

# TEXT SEARCHABLE DOCUMENT



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES, AND TOXIC SUBSTANCES

PC Code: 108702 **DP Barcode: 324660** 332121

# **MEMORANDUM**

October 23, 2007

10-23-07

2069331

Pyroxsulam Section 3: Environmental Fate and Ecological Risk Assessment SUBJECT:

- TO: Joanne Miller, Risk Manager James Stone, Reviewer **Registration Division (7505P)**
- FROM: Christopher Salice, Biologist Greg Orrick, Environmental Scientist Environmental Risk Branch IV Environmental Fate and Effects Division (7507P)

THROUGH: Elizabeth Behl, Branch Chief Marietta Echeverria, Environmental Scientist Anita Pease, Senior Biologist Afrase Environmental Risk Branch IV Environmental Fate and Effects Division (7507P)

Environmental Fate and Effects Division (EFED) has completed its ecological risk assessment

10/23/07

for the new herbicide pyroxsulam and its end-use products GF-1674<sup>®</sup> (oil dispersion: 2.87% a.i.) and GF-1274<sup>®</sup> (water dispersible granule: 7.5% a.i.). The herbicide is initially proposed for use on winter and spring wheat.

The results of this screening-level assessment indicate a potential for direct adverse acute effects to non-target terrestrial and semi-aquatic plants. Although this screening-level analysis showed that there is limited potential for direct adverse effects to animal species associated with the use of pyroxsulam on wheat, indirect effects may result as a consequence of potential effects on plants.

Clarification is recommended for the proposed labels. Application rates are limited per growing season in the "Crop Specific Use Restrictions" sections. While winter and spring wheat only have one growing season per year, other crops may be planted during the same year. In order to clarify the labeling, we recommend modifying the maximum application rate statement to limit application rates per calendar year.

-1 of 6-

**Tables 1 and 2** list all of the available environmental fate and ecological effect studies, respectively, that were submitted to fulfill data requirements under 40 CFR Pt. 158 for a terrestrial food use. The environmental fate and toxicology data requirements are not adequately fulfilled for a terrestrial food use. The submitted anaerobic aquatic metabolism, aerobic aquatic metabolism, and terrestrial field dissipation studies were supplemental and no anaerobic soil metabolism study was submitted. However, further submission of data may upgrade the submitted terrestrial field dissipation study. New anaerobic soil metabolism, anaerobic aquatic metabolism, and aerobic aquatic metabolism studies are not requested at this time because they are not expected to significantly alter risk conclusions.

Although no toxicity data were submitted for estuarine/marine animal species, the toxicity profile based on freshwater species and the physical properties of the chemical indicates that risks to estuarine/marine species are unlikely and that the toxicity data are not a requirement. However, without appropriate toxicity data, some uncertainty exists regarding the potential risks to estuarine/marine animal species associated with the proposed use of pyroxsulam on wheat.

| Guideline | Study Title.                       | MRID                                   | Issues                                                                                                                                                                                                                          | Study<br>Classification                      |
|-----------|------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 161-1     | Hydrolysis                         | 46908326                               | None                                                                                                                                                                                                                            | Acceptable                                   |
| 161-2     | Aqueous<br>photolysis              | MRID pending<br>(modifies<br>46908327) | None                                                                                                                                                                                                                            | Acceptable                                   |
| 161-3     | Soil photolysis                    | 46908328                               | None                                                                                                                                                                                                                            | Acceptable                                   |
| 161-4     | Air photolysis                     | No study                               | Study not required.                                                                                                                                                                                                             |                                              |
| 162-1     | Aerobic soil                       | 47202701                               | None                                                                                                                                                                                                                            | Acceptable                                   |
|           | metabolism                         | 46908329<br>46908335<br>46908330       | Multiple solvent systems were not employed<br>in a reasonable extraction attempt; non-<br>extractable [ $^{14}$ C]residues were as high as 94%<br>or unmeasured.                                                                | Supplemental<br>Unacceptable<br>Supplemental |
| 162-2     | Anaerobic soil<br>metabolism       | No study                               | Study not submitted (apparent data gap).                                                                                                                                                                                        |                                              |
| 162-3     | Anaerobic<br>aquatic<br>metabolism | 46908331                               | Anaerobic conditions were not assured;<br>multiple solvent systems were not employed in<br>a reasonable extraction attempt. This study<br>does not adequately fulfill the §162-3 data<br>requirement.                           | Supplemental                                 |
| 162-4     | Aerobic aquatic<br>metabolism      | 46908336                               | Multiple solvent systems were not employed in<br>a reasonable extraction attempt; non-<br>extractable [ <sup>14</sup> C]residues were as high as 73%.<br>This study does not adequately fulfill the<br>§162-4 data requirement. | Supplemental                                 |

| Table 1. Status of environmental fate data | a adequacy for | terrestrial food uses | of |
|--------------------------------------------|----------------|-----------------------|----|
| pyroxsulam.                                |                |                       |    |

-2 of 6-

| Guideline | Study Title                            | MRID                               | Issues                                                                                                                                                                                                                                                                                                                                                                                                                              | Study<br>Classification |
|-----------|----------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 163-1     | Batch<br>equilibrium/<br>aged leaching | 47159601<br>(modifies<br>46908332) | None                                                                                                                                                                                                                                                                                                                                                                                                                                | Acceptable              |
|           |                                        | 46908333                           | Conducted with six transformation products of pyroxsulam at only one concentration.                                                                                                                                                                                                                                                                                                                                                 | Supplemental            |
| 163-2     | Lab volatility                         | No study                           | Study not required.                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 164-1     | Terrestrial field<br>dissipation       | 46908334                           | Samples were stored as long as 588 days. An<br>ongoing storage stability study of XDE-742<br>and its transformation products has only<br>confirmed stability for XDE-742, 5-OH-XDE-<br>742, and 6-Cl-7-OH-XDE-742 in frozen soil<br>samples for six months (MRID 46908317). 7-<br>OH-XDE-742 displayed reduced recovery over<br>six months in a loam soil. This study may be<br>upgraded to fulfill the §164-1 data<br>requirement. | Supplemental            |
| 164-2     | Aquatic field dissipation              | No study                           | Study not required.                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 165-4     | Fish<br>bioaccumulation                | No study                           | Study not required due to low $K_{ow}$ .                                                                                                                                                                                                                                                                                                                                                                                            |                         |

| Table 2   | Ct-tree  | oficialization | offecte date | adagmagar  | for preservablem |
|-----------|----------|----------------|--------------|------------|------------------|
| I able 2. | Status ( | of ecological  | enects data  | i adequacy | for pyroxsulam.  |

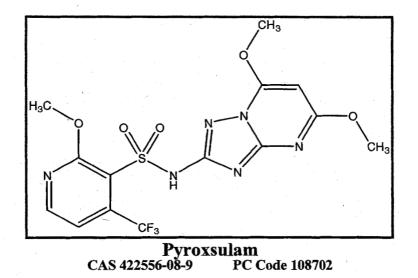
| Guideline           | MRID      | Study Title                                                                                                                         | Issues | Study<br>Classification |
|---------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|
| 71-1                | 469084-16 | XDE-742 / BAS 770 H – Avian Single-Dose Oral<br>LD <sub>50</sub> on the Bobwhite Quail ( <i>Colinus virgnianus</i> )                | None   | (Pending)               |
| 71-1                | 469084-17 | XDE-742 / BAS 770 H – Avian Single-Dose Oral $LD_{50}$ on the Mallard Duck (Anas platyrhynchos).                                    | None   | (Pending)               |
| 850.2200<br>(71-2b) | 469084-18 | XDE-742 – Dietary Toxicity Test with the Mallard Duck (Anas platyrhynchos)                                                          | None   | (Pending)               |
| 850.2200<br>(71-2a) | 469084-19 | XDE-742 – Dietary Toxicity Test with the Northern Bobwhite Quail (Colinus virginianus).                                             | None   | (Pending)               |
| 850.2300<br>(71-4b) | 469084-20 | XDE-742: Reproductive Toxicity Test with the Mallard Duck (Anas platyrhynchos).                                                     | None   | (Pending)               |
| 850.2300<br>(71-4a) | 469084-21 | XDE-742: Reproductive Toxicity Test with the Northern Bobwhite Quail ( <i>Colinus virginiamus</i> )                                 | None   | (Pending)               |
| 72-1                | 469084-22 | XDE-742/BAS 770 H: Acute Toxicity Study On<br>The Fathead Minnow ( <i>Pimephales promelas</i> ) In A<br>Static System Over 96 Hours | None   | (Pending)               |
| 72-1                | 469084-23 | XDE-742/BAS 770 H: Acute Toxicity Study On<br>The Fathead Minnow ( <i>Oncorhynchus mykiss</i> ) In A<br>Static System Over 96 Hours | None   | (Pending)               |
| 72-1                | 469084-24 | 7-OH Metabolite of XDE-742- Acute Toxicity to<br>Rainbow Trout (Oncorhynchus mykiss) Under<br>Static Conditions                     | None   | (Pending)               |

-3 of 6-

| Guideline            | MRID                                                            | Study Title                                                                                                        | Issues                                                                                                                                                                                                 | Study<br>Classification |
|----------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 72-1                 | 469084-25                                                       | ASTA Metabolite of XDE-742: An Acute Toxicity<br>Study with the Rainbow Trout, Oncorhynchus<br>mykiss              | None                                                                                                                                                                                                   | (Pending)               |
| 72-2                 | 469084-26                                                       | 7-OH Metabolite of XDE-742- Acute Toxicity to<br>Water Fleas, <i>Daphnia magna</i> , Under Static<br>Conditions    | None                                                                                                                                                                                                   | (Pending)               |
| 72-2                 | 469084-27                                                       | ASTA Metabolite of XDE-742: An Acute Toxicity Study with the Daphnid, Daphnia magna                                | None                                                                                                                                                                                                   | (Pending)               |
| 72-2                 | 469084-28                                                       | XDE-742: An Acute Toxicity Study with the Daphnid, Daphnia magna                                                   | None                                                                                                                                                                                                   | (Pending)               |
| 72-4a                | 469084-<br>30;<br>469086-26<br>(registrant<br>-prepared<br>DER) | XDE-742: Toxicity to the Early-Life Stages of the Fathead Minnow, <i>Pimephales promelas</i> .                     | None                                                                                                                                                                                                   | (Pending)               |
| 72-4b                | 469084-29                                                       | XDE-742: A 21-Day Chronic Toxicity Study with the Daphnid ( <i>Daphnia magna</i> )                                 | None                                                                                                                                                                                                   | (Pending)               |
| 123-2                | 469084-31                                                       | XDE-742-Growth Inhibition Test with Freshwater<br>Blue-Green Alga (Anabaena flos-aquae)                            | Test material was<br>detected at a<br>concentration above<br>the LOQ in the<br>negative control at test<br>termination; however,<br>this was believed to be<br>an error during<br>analytical sampling. | (Pending)               |
| 123-2                | 469084-32                                                       | XDE-742-Growth Inhibition Test with Freshwater Diatom (Navicula pelliculosa)                                       | None                                                                                                                                                                                                   | (Pending)               |
| 850.4400<br>(123-2)  | 469084-33                                                       | 7-OH Metabolite of XDE-742- Toxicity to Duckweed, <i>Lemna gibba</i>                                               | None                                                                                                                                                                                                   | (Pending)               |
| 850.4400<br>(123-2)  | 469084-34                                                       | ADTP Metabolite of XDE-742- Toxicity to Duckweed, <i>Lemna gibba</i>                                               | None                                                                                                                                                                                                   | (Pending)               |
| 850.4400<br>(123-2)  | 469084-35                                                       | 5,7-Di-OH Metabolite of XDE-742- Toxicity to Duckweed, <i>Lemna gibba</i>                                          | None                                                                                                                                                                                                   | (Pending)               |
| 850.4400<br>(123-2)  | 469084-36                                                       | 5-OH Metabolite of XDE-742- Toxicity to Duckweed, <i>Lemna gibba</i>                                               | None                                                                                                                                                                                                   | (Pending)               |
| 850.4400<br>(123-2)  | 469084-37                                                       | 6-Cl-7-OH Metabolite of XDE-742- Toxicity to Duckweed, <i>Lemna gibba</i>                                          | None                                                                                                                                                                                                   | (Pending)               |
| 850.4400<br>(123-2)  | 469084-38                                                       | XDE-742 Sulfinic Acid Metabolite- Toxicity to Duckweed, Lemna gibba                                                | None                                                                                                                                                                                                   | (Pending)               |
| 850.4225<br>(123-1b) | 469084-39                                                       | Effects of GF-1674 on Seedling Emergence and<br>Seedling Growth on Non-Target Terrestrial Plants<br>(Tier II)-2005 | None                                                                                                                                                                                                   | (Pending)               |
| 850.4250<br>(123-1a) | 469084-40                                                       | Effects of GF-1674 on the Vegetative Vigor on<br>Non-Target Terrestrial Plants (Tier II)- 2005                     | None                                                                                                                                                                                                   | (Pending)               |

