000. A reduced slope would indicate that metolachlor concentrations (when plotted on the y-axis) are generally lower relative to the concurrent atrazine concentrations, or alternatively, that atrazine concentrations increased relative to metolachlor.

The slope of the regression for the 2000 data (slope = 0.40) is less than the 1994 data for both concentration and mass loading (slope =0.76 for concentration data and 0.90 for mass loading data) and the 1997 data (slope = 0.62 for the concentration data and 0.74 for mass loadings). The study author infers from this comparison that metolachlor concentrations were reduced in 2000. However, the author does not address the alternative possibility that atrazine concentrations increased. The study author also does not address the decrease in slopes between 1994 and 1997 when s-metolachlor was not yet on the market.

A total of 603 analytical results were reported for metolachlor (an unknown number of reported results represent averages when multiple samples were collected on a given day) between 1994 and 2000 from the Maumee River. A total of 629 analytical results were reported for metolachlor between 1994 and 2000 from the Sandusky River. EFED separated the data by tributary and analyzed each years worth of data separately. The maximum concentration of metolachlor detected in the Maumee River was 27.6 ppb (1997) while the maximum concentration of Metolachlor detected in the Sandusky River was 33.3 ppb (1997). However, as the study author notes, an unknown number of reported daily values in the dataset represent averages where multiple samples were collected and analyzed on any given day. Therefore, these maximum concentrations from the data may under predict the actual maximum concentration detected in the entire dataset.

DEFICIENCIES/DEVIATIONS

- 1. While the study author performed regression analysis comparing atrazine with metolachlor concentrations, no correlation was attempted to confirm that atrazine and metolachlor followed similar use patterns. The total pounds used and ratio of atrazine to metolachlor use have varied over the period covered by this study. Statistical analysis of the use information and ratio of atrazine/metolachlor usage would be important in assessing whether the underlying premise that atrazine makes a useful "reference compound".
- 2. The regression of atrazine versus metolachlor concentrations and mass loadings indicate that the slope of the regressions decreased between 1994 and 1997. A comparison of use data from these two periods suggest that roughly the same amount of metolachlor was used in both years. However the author does not attempt to explain what caused this decrease. Given that S-metolachlor was not yet on the market the decrease in slope must be the result of some other factor which the author does not address.
- A close review of the regression in Figure 7 (page 17 of study) indicate that the
 mean/median of the concentrations was lowest in 1994, increased to higher levels in 1997
 and then decreased in 2000. As with item 2 above, the author does not address changes

- in concentration between 1994 and 1997. A table of annual mean and median values is presented below.
- 4. No use data were provided from the Doane Research data. Only summary figures were provided.
- 5. The study author reports daily averages for an unspecified number of days. Complete data should be provided to allow for an assessment of true daily peak values and to assess the variability in the data.
- 6. The analytical data for metolachlor does not distinguish between racemic metolachlor and s-metolachlor. Without data which distinguishes between the enantiomers, it is impossible to say with any confidence that the concentrations in surface water are reflective of s-metolachlor use.

Year	Mean Concentration	Median Concentration
1994	0.820	1.156
1994	- 0.719	1.287
1995	0.712	2.498
1995	0.801	1.940
1996	0.564	1.467
1996	0.577	1.657
1997	3.212	5.177
1997	3.345	5.468
1998	1.948	4.472
1998	0.909	3.921
1999	1.410	1.779
1999	0.975	1.578
2000	0.892	1.394
2000	0.780	1.891

FIGURE 1. THE MAUMEE AND SANDUSKY WATERSHEDS IN THE LAKE EIRE BASIN AND THE OHIO CROP REPORTING DISTRICT (CRD). (WALDRON, 1989. COOPERATIVE EXTENSION SERVICE BULLETIN 787. OHIO STATE UNIVERSITY, COLUMBUS, OH, USA.)

Syngenta Number 1663-01.

Page 13 of 96

FIGURE 2. TOTAL ANNUAL USES OF METOLACHLOR AND S-METOLACHLOR IN OHIO CROP REPORT DISTRICT 1, 2, & 4

FIGURE 3. PERCENT OF METOLACHLOR AND S-METOLACHLOR USED ACRES IN TOTAL CORN PLANTED ACRES IN OHIO CROP REPORTING DISTRICT 1, 2 AND 4

Syngenta Number 1663-01

Page 14 of 96

FIGURE 4. TOTAL ANNUAL USES OF ATRAZINE AND TOTAL METOLACHLOR AND S-METOLACHLOR IN OHIO CROP REPORT DISTRICT 1, 2, & 4, 1994-2000

FIGURE 5. RATIO OF TOTAL METOLACHLOR AND S-METOLACHLOR USES TO ATRAZINE IN OHIO CROP REPORT DISTRICT 1, 2, & 4, 1994-2000

Syngenta Number 1663-01.

Page 15 of 96

FIGURE 6. ANNUAL DISCHARGE VOLUME AT THE MAUMEE AND SANDUSKY RIVER SAMPLING STATIONS

Syngenta Number 1663-01.

Page 16 of 96

FIGURE 7. COMPARISON OF CONCENTRATION DATA AMONG 2000, 1994 AND 1997 (MARCH -SEPTEMBER), MAUMEE RIVER AND SANDUSKY RIVER, OHIO

Syngenta Number 1663-01

Page 17 of 96

FIGURE 8. COMPARISON OF MASS FLOW DATA BETWEEN 2000, 1994 AND 1997 (MARCH-SEPTEMBER), MAUMEE RIVER AND SANDUSKY RIVER, OHIO

Syngenta Number 1663-01

Page 18 of 96

DATA EVALUATION RECORD

PC No. 108801

Metolachlor

DP Barcode D278934

FORMULATION-00-ACTIVE INGREDIENT

STUDY ID 45527501

Tierney, D.P., et al, 2001. Exposure Analysis of Metolachlor in Community Water Systems in 27 States, 1993-2000, volume 1-5. Syngenta Crop Protection Report No. 2454-01. Unpublished study performed and submitted by Syngenta Crop Protection, Inc., Greensboro, NC and En fate, LLC, Plymouth, MN.

REVIEWED BY: Mark Corbin

TITLE: Environmental Scientist

ORG: ERBI/EFED/OPP TEL: 703/605-0033

SIGNATURE:

DATE: 2/28/02

APPROVED BY: James Hetrick, Ph.D.

TITLE: Senior Scientist ORG: ERBI/EFED/OPP TEL: 703/305-5237

SIGNATURE: James a. Hetrich

DATE: 2/28/02

ABSTRACT

This study is a non-guideline study and therefore does not satisfy any of the requirements of Subdivision N. The registrant completed an assessment of eight years of Community Water System (CWS) data from 27 states which were analyzed for metolachlor. Several important points to note about this study follow:

Data aggregation presents a national picture of exposure to metolachlor in drinking water.
However, metolachlor exposure in drinking water is expected to be more dependent on
regional issues (i.e. climate, pesticide usage, agricultural patterns). EFED reevaluated the
data for the top ten use states which indicates that the percentage of population exposed is
highly dependent on the population being evaluated.

- 2. The study does not attempt to distinguish between exposure to racemic metolachlor and s-metolachlor. The analytical data from both periods does not distinguish between racemic metolachlor and s-metolachlor. No enantioselective monitoring data are available in the United States to document the effect on loadings of the transition from racemic metolachlor to s-metolachlor.
- 3. No degradates of metolachlor were analyzed in the CWS data. Degradates have been found at higher concentrations and frequencies than parent metolachlor in ground water.

The study does include useful information on the occurrence of metolachlor in CWS. According to the study authors, metolachlor was not detected in 97.7% of the 98,680 samples collected. Six percent of the 21,976 CWS reporting data had at least one detection of metolachlor. Using the PLEX database the authors report that no detections of metolachlor were present in the CWS data for locations serving a population of 124.2 million people (out of a total of 141.7 million, or 88%). According to the study, of the six percent of CWS with detections of metolachlor, 64 CWS had mean concentrations greater than 1.0 ppb and the maximum mean concentration was 7.4 ppb and the maximum single metolachlor concentration detected was 28.0 ppb from Missouri.

MATERIALS AND METHODS

The study author requested data on the occurrence of metolachlor in CWS collected by states under the SDWA. Of the 32 states targeted by the study (representing greater than 95% of all metolachlor usage) 27 states responded with data on the occurrence of metolachlor in drinking water. Also included in the response was population data and source water type for each location. The study authors compiled the data submitted and completed exposure profiles for individual CWS locations, individual states, and the 27 state aggregate drinking water population. An annualized mean concentration was calculated for each individual CWS location. Individual mean concentrations were then used to estimate a state population weighted mean. Non detects were set at half the reported limit of quantitation (LOQ). The data did not include enantioselective information and therefore could not differentiate between racemic metolachlor and s-metolachlor. Also, the study did not include information on metolachlor degradates. Occurrence data consists of quarterly samples collected at each individual CWS location.

RESULTS/DISCUSSION

The study presents the results of the analysis of population based exposure estimates calculated from surface and ground water monitoring data compiled from CWS data from 27 states. The database includes analytical results from 98,690 samples collected from 21,976 CWS locations in the 27 states. The monitoring data analyzed account for slightly greater than 60% of the CWS and 75% of the population from the 27 states. The 141.7 million people served by the CWS reporting data represent 68% of the population in the 27 states. Of the 98,680 samples collected, 97.7% were reported as non-detections.

It is worth noting that detection limits varied from state to state and that some data were not

included in the subsequent analysis. A total of 9,207 samples results from Alabama, California, Colorado, Indiana, and North Carolina were not used because a LOQ could not be determined. A total of 343 samples results were not used from Colorado and Iowa because the LOQ was reported to be greater than the HAL (100 ppb).

The authors report that of the 141.7 million people served by the CWS included in the study, 124.2 million (88%) had no detections of metolachlor. Approximately 12.3 million people (9%) were exposed to metolachlor concentrations above 1.0 ppb but less than 100 ppb. The maximum mean metolachlor concentration calculated by the study authors was 7.4 ppb and the maximum single metolachlor concentration detected was 28.0 ppb from Missouri (343 samples results were not used from Colorado and Iowa because the LOQ was reported to be greater than the HAL 100 ppb).

EFED reevaluated the data for the top ten use states (Table 2, page 17 of 1771 of study). The table below presents a summary of the data taken from the study (Tables 1 through 54 in Appendix B of the study, pages 47 through 134). The analysis of the data for the top ten states focused on the frequency of detection data and the percentage of population in each state exposed to metolachlor at concentrations above the LOQ. In the top use state of Iowa, greater than 42% of surface water samples and 21% of all samples contained metolachlor at concentrations above the LOQ. The analysis reveals that for the top ten states, 10.9 % of the population (6,869,782 people) are exposed to metolachlor above the LOQ. Further, focusing on the top five use states reveals that 18.0% of the population (4,660,204 people) are exposed to metolachlor above the LOQ. Finally, for the top state of Iowa, nearly 33% of the population (797,773 people) are exposed to concentrations of metolachlor above the LOQ.

This type of analysis indicates that the percentage of population exposed is highly dependent on the population being evaluated. Without the usage information for metolachlor (which was summarized in the study but not provided), it is impossible to determine the distribution of metolachlor use within the 27 states analyzed by the study authors.

Rank	State	Frequency of Detections in Surface Water (%)	Frequency of Detections in Ground Water (%)	Frequency of: Detections in Other (%)	Frequency of Detections - Total (%)	Total Population in State	Total Population Exposed to Detections Above the LOQ	Percent of Total Population Exposed to Detections Above the LOQ
1	Iowa	42.1	15.1	36.1	21.1	2,926,324	797,773	32.89
2	Illinois	15.2	0.4	9.3	4.5	12,419,293	1,137,471	10.57
3	Nebraska	5.9	1.6	1.9	1.7	1,711,263	653,068	47.14
4	Kansas	32.1	6.4	31.2	19.5	2,688,418	763,425	39.98
5	Indiana	11.5	0.6	3.5	2.1	6,080,485	1,308,467	41.79
6	Ohio	20.6	0.0	15.4	8.4	11,353,140	1,928,045	19.61
7	Missouri	3.6	0.0	2.0	1.5	5,595,211	200,187	9.59

Rank	State	Frequency of Detections in Surface Water (%)	Frequency of Detections in Ground Water (%)	Frequency of Detections in Other (%)	Frequency of Detections - Total (%)	Total Population in State	Total Population Exposed to Detections Above the LOQ	Percent of Total Population Exposed to Detections Above the LOQ
8	Wisconsin	0.0	0.8	0.0	0.8	5,363,675	17,255	0.52
9	Minnesota	0.0	0.2	1.6	0.3	4,919,479	12,572	0.33
10	Michigan	0.9	0.0	2.4	0.2	9,938,444	51,519	0.72
Totals					-	62,995,732	6,869,782	10.9

DEFICIENCIES/DEVIATIONS

- It is important to note that the analysis is based on quarterly samples and does not
 represent a targeted sampling program. Typically, a targeted sampling program would be
 focused on more samples collected within a seasonal or agricultural window in order to
 capture as much of the peak runoff associated with pesticide usage. CWS data is not
 targeted in this manner and is likely to miss the peak concentrations and to under predict
 the long term (chronic) exposure.
- 2. The report includes a large volume of data which has not been summarized by the authors. The authors have summarized the aggregate exposure estimates calculated from the entire 27 state dataset. State by State summaries are presented in Appendix B but are not discussed in the report. A narrative summary of state occurrence data and the effect on state populations exposed would have been useful to fully characterize the data.
- 3. Use information for metolachlor was summarized in the study but not reported. It would be instructive to see the use data ranked in order to determine whether particular states (i.e. the 10 highest use states) should be evaluated as well.
- 4. It is also important to note that the data does not include degradate analysis. This is particularly important for the ground water portion of the study. Data from other monitoring studies (NAWQA) and the two PGW studies suggest that degradates occur in ground water at a much higher concentration and frequency than parent metolachlor.
- 5. Finally, the analytical data does not include enantioselective information and therefore could not differentiate between racemic metolachlor and s-metolachlor.. Without data which distinguishes between the enantiomers, it is impossible to say with any confidence that the concentrations in surface water are reflective of s-metolachlor use.

