US ERA ARCHIVE DOCUMENT

NA GEN CI STATES CONTINUES OF THE CONTIN

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

11/15/96

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT: PP #: None; Replacement of Metolachlor Technical (Racemic

Metolachlor) with Alpha-Metolachlor (Formerly called Chiral Metolachlor) Technical; Review of Bridging Data, D226780. CBTS No. 17250. PRIORITY 10. MRID 439289-01, 439289-02, 439289-03, 439289-39, 439289-40, 439289-41, 439289-42; ID #: 000100-IRL CGA-77102; 108800; PRAT CASE

#: 046823

FROM: Linda L. Kutney, Chemist

Chemistry Branch, Tolerance Petition Team II

Health Effects Division (7509C)

THRU: Elizabeth Haeberer, Acting Branch Chief

Chemistry Branch-Tolerance Support Health Effects Division (7509C)

TO: Rich Griffin

Registration Section

Risk Characterization and Analysis Branch

Health Effects Division (7509C)

Ciba-Geigy has proposed registration of the herbicide, alpha-metolachlor technical, previously called chiral metolachlor, having the chemical name S-2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-methylethyl)-acetamide, (CGA 77102, chemical number 108800) with the intent of replacing racemic Metolachlor technical (CGA-24705, chemical 108801) in the manufacturing of all its current end-use products. Alpha-metolachlor is being developed for the selective control of a large number of grassy weeds in corn, cotton, pod crops, potatoes, safflowers, grain or forage sorghum, soybeans, woody ornamentals, stone fruits, and tree nuts. Alpha-metolachlor, having the Ciba nomenclature CGA-77102, was previously called chiral metolachlor, and has the following CAS chemical name,

{Acetamide, 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-, (S)-}. The proposed common name alpha-metolachlor was requested by Ciba in a letter to Mr. Kerry Leifer, 8/28/96.

The chemical expression for racemic metolachlor in 40 CFR 180.368 is "combined residues (free and bound) of 2-chloro-N-(2-Ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide and metabolites, determined as the derivatives, CGA-37913, (2-[(2-ethyl-6-methylphenyl)amino]-1-propanol) and CGA-49751, (4-(2-ethyl-6-methylphenyl)-2-hydroxy-5-methyl-3-morpholinone), each expressed as metolachlor [40 CFR §180.368 (a), (b), and (c)]." Tolerances to support registered racemic metolachlor uses are established for numerous plant and animal commodities [40 CFR 180.368].

Alpha-metolachlor is the active part of racemic metolachlor and comprises 50% of racemic metolachlor. Alpha-metolachlor consists of the two diastereomers exhibiting the S-enantiomer of racemic metolachlor, which are more biologically effective in weed control than the two out of four diastereomers exhibiting the R-configuration of racemic metolachlor. Due to its increased herbicidal activity, the proposed use rate of alpha-metolachlor is approximately 62.5% the rate used for racemic metolachlor.

This submission contains proposed labels; product chemistry data; a method validation for field corn; residue data for sweet and field corn, and soybeans; and confidential statements of formula in support of the proposed registration of alphametolachlor in place of racemic metolachlor in/on the RACs on which racemic metolachlor is currently used.

Racemic metolachlor is a list A chemical. The product chemistry and residue chemistry chapters for the racemic metolachlor RED have been completed by CBRS (Metolachlor RED (racemic) addendum, S. Hummel, 10/4/94).

CONCLUSIONS

- 1a. All product chemistry data requirements for alpha metolachlor have been adequately met, except for storage stability requirements (GLN § 63-17).
- 1b. The manufacturing processes for alpha-metolachlor have been adequately described. The impurities are not likely to produce a residue problem.
- 1c. Data gaps in the product chemistry of racemic metolachlor (GLN § 62-3) are being addressed through reregistration.

- 2a. Significant changes to the proposed labels include replacing the old names with alpha-metolachlor (CGA-77102) and decreasing the maximum proposed alpha-metolachlor use rate to about 62.5% of that currently registered for use for racemic metolachlor. These changes are adequate.
- 2b. Details concerning the labeled directions for racemic metolachlor end-use products are summarized in Table 1 of the (racemic) metolachlor RED.
- 3a. The nature of the residue in plants is adequately understood.

 The residues of concern are alpha-metolachlor, racemic metolachlor and its metabolites, expressed in metolachlor equivalents. These are identical to residues in plants observed following racemic metolachlor use.
- 3b. The residues of concern for racemic metolachlor have been previously described as "metolachlor and its metabolites determined as the derivatives, 2-[(2-ethyl-6-methylphenyl)amino]-1-propanol and 4-(2-ethyl-6-methylphenyl)-2-hydroxy-5-methyl-3-morpholinone, each expressed as the parent compound." Alpha-metolachlor will have the same residues of concern as racemic metolachlor.
- 4a. The qualitative nature of the residue in animals is adequately understood. The residues of concern for chiral metolachlor are expected to be identical to those described previously for racemic metolachlor, namely "metolachlor and its metabolites determined as the derivatives, 2-[(2-ethyl-6-methylphenyl)amino]-1-propanol and 4-(2-ethyl-6-methylphenyl)-2-hydroxy-5-methyl-3-morpholinone, each expressed as the parent compound."
- 4b. TLC evidence supports the conclusion that the metabolites for alpha-metolachlor and racemic metolachlor appear to be identical.
- 5a. Adequate enforcement methods are available for plant and animal commodities. Methods for determining the combined residues of metolachlor and its metabolites, as the derivatives CGA-37913 and CGA-49751, are described in PAM, Vol. II, as Method I (plants; GC-NPD) and Method II (animals; GC-MS).
- 5b. The analytical enforcement method, and the method used for analysis for plant commodities (with slight modifications) is

Ciba-Geigy Method AG-612, an updated version of method AG-338. AG-338 has previously undergone successful method validation and is published as Method I in *Pesticides Analytical Manual (PAM) II*, Sec. 180.368.

- 5c. The current submission demonstrates that adequate recoveries for alpha-metolachlor may be expected when Ciba-Geigy's method AG-612 is used, as modified.
- 5d. CBTS considers the method AG-612 to be acceptable, for data collection, for the analysis of alpha-metolachlor. Radiovalidation of the method proved acceptable for chiral metolachlor, using field corn.
- 5e. Analytical reference standards for metolachlor are available for racemic metolachlor but not for the two metabolites, 2-[(2-ethyl-6-methylphenyl) amino]-1-propanol and 4-(2-ethyl-6-methylphenyl)-2-hydroxy-5-methyl-3-morpholinone. The petitioner should ensure that the analytical reference standards for the two metabolites are available.
- 5f. PAM Vol. II Method II is listed for determination of residues of metolachlor and its metabolites, as the derivatives CGA-37913 and CGA-49751, in animal commodities.
- 6a. Storage stability data for chiral metolachlor provided in this submission for plants adequately support the field trial data.
- 7a. Residue field trials submitted as bridging data in support of the proposed registration of alpha-metolachlor are adequate.
- 7b. CBTS considers that an adequate geographical representation of the country was sampled for the field trials conducted.
- 7c. Residues from the proposed use of alpha-metolachlor, expressed as the combined residues of metolachlor and its regulated metabolites (expressed as metolachlor), are not expected to exceed existing tolerances for residues of racemic metolachlor, when the proposed use rate of alpha-metolachlor is 62.5% of the rate used for racemic metolachlor.
- 7d. If alpha-metolachlor completely replaces the racemic metolachlor in end use products, additional residue data for alpha-metolachlor will be needed for crops having racemic metolachlor tolerances significantly above the level of quantification (LOQ), to determine the appropriate tolerance

levels for alpha-metolachlor.

- 8. Processing data submitted for alpha-metolachlor are adequate to support the proposed use of alpha-metolachlor. There is no reasonable expectation that residues of alpha-metolachlor in processed commodities will exceed the current tolerance levels for racemic metolachlor in processed commodities.
- 9a. Significant animal feed items are involved in the proposed uses of alpha-metolachlor on several agricultural crops, but residues of alpha-metolachlor in plant commodities and animal feed items are expected to be lower than current racemic metolachlor residues. Secondary residues in animal commodities resulting from the proposed use of alphametolachlor are not expected to exceed current tolerances for racemic metolachlor in animals.
- 9b. Storage stability data required in the Metolachlor (racemic) RED to support processing studies and analyses for livestock commodities, poultry tissues and eggs, are also required for alpha-metolachlor.
- 10. There is no request for a change of tolerance expression, or tolerance levels at this time. Harmonization between U.S., CODEX and Canadian tolerances for metolachlor will be handled by the reregistration process.

RECOMMENDATIONS

CBTS has no objection to the conditional registration of alpha-metolachlor on crops registered currently for metolachlor, provided alpha-metolachlor is used at approximately 62.5% of the rate currently used for racemic metolachlor, and all other factors for application are made in the same way as for racemic metolachlor. Additional provisions include adequate completion of storage stability of the technical material (GLN § 63-17) and submission of reference standards for the two metabolites of alphametolachlor. Existing tolerances for alpha-metolachlor will be adequate to support the proposed uses of alpha-metolachlor. The label should restrict the use of both pesticides concurrently on the same crop.

An additional DRES run is not necessary, at this time. At such time when racemic metolachlor products are no longer available

and only alpha-metolachlor end use products are used, CBTS recommends that the Registrant petition for lower tolerances. Additional residue data for alpha-metolachlor will be needed for crops having racemic metolachlor tolerances significantly above the level of quantification (LOQ), to determine the appropriate tolerance levels for alpha-metolachlor.

DETAILED CONSIDERATIONS

PRODUCT CHEMISTRY (MRID #439289-01, 439289-02, 439289-03)

process for technical manufacturing grade metolachlor has been adequately described, and all requirements have been met. There are no impurities present in the technical grade alpha-metolachlor products which are expected to cause residue concerns. All of the inerts have been cleared for A review of product chemistry is included in the attached Tables 1-2 and confidential appendix. All product chemistry data requirements for alpha metolachlor have been adequately met, except for storage stability requirements (GLN § 63-17).

Alpha-metolachlor is formulated as the following emulsifiable concentrates: Dual II® Magnum, containing 7.64 lbs. ai/gal; Dual Magnum®, containing 8 lbs. ai/gal; and Bicep Magnum®, containing 2.4 lbs. ai/gal and 3.1 lbs. ai atrazine and related compounds/gal.

PROPOSED USE

Ciba-Geigy proposes use of alpha-metolachlor on all plant commodities for which racemic metolachlor is registered. [See 40 CFR 180.368 (a), (b) and (c), 180.460]. Numerous agricultural crops have registered uses for racemic metolachlor, including corn, soybeans, peanuts, sorghum, potatoes, cotton, safflower, and legume vegetables, as well as minor use crops, turf and ornamentals, etc.

Proposed alpha-metolachlor labels reflect maximum application rates which are approximately 62.5% of those for racemic metolachlor. <u>Identical</u> application methods are to be used for alpha-metolachlor and racemic metolachlor, i.e., ground or aerial, type of application equipment used, etc. The proposed uses for alpha-metolachlor formulations for life-stage of application vary

widely with the crop treated, as is the case for racemic metolachlor, e.g., lb. product used per acre, number of applications, application interval, preharvest interval and seasonal maximum.

Significant changes to the proposed labels include replacing the old names with alpha-metolachlor (CGA-77102) and decreasing the maximum proposed alpha-metolachlor use rate to about 62.5% of that currently registered for use for racemic metolachlor. Details concerning the labeled directions for racemic metolachlor end-use products are summarized in Table 1 of the racemic metolachlor RED (S. Hummel, 10/4/94).

Nature of Residue- Plants

The qualitative nature of the residue in plants is considered to be adequately understood. (PP# 3F04251, Kramer, 9/2/94). Residues of concern for alpha-metolachlor are expected to be identical to those for racemic metolachlor, as stated in 40 CFR 180.368.

Thin layer chromatography, TLC, analyses of ¹⁴C-CGA-77102 (alpha-metolachlor) and ¹⁴C-CGA-24705 (racemic metolachlor) residues in field corn demonstrate very similar patterns, when dichloromethane:acetone (9:1) and hexane:ethyl acetate (4:1) solvents were used. This TLC evidence supports the conclusion that the metabolites for alpha-metolachlor and racemic metolachlor appear to be identical. [For more details on how the field corn was treated with radiolabeled material, refer to the section, "Method Validation of Method AG-612: Radiolabeled Field Corn.]

No new studies were submitted with this petition.

The qualitative nature of the residue in animals is adequately understood. The residues of concern for alpha-metolachlor are expected to be identical to those described previously for racemic metolachlor, namely metolachlor and its metabolites determined as the derivatives, 2-[(2-ethyl-6-methylphenyl)amino]-1-propanol and 4-(2-ethyl-6-methylphenyl)-2-hydroxy-5-methyl-3-morpholinone, each expressed as the parent compound (PP# 3F04251, Kramer, 9/2/94).

The (racemic) Metolachlor Registration Standard of 3/80 concluded that the qualitative nature of the residue in animals is adequately understood. Racemic metolachlor is rapidly metabolized and almost totally eliminated in the urine and feces of ruminants (goats), non-ruminants (rats), and poultry. Racemic metolachlor per se was not detected in any of the excreta or tissues. (S. Hummel, Metolachlor Addendum to RED, 10/4/94)

Analytical Methodology- Plants and Animals

Adequate enforcement methods are available for plant and animal commodities. Methods for determining the combined residues of racemic metolachlor and its metabolites, as the derivatives CGA-37913 and CGA-49751, are described in PAM, Vol. II, as Method I (plants; GC-NPD) and Method II (animals; GC-MS) (Metolachlor (racemic) RED addendum, S. Hummel, 10/4/94).

The analytical enforcement method, and the method used for analysis for plant commodities (with slight modifications) is Ciba-Geigy Method AG-612, an updated version of method AG-338. AG-338 is entitled Analytical Method for Residues of Metolachlor (racemic) Plant Metabolites Determined as CGA-37913 and CGA-49751 After Acid Hydrolysis and is in turn a variant of Ciba-Geigy Method #AG-286, which has undergone successful method validation and is published as Method I in Pesticides Analytical Manual (PAM) II, Sec. 180.368.

Method AG-338 converts racemic metolachlor and its free and bound metabolites to CGA-37913 and CGA-49751 by refluxing with HCl. One aliquot of the hydrolysate is cleaned-up and analyzed for CGA-37913 using GC with N/P detection in the N mode. Another aliquot of the hydrolysate is cleaned-up and analyzed for CGA-49751 also

using GC with N/P detection. The LOQ for CGA-37913 is 0.03 ppm; and, for CGA-49751 is 0.05 ppm (PP# 3F04251, Kramer, 9/2/94).

The current submission demonstrates that adequate recoveries for alpha-metolachlor may be expected when Ciba-Geigy's method AG-338 is used, as modified.

Analytical reference standards for racemic metolachlor are available from the Pesticides and Industrial Chemicals Repository, RTP, NC. (D. Davis, 6/18/93, 93TX0023). Analytical reference standards for racemic metolachlor (#4620) are available from Ultra Scientific, RI, and other commercial sources. The two metabolites, 2-[(2-ethyl-6-methylphenyl) amino]-1-propanol and 4-(2-ethyl-6-methylphenyl)-2-hydroxy-5-methyl-3-morpholinone are not available from the Pesticide and Industrial Chemicals Repository, RTP, NC, or Ultra Scientific, RI. The Registrant should provide analytical reference standards for the two metabolites to the Pesticide and Industrial Chemicals Repository, RTP, NC. (New Guideline 860-1650) The availability of these metabolites from commercial sources is unknown. (J. Stokes, 4/15/94, 94WI0005).