-4 of 6-

| Guideline           | MRID      | Study Title                                                                                                                     | Issues | Study<br>Classification |
|---------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|
| 123-2               | 469084-41 | XDE-742: Growth Inhibition Test with the Saltwater Diatom Skeletonema costatum                                                  | None   | (Pending)               |
| 850.4400<br>(123-2) | 469084-42 | XDE-742: Growth Inhibition Test with the Aquatic Plant, Lemna gibba                                                             | None   | (Pending)               |
| 123-2               | 469084-43 | XDE-742 Sulfinic Acid Metabolite- Acute<br>Toxicity to the Freshwater Green Alga,<br><i>Pseudokirchneriella subcapitata</i>     | None   | (Pending)               |
| 850.4400<br>(123-2) | 469084-44 | Inhibition of Growth of the Aquatic Plant<br>Duckweed, <i>Lemna gibba</i> , Following One and<br>Three Day Exposures to XDE-742 | None   | (Pending)               |
| 123-2               | 469084-45 | XDE-742: Growth Inhibition Test with the<br>Freshwater Green Alga, <i>Pseudokirchneriella</i><br>subcapitata                    | None   | (Pending)               |
| 123-2               | 469084-46 | ADTP Metabolite of XDE-742- Acute Toxicity to<br>the Freshwater Green Alga, <i>Pseudokirchneriella</i><br>subcapitata           | None   | (Pending)               |
| 123-2               | 469084-47 | 5-OH Metabolite of XDE-742- Acute Toxicity to<br>the Freshwater Green Alga, <i>Pseudokirchneriella</i><br>subcapitata           | None   | (Pending)               |
| 123-2               | 469084-48 | 6-Cl-7-OH Metabolite of XDE-742- Acute<br>Toxicity to the Freshwater Green Alga,<br><i>Pseudokirchneriella subcapitata</i>      | None   | (Pending)               |
| 123-2               | 469084-49 | 5,7-Di-OH Metabolite of XDE-742- Acute<br>Toxicity to the Freshwater Green Alga,<br><i>Pseudokirchneriella subcapitata</i>      | None   | (Pending)               |
| 123-2               | 469084-50 | 7-OH Metabolite of XDE-742- Acute Toxicity to<br>the Freshwater Green Alga, <i>Pseudokirchneriella</i><br>subcapitata           | None   | (Pending)               |
| 123-2               | 469084-51 | ASTA Metabolite of XDE-742: Growth Inhibition<br>Test with the Freshwater Green Alga,<br><i>Pseudokirchneriella subcapitata</i> | None   | (Pending)               |
| 850.4400<br>(123-2) | 469084-52 | ASTA Metabolite of XDE-742: Growth Inhibition<br>Test with the Aquatic Plant Duckweed, <i>Lemna</i><br>gibba                    | None   | (Pending)               |
| OECD 207            | 469085-04 | 5-OH Metabolite of XDE-742: An Acute Toxicity<br>Study with the Earthworm in an Artificial Soil<br>Substrate                    | None   | (Pending)               |
| OECD 207            | 469085-05 | XR-742: 14 Day Soil Exposure Acute Toxicity to the Earthworm, <i>Eisenia foetida</i>                                            | None   | (Pending)               |
| OECD 207            | 469085-06 | 6-Cl-7-OH Metabolite of XDE-742: An Acute<br>Toxicity Study with the Earthworm in an Artificial<br>Soil Substrate               | None   | (Pending)               |
| OECD 207            | 469085-07 | 7-OH Metabolite of XDE-742: An Acute Toxicity<br>Study with the Earthworm in an Artificial Soil<br>Substrate                    | None   | (Pending)               |


-5 of 6-

| Guideline           | MRID      | Study Title                                                                                                                                       | - Issues                                                                                                                                                                                                                                                                                                                  | Study<br>Classification |
|---------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| OECD 213<br>& 214   | 469085-08 | Effects of XDE-742/ BAS770H (Acute Contact<br>and Oral) on Honey Bees Apis mellifera L. In the<br>Laboratory                                      | None                                                                                                                                                                                                                                                                                                                      | (Pending)               |
| OECD 219<br>(Non-G) | 469085-09 | 7-OH Metabolite of XDE-742 – Chironomid<br>Toxicity Test with Midge ( <i>Chironomus riparius</i> )<br>Under Static Conditions using Spiked Water. | None                                                                                                                                                                                                                                                                                                                      | (Pending)               |
| OECD 219<br>(Non-G) | 469085-10 | XDE-742: 28-Day Chronic Toxicity Study with<br>the Midge, <i>Chironomus riparius</i> , Using Spiked<br>Water in a Sediment-Water Exposure System. | Midge larvae were<br>added to each vessel<br>on the same day the<br>vessels were spiked,<br>and aeration was<br>stopped for approx. 3<br>hours during and<br>thereafter.                                                                                                                                                  | (Pending)               |
| OECD 222<br>(Non-G) | 469085-11 | 6-Cl-7-OH Metabolite of XDE-742: A<br>Reproduction Study with the Earthworm in an<br>Artificial Soil Substrate                                    | None                                                                                                                                                                                                                                                                                                                      | (Pending)               |
| None                | 469085-12 | Herbicidal Activity of XDE-742 Soil Metabolites<br>on Weeds and Crops in a Discovery Weed<br>Management Level 3 Postemergence Screen              | No quantitative data<br>were provided on<br>survival, plant height<br>or dry weight.<br>Therefore, this study<br>cannot be considered<br>for a traditional<br>review as it only<br>provides qualitative<br>data on the injury to<br>the plants from<br>exposure to the test<br>material and<br>associated<br>metabolites. | (Pending)               |

-6 of 6-



# Environmental Fate and Ecological Risk Assessment for the Registration of Pyroxsulam (XDE-742)



Prepared by: Greg Orrick, Environmental Scientist Christopher Salice, Biologist Thomas Steeger, Ph.D., Senior Biologist

Reviewed by: Elizabeth Behl, Branch Chief U.S. Environmental Protection Agency Office of Pesticide Programs Environmental Fate and Effects Division Environmental Risk Branch IV 1200 Pennsylvania Ave., NW Mail Code 7507P Washington, DC 20460

# I. Executive Summary

### A. Nature of Chemical Stressor

Dow Agro Sciences LLC is seeking registration for the use of the new chemical herbicide pyroxsulam [N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4- (trifluoromethyl)-3-pyridinesulfonamide)] and its flowable formulation, end-use products GF-1674 (2.87%) and GF-1274 (7.5% a.i.). This is a national registration request for control of a number of weed species associated with spring and winter wheat. Ground or aerial applications are proposed once per growing season with rates of 0.0132 lbs a.i./A to 0.0164 lbs a.i./A.

### **B.** Potential Risks to Non-target Organisms

The results of this screening-level assessment indicate a potential for direct adverse acute effects to non-target terrestrial and semi-aquatic plants (**Table 1.1**). Although this screening-level analysis showed that there is limited potential for direct adverse effects to animal species associated with the use of pyroxsulam on wheat, indirect effects may result as a consequence of potential effects on plants.

| Table 1.1. Summary of Direct and Indirect Effects for Federally Listed Species. |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                              |  |
|---------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|--|
| Listed Species Taxonomic                                                        | Direct Effects      | BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Indirect Effects |                              |  |
| Group of Concern                                                                | Direct Effects      | RQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Potential        | Associated Taxa <sup>1</sup> |  |
| Aquatic vascular plants                                                         | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No               |                              |  |
| Aquatic non-vascular plants                                                     | None                | <ul> <li>A state of the sta</li></ul> | No               |                              |  |
| Estuarine/marine non-<br>vascular plants                                        | None                | en de la constant<br>Recentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No               |                              |  |
| Dicot terrestrial plants                                                        | Acute: plant growth | 4.3-251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes              | Terrestrial Plants           |  |
| Monocot terrestrial plants                                                      | Acute: plant growth | 2.2-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes              | Terrestrial Plants           |  |
| Freshwater fish                                                                 | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              | Terrestrial Plants           |  |
| Estuarine/Marine fish                                                           | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              |                              |  |
| Freshwater invertebrates                                                        | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              | Terrestrial Plants           |  |
| Estuarine/Marine<br>Invertebrates                                               | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              | Terrestrial Plants           |  |
| Mollusks                                                                        | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              | Terrestrial Plants           |  |
| Mammals                                                                         | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              | Terrestrial Plants           |  |
| Birds                                                                           | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              | Terrestrial Plants           |  |
| Terrestrial invertebrates                                                       | None                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes              | Terrestrial Plants           |  |

<sup>1</sup>Associated Taxa refers to those taxa for which there are direct effects that may indirectly affect a listed species taxa.

Overall, potential risks appear to be greatest for terrestrial and semi-aquatic plants since these organisms appear to be very sensitive. Functionally, estimated risks may translate to reduced survival, reproduction, or growth in affected species with the potential for subsequent effects at higher levels of biological organization.

#### -2 of 154-

For federally listed endangered or threatened (hereafter "listed") species, acute risk levels of concern were exceeded for semi-aquatic and terrestrial monocot and dicot plants. No listed species acute or chronic LOCs were exceeded for any animal species evaluated in this assessment. Because terrestrial/semi-aquatic plant risk quotients are above the non-endangered species level of concern, the Environmental Protection Agency considers this to be indicative of a potential for adverse effects to those listed species that rely either on a specific plant species (plant species obligate) or multiple plant species (plant dependant) for some component of their life cycle.

There is a potential to affect listed plant species and the species which depend upon listed or non-listed plant species for food and/or habitat. Indirect effects in this case should be considered for both terrestrial and aquatic animal species. The extent to which the proposed uses of pyroxsulam will directly effect plant species and indirectly effect animal species will require further assessment; specifically, clear delineation of action area, identification of listed species that co-occur in areas of pyroxsulam use, species-specific life history information, and an evaluation of critical habitat for listed species that occur within the defined action area.

#### C. Conclusions - Exposure Characterization

Pyroxsulam has low volatility and exhibits acid-base behavior with pH-dependent water solubility. It is mobile to highly mobile in soil ( $K_{FOC}$  range of 7.1–68.0 L/kg<sub>OC</sub>), presenting a groundwater concern in alkaline, sandy soils. The compound's affinity to soil, however low, correlates with organic carbon. Pyroxsulam is not expected to persist in aerobic environments. Primary routes of degradation include aqueous photolysis ( $t_{1/2}$  of 4.5 days), aerobic soil metabolism ( $t_{1/2}$  range of 2.64-14.6 days), and aerobic aquatic metabolism ( $t_{1/2}$  range of 14.5-18.8 days). The compound is stable to biodegradation in anaerobic aquatic environments and the abiotic processes of soil photolysis and hydrolysis.

Major degradates include the demethylation products, 5-OH-XDE-742, 7-OH-XDE-742, 6-Cl-7-OH-XDE-742, and 5,7-diOH-XDE-742, and the further degraded products, XDE-742 ATSA, XDE-742 sulfinic acid, XDE-742 ADTP, and carbon dioxide.

There are a number of studies on the toxicity of pyroxsulam's major degradates to aquatic plants; all available toxicity data indicate that the degradates of pyroxsulam are less toxic than the parent to aquatic plants. Therefore, aquatic exposure estimates were based on residues of the parent compound alone. Review of the toxicity of pyroxsulam's degradates to mammals by the Health Effects Division (HED) indicates that the parent and degradates are practically non-toxic to mammals on an acute exposure basis. Therefore, terrestrial exposure estimates were based on residues of the parent compound alone.

-3 of 154-

### **D.** Conclusions - Effects Characterization

Pyroxsulam is practically non-toxic to birds, mammals, fish, freshwater invertebrates and honeybees under acute exposure conditions. Pyroxsulam is highly toxic to terrestrial plants following acute exposure. In terrestrial plants, monocotyledonous plants appear more sensitive to pyroxsulam compared to dicotyledonous plants.

#### **E.** Uncertainties and Data Gaps

The environmental fate and toxicology data requirements have not been adequately fulfilled for a terrestrial food use. The submitted anaerobic aquatic metabolism, aerobic aquatic metabolism, and terrestrial field dissipation studies were supplemental and no anaerobic soil metabolism study was submitted. However, submission of additional data may upgrade the submitted terrestrial field dissipation study. New anaerobic soil metabolism, and aerobic aquatic metabolism studies are not requested at this time because they are not expected to significantly alter risk conclusions.

Although no toxicity data were submitted for estuarine/marine animal species, the toxicity profile based on freshwater species and the physical properties of the chemical indicates that risks to estuarine/marine species are unlikely and that the toxicity data are not a requirement. However, without appropriate toxicity data, some uncertainty exists regarding the potential risks to estuarine/marine animal species associated with the proposed use of pyroxsulam on wheat.

# **II. Problem Formulation**

The purpose of problem formulation is to provide the foundation for the environmental fate and ecological risk assessment being conducted for pyroxsulam (XDE-742). It sets the objectives for the risk assessment, evaluates the nature of the problem, and provides a plan for analyzing the data and characterizing the risk (USEPA, 1998).

A. Nature of Regulatory Action

Dow Agro Sciences LLC is seeking the Section 3 registration, under the authority of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), for the new active ingredient, pyroxsulam, for use as an herbicide.

#### **B.** Stressor Source and Distribution

#### 1. Nature of the Chemical Stressor

Pyroxsulam is a new systemic post-emergence cereals herbicide for selective control of wild oat, winter annual brome species, annual ryegrass and other annual grass and broadleaf weeds in

-4 of 154-

winter and spring wheat (including durum). The herbicide acts through inhibiting the acetolactate synthesis (ALS) enzyme.

Pyroxsulam exhibits acid-base behavior and is mobile to highly mobile in soil (mean  $K_{FOC}$  of 30.4 L/kg<sub>OC</sub>), presenting a groundwater concern in alkaline, sandy soils. Pyroxsulam is not expected to persist in aerobic environments, but may persist in anaerobic environments. Major degradates include the demethylation products, 5-OH-XDE-742, 7-OH-XDE-742, 6-Cl-7-OH-XDE-742, and 5,7-diOH-XDE-742, and the further degraded products, XDE-742 ATSA, XDE-742 sulfinic acid, XDE-742 ADTP, and carbon dioxide.