TABLE 1

THIRTY-TWO METOLACHLOR AND S-METOLACHLOR
USE STATES RANKED BY ACRES TREATED IN 1996 AND 1999

	1996	1999		1996	1999
State	Rank	Rank ¹	State	Rank	Rank ¹
Iowa	2		South Dakota	21	107
Illinois	. 1	2	Mississippi	18	17 18
Nebraska	3	3	Virginia	20	19
Kansas	5	4	Tennessee	15	20
Indiana	4	5	Maryland	22	21
Ohio	8	6	Delaware	. 24	23
Missouri	6	7	Georgia	25	24
Wisconsin	10	8	Louisiana	19	25
Minnesota	7	9	South Carolina	28	26
Michigan	9	10	Alabama	26	28
Texas	12	11	Colorado	23	29
Pennsylvania	13	12	California		30
Arkansas	14	13	Florida	29	32
Kentucky	17	14	New Jersey	27	33
Nev/York	11	15	North Dakota	30	37
North Carolina	16	16	Hawaii		_

⁻⁻ Not surveyed for metolachlor

¹ Ranking provided by Syngenta Crop Protection, 2001

METOLACHLOR AND S-METOLACHLOR MONITORING DATA FOR CWS ON SURFACE AND GROUNDWATER IN 27 MAJOR USE STATES FOR TWO TIME PERIODS (1994-1995 AND 1999-2000)

TABLE 2

Medium		`- 1994	1995	1999	2000
surface water	No. of CWS	810	766	1,067	1,048
	No. of Samples	2,309	2,310	3,146	3,348
	No. of Detections	179	252	146	- 82
	% Detections	7.8	10.9	4.6	2.4
groundwater	No. of CWS	4,360	4,680	3,893	4,057
	No. of Samples	13,018	11,414	7 740	8,021
	No. of Detections	63	123	42	50
	% Detections	0.5	1.1	0.5	0.6
	LOQ Most Frequent	0.4	0.1	0.5	0.5
	LOQ Range	0.0005 - 50.0	0.04 - 52.0	0.005 - 10.0	0.01 - 10.0

FIGURE 1

Page 17 of 23

FIGURE 2

METOLACHLOR (1994-1995) AND S-METOLACHLOR (1999-2000) CONCENTRATION DISTRIBUTION PERCENTILE FOR CWS ON SURFACE WATER IN THE 27 MAJOR USE STATES

(Box Plot: Maximum, 75th, Median, 25th, and Minimum)

Detected Concentrations	1994	1995	1999	2000
Maximum	18.0	9.4	28	1.9
95th Percentile	3.1	3.0	1.5	1.45
75th Percentile	1.3	1.0	0.68	0.6
Median	0.68	0.62	0.4	0.34
25th Percentile	0.35	0.36	0.24	0.18
Minimum	0.1	0.005	0.05	0.07

Page 18 of 23

3

Page 19 of 23

Page 20 of 23

, 1

FIGURE 5

METOLACHLOR (1994-1995) AND S-METOLACHLOR (1999-2000) CONCENTRATION DISTRIBUTION PERCENTILES FOR CWS ON GROUNDWATER IN THE 27 MAJOR USE STATES

(Box Plot: Maximum, 75th, Median, 25th, and Minimum)

Detected ConcentrationS	1994	1995	1999	2000
Maximum	8.1	6.0	16.7	18.0
95th Percentile	2.7	3.0	3.8	1.6
75th Percentile	0.89	1.0	0.96	0.49
M edian	0.5	0.431	0.43	0.335
25th Percentile	0.17	0.11	0.2	0.17
Minimum	0.1	0.015	0.1	0.1

Page 21 of 23

Page 22 of 23

Page 23 of 23

DATA EVALUATION RECORD

PC No. 108801 Metolachlor
DP Barcode D278934
FORMULATION-00-ACTIVE INGREDIENT
STUDY ID 45527502

Tierney, D.P., et al, 2001. Occurrence of Metolachlor (1994-1995) Compared to S-Metolachlor (1999-2000) in Drinking Water From Community Water Systems in 27 Major Use States. Syngenta Crop Protection Report No. 2455-01. Unpublished study performed and submitted by

Syngenta Crop Protection, Inc., Greensboro, NC and En fate, LLC, Plymouth, MN..

REVIEWED BY: Mark Corbin

TITLE: Environmental Scientist

ORG: ERBI/EFED/OPP TEL: 703/605-0033

SIGNATURE:

DATE: 2/28/02

APPROVED BY: James Hetrick, Ph.D.

TITLE: Senior Scientist ORG: ERBI/EFED/OPP TEL: 703/305-5237

SIGNATURE: James G. Hetrob

DATE: 2/28/02

ABSTRACT

This study is a non-guideline study and therefore does not satisfy any of the requirements of Subdivision N. The study author has completed a comparative analysis of surface and ground water monitoring data collected in 27 high metolachlor use states collected and analyzed by individual Community Water Systems (CWS) to assess the impact of the replacement of metolachlor with s-metolachlor. The study authors compared the frequency of occurrence and concentration profile of metolachlor from the years 1994-1995 with similar data from 1999-2000. Several important points to note about this study follow:

Data aggregation presents a national picture of exposure to metolachlor in drinking water.
 However, metolachlor exposure in drinking water is expected to be more dependent on regional issues (i.e. climate, pesticide usage, agricultural patterns).

- 2. The study does not address the potential impact of other factors such as variations in metolachlor use, climatic, hydrologic, and agricultural practices on the data. It is impossible to correlate the reported decrease in frequency of detections and concentration profile with the replacement of racemic metolachlor with s-metolachlor without evaluating other factors which may have influence on the data. Without detailed information on the usage history of metolachlor and the potential impact of other factors EFED cannot confirm the conclusions of the study.
- 3. The analytical data from both periods does not distinguish between racemic metolachlor and s-metolachlor. No enantioselective monitoring data are available to document the effect on loadings of the transition from racemic metolachlor to s-metolachlor.
- 4. No degradates of metolachlor were analyzed in the CWS data. Degradates have been found at higher concentrations and frequencies than parent metolachlor in ground water.
- 5. The number of states and CWS reporting data varies between 1993 and 2000.

 Comparative analysis should be performed on the same states and CWS data from both periods. An additional confounding factor for this analysis is that different states will collect quarterly samples at different times within the quarter. Consistency in sample population is critical to comparing data.

The study author reports that the frequency of metolachlor/s-metolachlor detections in surface water decreased from 9.4% in 1994-1995 to 3.5% in 1999-2000. A comparison of percentiles for detections from surface water showed that the 95th, 75th, median, and 25th percentiles of surface water concentrations were reduced by approximately 50% in the 1999-2000 data relative to the 1994-1995 data. Finally, the data show that only 9.2% of samples with detections were between 1.0 and 10 ppb in the 1999-2000 data compared with 26.2% of the detections in 1994-1995 data. Overall, the data suggest that the overall distribution of metolachlor detections is lower in the 1999-2000 data relative to the 1994-1995 data.

The study author reports that for ground water there is little difference in the frequency of detection of metolachlor between 1994-1995 and 1999-2000. Visually, the concentration profile for metolachlor in ground water shows an overall lower concentration. Finally, the data show that only 14.1% of samples with detections were between 1.0 and 10 ppb in the 1999-2000 data compared with 22.0% of the detections in 1994-1995 data. The study authors deduce from this data that the occurrence of metolachlor has been reduced in the 1999-2000 data relative to the 1994-1995 data.

MATERIALS AND METHODS

State by state agricultural use data was used by the study author to rank the top 32 states (representing 97% of metolachlor use) in 1996 (providing use information for the 1994-1995 data) and 1999 (providing use information for the 1999-2000 data). The analysis indicated that the top metolachlor use states had not changed over the time interval. Using this information, the study authors requested data from the 32 top metolachlor use states collected by CWS under the

Safe Drinking Water Act (SDWA). Data was received from 27 of the 32 states and compiled by the authors for analysis.

CWS surface water data was available from 810 locations in 1994, 766 locations in 1995, 1067 locations in 1999, and 1048 locations in 2000. CWS ground water data was available from 4360 locations in 1994, 4680 locations in 1995, 3893 locations in 1999, and 4057 locations in 2000. The study authors analyzed the data from surface water and ground water CWS sources separately. Sources that used blended surface water and ground water were not used in the analysis. Only quantifiable detections were used in the preparation of concentration profiles.

RESULTS/DISCUSSION

The study author reports that the frequency of metolachlor/s-metolachlor detections in surface water decreased from 9.4% in 1994-1995 to 3.5% in 1999-2000. A comparison of percentiles for detections from surface water showed that the 95th, 75th, median, and 25th percentiles of surface water concentrations were reduced by approximately 50% in the 1999-2000 data relative to the 1994-1995 data. Finally, the data show that only 9.2% of samples with detections were between 1.0 and 10 ppb in the 1999-2000 data compared with 26.2% of the detections in 1994-1995 data. Overall, the data suggest that the overall distribution of metolachlor detections is lower in the 1999-2000 data relative to the 1994, 1995 data.

It is also worth noting that while the surface water data suggests that the concentrations from 1999-2000 are lower overall, the single highest concentration reported in this study (28 ppb) was detected in 1999.

The study author reports that for ground water there is little difference in the frequency of detection of metolachlor between 1994-1995 and 1999-2000. Visually, the concentration profile for metolachlor in ground water shows an overall lower concentration. Finally, the data show that only 14.1% of samples with detections were between 1.0 and 10 ppb in the 1999-2000 data compared with 22.0% of the detections in 1994-1995 data. The study authors deduce from this data that the occurrence of metolachlor has been reduced in the 1999-2000 data relative to the 1994-1995 data.

DEFICIENCIES/DEVIATIONS

- The study does not address the potential impact of other factors such as variations in metolachlor use, climatic, hydrologic, and agricultural practices on the data. It is impossible to correlate the reported decrease in frequency of detections and concentration profile with the replacement of racemic metolachlor with s-metolachlor without evaluating other factors which may have influence on the data.
- 2. The number of states and CWS reporting data varies between 1993 and 2000. As a result, there was an increase in the total number of surface water samples and a decrease in the total number of ground water samples between the two periods compared. Comparative analysis should be performed on the same states and CWS data from both periods. An additional confounding factor for this analysis is that different states will collect quarterly

samples at different times within the quarter. Consistency in sample population is critical to comparing data.

- 3. EFED notes that the authors have focused the analysis on the top 27 use states without explaining how this number of states is preferable to say top ten or top five use states. In a review of MRID 45527501, EFED noted that the percentage of population exposed is highly dependent on the population being evaluated (for the top state of Iowa, nearly 33% of the population (797,773 people) are exposed to concentrations of metolachlor above the LOQ). Without the usage information for metolachlor (which was summarized in the study but not provided), it is impossible to determine the distribution of metolachlor use within the 27 states analyzed by the study authors.
- 4. It is important to note that the analysis is based on quarterly samples and does not represent a targeted sampling program. Typically, a targeted sampling program would be focused on more samples collected within a seasonal or agricultural window in order to capture as much of the peak runoff associated with pesticide usage. CWS data is not targeted in this manner and is likely to miss the peak concentrations and to under predict the long term (chronic) exposure.
- 5. It is also important to note that the data does not include degradate analysis. This is particularly important for the ground water portion of the study. Data from other monitoring studies (NAWQA) and the two PGW studies suggest that degradates occur in ground water at a much higher concentration and frequency than parent Metolachlor.
- 6. Finally, the analytical data for metolachlor does not distinguish between racemic metolachlor and s-metolachlor. Without data which distinguishes between the enantiomers, it is impossible to say with any confidence that the concentrations in surface water are reflective of s-metolachlor use.

FIGURE 1

Page 16 of 1771

TABLE 2
THIRTY-TWO METOLACHLOR AND S-MTOLACHLOR
USE STATES RANKED BY ACRES TREATED, 1999

State	Rank ¹	State	Rank ¹
Iowa	1	South Dakota	17
Illinois	2	Mississippi	18
Nebraska	3	Virginia	19
Kansas	4	Tennessee	20
Indiana	5	Maryland	21
Ohio	6	Delaware ²	23
Missouri	7	Georgia	24
Wisconsin	8	Louisiona2	25
Minnesota	9	South Carolina	26
Michigan	10	Alabama	28
Texas	11	Colorado	29
Pennsylvania	12	California	30
Arkansas	13	Florida ²	32
Kentucky	14	New Jersey ²	33
New York	15	North Dakota2	37
North Carolina	16	Hawaii	-

⁻ Not surveyed for metolachlor

¹ Ranking provided by Syngenta Crop Protection, 2001

² CWS monitoring data not available

TABLE 3

METOLACHLOR LIMITS OF QUANTIFICATION
REPORTED BY 27 USE STATES WITH DATA, 1993-2000

State	Limit of Quantification (ppb)	Range (ppb)
Alabama	10.0 a	0.1 - 10.0
Arkansas	0.2	0.2
California	0.5 2	0.05 - 5.0
Colorado	0.1 2	0.1 - 3.0
Georgia	0.4 *	0.15 - 10.0
Hawaii	0.05	0.05
Illinois	0.25 ª	0.2 - 1.0
Indiana	0.1 *	0.1 - 5.0
Iowa	0.1 ^a	0.1 - 1.0
Kansas	0.25 ª-	0.25 - 0.3
Kentucky	0.1 ^a	0.01 - 2.5
Maryland	2.0 a	0.005 - 52.0
Michigan	1.0	1.0
Minnesota	0.5 *	0.5 - 0.7
Mississippi	0.16 a	0.1 - 1.0
Missouri	0.5	0.5
Nebraska	0.1 -	0.001 - 0.1
New York	1.0 a	0.0005 - 50.0
North Carolina	0.36 ^a	0.06 - 5.0
Ohio	5.0 ^a	0.01 - 50.0
Pennsylvania	0.054 ^a	0.054 - 0.19
South Carolina	0.1	0.1
South Dakota	0.5	0.5
Tennessee	0.5 ª	0.1 - 6.2
Texas	0.2 ª	0.105 - 1.0
Virginia	0.9 a	0.1 - 0.9
Wisconsin	0.1 ^a	0.1 - 0.5