PAM Vol. II Method II is listed for determination of residues of racemic metolachlor and its metabolites, as the derivatives CGA-37913 and CGA-49751, in animal commodities. (S. Hummel, 9/29/94, Metolachlor (racemic) Addendum to RED).

<u>Method Validation of Method AG-612: Radiolabeled Field Corn</u> (MRID 439289-39)

Validation of analytical method was performed using AG-612 on field corn samples grown in North Carolina, using racemic metolachlor and alpha-metolachlor. Trials were conducted using potted plants under greenhouse conditions, using 14C-racemicmetolachlor and 14C-racemic- metolachlor, at 4 and 6 lb ai/A for 14Cracemic-metolachlor and 4 lb ai/A for 14C-alpha-metolachlor, using Plants were treated 2 days after planting, 8E formulations. preemergence, using soil drench application, and then treated using soil drench application, postemergence, 36 days after planting. Fodder (dried plant material) and grain was harvested at plant The aerial parts of the plants were harvested 7 and 30 maturity. days after the second soil drench application and at mature harvest. Samples were stored at - 20 C. Total radioactive residues were determined by combustion. Thin layer chromatography (TLC) was used to demonstrate that racemic metolachlor and alphametolachlor have similar distributions of metabolites.

metolachlor residues were consistently lower than racemic metolachlor residues.

Seven day forage residues ranged from 1.2 ppm to 1.7 ppm and 30 day forage resides ranged from 0.87 ppm to 1.6 ppm. Fodder residues (the highest fraction) ranged from 1.3 to 2.2 ppm. Residues were not detected in corn grain. Based on total radioactive residues (TRR's), the Registrant reported that residues from the 2 + 2 lb ai/A application rate of alpha-metolachlor were reduced 30-50% from the 3 + 3 lb ai/A rate currently used for racemic metolachlor (the application rates refer to the rate used for PPI and the PE at layby for alpha-metolachlor and racemic metolachlor). The 2 + 2 lb ai/A application rate of alpha-metolachlor used in the field trials is the proposed 1% rate for alpha-metolachlor and the 3 + 3 lb ai/A rate used in the field trials is the currently used 1% rate for racemic metolachlor.

The ability of Method AG-612 to extract total radioactivity was determined using radiolabeled samples from the greenhouse study. Extractabilities of the total radioactive residues (TRR) were 71-93% for forage, 72-80% for fodder, and 57-87% for grain.

Analytical method AG-612, with modifications, was employed for the analysis of total residues of alpha-metolachlor and racemic metolachlor, for all field samples and for the method validation. AG-612 is an updated version of the enforcement method (AG-338). Racemic metolachlor residues, and alpha-metolachlor residues, are extracted and acidified with concentrated hydrochloric acid. Filter extracts were analyzed for CGA-37913 and CGA-49751 and a gas chromatograph with a NPD detector (Nitrogen specific) was used for analysis. The limit of quantification (LOQ) for AG-612 is 0.08 ppm (0.03 ppm for CGA-37913 and 0.05 ppm for CGA-49751). The limits of detection are 0.06 ng for CGA-37913 and 0.10 ng for CGA-49751. CBTS considers the method AG-612 to be acceptable for the analysis of alpha-metolachlor.

Controls, and samples of corn forage, fodder, and grain fortified with non-radiolabeled material, were analyzed in the radiolabeled validation study with field corn. Recoveries of CGA-37913 ranged from 74% to 93%, with an average recovery of 80% and a standard deviation of 9.9% (n = 4 samples).

Field corn recoveries of CGA-49751 ranged from 90% to 113%, with an average recovery of 97% and a standard deviation of 12.4% (n = 4 samples) (MRID Nos. 439289-40, 439289-42). CGA-37913 recoveries averaged 80% and CGA-49751 averaged 97%. Field corn

recoveries (n=25) for CGA-37913 fortified at 0.02-3.00 ppm, averaged 92% (SD=12%). Field corn recoveries (n=25) for CGA-49751 fortified at 0.01-3.00 ppm, averaged 89% (SD=10%). Soybean recoveries (n=15) for CGA-37913 fortified at 0.02-5.0 ppm averaged 94% (SD=10%). Soybean recoveries (n=14) for CGA-49751 fortified at 0.0-5.0 ppm averaged 88% (SD=12%). Sweet corn recoveries (n=14) for CGA-37913 fortified at 0.02-6.0 ppm averaged 85% (SD=12%). Sweet corn recoveries (n=15) for CGA-49751 fortified at 0.05-6.0 ppm averaged 82% (SD=9). CBTS considers the method AG-612 to be acceptable for the analysis of alpha-metolachlor.

Fortified control samples were used to demonstrate method accuracy. Triplicate analyses of extracts were performed to demonstrate precision. Repeatability of these triplicates are acceptable and also served to validate the method.

Storage Stability Studies

Previous storage stability studies have been conducted on the racemic (and chiral) metolachlor metabolite hydrolysates CGA-37913 and CGA-49751, i.e., those compounds produced by acid reflux during the metolachlor enforcement method. CGA-37913 was stable during storage at -10 to -20 C for 2 years in corn grain and forage, peanuts, potatoes, milk, and eggs; 1 year in beef liver; and for the 5 months tested in bell peppers; 102 days in corn oil (corn oil samples stored 98 days); and 2 months in beef remaining at 109 days). CGA-49751 was stable for 2 years in corn grain, oil, forage; peanuts; potatoes; beef muscle and liver; milk; and eggs. No storage stability studies were conducted for stone Although metolachlor metabolite hydrolysates were not stable in corn oil, CBRS has previously concluded that there should be little concern because metolachlor residues are unlikely to concentrate in oils. (Registrant's response to residue chemistry requirements-METOLACHLOR (racemic) RED, CBRS No. 10305, 4/15/93).

In addition, residues in pod and seed vegetables, vines, and hay are not expected to be adversely affected by freezer storage for up to 27 months. (D. Miller, METOLACHLOR (racemic), Addendum to RED, CBRS No. 14160; 9/16/94).

Samples in the magnitude of the residue studies of the raw agricultural commodities (RACs) for the <u>current</u> petition were stored for a maximum harvest to analysis time of 4-10 months for field corn samples; 13 months for soybean samples; and 4 months for

sweet corn samples. Storage stability data for alpha-metolachlor provided in this submission adequately support the field trial data.

The efficiency of the method recoveries was determined using fortified control samples and fortified radioactive samples. CGA-37913 recoveries averaged 80% and CGA-49751 averaged 97%. CBTS considers the method AG-612 to be acceptable for the analysis of alpha-metolachlor. CBTS also concludes that the available storage stability data are adequate.

CBRS has previously concluded that storage information is needed (interpreted as including racemic metolachlor and alphametolachlor) for all new studies, including new studies required to replace Craven data. CBRS has also previously concluded that additional stability data are needed for peanut or soybean processed commodities and potato processed commodities. Residue levels in muscle will be corrected for the 80% loss of CGA-37913 in frozen storage. (Registrant's response to residue chemistry requirements-METOLACHLOR (racemic) RED, CBRS No. 10305, 4/15/93). The requirement for new storage stability data will be handled during reregistration.

The available data on storage stability in animal commodities (S. Funk, CBRS No. 9261, 8/6/92) indicate that CGA-49751 is stable in beef muscle, beef liver, milk and eggs stored at -15 C for up to 25 months, and that CGA-37913 is stable at -15 C in milk and eggs for up to 25 months, in beef muscle for up to 2 months, and in beef liver for up to 12 months.

In the current study, alpha-metolachlor and racemic metolachlor samples were stored frozen at < -15 C. Radiolabeled method validation studies were stored at approximately the same temperature, -20 C, but only for 2 days. Non-radiolabled samples of the following crops were stored frozen for the following (approximate) times, and then analyzed: field corn, 4 - 10 months (depending on the trial); soybeans, 13 months; and sweet corn 4 months. Adequate storage stability data have been provided for alpha-metolachlor to support residue field studies, for the purposes of this bridging petition. Details of these results are included in the crop field trial summary tables.

Racemic Metolachlor RED requirements for processing and storage stability studies are also required for alpha-metolachlor. This requirement can be addressed in reregistration for alphametolachlor.

(BLANK)

<u>CROP FIELD TRIALS</u> (MRID Nos. 439289-39, 439289-40, 439289-41, and -439289-42)

These field data were submitted as bridging data to compare residues for racemic metolachlor with alpha-metolachlor. The Registrant proposed that tolerances already established for racemic metolachlor could suffice for alpha-metolachlor, when use application rates for products containing alpha-metolachlor were decreased to 62.5% of rates previously established for products containing the racemic metolachlor.

Field data were completed in January, 1996, for side-by-side trials using alpha-metolachlor (CGA-77102 8E) and racemic metolachlor (DUAL 8E) in corn, field corn, soybeans, and field and sweet corn. Locations used for the field trials, and the rates of application varied widely, depending on the crop tested. Details for the four crop field trials are included in the Appendix of this review. The results are summarized in the following section and, where possible, the maximum data points for each sample type, rate, compound tested, etc, were highlighted.

The following tables summarize residue data reported for alpha-metolachlor and racemic metolachlor, expressed as residues of CGA-49751 and CGA-37913, in terms of alpha-metolachlor or racemic metolachlor equivalents. Residues of alpha-metolachlor and racemic metolachlor were usually similar for comparable application rates; however, the proposed rates of application for alpha-metolachlor are about 62.5% of application rates currently used for racemic metolachlor, due to the increased biological control for alpha-metolachlor.

FIELD TRIALS: FIELD CORN (MRID Nos. 439289-40, 439289-42)

Field trials on field corn were conducted at the (2 + 2) lb ai/A pre-plant incorporated (PPI) + post-emergent at layby (PE) application rate and at (3 + 3) lb ai/A pre-plant incorporated (PPI) + post-emergent at layby (PE). These application rates represent the 1% rates for alpha-metolachlor and racemic metolachlor, respectively. While both rates were used with alphametolachlor, only the (3 + 3) lb ai/A PPI + PE at layby application rate for racemic metolachlor was used on field corn. Formulations used included CGA-77102 8E (alpha-metolachlor) and Dual 8E (racemic metolachlor). Total field corn treatment was equivalent to a

seasonal total of 4.0 lbs ai/A and 6.0 lbs ai/A alpha-metolachlor and 6.0 lbs ai/A racemic metolachlor. The Registrant's contention was that the seasonal total of 4.0 lbs ai/A alpha-metolachlor is biologically equivalent, or as effective as, 6.0 lbs ai/A of racemic metolachlor.

One trial was conducted in <u>each</u> of the following States: Illinois, New York, Minnesota, Indiana, North Carolina, and California, six trials total. Additional trials were conducted separately in Illinois and Iowa. Samples were tested, using samples grown to maturity under typical agricultural practices. Field corn trials conducted in the six States of Illinois, New York, Minnesota, Indiana, North Carolina, and California represent 37% of field corn grown in the United States. (Agricultural Statistics 1991, USDA). These data will serve as bridging data between racemic metolachlor and alpha-metolachlor. CBTS considers this to be an adequate geographical representation for the purposes of this petition.

The following field corn summary tables for trials conducted in Illinois, New York, Minnesota, Indiana, North Carolina, and California, show that the (2 + 2) lb ai/A treatment using alphametolachlor resulted in residues which were uniformly less that resulting from the (3 + 3) lb ai/A treatment using racemic metolachlor, in almost all cases. The only exception was for field corn grain, when residues were equivalent to controls. In addition, residues for alpha-metolachlor treated field corn at the (3 + 3) lb ai/A treatment level were approximately equal to or, in some cases, less than the residues found at the (2 + 2) lb ai/A alpha-metolachlor treatment rate. PHI's for studies conducted in the above six states ranged, for forage: 29-32 days; for silage: 58-84 days; for fodder: 94-127 days; and for grain: 94-127 days. Samples were described as 30-day and 60-day silage, as well as harvest fodder and harvest grain.

The range of days between harvest to extract for field corn trials conducted in Illinois, New York, Minnesota, Indiana, North Carolina, and California, were for forage: 239 -306 days; for silage: 210-276 days; for fodder: 167-246 days; and for grain: 175-240 days. The maximum number of days for these samples to spend between extract to analysis were all approximately the same, 13-20 days.

Field trials in Illinois and Iowa show that the 2 + 2 lb ai/A rate of treatment for alpha-metolachlor resulted in residues which were less than the 3 + 3 lb ai/A treatment used for racemic

metolachlor, except for forage highlighted in the field corn data summary for Illinois and Iowa. Few forage samples of alphametolachlor displayed high residue values, but the average residue value for alpha-metolachlor forage was higher than expected. However, in general, residues in crops treated with alphametolachlor were less than those treated with racemic metolachlor, at the same treatment rates.

PHI's for field corn studies in Illinois and Iowa ranged, for forage: 30-31 days; for fodder: 96-101 days; and for grain: 96-101 days. The range of days between harvest to extract for field corn trials conducted in Illinois and Iowa were for forage: 112-128 days; for fodder: 38-57 days; and for grain: 39-61 days. The maximum number of days for these samples to spend between extract to analysis were all approximately the same, 2-6 days.

	METOLACHLOR	(racemic) (DUAL 8	BE)		ALPHA-METOLAC	HLOR (CGA-77102	2 8E)
RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM	RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM
		•	FOI	RAGE		•	
CONTROL	<0.08	6	<0.08 (0.00)	CONTROL			
2+2			•	2+2	0.70	12	0.35 (0.19)
3+3	2.75	10	0.89 (0.81)	3+3	0.73	4	0.36 (0.26)
•			Sil	AGE			
CONTROL	<0.08	6	<0.08 (0.01)	CONTROL			
2+2				2+2	0.49	12	0.22 (0.14)
3+3	1.41	10	0.40 (0.40)	3+3	0.47	4	0.29 (0.12)
•			FO	DDER		•	
CONTROL	0.14	8	0.07 (0.04)	CONTROL			
2+2				2+2	1.12	14	0.31 (0.31)
3+3	2.81	12	0.86 (0.91)	3+3	0.40	4	0.26 (0.16)
			GI	RAIN			• •
CONTROL	<0.08	6	<0.08 (0.00)	CONTROL			•
2+2				2+2	<0.08	12	<0.08 (0.00)
3+3	<0.08	10	<0.08 (0.00)	3+3	<0.08	4	<0.08 (0.00)

CGA-37913 & CGA-49751 RESIDUES REPORTED AS METOLACHLOR/CGA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14. TRIALS CONDUCTED IN IL, NY, MN, IN, NC, AND CA FROM "2L" FILE, (FR 2L A:\FCORN.SUM)

*	TRIALS CONDUCTED PHI RANGE, DAYS FROM HARVES	CORN (SUMMARY, CONTINUED) IN IL,NY, MN, IN, NC, AND CA IT TO EXTRACT, DAYS FROM.EXTRA DLACHLOR AND ALPHA-METOLACH	
PHI RANGE (DAYS)		RANGE HARVEST TO EXTRACT (DAYS)	RANGE EXTRACT TO ANALYSIS (DAYS)
		FORAGE	
29- 32		239-306	5-20
-		SILAGE	
58- 84		210-276	3-13
		FODDER	
94-127		167-246	4-15
		GRAIN	
94-127		175-240	3-13

NOTE: DATA FROM "2L" FILE, (FR 2L A:\FCORN.SUM)
CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACHLOR/CGA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

TRIALS CONDUCTED IN IL, NY, MN, IN, NC, AND CA

ME	TOLACHLOR (RA	CEMIC) (DUAL	. 8E)	AL	PHA-METOLACH	LOR (CGA-77102	8E)
RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLE S	AVERAGE (STD DEV) PPM	RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM
•			FC	RAGE		:	•
CONTROL	0.08	2	0.06 (0.04)	CONTROL			
2+2			·	2+2	2.23	4	0.90 (1.02)
3+3	1.04	4	0.48 (0.37)	3+3			
			FC	DDDER			
CONTROL	<0.08	2	<0.08 (0.00)	CONTROL		•	
2+2				2+2	0.22	3	0.19 (0.03)
3+3	0.74	4	0.37 (0.28)	3+3 .			