There are a number of studies on the toxicity of pyroxsulam's major degradates to aquatic plants; all available toxicity data indicate that the degradates of pyroxsulam are less toxic than the parent to aquatic plants. Therefore, aquatic exposure estimates were based on residues of the parent compound alone. Review of the toxicity of pyroxsulam's degradates to mammals by the Health Effects Division (HED) indicates that the parent and degradates are practically non-toxic to mammals on an acute exposure basis. Therefore, terrestrial exposure estimates were based on residues of the parent compound alone.

#### 2. Overview of Pesticide Usage

Two formulations of pyroxsulam are proposed for registration; these include GF-1274 (7.5% a.i.), a water dispersible granule (WDG) formulation, and GF-1674 (2.87% a.i.), an oil dispersion (OD) formulation. Both formulations are to be mixed with water and applied as a postemergence foliar application with aerial and ground-spray equipment. The maximum proposed application rates per use and per growing season are the same for each formulation, at 0.0164 lbs a.i./A for GF-1274 and 0.0132 lbs a.i./A, for GF-1674.

The herbicide is proposed for use on both winter and spring wheat (including durum). Key winter wheat producing areas in the United States include the High Plains states extending from South Dakota, south to Texas, and the Pacific Northwest states. Winter wheat is also an important rotational crop grown in most Midwestern and Southeastern states. Key spring wheat and durum producing states include Idaho, Minnesota, Montana, North Dakota, South Dakota and Washington.

#### C. Receptors

#### 1. Aquatic and Terrestrial Effects

The receptor is the biological entity that is exposed to the stressor (USEPA, 1989). Consistent with the process described in the Overview Document (USEPA, 2004), this risk assessment uses a surrogate species approach in its evaluation of pyroxsulam. Toxicological data generated from surrogate test species, that are intended to be representative of broad taxonomic groups, are used to extrapolate to potential effects on a variety of species (receptors) included under these taxonomic groupings.

#### -5 of 154-

Acute toxicity data from studies submitted by pesticide registrants along with the available open literature are used to evaluate potential direct effects of pyroxsulam to the aquatic and terrestrial receptors. The open literature studies are located through EPA's database ECOTOX (<u>http://cfpub.epa.gov/ecotox/</u>), which provides a source for locating single chemical toxicity data for aquatic life, terrestrial plants, and wildlife. The evaluation of both sources of data can also provide insight into the indirect effects of pyroxsulam on biotic communities due to loss of species that are sensitive to the chemical and changes in structure and functional characteristics of the affected communities.

**Table 2.1** provides examples of taxonomic groups and the surrogate species tested to help understand potential ecological effects of pesticides to these non-target taxonomic groups. Based on a preliminary review of the ecological effects data, pyroxsulam and its degradates are, practically non-toxic to freshwater fish, freshwater invertebrates, and earthworms under acute exposure conditions. Under chronic exposure conditions, the parent material did not exhibit any toxic effects in fathead minnow (*Pimephales promelas*), waterfleas (*Daphnia magna*), midges (*Chironomus riparius*), bobwhite quail (*Colinus virginianus*), laboratory rats (*Rattus norvegicus*) or earthworms (*Eisenia fetidia*) over the range of concentrations tested. However, the 7-OH metabolite yielded some chronic toxic effects to female midge and combined sex development. Additionally, growth of chicks and adult female mallard ducks (*Anas platyrhynchos*) was adversely affected when birds are exposed to pyroxsulam. Aquatic and terrestrial plants show the greatest sensitivity to the parent compound and little or no sensitivity to its major degradates.

| Table 2.1. Taxonomic Groups and Test Specie | s Evaluated for Assessing Potential Ecological Effects of |  |
|---------------------------------------------|-----------------------------------------------------------|--|
| Pyroxsulam.                                 |                                                           |  |
| Taxonomic Group                             | Example(s) of Surrogate Species                           |  |
| Birds <sup>1</sup>                          | Mallard duck (Anas platyrhynchos)                         |  |
|                                             | Bobwhite quail (Colinus virginianus)                      |  |
| Mammals                                     | Laboratory rat (Rattus norvegicus)                        |  |
| Insects                                     | Honey bee (Apis mellifera L.)                             |  |
| Freshwater fish <sup>2</sup>                | Bluegill sunfish (Lepomis macrochirus)                    |  |
|                                             | Rainbow trout (Oncorhynchus mykiss)                       |  |
| Freshwater invertebrates                    | Water flea (Daphnia magna)                                |  |
| Estuarine/marine fish                       | Sheepshead minnow (Cyprinodon variegatus)                 |  |
| Terrestrial plants <sup>3</sup>             | Monocots – corn (Zea mays)                                |  |
|                                             | Dicots – soybean (Glycine max)                            |  |
| Aquatic plants and algae                    | Duckweed (Lemna gibba)                                    |  |
|                                             | Green algae (Selenastrum capricornutum)                   |  |

<sup>1</sup> Birds represent surrogates for terrestrial-phase amphibians and reptiles.

<sup>2</sup> Freshwater fish may be surrogates for aquatic-phase amphibians.

<sup>3</sup> Four species of two families of monocots, of which one is corn; six species of at least four dicot families, of which one is soybeans.

#### 2. Ecosystems Potentially at Risk

The ecosystems at risk are often extensive in scope, and as a result it may not be possible to identify specific ecosystems at the screening level. However, in general terms, terrestrial ecosystems potentially at risk could include the treated field and areas immediately adjacent to the treated field that may receive drift or runoff. This could include the field itself as well as other cultivated fields, fencerows and hedgerows, meadows, fallow fields or grasslands, woodlands, riparian habitats and other uncultivated areas.

#### -6 of 154-

Aquatic ecosystems potentially at risk include water bodies adjacent to, or down stream from, the treated field and might include impounded bodies such as ponds, lakes and reservoirs, or flowing waterways such as streams or rivers. For uses in coastal areas, aquatic habitat also includes marine ecosystems, including estuaries.

# **D.** Assessment Endpoints

Assessment endpoints represent the actual environmental value that is to be protected, defined by an ecological entity (species, community, or other entity) and its attribute or characteristics (USEPA, 1998). For pyroxsulam, the ecological entities include the following: birds, mammals, freshwater fish and invertebrates, estuarine/marine fish and invertebrates, terrestrial plants, insects, and aquatic plants and algae. The attributes for each of these entities may include growth, survival, and reproduction. (See **Table 2.2** in **Section II.F.2**, the Analysis Plan, for further discussion.)

# E. Conceptual Model

For a pesticide to pose an ecological risk, it must reach ecological receptors in biologically significant concentrations. An exposure pathway is the means by which a pesticide moves in the environment from a source to an ecological receptor. For an ecological pathway to be complete, it must have a source, a release mechanism, an environmental transport medium, a point of exposure for ecological receptors, and a feasible route of exposure.

A conceptual model is intended to provide a written description and visual representation of the predicted relationships between pyroxsulam, potential routes of exposure, and the predicted effects for the assessment endpoint. A conceptual model consists of two major components: risk hypotheses and a conceptual diagram (USEPA, 1998).

### 1. Risk Hypotheses

For pyroxsulam, the following ecological risk hypothesis is being employed for this screeninglevel risk assessment:

Pyroxsulam, when used in accordance with the label, results in potential direct adverse effects upon the survival, growth, and reproduction of non-target plants; terrestrial plants adjacent to the site of application are likely to be affected. Transport of the compound through runoff and/or erosion is likely to be limited by low application rates and the compound's low persistence under aerobic conditions. The compound can move to surface waters adjacent to application sites through spray drift, where it will likely affect both vascular and nonvascular aquatic plants. Although pyroxsulam and its degradates are practically nontoxic to aquatic animals on an acute exposure basis, chronic effects on invertebrates may occur. Although pyroxsulam is practically nontoxic to birds and mammals on an acute exposure basis and shows little toxicity under chronic exposure conditions, indirect effects on terrestrial and aquatic animals may occur through the loss of primary productivity and habitat.

-7 of 154-

# 2. Conceptual Diagram

The potential exposure pathways and effects of pyroxsulam in terrestrial and aquatic environments are depicted in **Figure 2.1** and **Figure 2.2**, respectively. Solid arrows depict the most likely routes of exposure and effects; dashed lines depict potential routes of exposure that are not considered likely for pyroxsulam. As depicted in **Figure 2.1**, direct exposure of plants through aerial and ground spray applications and indirect exposure of non-target plants through spray drift are considered to be the most likely routes to exposure of terrestrial animals and plants. The most likely effects are decreased survival and growth of terrestrial plants.

**Figure 2.2** depicts the potential exposure of aquatic plants and animals through the most likely routes of exposure, *i.e.*, runoff and spray drift. Depending on the extent of spray drift contamination, plants in aquatic environments will likely be affected. Pyroxsulam is hypothesized to be practically nontoxic to aquatic animals on an acute exposure basis.

Because direct effects are expected to non-target terrestrial and aquatic plants, terrestrial and aquatic animals may in turn be affected through the reductions in primary productivity and habitat.

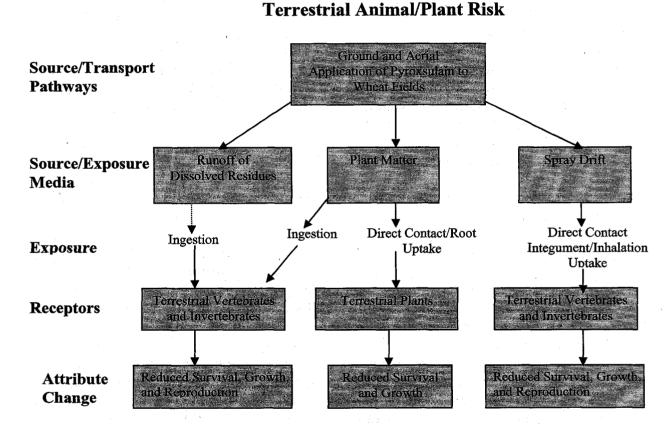



Figure 2.1. Conceptual model depicting potential risks to terrestrial animals and plants from the use of pyroxsulam as a post-emergent herbicide on wheat.

### -8 of 154-

# **Aquatic Animal/Plant Risk**

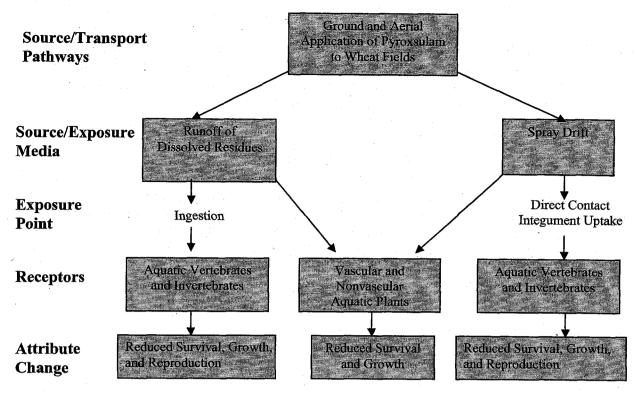



Figure 2.2. Conceptual model depicting potential risks to aquatic animals and plants from the use of pyroxsulam as a post-emergent herbicide on wheat.

# F. Analysis Plan

Pyroxsulam is a tri-lateral review chemical, and the responsibility for environmental fate and ecological effects data preliminary reviews resides with the Canadian Pest Management Regulatory Agency (PMRA) and the Australian Pesticide and Veterinary Medicine Authority (APVMA), respectively. Primary data reviews from each of these government agencies have been independently reviewed by the Environmental Fate and Effects Division (EFED) of the U.S. Environmental Protection Agency (Agency) Office of Pesticide Programs (OPP) and finalized versions of the data reviews have been agreed to by the participating countries.

# 1. Preliminary Identification of Data Gaps and Analysis Plan

A total of 47 registrant-submitted studies are available for assessing the potential effects of pyroxsulam and its major metabolites on non-target organisms. Based on a preliminary data screen, ecological effect data are missing for estuarine/marine species, however, given the chemical characteristics and use of the chemical and the apparent low toxicity to freshwater species, the ecological effect studies appear to meet the basic guideline requirements and no toxicological data gaps have been identified at this time. However, the lack of data on the ecological effects to estuarine/marine organisms is a source of uncertainty although pyroxsulam

does not appear to meet the conditional requirements for requesting toxicity data for estuarine/marine organisms.

A total of 12 registrant-submitted studies are available for assessing the environmental fate of pyroxsulam. The preliminary data screen indicated that the environmental fate studies met the basic guideline requirements even though no anaerobic soil metabolism study was submitted. The submitted anaerobic aquatic metabolism, aerobic aquatic metabolism, and terrestrial field dissipation studies were classified supplemental upon review and are sources of uncertainty in the environmental fate of pyroxsulam.

#### 2. Measures of Effect and Exposure

č

Щ 2

A ARCHT

**Table 2.2** lists the measures of environmental exposure and ecological effects used to assess the potential risks of pyroxsulam to non-target organisms. The methods used to assess the risk are consistent with those outlined in the document "Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs" (USEPA, 2004).