^aData from the state had several quantification limits. The value listed is the most frequently reported number

Page 18 of 1771

TABLE 4

METOLACHLOR IN 17 USE STATES: NUMBER OF CWS AND POPULATION

		Surface W	Surface Water CWS	Groundy	Groundwater CWS	Ö	Other CWS	Tota	Total CWS	
	State	Number in	Total	Number in	Total	Number in	Total	Number in	Total	Population Not
State	Population	Group	Population	Group	Population	Group	Population	Group	Population	Served by CWS
Alabama	4,447,100	154	2,290,269	315	1,392,632	103	1,278,236	572	4,961,137	:
Arkansas	2,673,400	246	2,322,708	442	955,887	38	148,886	726	3,427,481	;
California	33,871,648	387	8,560,606	2,445	7,209,475	524	18,543,785	3,356	34,313,866	;
Colorado	4,301,261	263	3,423,806	365	424,375	-	8	829	3,848,271	452,990
Georgia	8,186,453	194	5,072,469	1,474	1,488,840	0	0	1,668	6,561,309	1,625,144
Hawall	1,211,537	~	51,236	105	1,169,068	٠	57,862	811	1.278,166	1
Illinols	12,419,293	495	7,574,912	1,245	2,751,539	54	520,635	1,794	10,847,086	1,572,207
Indiana	6,080,485	#	1,047,788	708	2,049,115	~	943,658	757	4,040,561	2,039,924
lown	2,926,324	101	793,604	1.021	1,663,260	25	32,533	1,153	2,489,397	436,927
Kansas	2,688,418	276	655,798	556	687,141	96	096'680'1	922	2,432,899	255,519
Kentucky	4,041,769	310	3,005,056	16	287,618	53	1,034,807	454	4,327,481	:
Maryland	5,296,486	4	3,493,167	450	543,956	1	576,663	211	4,613,786	682,700
Michigan	9,938,444	274	5,286,059	1,122	1,627,620	<u>s</u>	299,269	1.4	7,212,948	2,725,496
dinnesota	4,919,479	74	715,354	913	2,410,843	. 13	696,817	954	3,823,014	1,096,465
Mississippi	2,844,658	12	324,877.	1,309	2,702,410	0		1,321	3,027,287	:
Alssouri	5,595,211	173	1,873,842	1,201	1,666,885	11	1,260,418	1,451	4,801,145	794,066
Nebraska	1,711,263	vo	11,888	603	863,515	90	520,237	219	1,395,640	315,623
iew York	18,976,457	766	12,468,112	1,894	4,113,458	ے 192	1,112,559	2,852	17,694,109	1,282,348
lorth Carolina	8,049,313	342	4,130,629	1,850	1,295,186	62	296,107	2,254	5,721,922	2,327,391
Ohlo	11,353,140	285	6,070,556	. 1,105	3,723,701	20	58,696	1,410	9,852,953	1,500,187
ennsylvanía	12,281,054	249	5,817,601	689'1	1,358,304	252	3,210,732	2,190	10,386,637	1,894,417
South Carolina	4,012,012	168	2,530,277	208	658,205	51	139,769	169	3,328,251	192,761
south Dakota	754,844	112	152,724	349	250,442	71	237,584	473	640,750	114,094
Tennessee	5,689,283	316	2,850,290	253	1,487,281	59	725,451	628	5,063,022	626,261
Texas.	20,851,820	192	9,015,804	3,519	6,392,418	224	5,470,619	4,535	20,878,841	:
/Inginia	7,078,515	302	5,787,063	1,012	422,371	7	68,706	1,321	6,278,740	277,667
Visconsin	5,363,675	6	1,503,806	1,080	1,966,832	00	187,202	1,128	3,657,840	1,705,835
Total	Total 207,563,342	6,386	96,830,301	27,824	51,562,957	1,886	38,511,281	36,096	186,904,539	20,658,803

Page 19 of 1771

-- Indicates that population not served by CWS could not be determined because population on CWS was greater than the state census population.

TABLE 5

METOLACHLOR IN 27 USE STATES: SUMMARY OF CWS AND POPULATIONS IN PLEX

	Surfa	Surface Water	Groun	Groundwater	ŏ	Other	T	Totals
	Number in	Total	Number In	Total	Number in	Total	Number In	Total
Sinte	Group	Population	Group	Population	Group	Population	Group	Population
Alabama	9	2 166 930	299	1,336,243	68	1,193,697	518	4,696,870
Arkenses	238	2.274.855	440	951,586	37	148,365	715	3,374,806
California	92	3,346,531	446	5,505,381	366	17,106,729	804	25,958,641
Colorado	249	3,276,580	396	375,827		8	646	3,652,497
Georgia	189	5,042,395	1,394	1,477,208	0	0	1,583	6,519,603
Hawall	••	51,236	105	1,169,068	37 1	57,862	81.	1,278,166
Illinois	494	7,574,112	1,214	2,666,738	54	520,635	1,762	10,761,485
Indiana		894,179	328	1,308,074	ý	928,658	355	3,130,911
lowa	16	775,354	741	1,617,675	23	32,378	198	2,425,407
Kansas	255	640,297	315	515,275	86	753,942	929	1,909,514
Kentucky	289	2,872,262	80	282,762	S	1,023,030	427	4,178,054
Maryland	4	3,493,167	341	484,135	91	401,663	401	4,378,965
Michigan	270	5,260,539	1,092	1,605,824	. 15	299,269	1.377	7,165,632
Minnesota	24	715,354	905	2,408,554	91	696,717	945	3,820,625
Mississippi	12	324,877	=	107,028	0	0	56	431,905
Missouri	142	364,670	1,149	1,643,812	99	1,111,929	1,351	3,120,411
Nebraska	9	11,888	198	853,254	8 0	520,237	575	1,385,379
New York	47.1	2,540,509	109	2,166,888	144	652,567	1,222	5,359,964
North Carolina	331	4,091,278	161.1	1,286,637	62	296,107	2,184	5,674,022
Ohio	270	6,058,253	1,086	3,715,994	20	58,696	1,376	9,832,943
Pennsylvania	151	4,972,390	201	341,206	93	1,276,061	445	6,589,657
South Carolina	991	2,523,375	498	657,105	2	139,769	629	3,320,249
South Dakota	89	120,851	192	199,850	Ξ	233,709	172	554,410
Tennessee	8	619,582	æ	887,403	20	302,396	103	1,809,381
Texas	772	8,959,644	743	2,637,772	215	5,437,225	1,730	17,034,641
Virginia	7	43,014	61	23,406	0	0	92	66,420
Wisconsin	39	1,503,694	27.5	1,621,349	•	176,532	820	3,301,575
Total	4.885	70.517,816	15,773	37,846,054	1,318	33,368,263	21,976	141,732,133
,								