<0.08 (0.00)

<0.08 (0.00)

2.

<0.08

<0.08

.CONTROL

2+2

3 + 3

NOTE: DATA FROM "4L" FILE, (FR 2L A:\FCORN_2.SUM)
CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACHLOR/CGA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14. TRIALS CONDUCTED IN ILLINOIS AND IOWA

CONTROL

<0.08

2+2

3+3

<0.08 (0.00)

FIELD RESIDUES: FIELD CORN (SUMMARY, CONTINUED) TRIALS CONDUCTED IN ILLINOIS AND IOWA PHI RANGE, DAYS FROM HARVEST TO EXTRACT, DAYS FROM EXTRACT TO ANALYSIS FOR RACEMIC METOLACHLOR AND ALPHA-METOLACHLOR						
PHI RANGE (DAYS)	RANGE HARVEST TO EXTRACT (DAYS)	RANGE EXTRACT TO ANALYSIS (DAYS)				
	FORAGE					
30 - 31	112 - 128	4-5				
	FODDER					
96 - 101	38 - 57	3-5				
GRAIN 33						
96 - 101	39 - 61	2-6				

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACHLOR/CGA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

TRIALS CONDUCTED IN ILLINOIS AND IOWA

METOLACHLOR/77102 EQUIVALENTS ARE CALCULATED FROM THE ADDITION OF THE RESIDUE VALUES FOR THE TWO METABOLITES, CGA-49751 AND CGA-37913.

DATA FROM "A:\FCORN_2.SUM" 4L FILE

FIELD TRIALS: SOYBEANS (MRID Nos. 439289-41)

Field trials on soybeans were conducted at the 2.67 lb ai/A PPI and 4.0 lb ai/A PPI (pre-plant incorporated) application rate for alpha-metolachlor. Only the 4.0 lb ai/A PPI application rate for racemic metolachlor on soybeans was used. Formulations used included CGA-77102 8E (alpha-metolachlor) and Dual 8E (racemic metolachlor). The Registrant's contention was that the seasonal total of 2.67 lbs ai/A alpha-metolachlor is biologically equivalent to, or as effective as, 4.0 lbs ai/A of racemic metolachlor.

Trials were conducted from March to October, 1994, in Mississippi, Illinois, Iowa and Ohio. Samples were tested, using samples grown to maturity under typical agricultural practices. Soybean trials conducted in Iowa, Illinois, Ohio, and Mississippi represent 39% of soybeans grown in the United States. (Agricultural Statistics 1991, USDA). CBTS considers this to be an adequate geographical representation for the purposes of bridging data.

The following soybean summary tables show that the equivalent metolachlor residues for alpha-metolachlor treatment on soybeans at the 2.67 lb ai/A treatment rate were usually less than, or only slightly higher than, residues resulting from the higher 4.0 lb ai/A treatment using racemic metolachlor. Equivalent metolachlor residues for alpha-metolachlor treated soybeans at the higher 4.0 lb ai/A treatment level were approximately twice the residues found at the 2.67 lb ai/A alpha-metolachlor treatment rate.

The following table summarizes the maximum forage, hay, and dry bean residues of racemic metolachlor and alpha-metolachlor (CGA-77102), determined as CGA-37913 and CGA-49751, resulting from application of racemic metolachlor and alpha-metolachlor (CGA-77102) to soybeans. Average residues are listed in "()."

	Racemic Metolachlor 4.0 lb ai/A Max/(Avg) ppm	alpha- Metolachlor 2.67 lb ai/A Max/(Avg) ppm	alpha- Metolachlor 4.0 lb ai/A Max/(Avg) ppm	
FORAGE	1.6 (0.87)	1.2 (0.64)	1.6 (1.1)	
НАЧ	5.6 (2.8)	5.8 (2.8)	7.5 (5.1)	
DRY BEANS	0.24 (0.10)	0.13 (0.08)	0.27 (0.18)	

PHI's for studies conducted in the above four states ranged, for forage: 30-31 days; for hay: 30-31 days; and for dry beans: 127-169 days. The range of days between harvest to extract for these soybean trials were for forage: 360-380 days; for hay: 365-382 days; and for dry beans: 47-297 days. The maximum number of days for these samples to spend between extract to analysis were all approximately the same, 4-9 days.

FIELD RESIDUES: SOYBEAN (SUMMARY), TRIALS CONDUCTED IN MISS, IL, IA, AND OH (Part of Registrant's TABLEII).

	IC METOLA	CHLOR (DUA	AL 8E)	ALPHA-	METOLACHLO	R (CGA-77	LO2 8E)
RATES LB AI/A PPI	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM	RATES LB AI/A PPI	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM
FORAGE							
CONTROL	0.66	5	0.39 (0.30)	CONTROL			
			•	2.67	1.23	8	0.64 (0.39)
4.0	2.51	10	1.15 (0.75)	4.0	1.55	6	1.11 (0.35)
НАУ							
CONTROL	2.78	4	1.23 (1.28)	CONTROL			•
			•	2.67	5.83	10	2.29 (1.94)
4.0	5.64	10	2.25 (1.77)	4.0	7.49	4	5.07 (1.97)
			DRY	BEANS			
CONTROL	<0.08	6 .	0.06 (0.02)	CONTROL			
		,		2.67	0.13	10 .	0.08 (0.03)
4.0	0.24	10	0.13 (0.10)	4.0	0.27	5	0.16 (0.11)

TRIALS CONDUCTED IN MISS, IL, IA AND OH
CGA-37913 & CGA-49751 RESIDUES REPORTED AS METOLACHLOR/CGA-77102
EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14
DATA FROM "3L" FILE

FIELD RESIDUES: SOYBEAN (SUMMARY, CONTINUED) TRIALS CONDUCTED IN MISS, IL, IA AND OH PHI RANGE, DAYS FROM HARVEST TO EXTRACT, DAYS FROM EXTRACT TO ANALYSIS FOR RACEMIC METOLACHLOR AND ALPHA-METOLACHLOR						
PHI RANGE (DAYS)	RANGE HARVEST TO EXTRACT (DAYS)	RANGE EXTRACT TO ANALÝSIS (DAYS)				
	FORAGE					
30 - 31	360 - 380	4-9				
	HAY					
30 - 31	365 - 382	5-7				
,	DRY BEANS					
127 - 169	247 -297	4-9				

TRIALS CONDUCTED IN MISS, IL, IA AND OH

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACHLOR/CGA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

METOLACHLOR/77102 EQUIVALENTS ARE CALCULATED FROM THE ADDITION OF THE RESIDUE VALUES FOR THE TWO METABOLITES, CGA-49751 AND CGA-37913.

NOTE: DATA FROM "A:\FCORN_2.SUM" 4L FILE

FIELD TRIALS: SWEET CORN (MRID No. 439289-42)

Field trials on sweet corn were conducted at the (2 + 2) lb ai/A application rate for alpha-metolachlor and at the (3 + 3) lb ai/A application rate for racemic metolachlor. Application was made pre-plant incorporated (PPI) + post-emergent at layby (PE). Formulations used included CGA-77102 8E (alpha-metolachlor) and Dual 8E (racemic metolachlor). Samples were grown to maturity under typical agricultural practices. Total sweet corn treatment was equivalent to a seasonal total of 4.0 lbs ai/A alpha-metolachlor and 6.0 lbs ai/A racemic metolachlor. The Registrant's contention was that the seasonal total of 4.0 lbs ai/A alpha-metolachlor is biologically equivalent to, or as effective as, 6.0 lbs ai/A of racemic metolachlor.

Trials were conducted from March to November, 1995, in Florida, New York, Michigan and California. Samples were tested, using samples grown to maturity under typical agricultural practices. Sweet corn trials conducted in the four States of Florida, New York, Michigan, and California represent 58% of sweet corn grown in the United States (Agricultural Statistics 1991, USDA). CBTS considers this to be an adequate geographical representation for the purposes of this petition.

The following table summarizes data for all racemic metolachlor and alpha-metolachlor residues detected in/on field and sweet corn samples, including the number of samples with maximum residues reported. All maximum and mean concentrations of alpha-metolachlor, at the 1X application rate, were less than the concentration of racemic metolachlor at the 1X application rate.

FIELD RESIDU	FIELD RESIDUES: SWEET CORN (SUMMARY)FIELD TESTS IN CA, FL, NY AND MI						
	RACEMIC ME	TOLACHLOR			ALPHA-METOLAC	CHLOR CGA-7710	2
RATES LB AI/A PPI + PE	MAXIMUM	NO OF SAMPLES	AVERAGE (STD DEV)	RATES LB AI/A PPI + PE	MAXIMUM	NO OF SAMPLES	AVERAGE (STD DEV)
F				RAGE	•		•
CONTROL	<0.08	4	<0.08 (0)				•
3+3	5.75	10	1.59 (1.82)	2+2	4.44	10	1.15 _. (1.33)
			· E	AR			
CONTROL	<0.08	4	<0.08 (0)		•		•
3+3	<0.08	8	<0.08 (0)	2+2	<0.08	8	<0.08 (0)
			FOL	DDER			
CONTROL	<0.08	4	<0.08 (0)			•	•
3+3	5.54	8	2.18 (2.06)	2+2	2.29	8	1.63 (0.70)

[•]FIELD TESTS IN CA, FL, NY AND MI

[•]RESIDUES FROM RACEMIC METOLACHLOR (DUAL 8E) OR ALPHA-METOLACHLOR (CGA-77102 8E) APPLICATION PPI + PE AT LAYBY

[●]CGA-37913 AND CGA-49751 RESIDUES ARE REPORTED AS METOLACHLOR/CGA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

[•]DATA FROM " 4L " FILE A:\SW_FCORN.SUM L "FIELD RESIDUES: (SUMMARY)

FIELD RESIDUES: SWEET CORN (SUMMARY, CONTINUED) TRIALS CONDUCTED IN FL, NY, MI AND CA PHI RANGE, DAYS FROM HARVEST TO EXTRACT, DAYS FROM EXTRACT TO ANALYSIS FOR RACEMIC METOLACHLOR AND ALPHA METOLACHLOR

PHI RANGE (DAYS)	RANGE HARVEST TO EXTRACT (DAYS)	RANGE EXTRACT TO ANALYSIS (DAYS)			
FORAGE					
29 - 33	68 - 117	8-11			
EAR					
29 - 33	68 - 117	6 - 13			
FODDER					
33 - 64	42 - 94	6 - 15			

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACHLOR/CGA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

TRIALS CONDUCTED IN: FL, NY, MI AND CA

NOTE: DATA FROM "4L" FILE

PROCESSING DATA

Processing study data were not submitted for alphametolachlor, however, there is no reasonable expectation that alpha-metolachlor should concentrate differently than racemic metolachlor during processing. CBTS feels that there is no reasonable concern that residues of alpha-metolachlor in processed commodities will exceed the current tolerance levels for racemic metolachlor.

SECONDARY RESIDUES IN MEAT AND MILK

There are significant animal feed items which would be involved following the proposed use of alpha-metolachlor on several crops, but residues of alpha-metolachlor in plant commodities and animal feed items are expected to be lower than current racemic metolachlor residues. Therefore, there is no reasonable expectation that secondary residues of alpha-metolachlor in livestock or poultry, meat byproducts, fat, milkfat, whole milk, or eggs will exceed the current tolerance levels already established for racemic metolachlor.

CODEX

There is no request for a change of tolerance expression, or tolerance levels at this time. Harmonization between U.S., CODEX and Canadian tolerances for metolachlor will be handled by the reregistration process.

cc: RF, Metolachlor (RACEMIC) SF, Metolachlor-ALPHA SF,
 Metolachlor (RACEMIC) Reg Std File, L. Kutney, E. Haeberer,
 Eugene Wilson, RD; Joanne Miller, RD
cc without Confidential Appendix: Circu

CM2:305-5351:RM804D:7509C:LLKutney:llk-date: 10/25/96

RDI: TPT2: date; Loranger: 10/29/96; E. Haeberer: 11/12/96;

PRODUCT CHEMISTRY APPENDICES
NOT CONFIDENTIAL

"REVIEW OF PRODUCT CHEMISTRY (SUBDIVISION D), GLN'S 61 TO

Product Chemistry Table 1: Manufacturin REG. NUMBER: 100-, (TEST SUBSTAN			iral Metolachlor 1
GLN	MRID	Status ²	Deficiency ³
61-1: Product Identity & Disclosure of Ingredients	43928901	Α	
61-2: Starting Materials & Manufacturing Process	43928901	Α	
61-3: Discussion of Impurities	43928901	A	
62-1: Preliminary Analysis	43928902	Α	
62-2: Certification of Limits	43928902	A	
62-3: Analytical Methods	43928902	Α	

For example, test substance might be PAI and product might be 95% technical MP.
 A = Acceptable. N = Unacceptable (see Deficiency).
 Refer to CBI Appendix A for details.

GLN	MRID	Status ¹	Result ² or Deficiency
63-2: Color	43928903	Α	Pale Yellow to Light Brown PAI/TGAI
63-3: Physical State	43928903	A	Clear Liquid PAI/TGAI
63-4: Odor	43928903	A	Weak Odor PAI/TGAI
63-6: Boiling Point	43928903	A	Decomposition starts at 290 C, Boils at 334 C for PAI
63-7: Density, Bulk Density, or Specific Gravity	43928903	A	1.117 g/cm³ for TGAI typical at 20 C
63-8: Solubility	43928903	A	Water 0.480 g PAI/I at 25 C TGAI is Completely miscible in at 25 C, in: n-hexane, Methanol, Acetone, Toluene, n-Octano
63-9: Vapor Pressure	43928903	A	2.8 x 10 ⁻⁵ mmHg @ 25 C for PAI
63-10: Dissociation Constant	43928903	A	PAI had no dissociation constant in pH 2-12 rangusing OECD Method 112.
63-11: Octanol/Water Partition Coefficient	43928903	A	log Pow = 3.05 @ 25 C
63-12: pH	43928903	A	TGAI has pH of 7.8 @ 25 C (1% aqueous dispersion-ASTM E 70-77)
63-13: Stability	43928903	A	% Decomposition in Sunlight (tested with xenon arc lamp) = <5% in one Day. @ Room Temp for over 3 days, TGAI showed not decomposition, when contacting zinc, aluminum copper, or iron. It also showed not decomposition when exposed to the same metals at 38 C, EXCEPT for exposure to iron, which caused 3% decomposition. TGAI Stable to glass, carbon and stainless steel, aluminum and tin at 37 C and RT for 1 month, showing NO decomposition. There was NO decomposition in 3-6 months at -18 C, RT, and 3 C for TGAI stored in stainless steel containers.
63-14: Oxidizing or Reducing Action	43928903	А	No oxidizing or reducing properties reported, usir Method OECD No. 113, ASTM G 31-72.
63-15: Flammability	43928903	Α .	Flash Point 190 C (method EEC A.9) TGAI Auto Ign Temp 430 C (method A.15) TGAI
63-16: Explodability	43928903	A	Not explosive, based on test results using TGAI (method EEC A.14) for thermal sensitivity and mechanical sensitivity.
63-17: Storage Stability	43928903	N	In Progress-Work with commercial packaging
63-18: Viscosity	43928903	A	TGAI tested using OECD #114. At 20 C: 113.8 ± 3.7 mPa ● S at shear rate D= 0.255 <d<0.870 s<sup="">-1 At 40 C: 33.5 ± 0.85 mPa ● S at shear rate D= 0.639<d<2.97 s<sup="">-1</d<2.97></d<0.870>
63-19: Miscibility	43928903	N/A	Not Reported
63-20: Corrosion Characteristics	43928903	Α	TGAI & tin plate, iron steel, stainless steel and polyethylene unchanged after 1 month storage.