-10 of 154-

| Table 2.2. Measures of Exposure and Measures of Effect Used in Assessing Potential Risks Associated with the Proposed Use of the Herbicide Pyroxsulam on Wheat. |                         |                                                                                                                                           |                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Assessmen                                                                                                                                                       | it Endpoint             | Surrogate Species and Measures of Ecological<br>Effect <sup>1</sup>                                                                       | Measures of Exposure                        |  |
| Birds <sup>2</sup>                                                                                                                                              | Survival                | Bobwhite quail/Mallard duck LD <sub>50</sub> : (>2000 mg/kg)<br>Bobwhite quail/Mallard duck dietary<br>LC <sub>50</sub> : 5000 mg/kg feed |                                             |  |
|                                                                                                                                                                 | Reproduction and growth | Bobwhite quail/Mallard duck chronic reproduction<br>NOAEC: 1000 mg/kg feed                                                                | Upper-bound residues on food items (foliar) |  |
| Mammals                                                                                                                                                         | Survival                | Laboratory rat acute oral LD <sub>50</sub> : 3129 mg/kg                                                                                   |                                             |  |
|                                                                                                                                                                 | Reproduction and growth | Laboratory rat oral reproduction chronic NOAEC: 1000 mg/kg feed                                                                           |                                             |  |
| Freshwater fish <sup>3</sup>                                                                                                                                    | Survival                | Rainbow trout acute $LC_{50}$ : >87 mg a.i./L                                                                                             | Peak EEC <sup>4</sup>                       |  |
|                                                                                                                                                                 | Reproduction and growth | Fathead minnow<br>chronic (early life-stage) NOAEC and LOAEC: 10.1<br>and >10.1 mg a.i./L, respectively.                                  | 60-day average EEC <sup>4</sup>             |  |
| Freshwater<br>invertebrates                                                                                                                                     | Survival                | Water flea acute EC <sub>50</sub> : >99 mg a.i./L                                                                                         | Peak EEC <sup>4</sup>                       |  |
|                                                                                                                                                                 | Reproduction and growth | Midge chronic reproduction (life cycle) NOAEC and LOAEC: 30 and 60 mg a.i./L                                                              | 21-day average EEC <sup>4</sup>             |  |
| Estuarine/<br>marine fish                                                                                                                                       | Survival                | Sheepshead minnow acute $LC_{50}$ (no study available)                                                                                    | Peak EEC <sup>4</sup>                       |  |
|                                                                                                                                                                 | Reproduction and growth | Sheepshead minnow chronic (early life-stage)<br>NOAEC and LOAEC<br>(no study available)                                                   | 60-day average EEC <sup>4</sup>             |  |

-11 of 154-

| Table 2.2. Measures of Exposure and Measures of Effect Used in Assessing Potential Risks Associated with the         Proposed Use of the Herbicide Pyroxsulam on Wheat. |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Assessmen                                                                                                                                                               | it Endpoint                                  | Surrogate Species and Measures of Ecological<br>Effect <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measures of Exposure                                          |  |
| Estuarine/marine<br>invertebrates                                                                                                                                       | Survival                                     | Eastern oyster acute $EC_{50}$ and mysid acute $LC_{50}$ (no study available)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak EEC <sup>4</sup>                                         |  |
|                                                                                                                                                                         | Reproduction and growth                      | Mysid chronic NOAEC and LOAEC<br>(no study available)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21-day average EEC <sup>4</sup>                               |  |
| Terrestrial plants <sup>5</sup>                                                                                                                                         | Survival and<br>growth                       | $\begin{array}{l} \mbox{Monocot seedling emergence } EC_{25} \mbox{ and } EC_{05}{\rm :} \\ 0.00022 \mbox{ and } 0.000062 \mbox{ lbs a.i./A} \\ \mbox{Dicot seedling emergence } EC_{25} \mbox{ and } EC_{05}{\rm :} \\ 0.00057 \mbox{ and } 0.000036 \mbox{ lbs a.i./A} \\ \mbox{Monocot vegetative vigor } EC_{25} \mbox{ and } EC_{05}{\rm :} \\ 0.00056 \mbox{ and } 0.000046 \mbox{ lbs a.i./A} \\ \mbox{Dicot vegetative vigor } EC_{25} \mbox{ and } EC_{05}{\rm :} \\ 0.000052 \mbox{ and } 0.000031 \mbox{ lbs a.i./A} \\ \end{array}$ | Estimates of runoff and<br>spray drift to non-target<br>areas |  |
| Insects                                                                                                                                                                 | Survival (not<br>quantitatively<br>assessed) | Honeybee acute contact LD <sub>50</sub> : >107.4 mg a.i./kg sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum application<br>rate                                   |  |
| Aquatic plants                                                                                                                                                          | Survival and<br>growth                       | Duckweed EC <sub>50</sub> and NOAEC: 0.00257 and 0.00068<br>mg a.i./L<br>Algae EC <sub>50</sub> and NOAEC: 0.111 and 0.0261 mg a.i./L                                                                                                                                                                                                                                                                                                                                                                                                           | Peak EEC                                                      |  |

<sup>1</sup> If species listed in this table represent most commonly encountered species from registrant-submitted studies, risk assessment guidance indicates most sensitive species tested within taxonomic group are to be used for screeninglevel risk assessments. <sup>2</sup>Birds represent surrogates for amphibians (terrestrial phase) and reptiles.

<sup>3</sup>Freshwater fish may be surrogates for amphibians (aquatic phase). <sup>4</sup>One in 10-year return frequency.

<sup>5</sup> Four species of two families of monocots - one is corn, six species of at least four dicot families, of which one is soybeans.  $LD_{50}$  = Lethal dose to 50% of the test population; NOAEC = No observed adverse effect concentration; LOAEC = Lowest observed adverse effect concentration;  $LC_{50} = Lethal$  concentration to 50% of the test population;  $EC_{50}/EC_{25}$  = Effect concentration to 50%/25% of the test population.

-12 of 154-

# III. Analysis

# A. Use Characterization

Pyroxsulam [N-(5,7-dimethoxy[1,2,4]triazolo[1,5- $\alpha$ ]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3-pyridinesulfonamide], also known as XDE-742, is a new systemic postemergence cereals herbicide in the class of compounds known as triazolopyridine sulfonamides. The compound inhibits the acetolactate synthesis (ALS) enzyme and is used to achieve selective control of wild oat, winter annual brome species, annual ryegrass, and other annual grass and broadleaf weeds in winter and spring wheat (including durum).

Key winter wheat producing areas in the United States include the High Plains states, extending from South Dakota south to Texas, and the Pacific Northwest states. Winter wheat is also an important rotational crop grown in most Midwestern and Southeastern states. Key spring wheat and durum producing states include Idaho, Minnesota, Montana, North Dakota, South Dakota and Washington. **Figure 3.1** displays the spatial extent in 2002 of wheat harvested for grain.

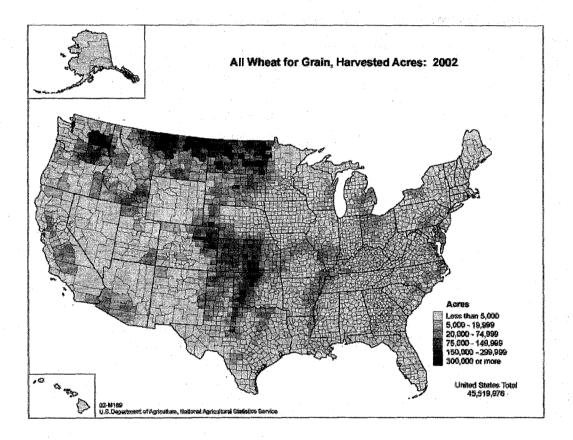



Figure 3.1. Acres of wheat for grain harvested in 2002 (USDA, 2007).

Two formulations of pyroxsulam are proposed for registration; these include GF-1274 (7.5% a.i.), a water dispersible granule (WDG) formulation for use on winter wheat, and GF-1674 (2.87% a.i.), an oil dispersion (OD) formulation for use on both spring and winter wheat. Both

-13 of 154-

formulations are to be mixed with water and applied as a post-emergence foliar application with aerial and ground-spray equipment.

The maximum proposed application rates per use and per growing season are the same, limited at 0.0164 lbs a.i./A for GF-1274 and 0.0132 lbs a.i./A, for GF-1674. Therefore, the maximum annual application rate of 0.0164 lbs a.i./A characterizes the maximum use pattern for pyroxsulam on wheat, as only one growing season occurs per year.

# **B.** Exposure Characterization

#### 1. Environmental Fate and Transport Characterization

Pyroxsulam exhibits acid-base behavior and is mobile to highly mobile in soil (mean  $K_{FOC}$  of 30.4 L/kg<sub>OC</sub>), presenting a groundwater concern in alkaline, sandy soils. Pyroxsulam is not expected to persist in aerobic environments, but may persist in anaerobic environments. A brief summary of the chemical properties and environmental fate parameters of pyroxsulam is provided in **Table 3.1**.

| Table 3.1. General Chemical Properties and E           Pyroxsulam. |                                                                                         |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Parameter                                                          | Value                                                                                   |
| Common name                                                        | Pyroxsulam, XDE-742                                                                     |
| IUPAC name                                                         | N-(5,7-dimethoxy[1,2,4]triazolo[1,5-                                                    |
|                                                                    | $\alpha$ ]pyrimidin-2-yl)-2-methoxy-4-                                                  |
|                                                                    | (trifluoromethyl)-3-pyridinesulfonamide                                                 |
| Structure                                                          | OCH <sub>3</sub>                                                                        |
|                                                                    | $ \begin{array}{c} CF_{3} \\ O \\ N \\ S \\ N \\ O \\ O \\ O \\ H \end{array} \right) $ |
| Pesticide type, such as herbicide or insecticide,                  | Herbicide                                                                               |
| Chemical class                                                     | Triazolopyridine sulfonamides                                                           |
| CAS number                                                         | 422556-08-9                                                                             |
| Empirical formula                                                  | C <sub>14</sub> H <sub>13</sub> F <sub>3</sub> N <sub>6</sub> O <sub>5</sub> S          |
| Selected Physical/Ch                                               | emical Parameters                                                                       |
| Molecular mass (g/mol)                                             | 434.4                                                                                   |
| Vapor pressure at 20°C (torr)                                      | <10 <sup>-9</sup>                                                                       |
| Henry's Law Constant at 20°C (Pa m <sup>3</sup> /mol)              | $<1.36 \text{ x}10^{-8}$                                                                |
| Solubility in water (g/L) at 20°C (mg/L)                           | 16.4 (pH 4)                                                                             |
|                                                                    | $3.20 \times 10^3$ (pH 7)                                                               |
|                                                                    | $1.37 \ge 10^4 \text{ (pH 9)}$                                                          |
| pKa at 20°C                                                        | 4.67                                                                                    |
| K <sub>ow</sub>                                                    | 12.1 (pH 4)                                                                             |
|                                                                    | 0.097 (pH 7)                                                                            |
|                                                                    | 0.024 (pH 9)                                                                            |

-14 of 154-

| Table 3.1. General Chemical Properties and E         | nvironmental Fate Parameters of             |
|------------------------------------------------------|---------------------------------------------|
| Pyroxsulam.                                          |                                             |
| Parameter                                            | Value                                       |
| Persist                                              | ence                                        |
| Hydrolysis half-life                                 | No significant degradation (pH 5, 7, and 9) |
| Aqueous photolysis half-life (days)                  | 4.5                                         |
| Soil photolysis half-life                            | No significant degradation                  |
| Aerobic soil metabolism half-life range (days)       | 2.64–14.6                                   |
| Aerobic aquatic metabolism half-life range           | 14.5–18.8                                   |
| (days)                                               |                                             |
| Anaerobic aquatic metabolism half-life (days)        | No significant degradation                  |
| Mobi                                                 | lity                                        |
| K <sub>F</sub> range for adsorption                  | 0.18 (1/n=0.93) - 1.60 (1/n=0.96)           |
| K <sub>FOC</sub> range for adsorption                | 7.1–68.0 L/kg <sub>OC</sub>                 |
| Field Diss                                           | sipation                                    |
| Terrestrial field dissipation half-life range (days) | 4.6-23                                      |

#### a. Transport and Mobility

Pyroxsulam will not significantly volatilize due to a low vapor pressure ( $<10^{-9}$  torr at 20°C) and a pH-dependant solubility in water (16.4 mg/L (pH 4) to 1.37 x 10<sup>4</sup> mg/L (pH 9) at 20°C) that is high at environmentally relevant pH values (MRID 46908303). Ranges of K<sub>OW</sub> and solubility in water across pH values indicate that the compound exhibits acid/base behavior, with a pKa of 4.67 at 20°C (MRID 46908303). Pyroxsulam is not expected to bioconcentrate in fish, as K<sub>OW</sub> values are less than 1.0 at environmentally relevant pH values and only up to 12 at pH 4.

Pyroxsulam weakly sorbs to soil; however, the compound's sorption correlates with organic matter, as the coefficient of variation (CV) across ten soils for  $K_{FOC}$  (69%) is less than that for  $K_F$  (87%) (MRID 47159601). Pyroxsulam is mobile to highly mobile ( $K_{FOC}$  of 7.1 to 68.0 L/kg<sub>oc</sub>) and may readily move into surface water through runoff and/or leach into ground water, depending on the permeability of the soil.

#### b. Degradation

Pyroxsulam is not expected to persist in aerobic environments. Primary routes of degradation include aqueous photolysis ( $t_{1/2}$  of 4.5 days; MRID pending) and aerobic soil metabolism ( $t_{1/2}$  range of 2.64-14.6 days; MRID 47202701). Aerobic aquatic metabolism may also be a primary route of degradation ( $t_{1/2}$  range of 14.5-18.8 days; MRID 46908336). However, the submitted data are uncertain and half-life estimates may be low because residues were inadequately extracted. Pyroxsulam is stable to the abiotic processes of soil photolysis and hydrolysis (MRID 46908326, 46908328).