Page 20 of 1771

TABLE 6

METOLACHLOR MONITORING DATA IN PLEX: TOTAL SAMPLES, DETECTIONS, AND MINIMUM AND MAXIMUM CONCENTRATIONS

No. No. <th></th> <th>Surfa</th> <th>Surface Water</th> <th>Groun</th> <th>Groundwater</th> <th>Đ</th> <th>Other</th> <th>T</th> <th>Total</th> <th>Detected Co</th> <th>Detected Concentrations</th>		Surfa	Surface Water	Groun	Groundwater	Đ	Other	T	Total	Detected Co	Detected Concentrations
Samples Detections Samples Detections Samples Detections Samples 3146 0 1,819 0 669 0 4,421 2166 0 1,819 0 165 0 4,421 2166 0 1,819 0 1,107 0 1,107 207 1 1,034 0 1 0 1,107 307 1 1,034 0 0 0 1,104 409 1,70 1,482 22 0 0 1,146 404 1,70 1,482 22 0 1,146 413 16 991 6 11,46 1,146 404 1,70 1,482 223 36 11,146 1,244 404 1,70 1,482 223 36 11,146 1,244 404 1,70 1,482 223 36 11,146 1,244 41 0		Ñ.	χο.	ęX e	Ño.	No.	No.	Ŋ.	Š	Minimum	Maximum
496 0 3,056 0 869 0 4,421 286 0 3,482 4 3,339 9 7,107 286 0 1,894 0 165 0 2,298 907 1 1,094 0 0 7,107 1,602 73 0 1,294 0 0 7,787 1,602 1,602 2,768 420 1,838 32 336 30 11,142 1,146 4 1,146 4,798 420 7,838 32 336 30 11,146 4 1,146 4,798 178 3 1,86 38 1 1,146 1,146 4 1,146 1,146 1,148 1,146 1,146 1,146 1,148 1,146 1,148 1,146 1,146 1,148 1,146 1,148 1,146 1,148 1,148 1,148 1,148 1,148 1,148 1,148 1,148 1,148 <th>State</th> <th>Samples</th> <th>Detections</th> <th>Samples</th> <th>Detections</th> <th>Samples</th> <th>Detections</th> <th>Samples</th> <th>Detections</th> <th>(qaa)</th> <th>(bpb)</th>	State	Samples	Detections	Samples	Detections	Samples	Detections	Samples	Detections	(qaa)	(bpb)
314 0 1,819 0 165 0 2,298 286 0 3,482 4 3,339 9 7,107 909 0 6,878 2 0 7,787 75 0 1,293 0 0 7,787 75 0 1,293 0 0 7,787 2,768 420 7,838 32 336 11,462 139 16 991 6 114 4 1,460 2,768 420 7,838 32 336 13 1,460 404 170 1,482 223 36 13 1,924 1,138 36 13 1,922 3 1,922 1,103 4,513 11 2 1,78 1 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934 1,934	Jabama	496	0	3,056	0	869	0	4,421	0	1	:
286 0 3,482 4 3,339 9 7,107 507 1 1,094 0 1 0 1,602 909 0 6,878 2 0 0 7,787 75 0 1,293 0 92 0 1,460 2,768 420 7,838 32 36 11,142 1,446 138 16 991 6 114 4 1,244 404 170 1,482 223 36 11,142 1,244 404 170 1,482 223 36 11,142 1,244 404 170 1,482 223 36 11,142 1,244 404 170 1,482 223 36 11,142 1,244 404 170 1,482 223 36 11,142 1,244 404 170 1,482 3,23 37 1,31 417 4	rkansas	314	0	1.819		591	.0	2,298	0		;
507 1 1,094 0 1 6,022 909 0 6,878 2 0 0 7,787 75 0 1,293 0 92 0 1,460 2,768 420 7,838 32 536 90 11,142 413 16 931 6 114 4 1,244 404 170 1,482 223 36 13 1,244 404 170 1,482 223 36 11,142 1,144 1,244 1,244 404 170 1,482 223 36 11,142 1,142 1,144 1,244 1,144 1,244 1,144 1,244 1,144	alfornia	286	0	3,482	4	3,339	6	7,107	:	0.10	8.1
909 0 6,878 2 0 0 7,787 75 0 1,293 0 92 0 1,460 2,768 420 7,838 32 536 50 11,142 439 16 991 6 114 4 1,244 404 170 1,482 223 36 13 1,924 404 170 1,482 223 36 13 1,932 1,128 36 14 1,104 9 178 1 1,934 433 4 3,568 1 227 3 1,934 435 4 3,568 1 1,934 4 4,936 1,75 0 35 0 0 0 3 1,039 1,650 95 3,992 1 248 4 4,936 1,375 6 10,752 3 61 10 1,744 <td< td=""><td>olorado</td><td>507</td><td>_</td><td>1,094</td><td></td><td>-</td><td>.0</td><td>1,602</td><td>-</td><td>09'0</td><td>0.60</td></td<>	olorado	507	_	1,094		-	.0	1,602	-	09'0	0.60
75 0 1,293 0 92 0 1,460 2,768 420 7,838 32 536 50 11,142 139 16 991 6 114 4 1,244 404 170 1,482 223 36 13 1,244 358 115 515 33 186 58 1,039 1,128 36 1,104 9 778 1 1,934 435 4 3,568 1 88 2 3,788 175 0 4,513 11 248 4 4,936 175 0 4,513 11 248 4 4,936 175 0 3,992 1 248 4 4,936 1,375 3 1 248 4 4,936 1,375 3 1 1,944 4,936 1,375 4 3,932 1 1,944	corga	606	0	6,878	3	0	Ģ	7,787	2	00'1	2.40
2,768 420 7,838 32 536 50 11,142 139 16 991 6 114 4 1,244 404 170 1,482 223 36 13 1,922 358 115 515 33 186 58 1,039 1,128 36 348 2 227 5 1,039 435 4 3,568 1 88 2 1,703 435 4 3,592 1 248 4 4,936 1,75 0 4,513 11 248 4 4,936 1,65 0 35 0 0 3,188 3 3,788 1,65 0 35 0 0 0 3,188 4 4,936 1,65 0 3,992 1 248 4 4,936 1,375 4 1,28 3 1,244 4 4,936	awaii	27	0	1,293	0	92	0	1,460	0		•;
139 16 991 6 114 4 1,244 404 170 1,482 223 36 13 1,922 358 115 318 2 227 5 1,039 1,128 36 348 2 227 5 1,703 4 3,688 1 885 2 3,788 175 0 4,513 11 248 4 4,936 175 0 4,513 11 248 4 4,936 175 0 3,992 1 549 11 7,191 1,375 6 1,901 2 512 0 1,744 1,375 6 10,752 3 617 0 1,744 1,375 6 10,752 3 617 0 1,244 1,375 6 1,501 29 266 0 5,999 1,653 105 1,210 0 522 10 1,085 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 2,721 1,863 105 1,210 16 31 0 2,019 1,860 1,860 1,860 1,960 1,960 1,960 1,860 1,860 1,860 1,960 1,960 1,960 1,860 1,860 1,860 1,960 1,960 1,960 1,860 1,860 1,860 1,960 1,960 1,960 1,860 1,860 1,960 1,960 1,960 1,960 1,860 1,860 1,960 1,960 1,960 1,960 1,860 1,860 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,860 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960 1,960	linols	2,768	450	7,838	32	536	20	11,142	203	0.22	15.00
464 170 1,482 223 36 13 1,922 358 115 315 33 186 58 1,039 653 41 1,104 9 178 1 1,034 435 4 3,268 1 85 2 1,703 175 0 43,268 1 248 4 4,936 16 0 35 0 0 0 3,178 16 0 33 0 0 0 31,188 2,650 95 3,992 1 248 4 4,936 34 2 2,401 39 158 3 2,393 338 5 1,901 2 512 0 2,144 1,375 6 10,752 3 617 0 2,144 2,351 48 32 512 0 2,144 43 48 33 56	diana	139	9	166	۰	4=	4	1,244	26	0.10	5.20
1,128 36 348 2 227 5 1,039 1,128 36 348 2 227 5 1,703 1,128 36 348 2 227 5 1,703 435 4 3,268 1 85 2 3,788 1,15 0 4,513 11 248 4 4,936 1,65 0 3,992 1 549 11 7,191 2,650 95 3,992 1 549 11 7,191 1,375 6 1,001 2 512 0 2,744 1,375 6 10,752 3 617 0 12,744 2,351 485 3,531 1 104 16 5,986 451 43 986 32 556 0 5,999 162 0 830 0 93 0 1,085 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,863 105 1,920 105 1,863 105 1,863 105 1,920 105 1,863 105 1,920 16 31 0 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,920 16 3,436 17 18 1,863 105 1,920 16 31 0 0 0 1,863 105 1,920 16 31 0 0 1,863 105 1,920 16 31 0 0 1,863 105 1,920 16 31 0 0 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 1,920 105 105 105 1,863 105 105 105 105 105 1,863 105 105 105 105 105 1,863 105 105 105 105 105 1,863 105 105 105 105 105 1,863 105 105 105 105 105 105 1,864 105 105 105 105 105 105 1,865 105 105 105 105 10	W.	\$	170	1,482	223	36	13	1,922	406	0.10	18.00
1,128 36 348 2 227 5 1,703 652 41 1,104 9 178 1 1,934 435 4 3,268 1 85 2 3,788 175 0 4,513 11 248 4 4,956 16 0 33 0 0 0 0 2,630 95 3,992 1 549 11 7,191 1,373 6 1,901 2 512 0 2,741 1,373 6 1,0732 3 617 0 1,774 1,373 6 5,100 29 266 0 5,995 162 0 830 0 93 0 1,993 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 2,019 1,863 105 1,210 16 3,11 0 2,019 1,863 105 1,920 16 31 0 2,019 1,863 105 1,520 16 31 0 2,019 1,863 105 1,520 16 31 0 2,019 1,863 105 1,520 16 31 0 2,019 1,863 105 1,520 16 31 0 2,019 1,863 105 1,520 16 31 0 2,019 1,863 105 1,520 16 31 0 2,019 1,863 105 1,520 16 31 0 2,019 1,863 105 1,520 10 1,520 10 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 10 1,520 1,863 105 1,520 1,520 1,520 1,863 105 1,520 1,520 1,520 1,864 105 1,520 1,520 1,520 1,865 105 1,520 1,520 1,520 1,865 105 1,520 1,520 1,865 105 1,520 1,520 1,865 105 1,520 1,520 1,865 105 1,520 1,520 1,865 105 1,520 1,520 1,865 105 1,520 1,865 105 1,520 1,865 105 1,520 1,865 105 1,520 1,865 105 1,520 1,865 105 1,520 1,865 105 1,520 1,865 105 1,520 1,865 105 1,520	ansas	358	115	515	33	981	28	1,059	206	0.20	9.80
652 41 1,104 9 178 1 1,934 435 4 3,268 1 85 2 3,788 175 0 4,513 11 248 4 4,936 16 0 35 0 0 0 51 2,650 95 3,992 1 7,191 7,191 34 2 2,401 39 158 3 2,593 1,375 6 10,732 3 617 0 2,141 1,375 6 10,732 3 617 0 2,141 1,375 6 10,732 3 617 0 1,274 451 43 986 32 266 0 5,996 633 6 5,100 29 266 0 5,999 162 0 830 0 1,085 0 1,085 99 0 1,210 0 <td>entucky</td> <td>1,128</td> <td>36</td> <td>348</td> <td>7</td> <td>727</td> <td>•</td> <td>1,703</td> <td>.</td> <td>0.005</td> <td>0.80</td>	entucky	1,128	36	348	7	727	•	1,703	.	0.005	0.80
433 4 3,268 1 85 2 3,788 175 0 4,513 11 248 4 4,936 16 0 35 0 0 0 51 2,650 95 3,992 1 7,191 7,191 34 2 2,401 39 158 3 2,593 1,375 6 10,732 3 617 0 2,141 1,375 6 10,732 3 617 0 2,141 2,351 48 3,531 1 104 16 5,966 451 43 986 32 266 0 5,996 451 43 986 32 266 0 5,996 633 6 5,100 29 266 0 5,999 162 0 121 0 1,085 0 1,085 99 0 1,210 0 <td>laryland</td> <td>652</td> <td>4</td> <td>1.104</td> <td>6</td> <td>178</td> <td>_</td> <td>1,934</td> <td></td> <td>0.05</td> <td>13.00</td>	laryland	652	4	1.104	6	178	_	1,934		0.05	13.00
175 0 4,513 11 248 4 4,936 2,650 95 3,992 1 549 11 7,191 34 2 2,401 39 158 3 2,593 328 5 1,901 2 512 0 2,741 1,375 6 10,752 3 617 0 12,744 2,351 485 3,531 1 104 16 5,966 451 43 986 32 556 41 1,993 6,33 6 5,100 29 266 0 5,999 162 0 830 0 93 0 1,085 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 0 522 10 3,595 1,863 105 1,210 16 31 0 2,019 1,863 1,863 1,863 1,500 1,600 2,019 1,863 1,863 1,863 1,900 1,900 2,019 1,863 1,863 1,863 1,900 1,900 2,019 1,863 1,863 1,863 1,900 1,900 1,900 1,900 1,863 1,863 1,900 1,900 1,900 1,900 1,900 1,863 1,963 1,960 1,960 1,900 1,900 1,863 1,963 1,960	lichigan	435	4	3,268	-	88	7	3,788	7	00'1	9.00
16 0 35 0 0 51 2,650 95 3,992 1 549 11 7,191 34 2 2,401 39 158 3 2,593 328 5 1,901 2 512 0 2,741 1,375 6 10,752 3 617 0 1,744 2,351 48 3,531 1 104 16 5,986 451 43 986 32 556 41 1,993 633 6 5,100 29 266 0 5,996 162 0 830 0 93 0 1,085 99 0 121 0 52 0 272 1,863 105 1,210 0 0 0 18 2,41 1,220 16 31 0 2,219 3 0 1,220 1 0 <td< td=""><td>linnesota</td><td>175</td><td>0</td><td>4,513</td><td>=</td><td>248</td><td>4</td><td>4,936</td><td><u>5</u></td><td>0.50</td><td>1.30</td></td<>	linnesota	175	0	4,513	=	248	4	4,936	<u>5</u>	0.50	1.30
2,650 95 3,992 1 549 11 7,191 34 2 2,401 39 138 3 2,593 328 5 1,901 2 512 0 2,741 1,375 6 10,752 3 617 0 12,744 2,351 43 986 32 556 41 1,993 451 43 986 32 266 0 5,996 633 6 5,100 29 266 0 5,996 162 0 830 0 93 0 1,085 99 0 121 0 52 0 272 1,863 105 1,210 0 52 10 3,595 1,864 1,867 1,867 1,867 31 0 1,88	lississippi	9	0	35	0	0	0	215	0	:	;
34 2 2,401 39 158 3 2,593 328 5 1,901 2 512 0 2,741 1,375 6 10,752 3 617 0 2,741 2,351 485 3,531 1 104 16 5,966 451 43 986 32 556 41 1,993 633 6 5,100 29 266 0 5,999 162 0 830 0 93 0 1,085 99 0 121 0 52 0 2,72 1,863 105 1,210 0 52 10 3,595 3 0 1,50 0 0 0 18 4 0 1,50 0 0 0 0 18 9 0 1,50 0 1,90 0 0 1,80 1 0	Issouri	2,650	92	3,992	_	549	=	7,191	101	0.50	28.00
328 5 1,901 2 512 0 2,741 1,375 6 10,752 3 617 0 12,744 2,351 48 3,531 1 104 16 5,986 451 43 986 32 556 41 1,993 633 6 5,100 29 266 0 5,999 162 0 830 0 93 0 1,085 99 0 121 0 52 0 272 1,863 105 1,210 0 52 10 3,595 3 0 1,210 0 0 0 1,895 3 0 1,50 3,59 0 1,895 1 4 0 1,50 0 0 0 18 5 0 1,50 0 0 0 1 6 0 1,50 0	ebraska	34	7	2,401	39	158	m,	2,593	4	0.05	16.70
1,375 6 10,752 3 617 0 12,744 2,351 485 3,531 1 104 16 5,986 451 43 986 32 556 41 1,993 633 6 5,100 29 266 0 5,999 162 0 830 0 93 0 1,085 99 0 121 0 52 0 272 1,863 105 1,210 0 522 10 3,595 3 0 1,210 0 522 10 3,595 3 0 1,500 1,900 0 18 4 0 1,500 1,900 0 18 7 0 1,500 1,500 0 1,500 2,019	ew York	328	'n	106'1	. 2	512	0	2,741	7	0.15	10.00
2,351 485 3,531 1 104 16 5,986 451 43 986 32 556 41 1,993 633 6 5,100 29 266 0 5,999 162 0 830 0 93 0 1,085 99 0 121 0 52 0 272 1,863 105 1,210 0 522 10 3,595 1,863 0 15 0 0 0 18 68 0 1,920 16 31 0 2,019	orth Carolina	1,375	•	10,752		617	.0	12,744	6	0.24	0.68
451 43 986 32 556 41 1,993 633 6 5,100 29 266 0 5,999 162 0 830 0 93 0 1,085 99 0 121 0 52 0 272 1,863 105 1,210 0 522 10 3,595 3 0 15 0 0 18 7*** 18670 1550 16 31 0 2,019	hto	2,351	485	3,531	_	<u>2</u>	9	5,986	502	0.23	17.07
633 6 5,100 29 266 0 5,999 162 0 830 0 93 0 1,085 99 0 121 0 52 0 272 1,863 105 1,210 0 522 10 3,595 3 0 1,5 0 0 0 18 Table 18670 1850 185 0 445 0 545 777 08690 72	ennsylvania	451	43	986	32	556	4	1,993	911	0.03	9.00
162	outh Carolina	633	9	5,100	53	506	0	5,999	35	01.0	0.14
99 0 121 0 52 0 272 1,863 105 1,210 0 522 10 3,595 1 3 0 15 0 0 18 68 0 1,920 16 31 0 2,019	outh Dakota	162	0	830	0	93	0	1,085	0	;	•
1,863 105 1,210 0 522 10 3,595, 1 3 0 15 0 0 18 18 0 0 18 18 0 1,920 16 31 0 2,019	ennessee	66	0	121	0	52	0	272	0	1	:
in 68 0 1,920 16 31 0 2,019 Total 18670 1556 1550 15	ex as .	1,863	105	1,210	0	522	01	3,595	115	0.10	7.10
in 68 0 1,920 16 31 0 2,019	Irginia	m		13	0	0	0	<u>**</u>	0	i	
069 80 277 315 6 387 377 053 1 043 81	/Isconsin	89	0	1,920	92	1	0	2,019	9	0.10	0.90
0.00'bc 177 00'c's 0th 015'01 00'c'i 610'ol	Total	18,679	1,550	70,475	446	9,536	127	069'86	2,223		

Page 21 of 1771

- Indicates no data

TABLE 7

PLEX DATA FOR METOLACHLOR
JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
Data				
Number of Samples	98,690	70,475	18,679	9,536
Number of Detections	2.223	446	1,550	227
Percent of Detections	2.25	0.63	8.30	2.38
Number of Detections > 100 ppb	0	0	0	.0
Percent of Detections > 100 ppb	.0	0	0	O
Percent of Samples > 100 ppb	0	0	0	0
Concentrations (ppb)				
Minimum Detected Concentration	0.005	0.015	0.005	0.10
Maximum Detected Concentration	28.0	18.0	28.0	12.57
Population-Weighted Exposure Concentrations	0.46	0.51	0.46	0.39
cws				
Number of CWS	36,096	27,824	6,386	1,886
Number of CWS with Data	21,976	15,773	4,885	1,318
Percent CWS with Data	60.88	56. 69	76.50	69.88
Number of CWS with No Detections	20,720	15,609	3,935	1,176
Number of CWS with Detections	1,256	164	9.0	142
Number of CWS with Detections > 100 ppb	0	0	.0	0
Number of CWS with Annual Means > 190 ppb	0	0	.0	, 0
Number of CWS with Period Means > 100 ppb	0	,0	,0	0
Percent of CWS with No Detections 2	94.28	98.96	80.55	89.23
Percent of CWS with Detections	5.72	1.04	19.45	10.77
Percent of CWS with Detections > 100 ppb	0	.0	0	0
Percent of CWS with Annual Means > 100 ppb	0	0	0	0
Percent of CWS with Period Means > 100 ppb	0	0	,0	.0
Populations				
Use State Population	207,563,342	61 F60 0FF	04 820 201	20.511.001
Population on CWS	186,904,539	51,562,957	96,830,301	38,511,281
Population Served by CWS with Data Percent Population Assessed	141,732,133 68,28	37,846,054 18,23	70,517,816 33,97	33,368,263 16,08
Percent CWS Population Assessed	75.83	73.40	72.83	86.65
Population with No Detections ²	124,150,188	36.817.781	58.101.110	29.231.297
Population with Detections	17,581,945	1.028.273	12.416.706	4.136.966
Population with Detections > 100 ppb	0	0	0	4,130,900
Populations with Annual Means > 100 ppb	ŏ	Ö	Ö	Ö
Populations with Period Means > 100 ppb	ŏ,	Ö	ŏ	ō
Percent of population with No Detections	87.59	97.28	82.39	87.60
Percent of population with Detections	12.41	2.72	17.61	12.40
Percent of population with Detections > 100 ppb	0	0	0	0
Percent of population with Annual Means > 100 ppb	0	.0	0	0
Percent of population with Period Means > 100 ppb	.0	0	0	0