¹ A = Acceptable; N = Unacceptable (see Deficiency); N/A = Not applicable.
2 For example, "brown" for 63-1; "155° C" for 63-4.

(Ciba Lists 63-21 Dielectric Breakdown Voltage as N/A)

CHEMICAL STRUCTURE--APPENDICES
NOT CONFIDENTIAL

DETAILED DATA--APPENDICES NOT CONFIDENTIAL

CONFIDENTIAL APPENDIX PRODUCT CHEMISTRY

APPENDICES

RESIDUES IN FIELD CORN
"2L.WP5" DATA FROM 40\95122-I.DOC, TABLE IV
38538

TABLE II. FIELD TESTS - ME "f:\meto\new\4L-res.WP5"	H	OLACHLOR AND CG 42\95124-1.doc	(1) CGA-77.	APPLIED	TO FIELD AND SWEET CORN	D SWEET (ORN
LOCATION/NUMBER	VARIETY	FORM	SOIL	METOLACH- LOR	CGA-77102 LB AI/A	SPRAY VOL	TIMING
				CGA-24705 LB AI/A		(GPA)	
SWEET CORN						•	
California 02-HR-002-95	Sweetie 82	8臣	Sandy Loam	3.0	2.0	20 20	Preplant Incorporated Post Directed at Lay-By
New York 05-HR-001-95	Sprite Bicolor	8臣	Loam	3.0 3.0	2.0	20 20	Preplant Incorporated Post Directed by Lay-By
Florida 07-HR-002-95	Golden Queen	8臣	Sand	3.0	2.0	20 20	Preplant Incorporated Post Directed by Lay-By
Michigan NE-HR-707-95	Bodacious	8臣	Loam	3.0	2.0	20	Preplant Incorporated Post Directed at Lay-By
FIELD CORN	,			-			-
Illinois 04-HR-002-95	4393/Ciba	8臣	Silty Clay Loam	3.0 3.0	2.0	20	Preplant Incorporated Post Directed at Lay-By
Iowa MW-HR-150-95	4273/Ciba	8E	Clay Loam	3.0 3.0	2.0	20 20	Preplant Incorporated Post Directed at Lay-By

S

RESIDUES 1 CHIRAL MET (This was CONDUCTED CGA-37913 equivalent	RESIDUES IN FIELD CORN FOLLOW CHIRAL METOLACHLOR (CGA-77102 (This was part of TABLE IV.) CONDUCTED IN IN, IL, NY, MN, CGA-37913 and CGA-49751 resid equivalents, using correction	N FIELD CORN : OLACHLOR (CGA. part of TABLE IN IN, IL, NY and CGA-49751 s, using corr	CORN FOLLOW: R (CGA-77102 TABLE IV.) IL, NY, MN, 1 -49751 residu g correction	OLLOWING APPLITY 17102 8E) "21 IV.) 38538+ 9 MN, IN, NC, 1 residues are retion factors	PLICA "2L" + 9/1 , AND e rep rs of	RESIDUES IN FIELD CORN FOLLOWING APPLICATION OF METOLACHLOR CHIRAL METOLACHLOR (CGA-77102 8E) "2L" f:\meto\new\"2l.wp5" (This was part of TABLE IV.) 38538+ 9/10/96 FIELD TRIALS OI CONDUCTED IN IN, IL, NY, MN, IN, NC, AND CA CGA-37913 and CGA-49751 residues are reported as metolachlor equivalents, using correction factors of 1.47 and 1.14.	O E	Dual 8E) OR 40\95122-L.DOC FIELD CORN, CGA-77102
ΠD	ANALYT	RATE S	HARVE	EXTRA CT	PH I	CGA-49751	CGA-37913	METOLACHLO R OR CGA-
:	l	LB AT /A	TO	TO	<u>ں</u> ۔	PPM EQUIV	PPM EQUIV	7102
		A1/A PPI+ PE	CT (D)	SIS (D)	,			PPM EQUIV
		,		FORAG	E-III	FORAGE-ILLINOIS		
1-3- A	contro 1	-	306	5	1	<0.05	<0.03	<0.08
3-3- A, B	CGA- 77102	2 +	306	5	32	0.25 0.24	0.18 0.15	0.43 0.39
4-3- A, B	CGA- 77102	+ %	306	. 5	32	0.52 0.20	0.21 0.14	0.73 0.35
	•		•	SILAG	E-IL]	SILAGE-ILLINOIS		
1-4 A	contro 1	ŧ ŧ	276	3	1	<0.05	0.06	90.0
3-4- A, B	CGA- 77102	+	276	3	09	0.25 0.10	0.13 0.14	0.38 0.24
4-4- A, B	CGA- 77102	+ ~ ~	276	ю .	60	0.08 0.11	0.14 0.14	0.21 0.26
•	•		,	FODDE	R-IL)	FODDER-ILLINOIS		
1-5- A	contro 1	1	246	4	1	<0.05	0.042	0.04
3-5- A, B	CGA- 77102	7 7	246	4	10	0.06 0.12	0.10 0.14	0.16 0.25
4-5- A.B	CGA- 77102	+ ოო	246	4	10	0.14 0.19	0.27 0.19	0.40 0.39

RESIDUES CHIRAL ME (This was	RESIDUES IN FIELD CORN FOLLOW CHIRAL METOLACHLOR (CGA-77102 (This was part of TABLE IV.)) CS =	CORN FOLLOWING R (CGA-77102 8E TABLE IV.) 38	ING AP 8E) 38538	PLICA "2L" + 9/1			Dual 8E) OR 40\95122-L.DOC
CGA-37913 equivalen	اب	A-4 ng		residues are		ed 47	as metolachlor/CGA-77102 and 1.14.	4-77102
QI	I 💾	RATE	HARVE	EXTRA	PH T	CGA-49751	CGA-37913	METOLACHLO
	1	LB	TO	TO	,e,	PPM EQUIV	PPM EQUIV	77102
	•	AL/A PPI+ PE	CT (D)	SIS (D)	•			PPM EQUIV
				GRAIN	N-ILL	GRAIN-ILLINOIS		
1-6- A	contro 1	1	240	3	1	<0.05	<0.03	<0.08
3- 6A, B	CGA- 77102	+ 7 7	240	3	10 4	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08
4-6- A, B	CGA- 77102	+ ოო	240	3	10 4	0.05 <0.05	<0.03 ·	<0.08 <0.08
		-		FORAGE-NEW	E-NE	W YORK	•	
1-3- A	contro 1	1	264	20	1	<0.05	<0.03	<0.08
2-3- A, B	metola chlor	+ 6 M	264	20	3.0	0.10 0.15	0.14 0.23	0.24 0.38
3-3- A, B	CGA- 77102	+	264	20	.30	0.08 0.10	0.11 0.23	0.19 0.33
4-3- A, B	CGA- 77102	+ e e	264	20	3.0	0.08 0.07	0.12 0.08	0.20 0.14
			•	SILAGE-NEW	E-NE	W YORK		
1-4- A	contro 1	E E	247		I I	<0.05	<0.03	<0.08
2-4- A, B	metola chlor	+ ოო	247	6	58	0.25 0.28	0.22 0.41	0.47 0.68
،								

1		·		,	<u> </u>							T
Dual 8E) OR 40\95122-L.DOC FIELD CORN, CGA-77102	METOLACHLO R OR CGA- 77102 PPM EQUIV	0.33 0.27	0.23 0.47		0.04	0.64 0.66	0.36 0.39	<0.08 0.19		<0.08	<0.08 <0.08	<0.08 <0.08
	CGA-37913 PPM EQUIV	0.20 0.16	0.10 0.32		0.037	0.38 0.38	0.21 0.24	<0.03 0.10		<0.03	<0.03 <0.03	<0.03 <0.03
rion of M E:\meto\n)/96 FIE CA orted as	CGA-49751 PPM EQUIV	0.13 0.10	0.13 0.15	V YORK	<0.05	0.25 0.28	0.14 0.15	<0.05 0.09	YORK	<0.05	<0.05 <0.05	<0.05 <0.05
LICAT 21." 121." 121." 9/10 AND repose reposes of	PH I (D	58	58	R-NEV	! !	10	10	10	I-NEW	1	10 0	10
ING AP 8E) 38538 IN, NC ues ar facto	EXTRA CT TO ANALY SIS (D)	6	o	FODDER-NEW	7	7	7	7	GRAIN-NEW	4	4	4
RN F CGA- BLE NY, 751	HARVE ST TO EXTRA CT (D)	247	247		214	214	214 .	214		218	218	218
N F1 🗀 .3 e4 8	RATE S LB AI/A PPI+	5 5 +	3 +		1	+ & &	7 7	+ %			3 + 3	2 +
IN 1 ETOL: S par D IN 3 and	! ————————————————————————————————————	CGA- 77102	CGA- 77102		contro 1	metola chlor	CGA- 77102	CGA- 77102	-	contro 1	metola chlor	CGA- 77102
RESIDUES CHIRAL ME (This was CONDUCTED CGA-37913 equivalen	QI	3-4- A, B	4-4- A, B		1-5- A	2-5- A, B	3-5- A, B	4-5- A, B	3	1-6- A	2-6- A, B	3-6- A, B

<0.08

<0.03 <0.03

<0.05

10

4

218

ოო

CGA-77102

4-6-A, B

•				<u> </u>						•		•		
(Dual 8E) OR " 40\95122-L.DOC ON FIELD CORN, " / CGA-77102	METOLACHLO R OR CGA- 77102 PPM EQUIV		<0.08	2.75 0.96	0.37 0.70		<0.08	0.15 0.25	0.11 0.10		<0.08	0.32 0.33	0.16 0.15	
\sim z \sim 1	CGA-37913 PPM EQUIV		<0.03	0.52 0.20	0.07 0.14		<0.03	0.06 0.12	0.06 0.05		<0.03	0.13 0.14	0.07 0.04	
ION O:\met /96 CA	CGA-49751 PPM EQUIV	FORAGE-MINNESOTA	<0.05	2.23 0.76	0.30 0.56	SILAGE-MINNESOTA	<0.05	0.09 0.13	0.06.0.05	FODDER-MINNESOTA	<0.05	0.19 0.20	0.08 0.11	GRAIN-MINNESOTA
CCA 	PH I Ι (D)	-MIN	1	30	30	-MIN	1	84	84	-MIN	i 1	12 7	12 7	-MIM
.NG 8E) 385 385 .N, les fac	EXTRA CT TO ANALY SIS	FORAGE	15	15	15	SILAGE	6	6	6	FODDER	8	&	8	GRAIN
	HARVE ST TO EXTRA CT		286	286	286	•	236	236	236		201	201	201	•
я т.т. 9	RATE S LB AI/A PPI+		I I	3 + 3	+			် + က က	4	•	 	+ 3 3	4 +	
ES I MET Was FED 913	 		contro 1	metola chlor	CGA- 77102	•	contro 1	metola chlor	CGA- 77102		contro 1	metola chlor	CGA- 77102	
RESIDUES 1 CHIRAL MET (This was CONDUCTED CGA-37913 equivalent	OI .		. 1-3- A	2-3- A, B	3-3- A, B		1-4- A	2-4- A, B	3-4- A, B		1-5- A	2-5- A, B	3-5- A, B	

RESIDUES IN FIELD CORN FOLLOWING APPLICATION OF METOLACHLOR (Dual 8E) OR
CHIRAL METOLACHLOR (CGA-77102 8E) "2L" f:\meto\new\"21.wp5" 40\95122-L.DOC
(This was part of TABLE IV.) 38538+ 9/10/96 FIELD TRIALS ON FIELD CORN,
CONDUCTED IN IN, IL, NY, MN, IN, NC, AND CA

CGA-37913 and CGA-49751 residues are reported as metolachlor/CGA-77102 equivalents, using correction factors of 1.47 and 1.14.

				78								•
	METOLACHLO	77102	PPM EQUIV	<0.08	<0.08 <0.08	<0.08 <0.08		<0.08	1.58 0.59	0.31 0.47		
	CGA-37913	PPM EQUIV	•	<0.03	<0.03 <0.03	<0.03 <0.03		<0.03	0.36 0.16	0.05 0.10		•
T: 1 Gird	CGA-49751	PPM EQUIV		<0.05	<0.05 <0.05	<0.05 <0.05	FORAGE-INDIANA	<0.05	1.23 0.43	0.26 0.36		
100	PH	٦Đ,	~	1	12 7	12 7	BE-IN	l L	30	30		
11 TOO O	EXTRA	1 C	ANALY SIS (D)	7	7	4	FORA	9	9	·. 9		
בסדדכים דמסכים	HARVE	ST TO	EXTRA CT (D)	207	207	207		243	243	243		
	RATE	LB	AI/A PPI+ PE	Cont rol	+ ~ ~ ~	7 7 7		Cont rol	+ 8 8	7 7	,	
equity datering, dating	ANALYT	.	-	contro	metola chlor	CGA- 77102		contro 1	metola chlor	CGA- 77102		
בלמד גנ	ID			1-6- A	2-6- A,B	3-6- A,B		1-3- A	2-3- A, B	3-3- A, B		

	1
	1
	1
	1
	Ł
	ı
	•
~	
٠.	•
	ŧ
LANA	1
_	
u:	•
-4	
i	1
_	
\neg	-1
_	1
/.	1
4	
. i	1
_	1
٠.	4
•	1
	1
TI	1
된 기	
r ta	L
٠,	. 6
٠,	1
S.	1
~	
_	
┙	1
H	1
_	ı
·^	
~,	
_	
	-1
	1
	-1

on		•			STUAGE-INDIANA	7T - 75	DIANA		
	-4	contro	Cont	187	8		<0.05	<0.03	<0.08
	K		rol	-	:				