The aerobic soil metabolism study was conducted to demonstrate that the majority of unextracted residues in a previously submitted study conducted with only one extraction method were bound to soil and unavailable (up to 94% of the applied radioactivity; MRID 46908329), as up to 83% of the applied in the latter study remained unextracted after exhaustive extraction procedures.

#### -15 of 154-

These results indicate that the kinetics of the aerobic aquatic metabolism study, which was conducted with the same single extraction method as the previously submitted aerobic soil metabolism study, are not greatly overestimated, even though unextracted residues accounted for up to 73% of the applied.

Pyroxsulam in sterilized soil was shown not to degrade (projected  $DT_{50}$  greater than 450 days) and remained extractable after four months (10.0% to 10.5% of the applied remained unextracted; MRID 46908329). These results indicate that bound residues are biodegradation products and not pyroxsulam parent. Because the majorities of unextracted residues in the submitted metabolism studies are likely irreversibly bound to soil, all half-life calculations for this assessment were conducted based on only the parent compound residues that were available for extraction.

Pyroxsulam appears to persist under anaerobic conditions (MRID 46908331). The submitted anaerobic aquatic metabolism study indicates that pyroxsulam is stable through the first 30 days, when redox potentials were the lowest ( $E_h$  7 range -10.2 to -143.3 mV). Degradation occurred suddenly after 30 days, coinciding with an increase in aqueous redox potential (range +8.5 to -80.0 mV), suggesting that changes in aerobicity in the test system may have led to rapid biodegradation.

# c. Field Studies

A terrestrial field dissipation study was conducted for pyroxsulam using four sites in Canada with three bare ground plots each (MRID 46908334). Two of the sites, SK2 (loam soil) and MB (clay loam soil), were found in ecoregions relevant to use sites in the U.S. The end-use product, GF-1442, was surface broadcast sprayed to achieve an application rate of 0.025 kg a.i./ha. The plots were irrigated to a target of 110% of the 30-year precipitation normal. Soil samples (0-90 cm depth) were collected through 126 or 359 days post-treatment. The limit of detection was 0.0003  $\mu$ g/g and the limit of quantitation was 0.001  $\mu$ g/g. Pyroxsulam dissipated in the loam and clay loam soils with half-lives of 4.6 days (0-30 cm depth) and 23 days (0-60 cm depth), respectively.

Test sites were analyzed for 5-OH-XDE-742, 7-OH-XDE-742, and 6-Cl-7-OH-XDE-742. No major degradates were detected. 6-Cl-7-OH-XDE-742 was initially detected in the loam soil at 3% of the applied on day 14, with a 5-day half-life, and was not detected in the clay loam soil. 7-OH-XDE-742 was detected at up to 4% of the applied (day 14) in the loam soil and up to 8% of the applied (day 28) in the clay loam soil; no pattern of decline could be calculated in either soil. 5-OH-XDE-742 was below detection limits in all samples from the loam and clay loam soils.

At SK2, detections of pyroxsulam and degradates were limited to the upper 15-cm of the soil profile. At MB, detections of pyroxsulam and degradates were limited to the upper 30-cm of the soil profile, except for trace detections of pyroxsulam at 1-2% of the applied observed at 30-60 cm 15 days post-treatment. These results appear to indicate that pyroxsulam may largely degrade or dissipate in runoff rather than present a ground water concern. However, sampling intervals may have been too course to capture pulses of leaching residues and detection limits may have been too high to detect traces of residues in samples.

-16 of 154-

# d. Degradates

Major identified degradates include 5-OH-XDE-742, 7-OH-XDE-742, 6-Cl-7-OH-XDE-742, 5,7-diOH-XDE-742, XDE-742 ATSA, XDE-742 sulfonic acid, XDE-742 ADTP, and carbon dioxide (IUPAC names in **Table 3.2**; structures in **Table B.2** of **Appendix B**); the first four listed are most structurally similar to the parent compound. The maximum reported amounts of pyroxsulam degradation products are reported in **Table B.1** of **Appendix B**. XDE-742 sulfonic acid and XDE-742 ADTP were photodegradates identified at up to 79.2% and 39.8% of the applied, respectively. 5-OH-XDE-742, 7-OH-XDE-742, 6-Cl-7-OH-XDE-742, and carbon dioxide were major biodegradates in aerobic soil at up to 24.1%, 13.7%, 26.2%, and 15.6% of the applied, respectively. 7-OH-XDE-742 and XDE-742 ATSA were major biodegradates in aerobic aquatic systems, forming up to 58.4% and 12.9% of the applied, respectively. Minor biodegradates formed in aerobic soil include XDE-742 CSF and XDE-742 PSA at up 8.1% and 5.9% of the applied, respectively.

| Table 3.2. Chemical Names for the Transformation Products of Pyroxsulam. |                                                                                                                                       |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Synonym                                                                  | IUPAC Chemical Name                                                                                                                   |  |  |
|                                                                          | Major Degradates                                                                                                                      |  |  |
| 5-OH-XDE-742                                                             | $\label{eq:n-1} N-(5-hydroxy-7-methoxy[1,2,4]triazolo[1,5-\alpha]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3-pyridinesulfonamide$ |  |  |
| 7-OH-XDE-742                                                             | $N-(7-hydroxy-5-methoxy[1,2,4]triazolo[1,5-\alpha]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3-pyridinesulfonamide$                |  |  |
| 6-C1-7-OH-XDE-742                                                        | N-(6-chloro-7-hydroxy-5-methoxy[1,2,4]triazolo[1,5-α]pyrimidin-2-yl)-2-<br>methoxy-4-(trifluoromethyl)pyridine-3-sulfonamide          |  |  |
| 5,7-diOH-XDE-742                                                         | N-(5,7-dihydroxy[1,2,4]triazolo[1,5-α]pyrimidin-2-yl)-2-methoxy-4-<br>(trifluoromethyl)-3-pyridinesulfonamide                         |  |  |
| XDE-742 ATSA                                                             | N-(5-amino-1H-1,2,4-triazol-3-yl)-2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonamide                                                 |  |  |
| XDE-742 sulfonamide                                                      | 2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonamide                                                                                   |  |  |
| XDE-742 sulfonic acid                                                    | 2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonic acid                                                                                 |  |  |
| XDE-742 ADTP                                                             | 5,7-dimethoxy[1,2,4]triazolo[1,4-a]pyrimidin-2-amine                                                                                  |  |  |
|                                                                          | Minor Degradates                                                                                                                      |  |  |
| XDE-742 CSF                                                              | N-cyano-2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonamide                                                                           |  |  |
| XDE-742 PSA                                                              | 2-methoxy-4-(trifluoromethyl)pyridine-3-sulfinic acid                                                                                 |  |  |

The toxicities of the major degradates of pyroxsulam are significantly less than that of the parent to aquatic plants and both the parent and degradates are practically non-toxic to fish and mammals on an acute exposure basis. Therefore, both aquatic and terrestrial exposure estimates were based on residues of the parent compound alone.

-17 of 154-

# 2. Measures of Aquatic Exposure

The Tier II-screening simulation models Pesticide Root Zone Model (PRZM v3.12.2, May 12, 2005) and Exposure Analysis Modeling System (EXAMS v2.98.04.06, Apr. 25, 2005) were coupled with the input shell PE v5.0 (Nov. 15, 2006) to generate 1-in-10-year estimated environmental concentrations (EEC) of pyroxsulam that may occur in surface waters adjacent to use sites. The PRZM model simulates pesticide movement and transformation from crop application through dissipation processes. The EXAMS model simulates the fate and transport of the pesticide in a receiving water body adjacent to the field of application. The coupled PRZM/EXAMS model assumes a standard pond scenario in which a 10-hectare field drains into an adjacent 1-hectare pond of 2-meter depth and no outlet (USEPA, 2007).

The EECs listed in **Table 3.3** reflect 1-in-10 year peak and averaged surface water concentrations of pyroxsulam based on the proposed maximum use rate for winter wheat (0.0164 lbs a.i./A/yr).

| Table 3.3. Tier II<br>Wheat. | Surface Water | 1-in-10-year EE | Cs (µg a.i./L) of H | <mark>'yroxsulam f</mark> rom | Use on Winter |
|------------------------------|---------------|-----------------|---------------------|-------------------------------|---------------|
| Use Pattern                  | Peak          | 4-Day Avg       | 21-Day Avg          | 60-Day Avg                    | 90-Day Avg    |
| Winter wheat                 | 0.182         | 0.180           | 0.173               | 0.145                         | 0.121         |

The model input parameters used to generate these exposure values are listed in Table 3.4.

| Table 3.4. PRZM/EXAMS Model Input Parameters for Pyroxsulam Use on Winter Wheat. Source           Data are in Table 3.1. |                        |                                                       |                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Input Parameter                                                                                                          | Value                  | Justification                                         | Source                                                                                       |  |
| Application Rate in<br>lbs a.i./A (kg a.i./ha)                                                                           | 0.0164<br>(0.0184)     | Label directions                                      | Proposed labels                                                                              |  |
| Applications per Year                                                                                                    | 1                      | Label directions                                      | Proposed labels                                                                              |  |
| Date of Application                                                                                                      | Apr. 1 <sup>st</sup>   | Application occurs in Fall or Spring.                 | USDA crop profiles (USDA, 2007a), and label directions                                       |  |
| Application Method                                                                                                       | Aerial                 | Label directions                                      | Proposed labels                                                                              |  |
| CAM Input                                                                                                                | Foliar applied (CAM=2) | Label directions                                      | Proposed labels                                                                              |  |
| IPSCND Input                                                                                                             | 1                      | Foliar residue after harvest is applied to the field. | USDA crop profiles (USDA, 2007a)                                                             |  |
| Spray Drift Fraction                                                                                                     | 0.05                   | Default ecological assessment value for aerial spray  | Input parameter guidance<br>(USEPA, 2002) and Spray<br>Drift Task Force studies <sup>1</sup> |  |
| Application Efficiency                                                                                                   | 0.95                   | Default value for aerial spray                        | Input parameter guidance<br>(USEPA, 2002)                                                    |  |
| Molecular Mass (g/mol)                                                                                                   | 434.4                  | Product chemistry data                                | MRID 46908334                                                                                |  |
| Vapor Pressure (torr)                                                                                                    | 1 x 10 <sup>-9</sup>   | Maximum reported value at 20°C                        | MRID 46908303                                                                                |  |

-18 of 154-

| Table 3.4. PRZM/EXAMS Model Input Parameters for Pyroxsulam Use on Winter Wheat. Source         Data are in Table 3.1. |                                  |                                                                                          |               |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|---------------|--|
| Input Parameter                                                                                                        | Value                            | Justification                                                                            | Source        |  |
| Solubilițy in Water (mg/L)                                                                                             | 32000                            | Represents 10x the measured<br>water solubility value at pH 7,<br>20°C.                  | MRID 46908303 |  |
| Organic Carbon Partition<br>Coefficient (K <sub>OC</sub> ) (mL/g <sub>OC</sub> )                                       | 30.4                             | Represents the average $K_{FOC}$ from ten soils.                                         | MRID 47159601 |  |
| Aerobic Soil Metabolism<br>Half-life (days)                                                                            | 11.0                             | Represents the 90 <sup>th</sup> percentile<br>confidence bound on the<br>mean half-life. | MRID 47202701 |  |
| Aerobic Aquatic<br>Metabolism Half-life (days)                                                                         | 23.4                             | Represents the 90 <sup>th</sup> percentile<br>confidence bound on the<br>mean half-life. | MRID 46908336 |  |
| Anaerobic Aquatic<br>Metabolism Half-life (days)                                                                       | 0                                | Represents no significant degradation.                                                   | MRID 46908331 |  |
| Hydrolysis Half-lives<br>(days)                                                                                        | 0 (pH 5)<br>0 (pH 7)<br>0 (pH 9) | Represents stability to hydrolysis.                                                      | MRID 46908326 |  |
| Aqueous Photolysis<br>Half-life (days)                                                                                 | 0                                | Represents no significant degradation.                                                   | MRID pending  |  |

1. Spray Drift Task Force studies were reviewed by the FIFRA Scientific Advisory Panel (SAP meeting, Dec 10-11, 1997); online at: http://www.epa.gov/scipoly/sap/1997/index.htm.

*Scenario Inputs.* The currently approved North Dakota wheat scenario was used to model use on winter wheat, as it is the lone scenario available for modeling applications to wheat. The maximum application method and rate were obtained from the proposed labels for pyroxsulam. The application date was selected in the Spring, when weed pressures may increase as temperatures rise.

*Environmental Fate.* Chemical property input values were chosen in accordance with current input parameter guidance (USEPA, 2002). The 90th %-ile confidence bound on the mean was selected for the aerobic soil metabolism half-life (11.0 d) and the aerobic aquatic metabolism half-life (23.4 d).

The PRZM and EXAMS models have limitations in their ability to thoroughly account for spray drift, runoff, within-site variability, crop growth, soil water transport, and weather. While PRZM and EXAMS are themselves designed to be best estimators, the selection of scenario and input parameters are such that the simulation results are expected to be greater than concentrations seen at most sites in the environment most of the time. These models are intended to provide a reasonable screening-level estimate by which to gauge whether impacts on aquatic organisms are unlikely to occur. An exceedance of a level of concern indicates that there may be potential risk and that additional refinements in exposure modeling may be necessary.

#### Measures of Terrestrial Exposure

3.

-19 of 154-

Pyroxsulam is proposed for use on wheat and will be applied by ground or aerial spray. Measures of exposure for terrestrial organisms can be obtained from a variety of sources including monitoring data, field studies, GIS analysis, and exposure modeling. For this assessment, exposure modeling was used to generate EECs for both terrestrial animals and plants.