Simple substitution method

Page 22 of 1771

² Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

TABLE 8 METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS

		Number	Population	Average	Cumulative Percent	Percent of	Without Detections	
	Group	in Group	Served	Concentration ² (ppb)	of Population	Group	CWS	Population
Serface V	Vatar							
	Surface Water >100.0 ppb	. 0	O.					
	Surface Water >10.0 to ≤100.0	7	16,040	12.50	100.0	0.02	0	
	Surface Water >1.0 to <10.0	396	7,449,434	2.37	99.98	10.6	7	16,040
	Surface Water >0.25 to ≤1.0	1,189	17.377,410	0.53	89.4	24.6	. 305 828	6,269,973
	Surface Water >0.125 to ≤0.25	1,128	15.582.123	0.19	64.8	22.1	744	14,132,560
	Surface Water ≤0.125	2,165	30.092.809	0.09	42.7	42.7	2,051	11,954,241 25,728,296
	Subtotal	4,885	70,517,816	0.07	747		3,935	58,101,110
Greendw	ster				•		•	
	Groundwater >100.0 ppb	0	0				0	. 0
	Groundwater >10.0 to ≤100.0	27	65,823	12.58	100.0	0.2	27	65.823
	Groundwater >1.0 to ≤10.0	1,062	3,771,095	2.55	99.8	10.0	1.041	3,406,670
	Groundwater >0.25 to ≤1.0	3,114	12,599,711	0.47	89.9	33.3	3.070	12,483,238
	Groundwater >0.125 to ≤0.25	4,927	8,946,205	0.23	56.6	23.6	4.889	8,759,403
	Groundwater ≤0.125	6,643	12,463,220	0.08	32.9	32.9	6,582	12,102,647
	Subtotal	15,773	37,846,054				15,609	36.~~
Other								
	Other >100.0 ppb	0	0				. 0	0
	Other > 10.0 to ≤ 100.0	2	2,200	12.50	100.0	0.01	2	2.200
	Other >1.0 to ≤10.0	100	998,995	3.48	99.99	2.99	82	864,080
	Other >0.25 to ≤1.0	455	13,906,932	0.52	97.0	41.7	396	12,355,291
	Other >0.125 to ≤0.25	228	6,251,353	0,20	55.3	18.7	181	4,624,468
	Other ≤0.125	533	12,208,783	0.08	36.6	36.6	515	11,385,258
	Subtocal	1,318	33,368,263				1,176	29,231,297
	Total Assessed	21,976	141,732,133				20,720	124.150,188
	Group	Number	Population		•			
	· ·	in Group	Served			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	
Summery	•	•						
CWS in P	LEX:			1				
	Surface Water CWS	4,885	70,517,816			•		
	Groundwater CWS	15,773	37,846,054		*			
	Other CWS	1,318	33.368.263					
	Subtotal	21,976	141,732,133		•			
CWS Not	in PLEX:*							
	Surface Water CWS	1.501	26,312,485					
	Groundwater CWS	12,051	13,716,903					
	Other CWS	568	5,143,018					
		14,120	45,172,406					
	Subtotal	17,120						
	Subtotal Total CWS and Population on CWS	36,096	186,904,539					
			186,904,539 207,563,342					

Page 23 of 1771

divided by the total population served by that source type (Surface Water, Growndwater,

"CWS Not in PLEX: CWS for which no data were provided by the state and no stable data."

TABLE 9

METOLACHLOR IN USE STATES: CWS WITH DATA, DETECTIONS,
ANNUAL AND PERIOD METOLACHLOR MEAN CONCENTRATIONS > 100 PPB

State	No. CWS in State	No. CWS with Data	No. CWS with Detections	No. CWS with Annual Means > 100 ppb	No. CWS with Period Means >100 ppi
Alabama	572	518	0	0	0
Arkansas	726	715	,0	0	0
California	3,356	804	. 5	0	0
Colorado	829	646	1	0	0
Georgia	1,668	1,583	2	0	0
Hawaii	118	118	0	0 -	· 0
Illinois	1,794	1.762	281	Ö	0
Indiana	757	355	13	0	0
Iowa .	1,153	861	128	. 0	.0
Kansas	922	656	189	0	0
Kentucky	454	427	58	0	0
Maryland	511	401	. 14	0	0
Michigan	1,411	1,377	4	0	0
Minnesota	954	945	3.	0	0
Mississippi	1,321	26 .	0	0	0
Missouri	1,451	1,351	79	0	0
Nebraska	617	575	22	0	0
New York	2,852	1,222	8	0	Ò,
North Carolina	2,254	2,184	11	O	0
Ohio	1,410	1,376	72	0	0
Pennsylvania	2,190	445	86	. 0	0
South Carolina	691	679	34	0	0
South Dakota	473	271	0	0	.0
Tennessee	628	103	0	0	0
Texas	4,535	1,730	236	0	0 -
Virginia	1,321	26	0	0	0
Wisconsin	1,128	820	10	0	0
•	Total 36,096	21,976	1,256	0	0
of CWS with detec	tions		5.72%	0.0%	0.0%

Page 24 of 1771

FIGURE 2

Page 25 of 1771

TABLE 10

CWS ON SURFACE WATER AND NUMBER OF YEARS WITH METOLACHLOR DATA IN PLEX, 1993-2000

Number of Years with Data	Number of CWS	Population	
1	602	4,861,619	
2	1,248	13,961,535	
3	924	12,507,874	
4	667	9,214,279	
5	304	7,106,557	
6	534	13,543,538	
7	320	6,659,811	
8	286	2,662,603	

Page 26 of 1771

TABLE 13

PLEX DATA FOR METOLACHLOR IN ILLINOIS
JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
				Halfanira i raine
<u>Data</u>				
Number of Samples	11,142	7,838	2,768	536
Number of Detections	502	32	420	50
Percent of Detections	4.51	0.41	15.17	9.33
• •			•	
Number of Detections > 100 ppb	0	0	0	0
Percent of Detections > 100 ppb	0	.0	O	0
Percent of Samples > 100 ppb	0	. 0	0 .	0
Concentrations (ppb)				
Minimum Detected Concentration	0.22	0.26	0.22	0.25
Maximum Detected Concentration	15.00	3.80	15.00	5.10
Population-Weighted Exposure Concentrations ¹	0.17	0.16	0.16	0.23
CWS	5			
Number of CWS	1,794	1,245	495	54
Number of CWS with Data	1,762	1,214	494	54
Percent CWS with Data	98.22	97.51	99.80	100
Number of CWS with No Detections	1.481	1.197	251	33
Number of CWS with Detections	281	17	243	21
Number of CWS with Detections > 100 ppb	0	0	Ó	0
Number of CWS with Annual Means > 100 ppb	O	0	0	0
Number of CWS with Period Means > 100 ppb	0	0	0	0
Percent of CWS with No Detections 2	84.05	98.6	50.81	61.11
Percent of CWS with Detections	15.95	1.40	49.19	38.89
Percent of CWS with Detections > 100 ppb	0	0	0	0
Percent of CWS with Annual Means > 100 ppb	0	0	0	0
Percent of CWS with Period Means > 100 ppb	0	0	O	0
Populations				
Illinois Population	12,419,293	1,		
Population on CWS	10,847,086	2,751,539	7,574,912	520,635
Population Served by CWS with Data	10,761,485	2,666,738	7,574,112	520,635
Percent State Population Assessed	86.65	21.47	60.99	4.19
Percent CWS Population Assessed	99.21	96.92	99.99	100
Population with No Detections 2	9.624.014	2.615.966	6,549,083	458,965
Population with Detections	1,137,471	50,772	1,025,029	61,670
Population with Detections > 100 ppb	0	0	0	0
Populations with Annual Means > 100 ppb	0	0	0	0
Populations with Period Means > 100 ppb	0 .	0	0	,O
Percent of population with No Detections	89.43	-98.10	86.47	88.15
Percent of population with Detections	10.57	1.90	13.53	11.85
Percent of population with Detections > 100 ppb	0	0	0	0
Percent of population with Annual Means > 100 ppb	0	ō	0	ō
Percent of population with Period Means > 100 ppb	0	0	0	0

¹ Simple substitution method

Page 72 of 1771

² Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

 $\mbox{Table 16} \\ \mbox{Indiana metolachlor exposure concentrations and populations}^{\mbox{\scriptsize i}} \\$

	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percen of Population ³
Surface	Water		•		
	Surface Water > 100.0 ppb	. 0	0		•
	Surface Water > 10.0 to ≤ 100.0	0	0		
	Surface Water > 1.0 to ≤ 10.0	` 5	274,743	1.50	100.0
	Surface Water > 0.25 to ≤ 1.0	5	271,980	0.40	69.3
	Surface Water > 0.125 to ≤ 0.25	4	30,052	0.20	38.9
	Surface Water ≤ 0.125	. 7	317,404	0.08	35.5
Ground	water				
	Groundwater > 100.0 ppb	. 0	0		
	Groundwater > 10.0 to ≤ 100.0	.0	0		
	Groundwater > 1.0 to ≤ 10.0	58	87,941	2.40	100.0
	Groundwater > 0.25 to ≤ 1.0	14	333,720	0.43	93.3
	Groundwater > 0.125 to ≤ 0.25	15	102,316	0.20	67.8
	Groundwater ≤ 0.125	241	784,097	0.05	59.9
Other					
× -	Other > 100.0 ppb	0	0		
	Other > 10.0 to ≤ 100.0	0	0		
	Other > 1.0 to ≤ 10.0	0	0		
	Other > 0.25 to ≤ 1.0	2	881,633	0.98	100.0
	Other > 0.125 to ≤ 0.25	1	10,538-	0.18	5.1
	Other ≤ 0.125	3	36,487	0.05	3.9
***	Group	Number	Population		

Group	Number in Group	Population Served	
Summary			 _
CWS in PLEX:			
Surface Water CWS	21	894,179	
Groundwater CWS	328	1,308,074	
Other CWS	6	928,658	
Subtotal	355	3,130,911	
CWS Not in PLEX: 4			
Surface Water CWS	20	153,609	
Groundwater CWS	380	741,041	
Other CWS	2	15,000	
Subtotal	402	909,650	
Total CWS and Population on CWS	757	4,040,561	
Indiana Population (Census, 2000)		6,080,485	
Population Not Served by CWS		2,039,924	

Metolachlor exposure distribution for 355 community water systems with data in Indiana. This database is used to estimate population exposure and is dominated by nondetections, 97.9% of 1,244 samples were nondetections.

Page 76 of 1771

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

⁴ CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

TABLE 14

ILLINOIS METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS

	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percer of Population ³
Surface	Water				
	Surface Water > 100.0 ppb	0	. 0		
	Surface Water > 10.0 to ≤ 100.0	ō	ŏ		
	Surface Water > 1.0 to ≤ 10.0	2	1,275	1.27	100.0
	Surface Water > 0.25 to ≤ 1.0	152	1,156,935	0.36	99.98
	Surface Water > 0.125 to ≤ 0.25	146	510.716	0.17	84.7
	Surface Water ≤ 0.125	194	5,905,186	0.17	78.0
~					
Ground		_			
	Groundwater > 100.0 ppb	0	0		
	Groundwater > 10.0 to ≤ 100.0	0	.0		
	Groundwater > 1.0 to ≤ 10.0	0	.0		
	Groundwater > 0.25 to ≤ 1.0	72	405,482	0.35	100.0
	Groundwater > 0.125 to ≤ 0.25	47	121,218	0.18	84.8
	Groundwater ≤ 0.125	1,095	2,140,038	0.13	80.2
Other					
	Other > 100.0 ppb	0	0		
	Other > 10.0 to ≤ 100.0	O	0		
	Other > 1.0 to ≤ 10.0	o '	ō		
	Other > 0.25 to < 1.0	13	179,919	0.41	100.0
	Other > 0.125 to ≤ 0.25	17	82,413	0.18	65.4
	Other ≤ 0.125	24	258,303	0.13	49.6
., .,	Group	Number	Population	-	
	Oloup	in Group	Served		
Summar			Served		
	y		Served		
	y				
	y PLEX:	in Group	7,574,112 2,666,738		teritorio de la constanta de l
	PLEX: Surface Water CWS	in Group	7,574,112		
	PLEX: Surface Water CWS Groundwater CWS	in Group 494 1,214	7,574,112 2,666,738		en e
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	494 1,214 54	7,574,112 2,666,738 520,635		and the second second
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	494 1,214 54 1,762	7,574,112 2,666,738 520,635 10,761,485		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Surface Water CWS	494 1,214 54 1,762	7,574,112 2,666,738 520,635		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal or in PLEX: Surface Water CWS Groundwater CWS	494 1,214 54 1,762	7,574,112 2,666,738 520,635 10,761,485		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Surface Water CWS	494 1,214 54 1,762	7,574,112 2,666,738 520,635 10,761,485		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal or in PLEX: Surface Water CWS Groundwater CWS	494 1,214 54 1,762	7,574,112 2,666,738 520,635 10,761,485 800 84,801		
Summar CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal It in PLEX: Surface Water CWS Groundwater CWS Other CWS	494 1,214 54 1,762	7,574,112 2,666,738 520,635 10,761,485 800 84,801 0		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	494 1,214 54 1,762 1 31 0	7,574,112 2,666,738 520,635 10,761,485 800 84,801 0		

¹ Metolachlor exposure distribution for 1,762 community water systems with data in Illinois. This database is used to estimate population exposure and is dominated by nondetections, 95.5% of 11,142 samples were nondetections.