Dual 8E) OR 40\95122-L.DOC r FIELD CORN, CGA-77102	METOLACHLO R OR CGA- 77102 PPM EQUIV	0.28 0.23	<0.08 0.13		<0.08	2.81 0.38	0.32 0.24	-	0.03
	CGA-37913 PPM EQUIV	0.06 0.08	<0.03 0.04		<0.03	0.54 0.11	90.0 60.0		0.032
	CGA-49751 PPM EQUIV	0.22 0.15	<0.05 0.09	FODDER-INDIANA	<0.05	2.26 0.27	0.23 0.17	FODDER-INDIANA	<0.05
LICA: 12L" 1 2L" 1 AND repc	PH I (D)	87	87	R-IN	<u>.</u>	10	10 7	R-IN	l l
WING AP 2 8E) 38538 IN, NC dues ar	EXTRA CT TO ANALY ŚIS (D)	8	8	FODDE	10	10	10	FODDE	13
CORN FOLLOWING (CGA-77102 8E) TABLE IV.) 38E L, NY, MN, IN, 49751 residues CORRECTION fac	HARVE ST TO EXTRA CT (D)	187	187	•	167	167	167		178
D 7 H H 4 L	RATE S LB AI/A · PPI+ PE	+ e e	2 2 +		Cont rol	+ 3 3,	+		Cont rol
	ANALYT E	metola chlor	CGA- 77102		contro 1	metola chlor	CGA- 77102		contro 1
RESIDUES 1 CHIRAL MET (This was CONDUCTED CGA-37913 equivalent	CI CI	2-4- A, B	3-4- A, B		1-5- A	2-5- A, B	3-5- A, B	,	1-5- A

	•			LODOI		LODDEN TINDIAMA		
100	contro 1	Control	178	.13	l I	<0.05	0.032	0.03
ž D	metola chlor	+ 3 +	178	13	10 7	1.72 0.27	0.67 0.20	2.40 0.47
				GRAI	N-INI	GRAIN-INDIANA	,	
0 7	1-6- contro	Cont rol	175	13] 	<0.05	<0.03	<0.08
<u> </u>	metola chlor	+ 3 3	175	13 ·	10 7	10 <0.05 7 <0.05	<0.03 <0.03	<0.08 <0.08
l								

	F 1		
RESIDUES IN FIELD CORN FOLLOWING APPLICATION OF METOLACHLOR (Dual 8E) OR	CHIRAL METOLACHLOR (CGA-77102 8E) "2L" f:\meto\new\"21.wp5" 40\95122-L.DOC	(This was part of TABLE IV.) 38538+ 9/10/96 FIELD TRIALS ON FIELD CORN,	
8E)	122	Ö D	!
al	/95	IEL	!
DQ.	40	N	
LOR	Wp5"	ר אין	
ACHI	21.1	RIA	AND CA
TOL	" /W	U	
K	o/ne	TEL	
0	neto		JI.
rior	E:\n	96/0	S C
ICA	- -	9/1	AND
PPL	= 2	+8	Ω,
AG D	3E)	3853	Ä
WIN	22	_	Ħ
OLLO	771(IV.)	IN, IL, NY, MN, IN, NC, AND CA
N	GA-	LE	NY,
COR	0	TAB	Ľ,
ELD	HUOH	of	
H	LACI	art	Z
I	ETO.	ğ,	DIN
UES	L	Wa	CIE
SID	IIRA	his	CONDUCTED
RE	Ü	<u>E</u>	ည

metolachlor/CGA-77102 1.14.		170) 17	7.7 PE	PPM	PPM	PPM	PPM	PPM	77102 PPM EQU <0.08 <0.08 0.94 0.	77102 PPM EQU <0.08 <0.08 0.94 0. 0.56 0.	CO.08 CO.08 CO.08 CO.08 CO.08 CO.08 CO.08	CO.08 CO.08 CO.08 CO.08 CO.08 CO.08 CO.08 CO.34 1.	PPM E <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.09 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08	PPM E
	목	7.7	PPM EQUIV	PPM <0.0	PPM <0.0	PPM	PPM 3 <0.0 3 <0.0 3 <0.0	3 <0.08 3 <0.08 3 <0.08 0.52 0.94 0. 0.19 0.56 0.	3 <0.08 3 <0.08 3 <0.08 0.52 0.94 0. 0.19 0.56 0.	3 <0.08 3 <0.08 3 <0.08 0.52 0.94 0. 0.19 0.56 0.	3 <0.08 3 <0.08 0.52 0.94 0. 0.19 0.56 0. 3 <0.08	PPM E 3 <0.08 3 <0.08 0.52 0.94 0.19 0.56 0.80 0.34 0.36 0.36	PPM E 3 <0.08 3 <0.08 0.52 0.94 0.19 0.56 0.80 0.34 0.36 0.36	PPM E 3 <0.08 3 <0.08 0.52 0.94 0.19 0.56 0.36 0.36 0.36
		E MAd		.03	.03	03	. 03 . 03 . 03 55 0.52	. 03 . 03 . 03 55 0.52	.03 .03 .03 55 0.52 38 0.19	. 03 . 03 . 55 0 . 52 . 03	.03 <0.08 .03 <0.08 .03 <0.08 .03 <0.08 .03 <0.08	.03 <0.08 .03 <0.08 .03 <0.08 .03 <0.09 .03 <0.08 .03 <0.08 .03 <0.08	.03 <0.08 .03 <0.08 .03 <0.08 .03 <0.09 .03 <0.08 .03 <0.08 .03 <0.36	.03 <0.08 .03 <0.08 .03 <0.08 .03 <0.094 .03 <0.08 .0 0.80 0.34 .0 0.80 0.36
	7710 PPM	A to the second			-		0.52	0.52 0.19	0.52	0.52	0.52	0.52 0.19 0.80 0.36	0.52 0.19 0.80 0.36	0.52 0.19 0.80 0.36
				•			0.52	0.52	0.52	0.52	0.52 0.19 0.80	0.52 0.19 0.80 0.36	0.52 0.19 0.80 0.36	0.52 0.19 0.80 0.36
IA-37913 IM EQUIV .03	M EQUIV	.03			.03			1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1	
	PPM EQUIV <0.03 <0.03	<0.03 <0.03 <0.03	<0.03	<0.03		1	The state of the s	0	0	0 6		1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
CGA-379 PPM EQU	03 03 03 03 55	03	1 00 1	I M I						<0.03	<0.03	1 1 1 1		
11 > 2 9	> 2 9	6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0		.16		NA		<0.	.61		11 6	11 6
	O.05 CO.05 CO.05 CO.05 CO.05 CO.05	<o.05< o=""> .0.05 .AROLINA .0.05 0.39 0.42</o.05<>	AROLINA <0.05	1 10 1	1	1	0.17 0.16	CAROLINA	< 0.05) -	0.24 0.61 0.10 0.13 CAROLINA 0.07
		<u> </u>	·		_	29 0	29 0	}	V 		58 0			
XTRA CO ONALY IS D)	ANALY SIS (D) 13 13	13 13 CO	OD A CE - NO!	יייייי יייטיטיויי	7	7		SILAGE-NORTH	13		13	-	OER-NO	ER-NOI
	-y	EXTRA CT (D)	175	Ħ.	270	270	270	ß				1 '' 1 ''		113 0DD 115
4	KATE S	LB AI/A PPI+ PE	+ +		Cont	 	C)		243		243			
11	ANALYT E	1	CGA- 77102	(S S	+ m m	2 + 2					243 243 243	243 243 243	243 243 212 .
7	ID ANALY'			:	contro Co		+			contro Cont 243	Cont rol 3 +	Cont 243 rol 3 + 243 3 + 243 2 + 243	Cont 243 3 + 243 2 + 243 2 + 243	Cont 243 3 + 243 2 + 243 2 - 243 Cont 212

RESIDUES CHIRAL ME (This was CONDUCTED CGA-37913 equivalent	IN F1 IN F1 ETOLAC S part D IN 1 3 and nts. u	D C OR F T ILL	8 LEL 1 🔈 (3)	ING AP 8E) 38538 IN, NC ues ar facto	PLICA: 12L" 19/1(1 AND 2 repu	rion o E:\met 0/96 CA orted 1.47		. (Dual 8E) OR ." 40\95122-L.DOC ON FIELD CORN, or/CGA-77102
ΩI	II F-1	ATE	HARVE		PH I	CGA-49751	CGA-37913	METOLACHLO R OR CGA-
		AI/A PPI+ PE	EXTRA CT (D)	ANALY SIS (D)	O) (FFM EQUIV	FFM EQUIV	PPM EQUIV
3-5- A	CGA- 77102	2 +	212	15	95	0.37 0.22	0.75 0.54	1.12 0.76
	-			GRAIN-NORTH	ЯТН	CAROLINA		
1-6- A	contro 1	Cont rol	228	13	1	<0.05	<0.03	<0.08
2-6- A, B	metola chlor	3 +	228	13	95	<0.05 <0.05	<0.03 0.03	<0.08 <0.08
3-6- A, B	CGA- 77102	7 7 +	228	13	95	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08
				FORAGE	-CAL	FORAGE-CALIFORNIA		
1-3- A	contro 1	Cont rol	239	10	1 1	<0.05	0.031	<0.08
2-3- A	metola chlor	3 + 33 +	239	10	32	0.07 0.08	0.05 0.06	0.12 0.15
3-3- A, B	CGA- 77102	2 +	239	10	32	<0.05 <0.05	0.04 0.05	0.04 0.05
				SILAGE	-CAL	SILAGE-CALIFORNIA		
1- 4-A	contro 1	1	210	12	63	<0.05	<0.03	<0.08
2-4- A	metola chlor	+ e e	210	12	63	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08

RESIDI	RESIDUES IN FIE	ELD CO	LD CORN FOLLOW	WING AP	PLICA	LD CORN FOLLOWING APPLICATION OF METOLACHLOR (Dual 8E) OR
(This was	was part	of TA	of TABLE IV.)	38538	+ 9/1	0/96 FIELD		ELD CORN,
CGA-37913 equivalent	an an	IN, IL, d CGA-49 using c	IL, NY, MN, -49751 resign g correction	, NY, MN, IN, NG, A 9751 residues are r correction factors	AND e repu		as metolachlor/CGA-77102 and 1.14.	-77102
ΩI	12	RATE	HARVE	EXTRA	PH	CGA-49751	CGA-37913	METOLACHLO
	ਬ	LB	TO	10.	٦٠,	PPM EQUIV	PPM EQUIV	77102
		AL/A PPI+ PE	CT (D)	SIS (D)		•		PPM EQUIV
3-4- A.B	CGA-77102	+	210	12	63	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08
				FODDER	-CAL	FODDER-CALIFORNIA	•	•
1-5- A	contro 1	l I	195	7	.1	<0.05	<0.03	<0.08
2-5- A,B	metola chlor	+ ოო	195	7	94	<0.05 0.08	0.05 0.04	0.05 0.11
3-5- A,B	CGA- 77102	7 7 +	195	4	94	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08
				GRAIN-	-CALI	GRAIN-CALIFORNIA		
1-6- A	contro 1.	1	204	8	1	<0.05	<0.03	80.0>
2-6- A, B	metola chlor	+ #	204	8	94'	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08
3-6- A.B	CGA- 77102	4	204	8	94	<0.05 <0.05	<0.03	<0.08 <0.08
11	TRIALS ON	-	FIELD CORN, C	CONDUCTED	NI	IN, IL, NY,	MN, IN, NC,	AND CA

MAXIMUM RESIDUE VALUE IS HIGHLIGHTED FOR EACH RESIDUE CATEGORY NOTE: 77273

TRIALS CONDUCTED IN IL, NY, MN, IN, NC, AND CACGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

46

TABLE IIIB. FIELD TESTS, LAST TREATMENT DATE, AND SAMPLE TIME INTERVALS FOR FIELD CORN FIELD TRIALS FOR FIELD CORN IN ILLINOIS AND IOWA

ID	FIELD TEST	ANALYT E	LAST DAY TREATME NT	SAMPLI NG DATE	EXTRACT ION DATE	ANALYSIS DATE	DAYS FROZE N
			FIELD COR	N-ILLINO	IS ·	•	
04-HR- 002-05	Forag e	CGA- 49751	7/10/95	8/09/9 5	12/01/9 5	12/05/95	114
П	Forag e	CGA- 37913	7/10/95	8/09/9 5	12/01/9 5	12/05/95	114
п	Fodde r	CGA- 49751	7/10/95	10/19/ 95	11/27/9 5	11/29/95	39
	Fodde r	CGA- 37913	7/10/95	10/19/ 95	11/27/9 5	11/30/95	39
#	Grain	CGA- 49751	7/10/95	10/19/ 95	11/28/9 5	12/01/95	40
İ	Grain	CGA- 37913	7/10/95	10/19/ 95	11/28/9 5	12/04/95	40
			FIELD C	ORN-IOWA			•
MW-HR- 150-95	Forag e	CGA- 49751	7/06/95	8/06/9 5	12/14/9 5	12/19/95	130
II	Forag e	CGA- 37913	7/06/95	8/06/9 5	12/14/9 5	12/19/95	130
. 10	Fodde r	CGA- 49751	7/06/95	10/10/ 95	12/07/9 5	12/12/95	58
ff.	Fodde r	CGA- 37913	7/06/95	10/10/ 95	12/07/9 5	12/12/95	58
п	Grain	CGA- 49751	7/06/95	10/10/ 95	12/11/9 5	12/13/95	62
п	Grain	CGA- 37913	7/06/95	10/10/ 95	12/11/9 5	12/13/95	62

RESIDUES	: FIELD C	ORN (SUMM	IARY), TRI	ALS CONDU	CTED: IL,	NY,MN,IN,	NC, CA
М	ETOLACHLO	R (DUAL 8	E)	CHIRAL	METOLACHL	OR (CGA-	77102 8E <u>)</u>
RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLE S	AVERAGE (STD DEV) PPM	RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLE S	AVERAGE (STD DEV) PPM
		•	FOI	RAGE	·		
CONTRO L	<0.08	6	<0.08 (0.00)	CONTRO L			
2 + 2				2 + 2	0.70	12	0.35 (0.19)
3 + 3	2.75	10	0.89 (0.81)	3 + 3	0.73	4	0.36 (0.26)
			sii	LAGE .			
CONTRO L .	<0.08	6	0.08 (0.01)	CONTRO L			
2 + 2			·	2 + 2	0.49	12	0.22 (0.14)
3 + 3	1.41	10	0.40 (0.40)	3 + 3	0.47	4	0.29 (0.12)
			FOI	DDER			
CONTRO L	0.14	8	0.07 (0.04)	CONTRO L			•
2 + 2				2 + 2	1.12	14	0.31 (0.31)
3 + 3	2.81	12	0.86 (0.91)	3 + 3	0.40	·4	0.26 (0.16)
			GR	AIN			-
CONTRO L	<0.08	6	0.08 (0.00)	CONTRO L		,	•
2 + 2				2 + 2	<0.08	12	0.08 (0.00)
3 + 3	<0.08	10	0.08	3 + 3	<0.08	4	0.08

NOTE: DATA FROM "2L" FILE, (FR 2L A:\FCORN.SUM)
CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102
EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14. TRIALS CONDUCTED IN IL, NY, MN, IN, NC, AND CA

	PHI	FIELD RESIDUES: FIELD OF TRIALS CONDUCTED IN IL, RANGE, DAYS FROM HARVEST TANALYSIS FOR METOLCHLO	NY, MN, IN, NC, AND O EXTRACT, DAYS FRO	CA M EXTRACT TO
PHI (DA)	RANGE (S)		RANGE HARVEST TO EXTRACT (DAYS)	RANGE EXTRACT TO ANALYSIS (DAYS)
		FC	RAGE	
29-	32		239-306	5-20
	,	si	LAGE	•.
58-	84		210-276	3-13
•		- FC	DDDER	
94-:	127		167-246	4-15
-		G	RAIN	
94-	127		175-240	3-13

NOTE: DATA FROM "2L" FILE, (FR 2L A:\FCORN.SUM)
CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102
EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14
TRIALS CONDUCTED IN IL, NY, MN, IN, NC, AND CA