The screening-level assessment focuses on dietary exposure for terrestrial birds, mammals, reptiles, and amphibians that may come in contact with pyroxsulam use areas. Although other routes of exposure can be important, for the most part dietary routes of exposure are considered to contribute significantly to total exposure and hence are the focus here. Moreover, suitable data are frequently unavailable to adequately assess other exposure routs such as dermal, inhalation, or incidental soil ingestion.

#### a. Terrestrial Animal Species

Exposure of free-ranging terrestrial animals is a function of the timing and extent of pesticide application with respect to the location and behavior of those species. OPP's terrestrial exposure model generates exposure estimates assuming that the animal is present on the use site at the time that pesticide levels are highest. The upper-bound pesticide residue concentration on food items is calculated from both initial applications and any additional applications, taking into account pesticide degradation between applications, however, for pyroxsulam only one application is required for the proposed use. Although this approach is conservative, it is reasonable, particularly when considering acute risks. For acute risks, the assumption is that the duration of exposure is a single day and, again, occurs when residue levels are highest. In evaluating chronic risks, longer-term exposure estimates are also based on the assumption that the animal is present on the use site although the frequency and duration of foraging events on the use site are not explicitly considered or specified.

The current screening-level approach does not directly relate timing of exposure to critical or sensitive population, community, or ecosystem processes. Given that the application timing and location is crop-dependent, it is difficult to address the temporal and spatial co-occurrence of pyroxsulam use and sensitive ecological processes. However, pesticides are frequently used from spring through fall, hence uses of pyroxsulam are likely to occur in spring and perhaps summer. Spring and early summer are typically seasons of active migrating, feeding, and reproduction for many wildlife species. The increased energy demands associated with these activities (as opposed to hibernation, for example) can increase the potential for exposure to pesticide-contaminated food items since agricultural areas can represent a concentrated source of relatively easily obtained, high-energy food items. In this assessment, the spatial extent of exposure for terrestrial animal species is limited to the use area only and the area immediately surrounding the use area.

Currently, the Agency does not require toxicity studies on reptiles and amphibians in support of pesticide registrations. To accommodate this data gap, birds are used as surrogates for terrestrial-phase amphibians and reptiles. It is assumed that, given the usually lower metabolic demands of reptiles and amphibians compared to birds, exposure to birds would be greater due to

higher relative food consumption. While this assumption is likely true, there are no supported relationships regarding the relative toxicity of a compound to birds and herpetofauna. The lack of toxicity data on reptiles and amphibians represents a source of uncertainty in this assessment.

# b. Terrestrial Animal Exposure Modeling

The approach used to estimate exposure of terrestrial animals to pyroxsulam was based on potential foliar applications of pyroxsulam. These exposure estimates were determined using the standard screening-level exposure model, TREX (v1[1].2.3) (USEPA, 2004). Upper-bound exposure levels were calculated for spray applications of pyroxsulam using maximum proposed application rates for one application for the proposed use on wheat (Table 3.5, Appendix E). The exposure estimates are based on a database of pesticide residues on wildlife food sources associated with specified application rates (Kenaga, 1972; Fletcher et al., 1994). Essentially, for a single application, there is a linear relationship between the amount of pesticide applied and the amount of pesticide residue present on a given food item. For 1.0 lb a.i. of pesticide per acre, the upper-bound, food item concentration in mg a.i./kg of diet (parts per million [ppm]) is: 240 for short grass, 110 for tall grass, 135 for broadleaf plants and small insects, and 15 for fruits pods, and large insects. Food item residue levels are then linearly adjusted based on application rate. The upper-bound estimates are used to estimate risks since these values represent the high-end exposure that may be encountered for terrestrial species that consume food items that have received label-specified pesticide application. Although these represent higher-end estimates, they do not represent the highest possible exposure estimates.

TREX is a simulation model that, in addition to incorporating the relationship between application rate and food item residue concentrations, accounts for pesticide degradation in the estimation of EECs. TREX calculates pesticide residues on each type of food item on a daily interval for one year. A first-order decay function is used to calculate the residue concentration at each day based on the concentrations present from both initial and all subsequent applications, although for pyroxsulam only one application is proposed. The decay rate is dependent on the foliar dissipation half-life. The food item concentration on any given day is the sum of all concentrations up to that day, taking into account the first-order degradation. The initial application occurs on day 0 (t=0) and the model runs for 365 days. Over the 365-day run, the highest residue concentration is the measure of exposure (EEC) used to calculate RQs.

The foliar dissipation half-life can be important in estimating exposure because it essentially determines how long the pesticide remains on food items after application. In many cases, an empirically determined foliar dissipation half-life value is not available, in which case the default value of 35 days is used (Willis and McDowell, 1987). For pyroxsulam, the default foliar dissipation half-life was used.

**Table 3.5** lists EECs for birds, reptiles, terrestrial amphibians, and mammals obtained from TREX simulation for all proposed uses of pyroxsulam at the maximum label rates.

-21 of 154-

| A share a second s | and the second se | e Estimates for Pyroxsulam<br>pation Half-life of 35 Days. | Proposed Uses                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|--|--|
| Сгор                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Single Application<br>Rate<br>Ibs. a.i./A<br>(1 application only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Food Item                                                  | Maximum EEC<br>(mg/kg) <sup>1</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F-1274                                                     |                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Short grass                                                | 3.94                                |  |  |
| Wheat (winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tall grass1.80Broadleaf plants/ small insects2.21          |                                     |  |  |
| only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fruits, pods, seeds, lg. insects                           | 0.25                                |  |  |
| at the second strength and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F-1674                                                     |                                     |  |  |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Short grass                                                | 3.17                                |  |  |
| Wheat (spring and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tall grass                                                 | 1.45                                |  |  |
| winter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Broadleaf plants/ small insects                            | 1.78                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fruits, pods, seeds, lg. insects                           | 0.20                                |  |  |

### c. Terrestrial and Semi-Aquatic Plants Exposure Modeling

Exposure of naturally-occurring terrestrial and semi-aquatic (wetland) plant species is typically estimated using OPP's TerrPlant (v1.2.2) model and is assumed to encompass areas outside the immediate use site. For non-wetland areas, exposure calculations are based on the amount of pesticide present in soil as a function of drift. Loading via drift to dry, non-target, adjacent areas is assumed to occur from one acre of treatment to one acre of the non-target area. Spray drift is also a source of pesticide loading to non-target areas. The default spray drift assumptions are 1% for ground applications and 5% for aerial, air-blast, forced air, and chemigation applications. TerrPlant estimates EECs based on application rate, solubility factor and default assumptions of drift. The EECs for terrestrial and semi-aquatic plants for a single application of propyzamide at the maximum label rate for proposed uses are presented in Table 3.6 (Appendix F).

| Crop                         | Single Max.                         | EECs (lbs<br>(Ground Spray, /          |                 |                 |                 | The West State of the state of |                 |  |
|------------------------------|-------------------------------------|----------------------------------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
|                              | Application<br>Rate<br>(lbs a.i./A) | Total Loading to<br>Semi-Aquatic Areas |                 | Spray Drift     |                 | Dry Areas (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |
|                              |                                     | Ground<br>spray                        | Aerial<br>spray | Ground<br>spray | Aerial<br>spray | Ground<br>spray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aerial<br>spray |  |
| Wheat (spring<br>and winter) | 0.0164                              | 0.008                                  | 0.009           | 0.0002          | 0.0008          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002           |  |
| Wheat (winter)               | 0.0132                              | 0.007                                  | 0.007           | 0.0001          | 0.0007          | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001           |  |

-22 of 154-

# C. Ecological Effects Characterization

Toxicity testing reported in this section does not represent all species of bird, mammal, or aquatic organisms. Only a few surrogate species for both freshwater fish and birds are used to represent all freshwater fish (2000+) and bird (680+) species in the United States. For mammals, acute studies are usually limited to Norway rat or the house mouse. Estuarine/marine testing is usually limited to a crustacean, a mollusk, and a fish. Also, neither reptiles nor amphibians are tested. The assessment of risk or hazard assumes that avian toxicity is similar to that of terrestrial-phase amphibians and reptiles. The same assumption is made for fish and aquatic-phase amphibians.

### 1. Categories of Acute Toxicity

In general, acute toxicity categories for pyroxsulam ranging from "practically nontoxic" to "very highly toxic" have been established for aquatic organisms based on  $LC_{50}$  values (**Table 3.7**) and terrestrial organisms based on  $LD_{50}$  values (**Table 3.8**). Subacute dietary toxicity for avian species is based on the  $LC_{50}$  values (**Table 3.9**).

|   | tegories for aquatic animal act<br>per liter (parts per million). | ite toxicity based on median lethal concentration |
|---|-------------------------------------------------------------------|---------------------------------------------------|
|   | LC <sub>50</sub> (mg a.i./L)                                      | Toxicity Category                                 |
|   | <0.1                                                              | Very highly toxic                                 |
|   | 0.1–1                                                             | Highly toxic                                      |
|   | >1-10                                                             | Moderately toxic                                  |
| N | >10-100                                                           | Slightly toxic                                    |
|   | >100                                                              | Practically non-toxic                             |

Table 3.8. Categories for avian and mammalian acute toxicity based on median lethal dose in milligrams per kilogram body weight (parts per million).

| L.D <sub>50</sub> (mg a.i./kg) | Toxicity Category     |
|--------------------------------|-----------------------|
| <10                            | Very highly toxic     |
| 10–50                          | Highly toxic          |
| 51–500                         | Moderately toxic      |
| 501–2000                       | Slightly toxic        |
| >2000                          | Practically non-toxic |

-23 of 154-

|                               | am diet per day (parts per million). |
|-------------------------------|--------------------------------------|
| LC <sub>50</sub> (mg a.i./kg) | Toxicity Category                    |
| <50                           | Very highly toxic                    |
| 50–500                        | Highly toxic                         |
| 501–1000                      | Moderately toxic                     |
| 10015000                      | Slightly toxic                       |
| >5000                         | Practically non-toxic                |

The ecological effects characterization for pyroxsulam is based on registrant-submitted toxicity studies that provide toxicity data on pyroxsulam and its major degradates. The lowest available toxicity value for a taxa and duration (*e.g.*, 7-day duckweed) will be used to calculate RQs. Relative to the chemical's degradates, pyroxsulam parent was the most toxic form tested, with toxicity mostly confined to aquatic and terrestrial plants; toxicity resulting from exposure to this compound was used for RQ calculations. A brief summary of available toxicity data used to calculate RQs is provided below; a more detailed discussion of all available studies can be found in **Appendix G**.

Pyroxsulam and its degradates (7-OH, 5-OH, ATSA, ADTP, 5,7-Di-OH, 6-Cl-7-OH, sulfonic acid and cyanosulfonamide) are, for the most part, practically non-toxic to freshwater fish, freshwater invertebrates, birds, honeybees and earthworms under acute exposure conditions. The parent material pyroxsulam was not toxic to the fathead minnow (*Pimephales promelas*), the waterflea (*Daphnia magna*), the midge (*Chironomus riparius*), the bobwhite quail (*Colinus virginianus*) or the earthworm (*Eisenia fetidia*) at any of the concentrations tested under chronic exposure conditions. However, the 7-OH metabolite yielded some chronic effects to female midge development rate. Additionally, chick body weights of mallard ducks (*Anas platyrhynchos*) were significantly lower when exposed to pyroxsulam. Aquatic and terrestrial plants showed the greatest sensitivity to the parent pyroxsulam and little or no sensitivity to its major degradates.

Importantly, results from submitted toxicity studies are not likely to capture the toxicity of pyroxsulam and metabolites to all species of birds, mammals, plants, or aquatic organisms. Only a few surrogate species are used to represent all fish, birds, mammals, invertebrates, and plants. Furthermore, there are no required toxicity tests for amphibians or reptiles, birds are used as surrogates for reptiles and terrestrial-phase amphibians, and freshwater fish are used as surrogates for aquatic-phase amphibians. In general, the representation of numerous species by a few commonly used laboratory species, which are often chosen for amenability to laboratory study, is a source of uncertainty.

In addition to the data submitted in support of registration and the information compiled through the Agency pesticide review process, the ECOTOX (ECOTOXicity) database is typically used to identify additional toxicity data from the open literature. The ECOTOX database is a userfriendly, publicly-available, quality-assured, comprehensive tool for locating toxicity data from

-24 of 154-

the open literature and is maintained by EPA Mid-Atlantic Ecology Division. More information on ECOTOX can be found at: http://www.epa.gov/ecotox. Research papers are thoroughly screened using standard procedures before being accepted into ECOTOX thereby ensuring consistent, high quality information. No studies for pyroxsulam were identified by ECOTOX.