Page 73 of 1771

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

⁴ CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

TABLE 18

IOWA METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS

	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percen of Population ³
Surface	Water				
	Surface Water > 100.0 ppb	0	. 0		
	Surface Water > 10.0 to ≤ 100.0	ŏ	ō		
	Surface Water > 1.0 to ≤ 10.0	1	1.822	1.06	100.0
	Surface Water > 0.25 to ≤ 1.0	15	188,279	0.38	99.8
	Surface Water > 0.125 to ≤ 0.25	54	507,579	0.17	75.5
**	Surface Water ≤ 0.125	27	77,674	80.0	10.0
Ground	water				
	Groundwater > 100.0 ppb	0	0		
	Groundwater > 10.0 to ≤ 100.0	0	. 0		
	Groundwater > 1.0 to ≤ 10.0	7	5,718	2.17	100.0
	Groundwater > 0.25 to ≤ 1.0	16	47,116	0.40	99.6
	Groundwater > 0.125 to ≤ 0.25	247	592,666	0.24	96.7
	Groundwater ≤ 0.125	471	972,175	0.06	60.1
Other					
~	Other > 100.0 ppb	0	0		
	Other > 10.0 to ≤ 100.0	0	.0		
	Other > 1.0 to ≤ 10.0	0	0		
	Other > 0.25 to ≤ 1.0	3	9,038	0.37	100.0
	Other > 0.125 to ≤ 0.25	. 5	5,010 ~	0.24	72.1
	Other ≤0.125	15	18,330	0.06	56.6
	Group	Number in Group	Population Served		
Summar	y				
CWS in	PLĖX:	•			
	Surface Water CWS	97	775,354		
	Groundwater CWS	741	1,617,675		
	Other CWS	23	32.378		

	in Group	Served	
Summary			
CWS in PLEX:			
Surface Water CWS	97	775,354	
Groundwater CWS	741	1,617,675	- 6
Other CWS	23	32,378	
i e			
Subtotal	861	2,425,407	
CWS Not in PLEX: 4			
Surface Water CWS	10	18,250	
Groundwater CWS	280	45,585	
Other CWS	2	155	e de la companya de
Subtotal	292	63,990	
Total CWS and Population on CWS	1,153	2,489,397	
Iowa Population (Census, 2000)		2,926,324	
Population Not Served by CWS		436,927	

¹ Metolachlor exposure distribution for 861 community water systems with data in lowa. This database is used to estimate population exposure and is dominated by nondetections, 78.9% of 1,922 samples were nondetections.

Page 79 of 1771 .

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

Ounsulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

⁴ CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

PLEX DATA FOR METOLACHLOR IN IOWA JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
	***************************************	n en company de la residencia de la company		
Data Number of Samples	1,922	1.482	404	36
	-17		,	
Number of Detections	406	223	170	13
Percent of Detections	21.12	15.05	42.08	36.11
Number of Detections > 100 ppb	0 '	0	0	0
Percent of Detections > 100 ppb	ō	ō	Ö	ō
Percent of Samples > 100 ppb	0	0	0	.0
Concentrations (ppb)				
Minimum Detected Concentration	0.10	0.10	0.10	0.11
Maximum Detected Concentration	18.00	18.00	9.40	0.73
Population-Weighted Exposure Concentrations	0.16	0.14	0.21	0.18
		-		
CWS Number of CWS	1 169	1,021	107	25
Number of CWS with Data	1,153 861	1,021 741	97	23 23
Percent CWS with Data	74.67	72.58	90.65	92.00
Number of CWS with No Detections	733	701	19	13
Number of CWS with Detections	128	40	78	10
Number of CWS with Detections > 100 ppb	0	0	0	0
Number of CWS with Annual Means > 100 ppb Number of CWS with Period Means > 100 ppb	0	0	0	0
Number of CW3 with Ferrod Means > 100 ppo	U	U	U	v
Percent of CWS with No Detections 2	85.13	94.60	19.59	56.52
Percent of CWS with Detections	14.87	5.40	80.41	43.48
Percent of CWS with Detections > 100 ppb	0	0	0	0
Percent of CWS with Annual Means > 100 ppb	0	0	.0	0
Percent of CWS with Period Means > 100 ppb	0	.0	,0	.0
Populations				
Iowa Population	2,926,324			
Population on CWS	2,489,397	1,663,260	793,604	32,533
Population Served by CWS with Data	2,425,407	1,617,675	775,354	32,378
Percent State Population Assessed	82.88	55.28	26.50	1.11
Percent CWS Population Assessed	97.43	97.26	97.70	99.52
Population with No Detections ²	1,627,634	1,432,462	184,090	11,082
Population with Detections	797,773	185,213	591,264	21,296
Population with Detections > 100 ppb	0	0	0	O
Populations with Annual Means > 100 ppb	0	0	0	0
Populations with Period Means > 100 ppb	0	0	.0	0
Percent of population with No Detections	67.11	** 88.55	23.74	34.23
Percent of population with Detections	32.89	11.45	76.26	65.77
Percent of population with Detections > 100 ppb	0	.0	0	0
Percent of population with Annual Means > 100 ppb	.0	0	0	.0
Percent of population with Period Means > 100 ppb	0	0	0	0

¹ Simple substitution method

Page 78 of 1771

² Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

TABLE 19
PLEX DATA FOR METOLACHLOR IN KANSAS
JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
	-			
Data				
Number of Samples	1,059	515	358	186
Number of Desections	206	33	115	58
Percent of Detections	19.45	6.41	32.12	31.18
Number of Detections > 100 ppb	0	0	0	0
Percent of Detections > 100 ppb	-0	0	0	0
Percent of Samples > 100 ppb	. 0	. 0	0	0
Communication (cab)				
Concentrations (ppb) Minimum Detected Concentration	0.20	0.25	0.20	0.25
Maximum Detected Concentration	6.80	5.70	3.90	6.80
o	0.00	2.14	2	0.00
Population-Weighted Exposure Concentrations ¹	0.45	0.16	0.82	0.33
CWS Number of CWS	922	556	276	90
Number of CWS with Data	656	336 315	255	86
Percent CWS with Data	71.15	56.65	92.39	95.56
I broak of the wild paul	,	55.05	,,	,,,,,,
Number of CWS with No Detections	467	303	109	55
Number of CWS with Detections	189	12	146	31
Number of CWS with Detections > 100 ppb	0	.0	0	0
Number of CWS with Annual Means > 100 ppb	0	0	0	0
Number of CWS with Period Means > 100 ppb	0	0	0	0.
Percent of CWS with No Detections 2	71.19	96.19	42.75	63.95
Percent of CWS with Detections	28.81	3.81	57.25	36.05
Percent of CWS with Detections > 100 ppb	0	0	0	0
Percent of CWS with Annual Means > 100 ppb	0	. 0	0	0
Percent of CWS with Period Means > 100 ppb	0		.0	0
Population				
Kansas Apputation	2,688,418			
Population on CWS	2,432,899	687,141	655,798	1,089,960
Population Served by CWS with Data	1,909,514	515,275	640,297	753,942
Percent State Population Assessed	71.03	19.17 74.99	23.82 97.64	28.04 69.17
Percent CWS Population Assessed	78.49	14.59	97.04	09.17
Population with No Detections 2	1,146,089	425,520	156,749	563,820
Population with Detections	763,425	89,755	483,548	190,122
Population with Detections > 100 ppb	0	0 .	0	0
Populations with Annual Means > 100 ppb	0 0.	0	0	0
Populations with Period Means > 100 ppb	U.	·V	Ü	U
Percent of population with No Detections	60.02	82.58	24.48	74.78
Percent of population with Detections	39.98	17.42	75.52	25.22
Percent of population with Detections > 100 ppb	0	0	0	0
Percent of population with Annual Means > 100 ppb	0	.0	0	.0
Percent of population with Period Means > 100 ppb	0	.0	0	0 .

¹ Simple substitution method

Page 81 of 1771

² Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

TABLE 20

KANSAS METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS

	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percen of Population ³
Surface '	Water				
	Surface Water > 100.0 ppb	0	.0		
	Surface Water > 10.0 to ≤ 100.0	. 0	0	at a second	
	Surface Water > 1.0 to ≤ 10.0	30	330,674	1.37	100.0
	Surface Water > 0.25 to ≤ 1.0	64	82,756	0.44	48.4
	Surface Water > 0.125 to ≤ 0.25	52	70,118	0.19	35.4
	Surface Water ≤ 0.125	109	156,749	0.13	24.5
Ground	vater				
	Groundwater > 100.0 ppb	0	0		
	Groundwater > 10.0 to ≤ 100.0	0	0		
	Groundwater > 1.0 to ≤ 10.0	3	5,162	2.05	100.0
	Groundwater > 0.25 to ≤ 1.0	. 5	3,067	0.59	99.0
	Groundwater > 0.125 to ≤ 0.25	.5	81,826	0.20	98.4
	Groundwater ≤ 0.125	302	425,220	0.13	82.5
Other					
	Other > 100.0 ppb	0	. 0		
	Other > 10.0 to ≤ 100.0	0	0		
	Other > 1.0 to ≤ 10.0	3	90,893	1.33	100.0
	Other > 0.25 to ≤ 1.0	21	83,997	0.63	87.9
	Other > 0.125 to ≤ 0.25	.7	15,232	0.18	76.8
	Other ≤ 0.125	55	563,820	0.13	74.8
	Group	Number	Population		· · · · · · · · · · · · · · · · · · ·
	gering of the state of the stat	in Group	Served		
Summar	•				
	PLEX:	255	640 20 7		
	PLEX: Surface Water CWS	255 315	640,297 515 275		•
	PLEX: Surface Water CWS Groundwater CWS	315	515,275		
	PLEX: Surface Water CWS			• • • •	
	PLEX: Surface Water CWS Groundwater CWS	315	515,275		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	315 86	515,275 753,942		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	315 86 656	515,275 753,942 1,909,514		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal t in PLEX: Surface Water CWS	315 86 656	515,275 753,942 1,909,514		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal et in PLEX: Surface Water CWS Groundwater CWS	315 86 656 21 241	515,275 753,942 1,909,514 15,501 171,866		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal t in PLEX: Surface Water CWS Groundwater CWS Other CWS	315 86 656 21 241 4	515,275 753,942 1,909,514		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal et in PLEX: Surface Water CWS Groundwater CWS	315 86 656 21 241	515,275 753,942 1,909,514 15,501 171,866		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal t in PLEX: Surface Water CWS Groundwater CWS Other CWS	315 86 656 21 241 4	515,275 753,942 1,909,514 15,501 171,866 336,018		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal t in PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	315 86 656 21 241 4	515,275 753,942 1,909,514 15,501 171,866 336,018 523,385		

Metolachlor exposure distribution for 656 community water systems with data in Kansas. This database is used to estimate population exposure and is dominated by nondetections, 80.5% of 1,059 samples were nondetections.

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

^{*} CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

TABLE 25
PLEX DATA FOR METOLACHLOR IN MICHIGAN
JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
Data				
Number of Samples	3,788	3,268	435	85
Number of Detections	7	1	4	2
Percent of Detections	0.18	0.03	0.92	2.35
Number of Detections > 100 ppb		0	0	0
Percent of Detections > 100 ppb	0 .	O	0	.0
Percent of Samples > 100 ppb	0	0	0	0
Concentrations (ppb)				
Minimum Detected Concentration	1.00	6.00	1.00	1.00
Maximum Detected Concentration	6.00	6.00	2.00	2.00
Population-Weighted Exposure Concentrations	0.50	0.51	0.50	0.50
<u>cws</u>				
Number of CWS	1,411	1,122	274	15
Number of CWS with Data	1,377	1,092	270	15
Percent CWS with Data	97.59	97.33	98.54	100
Number of CWS with No Detections	1,373	1,091	268	14
Number of CWS with Detections	4	1 .	2	1
Number of CWS with Detections > 100 ppb	,0	0	.0	0
Number of CWS with Annual Means > 100 ppb	0	0	0	0
Number of CWS with Period Means > 100 ppb	,0	0	0	.0
Percent of CWS with No Detections 2	99.71	99.91	99.26	93.33
Percent of CWS with Detections	0.29	0.09	0.74	6.67
Percent of CWS with Detections > 100 ppb	.0	0	.0	.0
Percent of CWS with Annual Means > 100 ppb	0	. 0	0	0
Percent of CWS with Period Means > 100 ppb	0	0	0	.0
Populations				
Michigan Population	9,938,444			
Population on CWS	7,212,948	1,627,620	5,286,059	299,269
Population Served by CWS with Data	7,165,632 72,10	1,605,824 16.16	5,260,539 52,93	299,269 3.01
Percent State Population Assessed Percent CWS Population Assessed	72.10 99.34	98.66	99.52	100
Population with No Detections ²	7,114,113	1,581,074	5,255,942	277,097
Population with Detections	51,519	24,750	4,597	277,097
Population with Detections > 100 ppb	61رباد	24,730	<i>ا</i> ودیو. 0	22,172
Populations with Annual Means > 100 ppb	Ö	o	0	Ö
Populations with Period Means > 100 ppb	0	0	Ö	0
Percent of population with No Detections	99.28	98.46	99.91	92.59
Percent of population with Detections	0.72	1.54	0.09	7.41
Percent of population with Detections > 100 ppb	0	0	0	0
Percent of population with Annual Means > 100 ppb	Ö	Ô	. 0	ō
Percent of population with Period Means > 100 ppb	Ō	ō	0	0