TABLE IV. APPLICATIO CONDUCTED	NO	F ME 8E ;	TOLACHLCAND CGA-	. 0	3A-771 TO F	GRA-77102 DETERMINED AS SE TO FIELD CORN (SWEET ORN 2.SUM"	SH	GA-4975 ORN IN ?	CGA-49751 AND CGA-37913 AFTER CORN IN ANOTHER TABLE) TRIALS	GA-3791. TABLE)	3 AFTER TRIALS
OI OI	(1bs a.i./A)	HARVEST Date	HARV-	EXT- RACT	PHI	EXTRACT Date	ANAL DATE	CGA-49751	CGA- 37913	CGA-	Equivalent*
	25 I E E E E E E E E E E E E E E E E E E		EXT- RACT (D)	ANAL Y-SIS (D)							
•									•		
Field Test: 04-HR-	•								3		
002-95							•				
FORAGE-	FORAGE-ILLINOIS			:							
1-3-A	Control	8/9/95	112	4	30	12/1/95	12/5/9 5	12/5/ 95	0.031	<0.05	0.031
2-3-A	3+3 (Metola	8/9/95	112	4	30	=	=		. 0.03	0.098	0.191
2-3-B	3 + 3 (Metola chlor)	8/9/95	112	4	30	.	=	.	0.109	0.093	0.202

3 AFTER TRIALS	Equivalent*	0.063	0.141
3A-3791 TABLE)	CGA-49751	<0.05 0.063	0.056
1 AND CC ANOTHER	CGA- 37913	0.063	0.085
388-4975 ORN IN A	CGA-49751	=	
INED AS C (SWEET CO.	ANAL DATE	=	
OR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER 77102 8E TO FIELD CORN (SWEET CORN IN ANOTHER TABLE) TRIALS a:\fcorn_2.sum "FCORN_2.SUM"	EXTRACT Date	=	
GA-771(TO FI	<u>тна</u>	30	30
	EXT- RACT ANAL Y-SIS (D)	4	4
TOLACHLO ND CGA- IOWA	HARV- EST EXT- RACT (D)	112	112
TABLE IV. RESIDUES OF METOLACHLOR and APPLICATION OF DUAL ® 8E AND CGA-77102 CONDUCTED IN ILLINOIS AND IOWA a:\fcc	HARVEST Date	8/9/95	8/9/95
RESIDION OF DUDINITE	(lbs a.i./A) PPI & PE	2 + 2 (CGA- 77102)	2 + 2 (CGA- 77102)
TABLE IV. APPLICATI CONDUCTED	A	3-3-A	3-3-B

								•	
3 AFTER TRIALS	Equivalent*		<0.08	0.133	0.179	0.179	0.225		<0.08
	CGA-49751		<0.05	0.08	0.103	0.09	0.116		<0.05
1 AND CONTRER	CGA- 37913.		<0.03	0.053	0.076	0.089	0.109		<0.03
CGA-49751 AND CGA-37913 CORN IN ANOTHER TABLE) T	CGA-49751		11/29 /95	=	=				12/1/
	ANAL DATE	•	11/30/ 95	=	=	~ B	=		12/4/9
	EXTRACT Date		11/27/9 5			=			11/28/9
	THA		101	101	101	101	101		101
and 102 \fco	EXT- RACT ANAL Y-SIS (D)		E	3	3	3	Э		9
OF METOLACHLOR and © 8E AND CGA-77102 S AND IOWA a:\fc	HARV- EST EXT- RACT (D)		38	38	38	38	38		39
ဝ် _{⊜ အ}	HARVEST Date		10/19/9	10/19/9 5	10/19/9 5	10/19/9 5	10/19/9 5		10/19/9 5
. RESIDUES ION OF DUAL ED IN ILLINOI	(lbs a.i./A) PPI & PE	Trinois	Control	3 + 3 (Metola chlor)	3 + 3 (Metola chlor)	2 + 2 (CGA- 77102)	2 + 2 (CGA- 77102)	TINOIS	Control
TABLE IV. R. APPLICATION CONDUCTED IN	£	FODDER-ILLINOIS	1-4-A	2-4-A	2-4-B	3-4-A	3-4-B	GRAIN-ILLINOIS	1-5-A

3 AFTER TRIALS	Equivalent*	<0.08	<0.08	<0.08	<0.08
3A-3791 TABLE)	CGA-49751	<0.05	<0.05	<0.05	<0.05
1 AND COLUMN	CGA- 37913	<0.03	<0.03	<0.03	<0.03
GA:4975: ORN IN A	CGA-49751	· =		2	=
CNED AS C (SWEET CC .SUM"	ANAL DATE	=		=	=
1 CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER 8E TO FIELD CORN (SWEET CORN IN ANOTHER TABLE) TRIALS ORN_2.SUM"	EXTRACT Date	.	=		=
3A-771 TO F	<u>PHI</u>	101	101	101	101
O	EXT- RACT ANAL Y-SIS (D)	9	9	9	9
TOLACHLOND CGA-	HARV- EST EXT- RACT	39	39	39	39
TABLE IV. RESIDUES OF METOLACHLOR and APPLICATION OF DUAL ® 8E AND CGA-77102 CONDUCTED IN ILLINOIS AND IOWA a:\fco	HARVEST Date	10/19/9 5	10/19/9 5	10/19/9	10/19/9
NO	(1bs a.i./A) PPI & PE	3 + 3 (Metola chlor)	3 + 3 (Metola chlor)	2 + 2 (CGA- 77102)	2 + 2 (CGA- 77102)
TABLE IV. APPLICATI CONDUCTED	Q I	2-5-A	2-5-B	3-5-A	3-5-B

	* 4 .		·				•		
3 AFTER TRIALS	Equivalent*				80°0>	1.039	0.468	1.193	2.234
CGA-37913 R TABLE) I	CGA-49751				<0.05	0.894	0.402	0.967	1.772
1 AND COANCINER	CGA- 37913			•	<0.03	0.145	0.066	0.226	0.462
CGA-49751 AND CGA-3791 CORN IN ANOTHER TABLE)	CGA-49751				12/19 /95	=			, =
1 .	ANAL DATE				12/19/ 95	•	*	•	=
	EXTRACT Date				12/14/9 5	н	н	#	8
CGA-77102 SE TO FIEL FR 2.sum "	IHa				31	31	31	31	31
	EXT- RACT ANAL Y-SIS (D)				ហ	ស	ហ	2	ro
OF METOLACHLOR and ® 8E AND CGA-77102 S AND IOWA a:\fcc	HARV- EST EXT- RACT				128.	128	128	128	128
JES OF METAL ® 8E A	HARVEST Date				8/6/95	8/6/95	8/6/95	8/6/95	8/6/95
TABLE IV. RESIDUES ON APPLICATION OF DUAL ® CONDUCTED IN ILLINOIS	(lbs a.i./A) PPI & PE	RN-IOWA			Control	3 + 3 (Metola chlor)	3 + 3 (Metola chlor)	2 + 2 (CGA- 77102)	2 + 2 (CGA-
TABLE IV. APPLICATI	A	FIELD CORN-IOWA	Field Test: MW-HR-	FORAGE	1-3-A	2-3-A	2-3-B	3-3-A	3-3-B

TABLE IV. APPLICATI CONDUCTED	NO	<u>o</u> ® 8	F METOLACHLOR and 8E AND CGA-77102 AND IOWA a:\fc	and 102 (3A-771 TO F.	CGA-77102 DETERMINED AS 8E TO FIELD CORN (SWEET rn 2.sum "FCORN 2.SUM"	INED AS C (SWEET CC	CGA-49751 AND CGA-37913 AFTER CORN IN ANOTHER TABLE) TRIALS	1 AND CONTHER	GA-3791 TABLE)	3 AFTER TRIALS
O	(lbs a.i./A) PPI & PE	HARVEST Date	HARV- EST EXT- RACT (D)	EXT- RACT ANAL Y-SIS (D)	PHI	EXTRACT Date	ANAL DATE	CGA-49751	CGA- 37913	CGA-49751	Equivalent*
FODDER-IOWA	IOWA	,			•						
1-4-A	Control	10/10/9	57	S	96	12/7/95	12/12/ 95	12/12 /95	<0.03	<0.05	<0.08
2-4-A	3 + 3 (Metola chlor)	10/10/9	57	ro	96	=	=	=	0.109	0.318	0.427
2-4-B	3 + 3 (Metola chlor)	10/10/9	57	ഹ	96	•	=	=	0.146	0.592	0.738
3-4-A	2 + 2 (CGA- 77102)	10/10/9	57	w	96	=	=	=	0.044	0.118	0.162
3-4-B	2 + 2 (CGA- 77102)	10/10/9	57		96	;			DNR+	DNR+	DNR+

HARV- EST EST EXT- RACT (D) 61 61	EST HARV- EST EST EXT- (D) (D) (D) (D) (D) (D) (D) (D) (D) (D)	A) Date EST EXT- Ol 10/10/9 61 10/10/9 61 1a 5 10/10/9 61 1a 5 10/10/9 61 5 1b/10/9 61
)/9 61 2		10/10/9 61
	6/0 6/0 6/0 6/0	6/0 6/0 6/0 6/0
	HARVI Date 10/10 5 10/10 5 10/10 5	(lbs HARVI a.i./A) Date PPI & PE PE Control 10/10 (Metola 5 chlor) 3 + 3 10/10 (Metola 5 chlor) 2 + 2 10/10 (CGA- 5 77102) 2 + 2 10/10 (CGA- 5

Metolachlor/77102 equivalents are calculated from the addition of the residue values for the two metabolites, CGA-49751 and CGA-37913. Data Not Reported (DNR). Sample lost during analysis. TRIALS CONDUCTED IN IL, AND IA *Note: Metolachlor/77102 eq

+Note:

FIELD RESI	DUES: FIELD C	ORN (SUMMARY)	, TRIALS CO	NDUCTED IN IL	LINOIS AND IC	WA	
	METOLACHLO	OR (DUAL 8E)		СН	IRAL METOLACH	LOR (CGA-7710	2 8E)
RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM	RATES LB AI/A PPI+PE	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM
				FORAGE			
CONTROL	0.08	2	0.06	CONTROL			
2 + 2	•			2 + 2	2.23	4	0.90 (1.02)
3 + 3	1.04	4	0.48 (0.37)	3 + 3			
•				FODDER			
CONTROL	0.08	2 .	0.08 (0.00)	CONTROL	•		
2 + 2	•		•	2 + 2	0.22	3	0.19 (0.03)
3 + 3	0.74	4	0.37 (0.28)	3 + 3			
				GRAIN			
CONTROL	0.08	2	0.08	CONTROL			
2 + 2				2 + 2	0.08	4	0.08
3 + 3	0.08	4	0.08	3 + 3			

NOTE: DATA FROM "4L" FILE, (FR 2L A:\FCORN_2.SUM)

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14.

TRIALS CONDUCTED IN ILLINOIS AND IOWA

FIELD RESIDUES: FIELD CORN (SUMMARY, CONTINUED) TRIALS CONDUCTED IN ILINOIS AND IOWA PHI RANGE, DAYS FROM HARVEST TO EXTRACT, DAYS FROM EXTRACT TO ANALYSIS FOR METOLCHLOR AND CHIRAL METOLACHLOR PHI RANGE RANGE HARVEST TO EXTRACT RANGE EXTRACT TO ANALYSIS (DAYS) (DAYS) (DAYS) FORAGE 112 - 128 4 - 5 30 - 31 FODDER 96 - 101 38 - 57 3 - 5 GRAIN 96 - 101 39 - 61 2 - 6

NOTE: DATA FROM "A:\FCORN_2.SUM" 4L FILE

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1:47

AND 1.14

*Note:

TRIALS CONDUCTED IN ILLINOIS AND IOWA

Metolachlor/77102 equivalents are calculated from the addition of the residue values for the two

metabolites, CGA-49751 and CGA-37913.

+Note: Data Not Reported (DNR). Sample lost during analysis.

RESIDUES IN SOYBEANS
"3L.WP5" DATA FROM TABLE II

RESIDUES IN SOYBEAN FOLLOWING APPICATION OF METOLACHLOR (DUAL 8E) OF CHIRAL METOLACHLOR (CGA-77102 8E) CGA-37913 AND CGA-49751 residues are reported as metolachlor/CGA-77102 equivalents, using correction factors of 1.47 and 1.14. SOYBEAN FIELD TRIAL DATA FOR MISS, IL, IOWA, OH. 3L a: & f:\...meto\new\3Lwp5 WAS TABLE II. TABLE IV.

	•							•
ID	ANALYTE	RATES LB AI/A PPI+PE	PHI (D)	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	CGA-49751 PPM EQUIV	CGA-37913 PPM EQUIV	METOLACHLOR OR CGA-77102 PPM EQUIV
				FORAC	SE-MISSISSIPPI			
1-2-A	control	Control	-	380	5	0.44	0.22	0.66
2-2-A,B	metolachlor	4.0	30	380	5	0.72 0.75	0.54 0.82	1.25 1.57
3-2-A,B	CGA-77102	2.67	30	380	5	0.68 0.66	0.55 0.45 .	1.23 1.12 · .
4-2-A,B	CGA-77102	4.0	30	380	5	0.90 0.78	0.65 0.56	1.55 1.34
		•		HAY	-MISSISSIPPI			
1-3-A	control	Control		382	9	1.99	0.79	2.78
2-3-A,B	metolachlor	4.0	30	382	9	2.67 3.02	1.54 2.63	4.21 5.64
3-3-A	CGA-77102	2.67	30	382	9	3.48 2.49	2.35 2.27	5.83 4.76
4-3-A,B	CGA-77102	4.0	30	382	9	4.21 3.14	3.28 2.71	7.49 5.85
				DRY BEA	ANS-MISSISSIP	PI .		
1-4-A	control	Control		247	8	<0.05	<0.03	<0.08
2-4-A	metolachlor	4.0	169	247	8	<0.05 <0.05	0.03 0.04	0.03 0.04
3-4-A,B	CGA-77102	2.67	169	247	8	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08
4-4-A,B	CGA-77102	4.0	169	247	8	<0.05 <0.05	0.03 <0.03	0.03 <0.08

RESIDUES IN SOYBEAN FOLLOWING APPICATION OF METOLACHLOR (DUAL 8E) OF CHIRAL METOLACHLOR (CGA-77102 8E) CGA-37913 AND CGA-49751 residues are reported as metolachlor/CGA-77102 equivalents, using correction factors of 1.47 and 1.14. SOYBEAN FIELD TRIAL DATA FOR MISS, IL, IOWA, OH. 3L a: & f:\..meto\new\3Lwp5 WAS TABLE II. TABLE IV.

ID	ANALYTE	RATES LB AI/A PPI+PE	PHI (D)	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	CGA-49751 PPM EQUIV	CGA-37913 PPM EQUIV	METOLACHLOR OR CGA-77102 PPM EQUIV
			•	FOR	AGE-ILLINOIS	•		
1-2-A	control	control	-	364	4	0.10	0.45	0.55
2-2-A,B	metolachlor	4.0	30	364	4	0.61 0.50	0.77 0.66	1.38 1.15
3-2-A,B	CGA-77102	2.67	30	364	4	0.26 0.27	0.53 0.50	0.79 0.76
4-2-A,B	CGA-77102	4.0	30	364	4	0.25 0.36	0.53 0.79	0.79 1.15
1-2-A	control	control	-	364	4	0.12	0.51	0.63
4-2-A,B	CGA-77102	4.0	30	364	4	0.32 0.48	0.30 0.72	0.62 1.20
				HA	AY-ILLINOIS			•
1-3-A	control	control	_	365	7	0.24	1.55	1.78
2-3-A,B	metolachlor	4.0	30	365	7	0.86 0.94	1.65 1.07	2.51 2.02
3-3-A,B	CGA-77102	2.67	30	365	7	1.09 1.24	1.88 2.05	2.96 3.28
4-3-A,B	CGA-77102	4.0	30	365	7	0.97 1.10	2.46 2.39	3.44 3.49

RESIDUES IN SOYBEAN FOLLOWING APPICATION OF METOLACHLOR (DUAL 8E) OF CHIRAL METOLACHLOR (CGA-77102 8E) CGA-37913 AND CGA-49751 residues are reported as metolachlor/CGA-77102 equivalents, using correction factors of 1.47 and 1.14. SOYBEAN FIELD TRIAL DATA FOR MISS, IL, IOWA, OH. 3L a: & f:\...meto\new\3I.wp5 WAS TABLE II. TABLE IV.