# 2. Aquatic Effects Characterization

#### a. Aquatic Animals

Toxicity values for aquatic animals are summarized below in Table 3.10.

| Table 3.10. Summary of Acute and Chronic Toxicity Data for Aquatic           Animals Exposed to Pyroxsulam. |                                                            |                                       |                                                       |                                |                           |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|--------------------------------|---------------------------|--|
| Species/                                                                                                    | The second second                                          | Acute Toxic                           | ity                                                   | Chronic Toxicity               |                           |  |
| Chemical                                                                                                    | 96-hr<br>LC <sub>50</sub> /EC <sub>50</sub><br>(mg a.i./L) | 48-hr EC <sub>50</sub><br>(mg a.i./L) | Toxicity<br>Classification<br>(MRID)                  | NOAEC/<br>LOAEC<br>(mg a.i./L) | Endpoints<br>(MRID)       |  |
| Rainbow Trout<br>Oncorhynchus mykiss                                                                        | >87.0 to<br>>120                                           |                                       | Practically<br>Non-Toxic<br>(469086-19, -<br>20, -21) |                                |                           |  |
| Fathead Minnow<br>Pimephales promelas                                                                       |                                                            |                                       |                                                       | 10.1/>10.1                     | No Effects<br>(469086-26) |  |
| Waterflea<br>Daphnia magna                                                                                  |                                                            | >99 to >121                           | Practically<br>Non-Toxic<br>(469086-22, -<br>23, -24) | 10.4/10.4                      | No Effects<br>(469084-29) |  |
| Midge<br>Chironomus riparius                                                                                |                                                            |                                       | · : ·                                                 | 100/>100                       | No Effects<br>(469086-58) |  |

# i. Freshwater Fish

Four acute freshwater fish studies were submitted for review. The studies involved the parent (technical grade pyroxsulam) and the metabolites ATSA and 7-OH. In all four studies, the data indicated that the compounds tested are practically non-toxic to freshwater fish on an acute exposure basis. The median lethal concentrations (LC<sub>50</sub>s) exceeded the highest concentration tested for each compound (*i.e.*, >87.0 mg a.i./L for the parent pyroxsulam, >119 mg a.i./L for the ATSA metabolite, and >120 mg a.i./L for the 7-OH metabolite).

One freshwater fish early-life stage test was submitted for review. In this study, fathead minnows (*Pimephales promelas*) were exposed to the parent material pyroxsulam. No significant reductions were observed for any of the test endpoints (*i.e.*, % hatch, days to mean hatch, post-hatch survival, overall survival, % normal at hatch, % normal at test termination, and growth). The no-observed-adverse-effect concentration (NOAEC) is the highest concentration tested, i.e., NOEA=10.1 mg a.i./L, and the associated lowest-observed-adverse-effect concentration (LOAEC) is >10.1 mg a.i./L.

#### -25 of 154-

## ii. Freshwater Invertebrates

Three freshwater invertebrate acute toxicity studies were submitted for review. Each study exposed the water flea (*Daphnia magna*) to either the parent material pyroxsulam, the metabolite ATSA, or the metabolite 7-OH. Daphnids did not exhibit any signs of toxicity, yielding median effect concentrations ( $EC_{50}$ s) of >100 mg a.i./L for the parent material, >121 mg a.i./L for the ATSA metabolite, and >99 mg a.i./L for the 7-OH metabolite. All compounds are classified as practically non-toxic to freshwater invertebrates on an acute exposure basis.

Three freshwater invertebrate life-cycle toxicity studies were submitted for review. One study exposed the water flea (*Daphnia magna*) to the parent pyroxsulam and the other two studies exposed the midge (*Chironomus riparius*) to either the parent pyroxsulam or the 7-OH metabolite in conjunction with sediment. The midge was sensitive to the 7-OH metabolite with a NOAEC of 30 mg a.i./L and an associated LOAEC of 60 mg a.i./L. These effect levels are associated with reduced female development and combined-sex development (9% and 7% inhibition, respectively, compared to control values). Neither the midge nor the daphnid showed sensitivity to the parent pyroxsulam and the NOAEC was equivalent to the highest concentration tested which was 100 mg a.i./L and 10.4 mg a.i./L, respectively.

#### iii. Estuarine/Marine Fish

No acute or chronic estuarine/marine fish studies were submitted for review.

#### iv. Estuarine/Marine Invertebrates

No acute or chronic estuarine/marine invertebrate studies were submitted for review.

#### b. Aquatic Plants

Toxicity values for aquatic plants are summarized below in Table 3.11.

| Species/<br>Chemical                                                                     | mmary of Aquatic Plant Toxicity Data for Pyroxsulam<br>Acute Toxicity |                                        |                                           |                                      |  |  |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------|--|--|
|                                                                                          | EC <sub>50</sub><br>(mg a.i./L)                                       | .7-day EC <sub>50</sub><br>(mg a.i./L) | NOAEC/<br>EC <sub>05</sub><br>(mg a.i./L) | Endpoints<br>(MRID)                  |  |  |
| Duckweed<br>(Lemna gibba)<br>pyroxsulam (parent)                                         |                                                                       | 0.00257                                | 0.00068                                   | Frond Number<br>(469084-42)          |  |  |
| Freshwater Green<br>Algae<br>(Pseudokirchneriella<br>subcapitata)<br>pyroxsulam (parent) | 0.111                                                                 |                                        | 0.0261/<0.0261                            | Biomass (0-72-hr)<br>(469086-40)     |  |  |
| Saltwater Diatom<br>(Skeletonema costatum)<br>pyroxsulam (parent)                        | 13.1                                                                  |                                        | 3.40/Not Reported                         | Cell Density (120-hr)<br>(469086-36) |  |  |

#### -26 of 154-

# i. Aquatic Plants

Nine studies were submitted on the acute toxicity of pyroxsulam and its major degradates to the aquatic vascular plant, *Lemna gibba*. This aquatic vascular plant species showed the greatest sensitivity to the parent pyroxsulam. Plants in this study were exposed to the parent compound under static-renewal conditions for 7 days (renewal on days 3 and 5). The 7-day  $EC_{50}$  was 0.00257 mg a.i./L, based on reduced frond number in exposed plants. The corresponding NOAEC was 0.00068 mg a.i./L; inhibition of frond number ranged from 14-89% across the four highest treatment groups relative to the pooled control.

Ten studies ranging in duration from 96 to 120 hours were submitted on the acute toxicity of pyroxsulam and its major degradates to aquatic non-vascular plants. Green algae (*Pseudokirchneriella subcapitata*) are most sensitive to the parent pyroxsulam, with an EC<sub>50</sub> value of 0.111 mg a.i./L. The corresponding NOAEC and EC<sub>05</sub> were 0.0261 and <0.0261 mg a.i./L, respectively, based on the biomass inhibition (0-72-hour) of 35% and greater at all levels above the NOAEC.

One 120-hr study was submitted on the acute toxicity of the parent pyroxsulam to the non-vascular saltwater diatom (*Skeletonema costatum*). The 120-hr EC<sub>50</sub> value was 13.1 mg a.i./L, based on cell density. The corresponding NOAEC was 3.40 mg a.i./L based on inhibition of 34% and greater at higher concentrations; the EC<sub>05</sub> was not reported.

# 3. Terrestrial Effects Characterization

#### a. Terrestrial Animals

Toxicity values for terrestrial animals are summarized below in Table 3.12.

| Table 3.12. Summary of Acute and Chronic Toxicity Data for Terrestrial Animals           Exposed to Pyroxsulam and Pyroxsulam Metabolites. |                                      |                                       |                                                 |                                                          |                                               |                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|--|--|
| Species/                                                                                                                                   |                                      | Acute Toxicity                        |                                                 |                                                          | Chronic Toxicity                              |                                                                        |  |  |
| Chemical                                                                                                                                   | 48-hr LD <sub>50</sub><br>μg ai./bee | 14-day LD <sub>50</sub><br>(mg/kg bw) | 8rday LC <sub>50</sub><br>(mg/kg diet<br>(ppm)) | Toxicity<br>Classification<br>(MRID)                     | NOAEC/LOAEC<br>(mg/kg diet (ppm))             | Endpoints<br>(MRID)                                                    |  |  |
| Bobwhite Quail<br>(Colinus<br>virginianus)<br>Pyroxsulam<br>(parent)                                                                       | NA                                   | >2000                                 | >5000                                           | Practically<br>Non-Toxic<br>(469086-12, -<br>15)         |                                               |                                                                        |  |  |
| Mallard Duck<br>(Anas<br>platyrhynchos)<br>Pyroxsulam<br>(parent)                                                                          | NA                                   | >2000                                 | >5000                                           | Practically<br>Non-Toxic<br>(469086-13, -<br>14)         | 500/1000                                      | Chick Body<br>Weight and<br>Adult Female<br>Body Weight<br>(469086-16) |  |  |
| Laboratory Rat<br>(Rattus<br>norvegicus)                                                                                                   | NA                                   | 3129                                  |                                                 | Practically<br>Non-Toxic<br>(469083-38 and<br>469085-39) | NOAEC = 1000<br>mg/kg feed/day<br>(469084-04) | No effects                                                             |  |  |
| Honey Bee<br>(Apis mellifera)<br>Pyroxsulam<br>(parent)                                                                                    | >107.4                               |                                       |                                                 | Non-Toxic<br>(469086-57)                                 | -                                             |                                                                        |  |  |

# -27 of 154-

| Table 3.12. Summary of Acute and Chronic Toxicity Data for Terrestrial Animals           Exposed to Pyroxsulam and Pyroxsulam Metabolites. |                                       |                                       |                                                 |                                             |                                   |                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------------|-----------------------------------|---------------------------|--|--|
| Species/<br>Chemical                                                                                                                       | Acute Toxicity                        |                                       |                                                 |                                             | Chronic Toxicity                  |                           |  |  |
|                                                                                                                                            | 48-hr LD <sub>50</sub><br>μg a.i./bee | 14-day LD <sub>s0</sub><br>(mg/kg bw) | 8-day LC <sub>50</sub><br>(mg/kg diet<br>(ppm)) | Toxicity<br>Classification<br>(MRID)        | NOAEC/LOAEC<br>(mg/kg diet (ppm)) | Endpoints<br>(MRID)       |  |  |
| Earthworm<br>( <i>Eisenia fetida</i> )<br>parent and<br>metabolties                                                                        | NA                                    | >1000<br>mg a.i./kg sub               |                                                 | Non-Toxic<br>(469086-53, -<br>54, -55, -56) |                                   |                           |  |  |
| Earthworm<br>( <i>Eisenia fetida</i> )<br>6-Cl-7-OH<br>(metabolite)                                                                        | NA                                    |                                       |                                                 |                                             | 130/>130<br>μg a.i./kg dry soil   | No Effects<br>(469086-60) |  |  |

NA not applicable

#### Birds

i.

Two acute oral and two subacute dietary studies were conducted to determine the toxicity of pyroxsulam to avian species. The results indicate that the parent material is practically non-toxic to bobwhite quail (*Colinus virginianus*) and mallard ducks (*Anas platyrhynchos*) under acute oral and subacute dietary exposure basis. The LC<sub>50</sub> and NOAEC values were >2000 and 2000 mg/kg bw, respectively, for the acute oral tests and >5000 and 5000 mg/kg dw diet, respectively, for the subacute dietary tests.

Two avian reproduction studies with the parent pyroxsulam were submitted for review. Bobwhite quail exhibited no effects up to the maximum concentration tested, 1000 mg/kg feed, while mallard ducks exhibited significant reductions from control in 14-day chick body weight (4%) and adult female weight (7.5%) at test termination at the maximum (1000 mg/kg) dietary treatment level. The NOAEC and LOAEC values were 500 and 1000 mg/kg diet, respectively.

#### ii. Mammals

In an acute oral toxicity study (MRID 46908338 and 46908539), nine female Fischer 344 young adult rats (age: 8-12 weeks; source: Charles River Laboratories, Raleigh, NC; 117-147 g) were given a single oral dose of GF-1674 (XR-742 (Pyroxsulam) using the Up and Down Procedure. At the 5000 mg/kg dose level, the three animals died within two days of test substance administration. No gross abnormalities were noted in any of the animals at the 175, 550 and 1750 dose levels. Gross necropsy of the animals dosed at 5000 mg/kg revealed discoloration of the intestines. The oral LD<sub>50</sub> for female rats is 3129 mg/kg bw (95% C.L. 1750 – 5000). The results indicate that pyroxsulam is practically nontoxic to mammals on acute oral basis.

In a 2-generation reproduction study, pyroxsulam was administered to 27 CD (CrlCD(SD) IGC BR) rats/sex/dose in the diet at the nominal dose levels of 0, 100, 300, or 1000 mg/kg feed/day. There was one breeding per generation. There were no adverse effects on parental survival, clinical signs, body weight, or food consumption up to the maximum dietary concentration tested (NOAEC=1000 mg/kg diet/day). There was no adverse effect on the survival, growth, organ weights (brain, spleen, thymus), or development (onset of puberty) of the offspring of either generation. In addition, there were no adverse effects on any reproductive function parameter of the parental animals, including estrous cyclicity and periodicity, sperm measures, mating,

#### -28 of 154-

conception, fertility or gestation indices, post-implantation loss, time to mating, or gestation length in either generation. The NOAEC based on all endpoints is equivalent to the highest dietary concentration tested, i.e., 1000 mg/kg feed/day.

### iii. Insects

One acute oral toxicity study was submitted to evaluate the toxicity of pyroxsulam to the honeybee (*Apis mellifera*). The results indicated that the parent material was practically non-toxic to honeybees on an acute oral exposure basis, yielding NOAEL and LD<sub>50</sub> values of 107.4 and >107.4  $\mu$ g a.i./bee, respectively.