Simple substitution method

Page 90 of 1771

Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

TABLE 26
MICHIGAN METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS

	Group	Number in Group	Population Served	Average Concentration ¹ (ppb)	Cumulative Percen of Population ³
Surface \	Water .				
	Surface Water > 100.0 ppb	0	0		
	Surface Water > 10.0 to ≤ 100.0	0	.0		
	Surface Water > 1.0 to ≤ 10.0	0	0		
	Surface Water > 0.25 to ≤ 1.0	270	5,260,539	0.50	100.0
	Surface Water > 0.125 to ≤ 0.25	0	. 0		· .
4.1	Surface Water ≤ 0.125	0	0		
Groundy					
	Groundwater > 100.0 ppb	0	0		
	Groundwater > 10.0 to ≤ 100.0	.0	0		
	Groundwater > 1.0 to ≤ 10.0	1	24,750	1.42	100.0
	Groundwater > 0.25 to ≤ 1.0	1,091	1,581,074	0.50	98.5
	Groundwater > 0.125 to ≤ 0.25	0	. 0		
	Groundwater ≤ 0.125	.0	. 0		
• •					
Other	Other > 160.0 ppb	Ó	. ,		
		0	0		
	Other > 10.0 to ≤ 100.0	0	0		
	Other > 1.0 to ≤ 10.0	15	-	0.50	100.0
	Other > 0.25 to ≤ 1.0	13	299,269	0.50	100.0
	Other > 0.125 to ≤ 0.25 Other ≤ 0.125	0	0 .		
	Other 50.125				
	Group	Number in Group	Population Served		
					
Summar	y			•	
				•	
	PLEX:		6 260 620	• •	
	PLEX: Surface Water CWS	270	5,260,539	· ·	
	PLEX: Surface Water CWS Groundwater CWS	1.092	1,605,824	F	
	PLEX: Surface Water CWS			E CONTRACTOR OF THE CONTRACTOR	
	PLEX: Surface Water CWS Groundwater CWS	1.092	1,605,824		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	1,092 15	1,605,824 299,269		
Summar CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	1,092 15 L,377	1,605,824 299,269 7,165,632		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Surface Water CWS	1,092 15 1,377	1,605,824 299,269 7,165,632 25,520		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Groundwater CWS Groundwater CWS	1,092 15 1,377 4 30	1,605,824 299,269 7,165,632 25,520 21,796		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Surface Water CWS	1,092 15 1,377	1,605,824 299,269 7,165,632 25,520		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Groundwater CWS Groundwater CWS	1,092 15 1,377 4 30	1,605,824 299,269 7,165,632 25,520 21,796		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Surface Water CWS Groundwater CWS Other CWS	1,092 15 1,377 4 30 0	1,605,824 299,269 7,165,632 25,520 21,796 0		
CWS in	PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal of in PLEX: Surface Water CWS Groundwater CWS Other CWS Subtotal	1,092 15 1,377 4 30 0 34	1,605,824 299,269 7,165,632 25,520 21,796 0		

¹ Metolachlor exposure distribution for 1,377 community water systems with data in Michigan. This database is used to estimate population exposure and is dominated by nondetections, 99.8% of 3,788 samples were nondetections.

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

⁴ CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

TABLE 27

PLEX DATA FOR METOLACHLOR IN MINNESOTA
JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
Data				
Number of Samples	4,936	4,513	175	248
Number of Detections	15	11	0	4
Percent of Detections	0.30	0.24	ō	1.61
Number of Detections > 100 ppb	0	0	0	0
Percent of Detections > 100 ppb	0	0	0	0
Percent of Samples > 100 ppb	Ò	.0	0	0
Concentrations (ppb)				
Minimum Detected Concentration	0.50	0.50		0.60
Maximum Detected Concentration	1.30	1.30	-	1.00
Population-Weighted Exposure Concentrations	0.25	0.25	0.25	0.25
CWS				
Number of CWS	954	913	24	17
Number of CWS with Data	945	905	24	16
Percent CWS with Data	99.06	99.12	100	94.12
Number of CWS with No Detections	942	903	24	15
Number of CWS with Detections.	3	2	0	. 1
Number of CWS with Detections > 100 ppb	.0	0	0	0
Number of CWS with Annual Means > 100 ppb	0	0	0	0
Number of CWS with Period Means > 100 ppb	0	0	O,	0
Percent of CWS with No Detections 2	99.68	99.78	100	93.75
Percent of CWS with Detections	0.32	0.22	0	6.25
Percent of CWS with Detections > 100 ppb	0	0	0	0
Percent of CWS with Annual Means > 100 ppb	.0	0	0	0
Percent of CWS with Period Means > 100 ppb	0	0	0	.0
Populations				
Minnesota Population	4,919,479			
Population on CWS	3,823,014	2,410,843	715,354	696,817
Population Served by CWS with Data	3,820,625	2,408,554	715,354	696,717
Percent State Population Assessed Percent CWS Population Assessed	77.66	48.96	14.54	14.16
rerealt Cw3 ropulation Assessed	99.94	99.91	100	99.99
Population with No Detections 2	3,808,053	2,407,488	715,354	685,211
Population with Detections	12,572	1,066	0	11,506
Population with Detections > 100 ppb	0	0	0	0
Populations with Annual Means > 100 ppb Populations with Period Means > 100 ppb	0	0	0	0
Percent of population with No Detections	99.67	** 00.0¢	100	
Percent of population with Detections	99.67 0.33	99.96	100	98.35
recent of population with Detections > 100 ppb	0.33	0.04	0	1.65
Percent of population with Annual Means > 100 ppb	0	0	0	0
Percent of population with Period Means > 100 ppb	0	0	0	0

Dashed lines signify "Not Applicable"

Page 93 of 1771

¹ Simple substitution method

² Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

TABLE 28

MINNESOTA METOLACELOR EXPOSURE CONCENTRATIONS AND POPULATIONS

W	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percen of Population ¹
Surface V	Vater				
	Surface Water > 100.0 ppb	0	0		
	Surface Water > 10.0 to ≤ 100.0	. 0	ō		
	Surface Water > 1.0 to ≤ 10.0	0	0		
	Surface Water > 0.25 to ≤ 1.0	î	3,982	0.27	100.0
	Surface Water > 0.125 to ≤ 0.25	23	711,372	0.25	99.4
4 -	Surface Water ≤ 0.125	,0	, 0	-	
Groundy	ater				
J.,,	Groundwater > 100.0 ppb	0	. 0		
	Groundwater > 10.0 to ≤ 100.0	ō	ō		
	Groundwater > 1.0 to ≤ 10.0	0	ō		
	Groundwater > 0.25 to ≤ 1.0	2	1.066	0.40	100.0
-	Groundwater > 0.125 to ≤ 0.25	903	2,407,488	0.25	99.96
	Groundwater ≤ 0.125	0	0		
Other					
	Other > 100.0 ppb	0	0		
	Other > 10.0 to ≤ 100.0	0	0		
	Other > 1.0 to ≤ 10.0	0	.0		
	Other > 0.25 to ≤ 1.0	1	11,506	0.30	100.0
	Other > 0.125 to ≤ 0.25	15	685,211	0.25	98.3
	Other ≤ 0.125	0	0 ~		
	Group	Number in Group	Population Served		

Group	Number in Group	Population Served	
Summary			
CWS in PLEX:			
Surface Water CWS	24	715,354	
Groundwater CWS	905	2,408,554	
Other CWS	16	696,717	-
Subtota	945	3,820,625	
CWS Not in PLEX: 4			
Surface Water CWS	.0	0	
Groundwater CWS	8	2,289	
Other CWS	. 1	100	,
Subtotal	9	2,389	
Total CWS and Population on CWS	954	3,823,014	
Minnesota Population (Census, 2000))	4,919,479	
Population Not Served by CWS		1,096,465	

¹ Metolachlor exposure distribution for 945 community water systems with data in Minnesota. This database is used to estimate population exposure and is dominated by nondetections, 99.7% of 4,936 samples were nondetections.

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

^{*} CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

TABLE 31

PLEX DATA FOR METOLACELOR IN MISSOURI
JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
Data				
Number of Samples	7,191	3,992	2,650	549
Number of Detections	107	1	95	11
Percent of Detections	1.49	0.03	3.58	2.00
• •	_			
Number of Detections > 100 ppb	0	0	,0	0
Percent of Detections > 100 ppb	0	0	0	0
Percent of Samples > 100 ppb	0	. 0	0	0
Concentrations (ppb)				
Minimum Detected Concentration	0.50	0.80	0.50	0.59
Maximum Detected Concentration	28.00	0.80	28.00	2,30
Population-Weighted Exposure Concentrations	0.26	0.25	0.29	0.26
<u>Cws</u>		•		
Number of CWS	1,451	1,201	173	77
Number of CWS with Data	1,351	1,149	142	60
Percent CWS with Data	93.11	95.67	82.08	77.92
Number of CWS with No Detections	1,272	1,148	82	42
Number of CWS with Detections . 2	79	1 1	60	18
Number of CWS with Detections > 100 ppb	0	0	0	. 0
Number of CWS with Annual Means > 100 ppb	0	0	0	0
Number of CWS with Period Means > 100 ppb	0	0 .	Ö	0
Percent of CWS with No Detections 2	94.15	- 99.91	57.75	70.00
Percent of CWS with Detections	5.85	0.09	42.25	30.00
Percent of CWS with Detections > 100 ppb	0	0	0	0
Percent of CWS with Annual Means > 100 ppb	0	0	0	0
Percent of CWS with Period Means > 100 ppb	.0	. 0	0	0
Populations	:			
Missouri ropulation	5,595,211			
Population on CWS	4,801,145	1,666,885	1,873,842	1,260,418
Population Served by CWS with Data Percent State Population Assessed	3,120,411	1,643,812	364,670	1,111,929
Percent CWS Population Assessed	55.77 64.99	29.38 98.62	6.52 19.46	19.87 88.22
Population with No Detections ²				
Population with Detections	2,821,224	1,642,612	223,708	954,904
Population with Detections > 100 ppb	299,187 0	1,200	140,962	157,025
Populations with Annual Means > 100 ppb	0	0	0	0
Populations with Period Means > 100 ppb	. 0	0	0	0
Percent of population with No Detections	90.41	99.93	61.35	85.88
Percent of population with Detections	9.59	0.07	38.65	14.12
Percent of population with Detections > 100 ppb	0	0.07	0	14.12
Percent of population with Annual Means > 100 ppb	ŏ	ŏ	Ŏ	0
Percent of population with Period Means > 100 ppb	Ö	ŏ	o	Ŏ

¹ Simple substitution method

² Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

TABLE 32

MISSOURI METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS

·	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percen of Population ³
Sorface V	Vater				
	Surface Water > 100.0 ppb	.0	0		
	Surface Water > 10.0 to ≤ 100.0	0	. 0		
	Surface Water > 1.0 to ≤ 10.0	2	1,800	1.49	100.0
	Surface Water > 0.25 to ≤ 1.0	58	139,162	0.35	99.5
	Surface Water > 0.125 to ≤ 0.25	82	223,708	0.25	61.3
	Surface Water ≤ 0.125	0	0		
Groundy	ater				
	Groundwater > 100.0 ppb	0	0		
	Groundwater > 10.0 to ≤ 100.0	0	0		
	Groundwater > 1.0 to ≤ 10.0	.0	0		
	Groundwater > 0.25 to ≤ 1.0	i	1,200	0.30	100.0
	Groundwater > 0.125 to ≤ 0.25	1,148	1,642,612	0.25	99.9
	Groundwater ≤ 0.125	0	0		
Other					
o inei	Other > 100.0 ppb	-0	0	4.4	
	Other > 10.0 to ≤ 100.0	ō	ō		
	Other > 1.0 to ≤ 10.0	ō	ō		
	Other > 0.25 to ≤ 1.0	18	157,025	0.32	100.0
	Other > 0.125 to ≤ 0.25	42	954,904	0.25	85.9
	Other ≤ 0.125	ō	0		
	Group	Number	Population		
-		in Group	Served		
Summar	у				
CWS in	Surface Water CWS	142	364,670		
	Groundwater CWS	1,149	1,643,812		
	Other CWS	60	1,111,929		
	Subtotal	ا دفرا	3,120,411		
CWS No	t in PLEX:4	71	1 500 177		
CWS No	Surface Water CWS	31	1,509,172		
CWS No	Surface Water CWS Groundwater CWS	52	23,073		
CWS No	Surface Water CWS				
CWS No	Surface Water CWS Groundwater CWS	52	23,073		
	Surface Water CWS Groundwater CWS Other CWS	52 17	23,073 148,489	,	
	Surface Water CWS Groundwater CWS Other CWS	52 17 100	23,073 148,489 1,680,734	,	

¹ Metolachlor exposure distribution for 1,351 community water systems with data in Missouri. This database is used to estimate population exposure and is dominated by nondetections, 98.5% of 7,191 samples were nondetections.