	· . ·						•	
ID	ANALYTE	RATES LB AI/A PPI+PE	PHI (D)	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	CGA-49751 PPM EQUIV	CGA-37913 PPM EQUIV	METOLACHLOR OR CGA-77102 PPM EQUIV
				DRY B	EANS-ILLINOIS			•
1-4-A	control	Control		297	5	<0.05	0.04 0.03	0.04 0.03
2-4-A,B	metolachlor	4:0	127	297	4 .	0.06 0.05	0.17 0.19	0.23 0.24
3-4-A,B	CGA-77102	2.67	127	297	4	<0.05 <0.05	0.08 0.12	0.08 0.13
4-4-A,B	CGA-77102	4.0	127	297	4 .	0.06	0.21	0.26
			T	DRY B	EANS-ILLINOIS	.		· ·
1-4-A	control	Control	-	297	5	<0.05	<0.03	<0.08
2-4-A,B	metolachior	4.0	127	297	4	0.06 0.06	0.17 0.19	0.24 0.24
3-4-A,B	CGA-77102	2.67	127	297	4	<0.05 <0.05	0.08 0.12	0.08 0.12
4-4-A,B	CGA-77102	4.0	127	297	4	0.06 < 0.06	0.16 0.21	0.16 0.27
			•	FO	RAGE-IOWA	•		-
1-2-A	control	Control	-	375	6	<0.05	0.05	0.05
2-2-A,B	metolachlor	4.0	31	375	6	0.19 0.14	0.37 0.32	0.56 0.45
3-2-A,B	CGA-77102	2.67	31	375	6	0.12 0.09	0.24 0.27	0.36 0.36

RESIDUES IN SOYBEAN FOLLOWING APPICATION OF METOLACHLOR (DUAL 8E) OF CHIRAL METOLACHLOR (CGA-77102 8E) CGA-37913 AND CGA-49751 residues are reported as metolachlor/CGA-77102 equivalents, using correction factors of 1.47 and 1.14. SOYBEAN FIELD TRIAL DATA FOR MISS, IL, IOWA, OH. 3L a: & ft...meto\new\31.wp5 WAS TABLE II. TABLE IV.

				<u> </u>	**			
ΙĎ	ANALYTE	RATES LB AI/A PPI+PE	PHI (D)	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	CGA-49751 PPM EQUIV	CGA-37913 PPM EQUIV	METOLACHLOR OR CGA-77102 PPM EQUIV
	•			.	HAY-IOWA			
1-3-A	control	Control		380	5	0.06	0.17	0.22
2-3-A,B	metolachlor	4.0	31	380	5	0.92 0.98	2.05 1.89	2.97 2.87
3-3-A	CGA-77102	2.67	31	380	5	0.74 0.64	1.46 1.33	2.20 1.98
·		and the state of t		DRY	BEANS-IOWA	• •	·	· · · · · · · · · · · · · · · · · · ·
1-4-A	control	Control		276	5	<0.05	<0.03	<0.08
2-4-A,B	metolachlor	4.0	134	276	5	<0.05 <0.05	0.04 < 0.03	0.05 < 0.08
3-4-A	CGA-77102	2.67	134	276	5	<0.05 <0.05	0.04 0.04	0.04 0.05
			.•	FO	RAGE-OHIO	•	·	•
i-2-A	control	Control	-	360	9	<0.05	<0.03	<0.08
2-2-A,B	metolachlor	4.0	31	360	9	0.17 0.20	0.11 0.13	0.28 0.33
3-2-A,B	CGA-77102	2.67	31	360	9	0.16 0.12	0.12 0.11	0.28 0.23

RESIDUES IN SOYBEAN FOLLOWING APPICATION OF METOLACHLOR (DUAL 8E) OF CHIRAL METOLACHLOR (CGA-77102 8E) CGA-37913 AND CGA-49751 residues are reported as metolachlor/CGA-77102 equivalents, using correction factors of 1.47 and 1.14. SOYBEAN FIELD TRIAL DATA FOR MISS, IL, IOWA, OH. 3L a: & f:\..meto\new\3I.wp5 WAS TABLE II. TABLE IV.

ID	ANALYTE	RATES LB AI/A PPI+PE	PHI (D)	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	CGA-49751 PPM EQUIV	CGA-37913 PPM EQUIV	METOLACHLOR OR CGA-77102 PPM EQUIV
•				ŀ	IAY-OHIO			•
1-3-A	control	Control		366	7	0.09	0.044	0.14
2-3-A,B	metolachlor	4.0	31	366	7	0.56 0.50	0.37 0.39	0.93 0.89
3-3-A,B	CGA-77102	2.67	31	366	7	0.40 0.54	0.34 0.38	0.74 0.92
		-		DRY	BEANS-OHIO			
1-4-A	control	Control	<u></u>	251	9	<0.05	<0.03	<0.08
2-4-A,B,	metolachior	4.0 .	146	251	9	<0.05	0.03 < 0.03	0.03 < 0.08
3-4-A,B	CGA-77102	2.67	146	251	9	<0.05 <0.05	<0.03 <0.03	<0.08 <0.08

SOYBEAN FIELD TRIAL DATA FOR MISS, IL, IOWA, OH,

3L a: & f:\...meto\new\3I.wp5 WAS TABLE II.
CGA-37913 AND CGA-49751 residues are reported as metolachlor/CGA-77102 equivalents, using correction factors of 1.47 and 1.14.

FIELD RESIDUES: SOYBEAN (SUMMARY), TRIALS CONDUCTED IN MISS, IL, IA, AND OH 3L a: & f:\...meto\new\3I.wp5 WAS TABLE II.FIELD TESTS - METOLACHLOR AND CGA-77102 APPLIED TO SOYBEANS TABLE IV.

	METOLACHLOF	R (DUAL 8E)		CH	RAL METOLACH	LOR (CGA-7710)	2 8E)
RATES LB AI/A PPI	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM	RATES LB AI/A PPI	MAXIMUM PPM	NO OF SAMPLES	AVERAGE (STD DEV) PPM
	• •		FO	RAGE		· · · · · · · · · · · · · · · · · · ·	
CONTROL	0.66	5	0.39 (0.30)	CONTROL			•
	•			2.67	1.23	8	0.64 (0.39)
4.0	2.51	10	1.15 (0.75)	4.0	1.55	6	1.11 (0.35)
	•		. 1	HAY		_•	
CONTROL	2.78	4	1.23 (1.28)	CONTROL			
	•			2.67	5.83	10	2.29 (1.94)
4.0	5.64	10	2.25 (1.77)	4.0	7.49	4	5.07 (1.97)
			DRY	BEANS			
CONTROL	<0.08	6	0.06 (0.02)	CONTROL	•		
				2.67	0.13	10	0.08 (0.03)
4.0	0.24	10	0.13 (0.10)	4.0	0.27	5	0.16 (0.11)

NOTE: DATA FROM "3L" FILE

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

TRIALS CONDUCTED IN MISS, IL, IA AND OH

^{*}Note:Metolachlor/77102 equivalents are calculated from the addition of the residue values for the two metabolites, CGA-49751 and CGA-37913.

⁺Note: Data Not Reported (DNR). Sample lost during analysis.

PHI RANGE	FIELD RESIDUES: SOYBEAN (SUMM TRIALS CONDUCTED IN MISS, DAYS FROM HARVEST TO EXTRAC NALYSIS FOR METOLCHLOR AND CH	IL, IA AND OH T, DAYS FROM EXTRACT TO
PHI RANGE (DAYS)	RANGE HARVEST TO EXTRACT (DAYS)	RANGE EXTRACT TO ANALYSIS (DAYS)
	FORAGE	
30 - 31	360 - 380	4 - 9
•	НАУ	
30 - 31	365 - 382	5 - 7
•	DRÝ BEANS	
127 - 169	247 -297	4 - 9

NOTE: DATA FROM "A:\FCORN_2.SUM" 4L FILE

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

TRIALS CONDUCTED IN MISS, IL, IA AND OH

Note: Metolachlor/77102 equivalents are calculated from the addition of the residue values for the two metabolites, CGA-49751 and CGA-37913.

RESIDUES IN SWEET CORN
"4L-RES.WP5" DATA FROM 42\95124-L.DOC

FIELD TESTS - METOLACHLOR AND CGA-77102 APPLIED TO SWEET (AND FIELD) CORN "f:\...meto\new\4L-res.WP5" 42\95124-1.doc TABLE II.

	and the second of the second o		The second secon	The second secon			
LOCATION/NUMBER	VARIETY	FORM	SOIL	METOLACH- LOR CGA-24705 LB AI/A	CGA-77102 LB AI/A	SPRAY VOL (GPA)	TIMING
SWEET CORN							•
California 02-HR-002-95	Sweetie 82	8E	Sandy Loam	3.0 3.0	2.0	20 20	Preplant Incorporated Post Directed at Lay-By
New York 05-HR-001-95	Sprite Bicolor	8臣	Loam	3.0	2.0	20 20	Preplant Incorporated Post Directed by Lay-By
Florida 07-HR-002-95	Golden Queen	8日	Sand	3.0	2.0	20 20	Preplant Incorporated Post Directed by Lay-By
Michigan NE-HR-707-95	Bodacious	丑8	Loam	3.0	2.0	20 20	Preplant Incorporated Post Directed at Lay-By
FIELD CORN				•			
Illinois 04-HR-002-95	4393/Ciba	8臣	Silty Clay Loam	3.0 3.0	2.0	20	Preplant Incorporated Post Directed at Lay-By
Iowa MW-HR-150-95	4273/Ciba	8日	Clay Loam	3.0 3.0	2.0	20 20	Preplant Incorporated Post Directed at Lay-By

TABLE III. SWEET CC	TABLE IIIA. <u>FIELD TESTS, I</u> <u>SWEET CORN</u> FIELD TESTS	ESTS, LAST TREATMENT DAT	ENT DATE, DA (AND MI	VS FROZEN	ESTS, LAST TREATMENT DATE, DAYS FROZEN, AND SAMPLE TIME INTERVALS FOR TESTS IN CA, FL, NY AND MI	AE INTERVALS	<u>FOR</u>
Field Test	t Analyte	Last App lication Date	Sampling <u>Date</u>	Extractio n <u>Date</u>	Analysis <u>Date</u>	Days <u>Frozen</u>	<u>ai</u>
			SWEET CORN	SWEET CORN-CALIFORNIA			
Forage	CGA-49751	7/29/95	8/31/95	11/8/95	11/16/95	69	02-HR- 002-95
Forage	CGA-37913	7/29/95	8/31/95	11/8/95	11/10,13/95	69,	-
Ears	CGA-49751	7/29/95	8/31/95	11/9/95	11/15/95	, 70	=
Ears	CGA-37913	7/29/95	8/31/95	11/9/95	11/14/95	70	. =
Fodder	CGA-49751	7/29/95	8/31/95	11/14/95	11/21/95	75	8
Fodder	CGA-37913	7/29/95	8/31/95	11/14/95	11/20/95	75	=
		5 :	SWEET CO	SWEET CORN-FLORIDA			
Forage	CGA-49751	5/11/95	96/6/9	10/6/95	10/17/95	119	07-HR- 002-95
Forage	CGA-37913	5/11/95	6/9/95	10/6/95	10/13/95	119	=
Ears.	CGA-49751	5/11/95	6/9/95	10/6/95	10/12/95	119	=
Ears	CGA-37913	5/11/95	6/9/95	10/6/95	10/11/95	119	E
Fodder	CGA-49751	5/11/95	7/7/95	10/11/95	10/16,17/95	96	E
Fodder	CGA-37913	5/11/95	7/7/95	10/11/95	10/16/95	.96	=
!							

		•	SWEET COR	SWEET CORN-MICHIGAN	:		
Forage	CGA-49751	7/14/95	8/14/95	10/12/95	10/20/95	59	NE-HR- 707-95
Forage	CGA-37913	7/14/95.	8/14/95	10/12/95	10/24/95	. 69	ı
Ears	CGA-49751	7/14/95	8/14/95	10/17/95	10/30/95	64	2
Ears	CGA-37913	7/14/95	8/14/95	10/17/95	10/26/95	. 64	=
Fodder	CGA-37913	7/14/95	9/1/95	10/19/95	10/25/95	42	=
Fodder	CGA-49751	7/14/95	96/2/6	10/19/95	10/25/95	42	2

48

11/6,7/95

11/1/95

11/6/95

9/14/95

7/12/95

CGA-49751 CGA-37913

Fodder

FIELD TESTS IN CA, FL, NY AND MI

EQUIVALENT* RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW" <0.08 1.248 0.902 1.773 <0.08 <0.08 <0.08 1.323 <0.05 CGA-<0.05 1.013 0.683 <0.05 <0.05 1.199 0.866 CGA-37913 <0.03 <0.03 <0.03 0.219 <0.03 0.235 0.574 0.457 11/15/ 95 11/16/ 95 CGA-. 11/10,13/95 11/14/95 ANAL EXTRACT DATE 11/9/95 11/8/95 = 표 33 33 33 33 33 33 33 33 EXTRACT TO ANALYSIS (D) SWEET CORN œ ω œ œ ω 9 9 9 HARVEST TO EXTRACT (D) 2 69 69 69 20 2 69 69 HARVEST DATE 8/31/95 8/31/95 8/31/95 8/31/95 8/31/95 8/31/95 8/31/95 8/31/95 FIELD TESTS IN CA, FL, NY, AND MI 3 + 3 (Metolachior) 3 + 3 (Metolachlor) 3 + 3 (Metolachlor) (Metolachlor) 2 + 2 (CGA-77102) 2 + 2 (CGA-77102) (LBS AI/A) Control Control 3+3 Field Test02-HR-002-95 Forage 14-A 3-4-A 2-4-A 2-4-B 34-B Ears 1-5-A 2-5-A 2-5-B 의

40

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

Ξ
AND
~
ź
丘
Ş
Z
TESTS
FIELD

ID (LBS AlIA) HARVEST HARVEST TO DATE EXTRACT 100 EXTRACT TO DATE PHI EXTRACT ANALYSIS (D) ANALYSIS (The state of the s			The second secon				
ER 2+2 (GGA- 8/31/95 70 6 33 " " " 60.03 (-0.05) 2+2 (GGA- 8/31/95 70 6 33 " " " 60.03 (-0.05) T7102) Control 8/31/95 75 7 33 11/14/95 11/20/95 95 (Metolachior) 8/31/95 75 7 33 " " 11/14/95 11/20/95 95 (Metolachior) 2+2 (GGA- 8/31/95 75 75 75 33 " " " 1443 4.097 2+2 (GGA- 8/31/95 75 75 7 33 " " 1.0 0.699 1.557 T7102) 2+2 (GGA- 8/31/95 75 75 7 33 " " 0.699 1.501	의	(LBS Al/A)	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	핆	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
ER 2+2 (CGA- 8/31/95 70 6 33 " " <0.03 <0.05 FR T/102) Control 8/31/95 75 7 33 11/14/95 11/20/95 11/21/9 <0.03 <0.05 3 + 3 (Metolachlor) 8/31/95 75 7 33 " " 1.443 4.097 2 + 2 (CGA- 8/31/95 75 7 33 " " 1.252 3.437 2 + 2 (CGA- 8/31/95 75 7 33 " " 0.699 1.557 2 + 2 (CGA- 8/31/95 75 7 33 " " 0.699 1.501	3-5-A	2 + 2 (CGA- 77102)	8/31/95	70	9	33	E	=		<0.03	<0.05	<0.08
ER Control 8/31/95 75 7 33 11/14/95 11/20/95 11/21/ <0.03 <0.05 (Metolachlor) 3+3 (Metolachlor) 2+2 (CGA- 8/31/95 75 7 33 " " 1.443 4.097 7.102) 2+2 (CGA- 8/31/95 75 7 33 " " 1.252 3.437 7.102) 2+2 (CGA- 8/31/95 75 7 33 " " 0.699 1.501 7.102)	3-5-B	2 + 2 (CGA- 77102)	8/31/95	70	9	33	F	E	:	<0.03	<0.05	<0.08
Control 8/31/95 75 7 33 11/14/95 11/20/95 11/21/95 6.0.03 4.097 3+3 (Metolachlor) 8/31/95 75 7 33 " " 1.443 4.097 2+2 (CGA- 8/31/95 75 7 33 " " 1.252 3.437 2+2 (CGA- 8/31/95 75 7 33 " " 0.489 1.557 2+2 (CGA- 8/31/95 75 7 33 " " 0.699 1.501	FODDER			,			-	•				
3+3 (Metolachlor) 8/31/95 75 7 33 " " 1.443 4.097 3+3 (Metolachlor) 8/31/95 75 7 33 " " 1.252 3.437 2+2 (CGA- 77102) 8/31/95 75 7 33 " " 0.699 1.501 2+2 (CGA- 77102) 8/31/95 75 7 33 " " 0.699 1.501	1-6-A	Control	8/31/95	75	2	33	11/14/95	11/20/95	11/21/ 95	<0.03	<0.05	<0.08
3+3 (Metolachlor) 8/31/95 75 7 33 " " " 1.252 3.437 2+2 (CGA- 77102) 8/31/95 75 7 33 " " 0.489 1.557 2+2 (CGA- 8/31/95 75 7 33 " " 0.699 1.501	2-6-A	3 + 3 (Metolachlor)	8/31/95	75	7	33		·		1.443	4.097	5.54
2+2 (CGA- 75) 8/31/95 75 33 " " 0.489 1.557 2+2 (CGA- 77/102) 8/31/95 7 33 " " 0.699 1.501	2-6-B	3 + 3 (Metolachlor)	8/31/95	75	7	33	•			1.252	3.437	4.689
2+2(CGA- 8/31/95 75 7 33 " " 0.699 1.501	3-6-A	2÷ 2 (CGA- 77102)	8/31/95	75	7	33	•	*	2	0.489	1.557	2.046
	3-6-B	2 + 2 (CGA- 77102)	8/31/95	75	7	33			1	0.699	1.501	2.29

RESIDUES OF METOLACH TABLE IV. "SCORN_NEW"	: METOLACHLOR :ORN_NEW"	≀ and CGA-7710	12 DETERMINED A(RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"	:GA-37913	AFTER APPLIC	ATION OF DUAL	L'® 8E ANI	CGA-77102	8E TO SWE	ET CORN
FIELD TESTS	FIELD TESTS IN CA, FL, NY, AND MI	ND MI	,		·				•	•	.•
입	(LBS Al/A)	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	PHI	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
SWEET CORN					•		·		• .		•
Field Test: 07-HR-00295											
FORAGE			•								
1-4-A	Control	\$6/6/9	117	111	29	10/6/95	10/13/95	10/17/9 5	<0.03	<0.05	80.0>
2-4-A	3+3 (Metolachlor)	\$6/6/9	117	11	29	=	·.	=	0.326	.0.348	0.674
2-4-B	3+3 (Metolachlor)	- \$6/6/9	117	-	29	Ξ	=	=	0.379	0.466	0.845
3-4-A	2 + 2 (CGA- 77102)	56/6/9		11	29	=	=	=	0.279	0.261	0.54
3-4-B	2 + 2 (CGA- 77102)	. 56/6/9	117	=	29	E		=	0.235	0.251	0.486

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

₹
AND
×,
CA, FL
N
TESTS
FIELD

				and the second s	The second secon						
의	(LBS <u>Al/A)</u>	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	PHI	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
EARS		-				•				•	
1-5-A	Control	26/6/9	117	9	29	\$6/9/01	10/11/95	10/12/9	<0.03	<0.05	. 80.0>
2-S-A	3+3 (Metolachlor)	S6/6/9	117	9	29	#	=	*	<0.03	<0.05	<0.08
2-5-B	3+3 (Metolachlor)	S6/6/9	711	. 9	29	=	ŧ	:	<0.03	<0.05	×0.08
3-5-A	2 + 2 (CGA- 77102)	S6/6/9	117	. 9	29	=		=	<0.03	<0.05	<0.08
3-5-B	2 + 2 (CGA- 77102)	S6/6/9	1117	. 9	29		.=	•	<0.03	<0.05	<0.08

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

Z
2
Α,
Ź
屲
3
Z
TEST
HELD

의	(LBS Al/A)	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	됩	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
FODDER											
1-6-A	Control	56/L/L	94	15	22	56/11/01	10/16/95	10/16,1 7/95	<0.03	<0.05	<0.08
2-6-A	3+3 (Metolachlor)	56/L/L	94	15	23	£	.	=	0.458	0.307	0.765
2-6-B	3+3 (Metolachlor)	S6/L//L	94	15	22	E	=	=	0.359	. 0.323	0.682
3-6-A	2 + 2 (CGA- 77102)	S6/L//	94	15	57	£			1.115	0.704	1.819
3-6-B	2 + 2 (CGA- 77102)	56/1/17	94	15	22	=	ii	=	0.568	0.397	0.965

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

EQUIVALENT

	CGA- 49751		•		<0.05	0.533	0.81	0.207	0.165
	CGA- 37913				<0.03	0.381	0.673	0.27	0.186
	CGA- 49751				10/31,1	ŧ	=	=	Ε.
•	ANAL				11/1,2/95	±	=	ŧ	±
	EXTRACT DATE				10/24/95	#	=		.
	핆				30	30	30	30	30
	EXTRACT TO ANALYSIS (D)				8		80	80	∞
	HARVEST TO EXTRACT (D)			•	73	73	73	73	73
ID WI	HARVEST DATE		-		8/11/95	8/11/85	8/11/8	8/11/8	8/11/95
FIELD TESTS IN CA, FL, NY, AND MI	(LBS Al/A)				Control	3+3 (Metolachlor)	3+3 (Metolachlor)	2 + 2 (CGA- 77102)	2 + 2 (CGA- 77102)
FIELD TESTS I	Q	SWEET CORN	Field Test: 05-HR-00195	FORAGE	1-4-A	2-4-A	2-4-B	3-4-A	3-4-B
	<u> </u>			<u> </u>			L		

0.914

1.483

0.477

0.351

0.08

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

Ξ
AND
Σ̈́
됴
Ş
Z
TESTS
FIELD

			and the second second second second second				and the latest designation of the latest des				
Q	(LBS Al/A)	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	핆	EXTRACT DATE	ANAL	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
EARS				•							
1-5-A	Control	8/11/95	75	7	30	10/26/95	11/2/95	11/3/95	<0.03	<0.05	<0.08
2-5-A	3+3 (Metolachlor)	8/11/95	75	7	30	=	.	=	<0.03	<0.05	<0.08
2-5-B	3+3 (Metolachior)	8/11/95	75	7	30	=	z	=	<0.03	<0.05	<0.08
3-5-A	2 + 2 (CGA- 77102)	\$6/11/8	75	7	30	ŧ	Ξ.	=	<0.03	<0.05	<0.08
3-5-B	2 + 2 (CGA- 77102)	8/11/95	75	7	30	#			<0.03	<0.05	<0.08

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

Ī
S
₹,′
긒
S,
Z
ESTS
Ξ

			The second secon	Contract the second second second second second second second			and the second s	The second secon			
의	(LBS Al/A)	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	IHd	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
FODDER					-	•					
1-6-A	Control	9/14/95	47	9	64	11/1/95	11/6/95	11/6,7/ 95	<0.03	<0.05	<0.08
2-6-A	3+3 (Metolachlor)	9/14/95	47	9	64	#	H	=	0.149	0.159	. 808.
2-6-B	3+3 (Metolachlor)	9/14/95	47	9	64	, H	·	F	0.102	0.136	0.238
3-6-A	2 + 2 (CGA- 77102)	9/14/95	47	9	64		ı.	·ŧ	0.308	0.268	0.576
3-6-B	2+2 (CGA- 77102)	9/14/95	47	9	64 .		#	E	0.375	0.517	0,892

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET GORN TABLE IV. "SCORN_NEW"

FIELD TESTS IN CA, FL, NY, AND MI

						and the second s					
a l .	(LBS Al/A)	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	HI.	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
SWEET CORN									•	•	
Field Test: NE-HR70795					÷						
FORAGE											
1-4-A	Control	7/14/95		.	31	10/12/95	10/24/95	10/20/9	<0.03	<0.05	<0.08
2-4-A	3+3 (Metolachlor)	7/14/95	88	8	31	E		=	0.706	3.199	3.905
- 2-4-B	3+3 (Metolachlor)	7/14/95	88	· •	31	E	=	•	1.682	4.065	5.747
3-4-A	2 + 2 (CGA- 77102)	7/14/95	88	&	31	=		:	0.363	1.545	1.908
3-4-B	2 + 2 (CGA- 77102)	7/14/95	88	æ	31	E		=	0.976	3.464	4.44

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

FIELD TESTS IN CA, FL, NY, AND MI

Q	(LBS Al/A)	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	핆	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- .49751	EQUIVALENT*
EARS				-		•					
1-5-A	Control	7/14/95	93	13	31	10/17/95	10/26/95	10/30/9	<0.03	<0.05	<0.08
2-5-A	3+3 (Metolachlor)	7/14/95	93	13	31	H.	#	=	<0.03	<0.05	<0.08
2-5-B	3+3 (Metolachlor)	7/14/95	93	13	31	2 -	=	=	<0.03	<0.05	<0.08
3-5-A	2 + 2 (CGA- 77102)	7/14/95	93	13.	31	æ		.	<0.03	<0.05	-0.08
3-5-B	2 + 2 (CGA- 77102)	7/14/95		13	31			=	<0.03	<0.05	<0.08

RESIDUES OF METOLACHLOR and CGA-77102 DETERMINED AS CGA-49751 AND CGA-37913 AFTER APPLICATION OF DUAL ® 8E AND CGA-77102 8E TO SWEET CORN TABLE IV. "SCORN_NEW"

FIELD TESTS IN CA, FL, NY, AND MI

의	(LBS <u>Al/A)</u>	HARVEST DATE	HARVEST TO EXTRACT (D)	EXTRACT TO ANALYSIS (D)	푒	EXTRACT DATE	ANAL DATE	CGA- 49751	CGA- 37913	CGA- 49751	EQUIVALENT*
FODDER								•			
1-6-A	Control	56/1/6	42	6	55	10/19/95	10/25/95	10/28/9 5	<0.03	<0.05	<0.08
2-6-A	3+3 (Metolachlor)	56/L/6	42	6	55	2-	н	£	0.707	1.729	2.436
2-6-B	3+3 (Metolachlor)	S6/L/6	42	6	55	ŧ	=	E	0.825	1.973	2.798
3-6-A	2 + 2 (CGA- 77102)	56/1/6	42	Ō	្រភភ	ı			0.913	1.315	2.228
3-6-в	2 + 2 (CGA- 77102)	9/1/95	42	ი	55		ı		1.047	1.243	2.29

Metolachlor/77102 equivalents are calculated from the addition of the residue values for the two metabolites, CGA-49751 and CGA-37913.

Data Not Reported (DNR). Sample lost during analysis.

	o) NGOO THERE'S	HAMADVARIELE	TESTS IN CA. FL	NY AND MI A:	SW CORN.SUM 41	"FIELD RESIDUI	ES	
DO E	FIELD RESIDUES: SWEET CORN (SOMMAN) FIELD FISCON COSTS STATES TO SWEET CORN (SOMMAN) FIELD FISCON COSTS SWEET CORN (SOMMAN) FIELD FISCON CORN (SOMMAN) FISCO	CHLOR			CGA-77102	7102		
	MAXIMUM	NO OF SAMPLES	AVERAGE (STD DEV)	RATES LB AI/A PPI + PE	MAXIMUM	NO OF SAMPLES	AVERAGE (STD DEV)	
1			FOR	FORAGE		•		
CONTROL	<0.08	4	<0.08 (0)					
	5.75	01	1.59	2+2	4.44	01	1.15 (1.33)	
	*		/9	EAR				. ·
CONTROL	<0.08	4	<0.08 (0)					·
	80.0>	∞	(0)	2+2	<0.08	∞	(0)	
1	. •		FOI	FODDER			v	
CONTROL	<0.08	4	<0.08 (0)					
	5.54	8	2.18 (2.06)	2+2	2.29	8	1.63	

• DATA FROM "4L" FILE A:\SW_FCORN.SUM L "FIELD RESIDUES: (SUMMARY) • FIELD TESTS IN CA, FL, NY AND MI • RESIDUES FROM METOLACHLOR (DUAL 8E) OR CHIRAL METOLACHLOR (CGA-77102 8E) APPLICATION PPI + PE AT LAYBY • CGA-37913 AND CGA-49751 RESIDUES ARE REPORTED AS METOLACHLOR/CTA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

FIELD RESIDUES: SWEET CORN (SUMMARY, CONTINUED) TRIALS CONDUCTED IN FL, NY, MI AND CA PHI RANGE, DAYS FROM HARVEST TO EXTRACT, DAYS FROM EXTRACT TO ANALYSIS FOR METOLCHLOR AND CHIRAL METOLACHLOR	FIELD RESIDUES: SWEET CORN (SUMMARY, CONTINUED) TRIALS CONDUCTED IN FL, NY, MI AND CA 3E, DAYS FROM HARVEST TO EXTRACT, DAYS FROM EXTRACT .NALYSIS FOR METOLCHLOR AND CHIRAL METOLACHLOR	TO
PHI RANGE (DAYS)	RANGE HARVEST TO EXTRACT (DAYS)	RANGE EXTRACT TO ANALYSIS (DAYS)
FO	FORAGE	
29 - 33	68 - 117	8 - 11
	EAR	
29 - 33	68 - 117	6 - 13
PO	FODDER	
. 33 - 64	42 - 94	6-15

NOTE: DATA FROM "4L" FILE

CGA-37913 & CGA-49751 RESIDUES ARE REPORTED AS METOLACLOR/CTA-77102 EQUIVALENTS, USING CORRECTION FACTORS OF 1.47 AND 1.14

Ī

TRIALS CONDUCTED IN: FL, NY, MI AND CA

84