Page 100 of 1771

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

⁴ CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

TABLE 33

PLEX DATA FOR METOLACHLOR IN NEBRASKA
JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
Data				ومسموبينتين
Data Number of Samples	2,593	2,401	34	158
Number of Detections		••		_
Percent of Detections	44 1.70	39 1.62	2 5.88	3 1.90
N-4-50-4-100-4		2	_	_
Number of Detections > 100 ppb Percent of Detections > 100 ppb	0	.0	0	. 0
Percent of Samples > 100 ppb	.0	0	0	0
		•	•	-
Concentrations (ppb) Minimum Detected Concentration	0.05	0.05	0.00	
Maximum Detected Concentration	16.70		0.05	0.22
- warming a selected competition	10.70	16.70	0.83	0.29
Population-Weighted Exposure Concentrations ¹	0.07	0.07	0.11	0.05
CWS				
Number of CWS	617	603	6	8
Number of CWS with Data	575	561	6	8
Percent CWS with Data	93.19	93.03	100	100
Number of CWS with No Detections	553	544	5	.4
Number of CWS with Detections	22	17	1	4
Number of CWS with Detections > 100 ppb	0	0	0	0
Number of CWS with Annual Means > 100 ppb	0	0	0	ō
Number of CWS with Period Means > 100 ppb	.0	0	0	0
Percent of CWS with No Detections 2	96,17	96.97	83.33	50.00
Percent of CWS with Detections	3.83	3.03	16.67	50.00
Percent of CWS with Detections > 100 ppb	0	0	0	0
Percent of CWS with Annual Means > 100 ppb	0	.0	0	.0
Percent of CWS with Period Means > 100 ppb	0	0	.0	0
Populations				
Nebraska Population	1,711,263			
Population on CWS	1,395,640	863,515	11,888	520,237
Population Served by CWS with Data	1,385,379	853,254	11,888	520,237
Percent State Population Assessed	80.96	49.86	0.69	30.40
Percent CWS Population Assessed	99.26	98.81	100	100
Population with No Detections 2	732,311	716,086	5,028	11,197
Population with Detections	653,068	137,168	6,860	509,040
Population with Detections > 100 ppb	O	0	0	0
Populations with Annual Means > 100 ppb	,0	0	0	0
Populations with Period Means > 100 ppb	0	0	0	0
Percent of population with No Detections	52.86	83.92	42.29	2.15
Percent of population with Detections	47.14	16.08	57.71	97.85
Percent of population with Detections > 100 ppb	0	0	0	0
Percent of population with Annual Means > 100 ppb	0	O	0	Ö
Percent of population with Period Means > 100 ppb	0	0	0	0

¹ Simple substitution method

Page 102 of 1771

Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

 $\label{table 34} \textbf{NEBRASKA METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS}^{\textbf{1}}$

	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percen of Population ³
Surface Wa	ter				
S	Surface Water > 100.0 ppb	0	0		
	Surface Water > 10.0 to ≤ 100.0	0	Ó		
5	Surface Water > 1.0 to ≤ 10.0	0	0		
5	Surface Water > 0.25 to ≤ 1.0	0	0		
S	Surface Water > 0.125 to ≤ 0.25	1	6,860	0.16	100.0
. · S	Surface Water ≤ 0.125	.5	5.028	0.05	42.3
Groundwat	er				
(Groundwater > 100.0 ppb	0	. 0		
•	Groundwater > 10.0 to ≤ 100.0	0	0		
(Groundwater > 1.0 to ≤ 10.0	0	0		
	Groundwater > 0.25 to ≤ 1.0	1	24,889	0.78	100.0
(Groundwater > 0.125 to ≤ 0.25	3	1,582	0.19	97.1
•	Groundwater ≤ 0.125	: 557	826,783	0.05	96.9
Other					
	Other > 100.0 ppb	0 .	0		
	Other > 10.0 to ≤ 100.0	0	0		
	Other > 1.0 to ≤ 10.0	.0	0		
	Other > 0.25 to ≤ 1.0	0	0		
	Other > 0.125 to ≤ 0.25	0			
	Other ≤ 0.125	8	520,237 ~	0.05	100.0
	Group	Number In Group	Population Served		
Summary					
CWS in PL	EX:				
	Surface Water CWS	6	11,888		
	Groundwater CWS	561	853,254		
.0	Other CWS	8	520,237		•
	Subtotal	575	1,385,379		*
CWS Not in	PLEX: 4		٠		
	Surface Water CWS	0	0		
_	Groundwater CWS	42	10,261		
	Other CWS	0	0		
	•				
	Subtotal	42	10,261		
Total	al CWS and Population on CWS	617	1,395,640		
ì	Vebraska Population (Census, 2000)		1,711,263		

¹ Metolachlor exposure distribution for 575 community water systems with data in Nebraska. This database is used to estimate population exposure and is dominated by nondetections, 98.3% of 2,593 samples were nondetections.

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

⁴ CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

PLEX DATA FOR METOLACHLOR IN OHIO JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
Data			,	
Number of Samples	5,986	3,531	2,351	104
Number of Detections	502	i	485	16
Percent of Detections	8.39	0.03	20.63	15.38
Number of Detections > 100 ppb	.0 •	0	0	0
Percent of Detections > 100 ppb	0	. 0	0	0
Percent of Samples > 100 ppb	Ō	0	0	0
Concentrations (ppb)				
Minimum Detected Concentration	0.23	4.60	0.23	0.32
Maximum Detected Concentration	17.07	4.60	17.07	12.57
Population-Weighted Exposure Concentrations	1.70	1.70	1.70	1.49
<u>cws</u>		*		
Number of CWS	1,410	1,105	285	20
Number of CWS with Data	1,376	1,086	270	20
Percent CWS with Data	97.59	98.28	94.74	100
Number of CWS with No Detections	1,304	1,079	206	19
Number of CWS with Detections	72	7	64	1
Number of CWS with Detections > 100 ppb	0	. 0	.0	0
Number of CWS with Annual Means > 100 ppb	.0	0	0	0
Number of CWS with Period Means > 100 ppb	, o	. 0	0	0
Percent of CWS with No Detections 2	95.54	1,00	76.71	95.00
Percent of CWS with Detections	4.46	0	23.29	5.00
Percent of CWS with Detections > 100 ppb	0	0	0	0
Percent of CWS with Annual Means > 100 ppb	0	· O	0	0
Percent of CWS with Period Means > 100 ppb	. 0	0	0	.0
Populations				
Ohio Population	11,353,140		2	
Population on CWS	9,852,953	3,723,701	6,070,556	58,696
Population Served by CWS with Data Percent State Population Assessed	9,832,943	3,715,994	6,058,253	58,696
Percent State Population Assessed Percent CWS Population Assessed	86.61 99.80	32.73 99.79	\$3.36 99.80	0.52 100
Population with No Detections 2	7.004.000	7 101 010	4.455.204	
Population with Detections	7,904,898 1,928,045	3,391,838 324,156	4,455,304 1,602,949	57,756 940
Population with Detections > 100 ppb	1,528,043	324,136 0	0	940
Populations with Annual Means > 100 ppb	0	0	0	. 0
Populations with Period Means > 100 ppb	ŏ	. 0	o	0
Percent of population with No Detections	80.39	91.28	73.54	98.40
Percent of population with Detections	19.61	8.72	26.46	1.60
Percent of population with Detections > 100 ppb	0	0	0	0
Percent of population with Annual Means > 100 ppb	0	0	Ō	0
Percent of population with Period Means > 100 ppb	0	ō	. 0	ŏ

¹ Simple substitution method

Page 111 of 1771

Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

 $\label{table 40} \textbf{OHIO METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS}^{\textbf{I}}$

	Group	Number in Group	Population Served	Average Concentration ² (ppb)	Cumulative Percen of Population ³
Surface	Water	19			
	Surface Water > 100.0 ppb	0	0		
	Surface Water > 10.0 to ≤ 100.0	ō	0		
	Surface Water > 1.0 to ≤ 10.0	194	4,796,706	1.96	100.0
	Surface Water > 0.25 to ≤ 1.0	62	1,200,892	0.77	20.8
	Surface Water > 0.125 to ≤ 0.25	.3	9,590	0.17	- 1.0
	Surface Water ≤ 0.125	11	\$1,065	0.09	0.8
Ground	water			e e	
	Groundwater > 100.0 ppb.	0	0		
*	Groundwater > 10.0 to ≤ 100.0	0	0		
	Groundwater > 1.0 to ≤ 10.0	711	2,760,002	2.06	100.0
	Groundwater > 0.25 to ≤ 1.0	311	699,358	0.87	25.7
	Groundwater > 0.125 to ≤ 0.25	.53	121,139	0.15	6.9
	Groundwater ≤ 0.125	11	135,495	0.12	3.6
Other					
	Other > 100.0 ppb	0 .	Ò		
	Other > 10.0 to ≤ 100.0	O	0		
	Other > 1.0 to ≤ 10.0	13	44,355	1.83	100.0
	Other > 0.25 to ≤ 1.0	5	4,996	0.98	24.4
	Other > 0.125 to ≤ 0.25	2	9,345	0.15	15.9
	Other ≤ 0.125	0	0 .	_	

Group	Number in Group	Population Served	
Summary			
CWS in PLEX:			
Surface Water CWS	270	6,058,253	
Groundwater CWS	1,086	3,715,994	
Other CWS	. 20	58,696	
Subtotal	1,376	9,832,943	
CWS Not in PLEX: 4			•
Surface Water CWS	15	12,303	
Groundwater CWS	19	7,707	
Other CWS	.0	0	
Subtotal	34	20,010	
Total CWS and Population on CWS	1,410	9,852,953	
Ohio Population (Census, 2000)		11,353,140	
Population Not Served by CWS		1,500,187	

¹ Metolachlor exposure distribution for 1,376 community water systems with data in Ohio. This database is used to estimate population exposure and is dominated by nondetections, 91.6% of 5,986 samples were nondetections.

Page 112 of 1771

124

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

^{*} CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.

TABLE 53

PLEX DATA FOR METOLACHLOR IN WISCONSIN JANUARY 1993 - DECEMBER 2000

	Totals	Groundwater	Surface Water	Other
Data				
Number of Samples	2,019	1,920	68	31
Number of Detections	16	16	0	0
Percent of Detections	0.79	0.83	0	0
Number of Detections > 100 ppb	- Ö	•	0	. 0
Percent of Detections > 100 ppb	0	0	0 -	0
Percent of Samples > 100 ppb	0 .	0	0	0
Concentrations (ppb)				
Minimum Detected Concentration	0.10	0.10	_	_
Maximum Detected Concentration	0.90	0.90	-	
Population-Weighted Exposure Concentrations	0.05	0.05	0.05	0.05
CWS		•		
Number of CWS	1,128	1,080	40	8
Number of CWS with Data Percent CWS with Data	820	775	39	6
reitent Cw3 Win Data	72.70	71.76	97.50	75.00
Number of CWS with No Detections	810	765	39	6
Number of CWS with Detections	10	10	0	0
Number of CWS with Detections > 100 ppb	0	~ 0	0	0
Number of CWS with Annual Means > 100 ppb	0	0	0	0
Number of CWS with Period Means > 100 ppb	0	0	0	0
Percent of CWS with No Detections 2	98.78	98.71	100	100
Percent of CWS with Detections	1.22	1.29	0	0
Percent of CWS with Detections > 100 ppb	0	0	0	. 0
Percent of CWS with Annual Means > 100 ppb	. 0	0	0	0
Percent of CWS with Period Means > 100 ppb	0	0	0	. 0
Populations				
Wisconsin Population	5,363,675			
Population on CWS	3,657,840	1,966,832	1,503,806	187,202
Population Served by CWS with Data Percent State Population Assessed	3,301,575	1,621,349	1,503,694	176,532
Percent CWS Population Assessed	61.55	30.23	28.03	3.29
and the topological Assessed	90.26	82.43	99.99	94.30
Population with No Detections 2	3,284,320	1,604,094	1,503,694	176,532
Population with Detections	17,255	17,255	0	0
Population with Detections > 100 ppb	O	0	0	0
opulations with Annual Means > 100 ppb	0	O	Ö	0
opulations with Period Means > 100 ppb	.0	0	0	0
ercent of population with No Detections	99.48	98.94	100	100
ercent of population with Detections	0.52	1.06	O	.0
ercent of population with Detections > 100 ppb	.0	0	0	.0
Percent of population with Annual Means > 100 ppb	0	0	0	0
ercent of population with Period Means > 100 ppb	,o	.0	0	0

Dashed lines signify "Not Applicable"

Page 132 of 1771

Simple substitution method

² Percent CWS and populations with or without detects are based on the number of assessed CWS and populations, respectively.

TABLE 54
WISCONSIN METOLACHLOR EXPOSURE CONCENTRATIONS AND POPULATIONS

	Group	Number in Group	Population Served	Average Concentration ¹ (ppb)	Cumulative Percent of Population ³
Surface Wa	ter				
S	Surface Water > 100.0 ppb	.0	.0		
S	furface Water > 10.0 to ≤ 100.0	0	0		
S	Surface Water > 1.0 to ≤ 10.0	. 0	0		
S	Surface Water > 0.25 to ≤ 1.0	.0	0		
S	Surface Water > 0.125 to ≤ 0.25	0	0		
s	Surface Water ≤ 0.125	39	1,503,694	0.05	100.0
Groundwate	er				
	Groundwater > 100.0 ppb	.0	. 0		
	Groundwater > 10.0 to ≤ 100.0	ŏ	ō		
	Groundwater > 1.0 to ≤ 10.0	ō	ŏ		
	Groundwater > 0.25 to ≤ 1.0	ĩ	2,844	0.34	100.0
	Groundwater > 0.125 to ≤ 0.25	2	1,275	0.14	99.8
	Groundwater ≤ 0.125	772	1,617,230	0.05	99.7
Other					
	Other > 100.0 ppb	0	. 0		
	Other > 10.0 to ≤ 100.0	0	0		
	Other > 1.0 to ≤ 10.0	0	0		
(Other > 0.25 to ≤ 1.0	0	0		
(Other > 0.125 to ≤ 0.25	0	0		
ç	Other ≤ 0.125	6	176,532	0.05	100.0
	Group	Number in Group	Population Served	~	
Summary					
CWS in PL	EX:				
S	Surface Water CWS	39	1,503,694		
Č	Froundwater CWS	775	1,621,349		
	Other CWS	6	176,532		
•					
	Subtotal	820	3,301,575		
		820	3,301,575		
CWS Not in		8 <u>2</u> 0			
CWS Not in	PLEX:4	••	112		
CWS Not in	a PLEX: 4 Surface Water CWS	1			
CWS Not in	s PLEX: ⁴ Surface Water CWS Groundwater CWS	1 305	112 345,483		
CWS Not in	a PLEX: 4 Surface Water CWS Groundwater CWS Other CWS	1 305 2	112 345,483 10,670		
CWS Not in S ((a PLEX: 4 Surface Water CWS Groundwater CWS Other CWS Subtotal	1 305 2 308 1,128	112 345,483 10,670 356,265		

¹ Metolachlor exposure distribution for 820 community water systems with data in Wisconsin. This database is used to estimate population exposure and is dominated by nondetections, 99.2% of 2,019 samples were nondetections.

² Period Means: the population-weighted average of the concentrations for each group of water supplies.

³ Cumulative percent is calculated as the sum of the population in that concentration range and below divided by the total population served by that source type (Surface Water, Groundwater, Other).

⁴ CWS Not in PLEX: CWS for which no data were provided by the state and no usable data were found in the literature.