Several non-guideline toxicity tests on soil-dwelling terrestrial invertebrates were submitted. EFED does not calculate RQs to assess risks to terrestrial invertebrates at this time. Four, 14-day acute earthworm (Eisenia fetida) studies were submitted. One study was conducted with the parent material and the other three were conducted using the 5-OH, 6-Cl-7-OH and 7-OH metabolites. The results indicate that pyroxsulam and its degradates are not toxic to terrestrial invertebrates on an acute exposure basis because the LC50 values exceeded the highest tested concentration (>1000 mg a.i./kg substrate for metabolites and >10000 mg a.i./kg substrate for pyroxsulam). The NOAEC value associated with all three metabolites was 1000 mg a.i./kg substrate, as no significant reductions were observed. However, the parent pyroxsulam caused an 18% loss in body weight in the earthworms exposed to 10000 mg a.i./kg substrate (compared to a 1.9% loss of body weight of the control organisms), resulting in a NOAEC of <10000 mg a.i./kg substrate. Additionally, one chronic reproductive study was submitted in which earthworms were exposed to the 6-Cl-7-OH metabolite. No effects were observed in a 56-day reproductive toxicity study up to and including 130 µg a.i./kg of dry soil indicating that this metabolite did not exhibit reproductive toxicity in terrestrial invertebrates on a chronic exposure basis. The subsequent NOAEC and LOAEC values were 130 and >130 µg a.i./kg dry soil, respectively.

#### iv. Terrestrial Plants

Toxicity values for terrestrial plants are summarized in **Table 3.13**. A Tier II terrestrial plant seedling emergence and vegetative vigor studies were submitted exposing 10 species (4 monocots and 6 dicots) to GF-1674, a typical end-use OD (oil dispersion) formulation containing 2.78% pyroxsulam (equivalent to 29 g a.i./L). In the seedling emergence test, onion (*Allium cepa*) was the most sensitive monocot species, with fresh shoot weight EC<sub>05</sub> and EC<sub>25</sub> values of 0.00062 and 0.00022 lbs a.i./A, respectively. The most sensitive dicot in the seedling emergence test was carrot (*Daucus carota*), based on fresh shoot weight, with EC<sub>05</sub> and EC<sub>25</sub> values of <0.000089 and 0.0014 lbs a.i./A, respectively. Similar to the seedling emergence test, onion was the most sensitive monocot in the vegetative vigor test, with fresh weight EC<sub>05</sub> and EC<sub>25</sub> values of values of 0.00056 and 0.00046 lbs a.i./A, respectively. The most sensitive dicot in the vegetative vigor test was oilseed rape (*Brassica napus*), based on shoot height, with NOAEC and EC<sub>25</sub> values of 0.00031 and 0.000052 lbs a.i./A, respectively.

 Table 3.13. Summary of the Effects of Pyroxsulam on

 Terrestrial Plants.

-29 of 154-

| lant Type | Study Species         | Shoot F              | leight           | Fresh V            | Veight      |  |
|-----------|-----------------------|----------------------|------------------|--------------------|-------------|--|
|           |                       | NOAEC/               | EC <sub>25</sub> | NOAEC /            | EC25        |  |
|           | and the second second | EC <sub>05</sub>     | (g a.i./ha)      | EC <sub>05</sub> * | (g a.i./ha) |  |
|           |                       | (g a.i./ha)          |                  | (g a.i./ha)        |             |  |
|           | Tier                  | II Results-Seedling  | Emergence        |                    |             |  |
|           | Corn                  | 0.0017               | 0.0046           | 0.0023             | 0.0047      |  |
|           | Oat                   | 0.00033              | 0.0011           | 0.00026            | 0.00099     |  |
| Monocot   | Onion                 | 0.000071             | 0.00029          | 0.000062           | 0.00022     |  |
|           | Ryegrass              | <0.00022             | 0.00067          | <0.0015            | 0.00054     |  |
|           | Cabbage               | 0.00018              | 0.0012           | 0.00061            | 0.0014      |  |
|           | Carrot                | <0.000027            | 0.0028           | <0.000089          | 0.0014      |  |
|           | Cucumber              | 0.0024               | >0.013           | 0.0019             | 0.0062      |  |
| Dicots    | Oilseed Rape          | 0.00094              | 0.0019           | 0.000054           | 0.0015      |  |
|           | Soybean               | <0.00038             | 0.0011           | < 0.00029          | 0.0013      |  |
|           | Sugarbeet             | 0.000027             | 0.00085          | 0.000036           | 0.00057     |  |
|           | Ti                    | er II Results-Vegeta | tive Vigor       |                    | · .         |  |
|           | Corn                  | 0.00051              | 0.018            | 0.00013            | 0.0012      |  |
| 16        | Oat                   | 0.000029             | >0.013           | 0.000038           | 0.00085     |  |
| Monocot   | Onion                 | 0.00047              | 0.0012           | 0.000046           | 0.00056     |  |
|           | Ryegrass              | 0.00024              | 0.0013           | 0.00027            | 0.00067     |  |
|           | Cabbage               | 0.013                | 0.013            | 0.0067             | 0.0054      |  |
|           | Carrot                | 0.000019             | 0.00042          | 0.000022           | 0.00041     |  |
| D'        | Cucumber              | 0.00031              | >0.013           | 0.000013           | 0.0083      |  |
| Dicots    | Oilseed Rape          | 0.000031             | 0.000052         | 0.00093            | 0.0045      |  |
|           | Soybean               | 0.000068             | 0.00017          | 0.000041           | 0.00022     |  |
|           | Sugarbeet             | 0.00031              | >0.013           | 0.000048           | 0.0014      |  |

Additionally, one study (MRID 469086-61) was submitted which evaluated the herbicidal activity of the parent pyroxsulam and six soil metabolites (7-OH; 5-OH; 5,7-Di-OH; Sulfonic Acid; 6-Cl, 7-OH; and Cyanosulfonamide) to 22 species of terrestrial plants; test material was applied post-emergence. Test species included 9 monocots (oat, wheat, corn, buckwheat, blackgrass, barnyard grass, large crab grass and yellow nutsedge) and 14 dicots (soybean, oilseed rape, chickweed, field pansy, wild poinsettia, giant foxtail, rox orange sorghum, lambs quarter, ivy leaf morning glory, redroot pigweed, velvetleaf, Canada thistle, volunteer sunflower and wheat). The only endpoint was whole plant characterization, assessed on a rating scale of 0 (no effect) to 100% (complete kill) relative to the control plants. All six metabolites tested had little or no effect at any rate tested up to 62.5 ppm. Redroot pigweed was the most sensitive species when tested with the 7-OH metabolite, exhibiting a 60% overall effect at the 62.5 ppm treatment level. The EC<sub>50</sub> value for the 7-OH metabolite for the mean activity across all species was 475 g/ha, compared to 0.09 g/ha for the parent material, indicating more than a 1000-fold higher activity for the parent compared to this metabolite. These results further demonstrate the lack of herbicidal activity of all metabolites on a wide array of grass and broadleaf whole plants relative to the parent compound, thereby posing a low probability of the degradates causing injury to non-target plants. As such, the parent material is not considered to be a "pro-herbicide", which when metabolized is converted to the active herbicide moiety.

Finally, two method validation studies were conducted and submitted to determine the efficiency of recovery of the parent material and metabolites from soil and sediment (MRID 469086-48) and for the quantitative determination of residues in representative acidic, dry (including processed products), oily and wet crops (MRID 469086-49). Results from both studies indicated that the analytical methodologies employed were acceptable: except for two recoveries of 69%, the individual recoveries were within the range of 70-120%.

-30 of 154-

# **IV.** Risk Characterization

Risk characterization is the integration of exposure and effects to estimate the potential ecological risk from the proposed use of pyroxsulam on wheat. The goal of risk characterization is to provide an estimate and description of potential adverse effects and to articulate risk assessment assumptions, limitations, and uncertainties in order to synthesize an overall risk conclusion.

# A. Risk Estimation – Integration of Exposure and Effects Data

Toxicity data and exposure estimates are used to evaluate the potential for adverse ecological effects on non-target species. For this screening-level assessment of pyroxsulam, the deterministic risk quotient method is used to provide a metric of potential risks. The RQ is a comparison of exposure estimates to toxicity endpoints; estimated exposure concentrations are divided by acute and chronic toxicity values. The resulting unitless RQs are compared to the Agency's LOCs, which are the Agency's interpretive policy such that when LOCs are exceeded, the need for regulatory action should be considered. These criteria are used to indicate when the use of a pesticide, as directed on the label, has the potential to cause adverse effects on non-target organisms.

# 1. Non-target Aquatic Organisms

The surface water EECs (peak and chronic values) from the PRZM/EXAMS model were compared to acute and chronic toxicity endpoints to derive acute and chronic RQs for non-target aquatic organisms. Acute and chronic RQs for freshwater and estuarine/marine organisms are summarized in **Tables 4.1 and 4.2**, respectively.

For aquatic vascular and non-vascular plants, peak EECs are compared to acute  $EC_{50}$  values to derive acute non-listed species RQs. In addition, peak EECs are also compared to NOAEC or  $EC_{05}$  values for aquatic plants to derive listed species RQs. All RQs for aquatic plants are presented in **Table 4.3**.

# a. Freshwater Fish and Invertebrates

The RQs did not exceed non-listed or listed species acute or chronic risk LOCs for freshwater fish, aquatic-phase amphibians, or freshwater invertebrates. **Table 4.1** lists the RQs for freshwater fish, aquatic-phase amphibians, and freshwater invertebrates potentially exposed to pyroxsulam associated with the proposed use on wheat.

-31 of 154-

| Tabl  | e 4.1. Risk Quot           | ients for Fre | shwater Fish                                    | and Invert | ebrates E            | posed to                            |
|-------|----------------------------|---------------|-------------------------------------------------|------------|----------------------|-------------------------------------|
|       |                            | Pyroxsula     | m for Use on                                    |            |                      |                                     |
| Üse   | Annual<br>Application Rate | EECs<br>(ppb) | Fish and Am<br>LC <sub>50</sub> = >8<br>NOAEC = | 7000 ppb   | LC <sub>50</sub> = > | orate RQs<br>99000 ppb<br>30000 ppb |
|       |                            | Peak          | Acute                                           | Chronic    | Acute                | Chronic                             |
| Wheat | 0.0164 lbs a.i./A          | 0.182         | < 0.01                                          | <0.01      | < 0.01               | <0.01                               |

# b. Aquatic Plants

The RQs for aquatic plants did not exceed the acute risk LOCs for both non-listed and listed species (highest RQ = 0.27). Table 4.2 lists the RQs for aquatic vascular and non-vascular plants potentially exposed to pyroxsulam.

| Tab   | le 4.2. Risk                     | The second se | a state of the sta | and Saltwate<br>se on Wheat           | and the second sec | xposed to |  |
|-------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Use   | Total<br>Seasonal<br>Application | EECs<br>(ppb)                                                                                                   | Vascular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hwater<br>Plant RQs<br>= 2.6 ppb      | Freshwater       Non-Vascular Plant RQ       EC <sub>50</sub> = 111 ppb       NOAEC = 26.1 ppb       Acute       Acute Listed       Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |
|       | Rate<br>Ibs.ai/A                 | Peak                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.68 ppb<br>Acute Listed<br>Species |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |
| Wheat | 0.0164                           | 0.182                                                                                                           | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.27                                  | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.01     |  |

# 2. Non-target Terrestrial Organisms

The EEC values for estimated exposure to terrestrial animals for spray applications of pyroxsulam were derived using the Kenaga nomogram, as modified by Fletcher (Fletcher *et al.*, 1994). Exposure estimates were generated for the proposed label use of pyroxsulam on winter wheat with a single application of the flowable formulation of 0.0164 lbs a.i./A. The RQs are based on these maximum exposure estimates and the lowest available toxicity endpoints for a given taxa and exposure duration (*e.g.* acute avian). Specifically for this assessment, the lowest LC/LD<sub>50</sub> and NOAEC values were used for birds and mammals. Note again that data from avian toxicity studies were used to represent reptiles and terrestrial-phase amphibians.

Acute and chronic RQs for birds, reptiles, and terrestrial-phase amphibians are presented in **Tables 4.3** and **4.4**, respectively, acute and chronic RQs for mammals are summarized in **Tables 4.5**, **4.6**, and **4.7**, respectively.

# a. Birds

#### -32 of 154-

No RQs exceed non-listed or listed species acute risk LOCs with RQs  $\leq 0.01$ . Table 4.3 lists the avian dose-based acute RQs for proposed use of the dry granule and water dispersible granule formulation of pyroxsulam on wheat.

|       | Application      |                    |                | bw and Upper-Bound Kenaga Residues.<br>Avian Acute RQs for Specified Food Items <sup>1</sup> |                                      |                                       |  |  |  |  |
|-------|------------------|--------------------|----------------|----------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|--|--|--|--|
| Use   | Rate<br>Ibs ai/A | Body Weight<br>(g) | Short Grass    | Tall Grass                                                                                   | Broadleaf<br>Plants/Small<br>Insects | Fruits/Pods<br>Seeds/<br>Large Insect |  |  |  |  |
|       |                  |                    |                |                                                                                              |                                      |                                       |  |  |  |  |
| Wheat |                  | 20                 | <0.01          | <0.01                                                                                        | <0.01                                | < 0.01                                |  |  |  |  |
| Wheat | 0.0164           | <u>20</u><br>100   | <0.01<br><0.01 | <0.01<br><0.01                                                                               | <0.01<br><0.01                       | <0.01<br><0.01                        |  |  |  |  |

No acute or chronic LOCs are exceeded. Acute and chronic dietary-based RQs are  $\leq 0.01$ . Table 4.4 lists the acute and chronic dietary-based avian RQs for proposed use of pyroxsulam.

|         | Pyroxsular                                    | n Based on Upper-Bou               | nd Kenag       | a Values.                        |                                    |
|---------|-----------------------------------------------|------------------------------------|----------------|----------------------------------|------------------------------------|
| Use     | Application Rate<br>lbs ai/A<br>I application | Food Items                         | EEC<br>(mg/kg) | Acute<br>Dietary RQ <sup>1</sup> | Chronic<br>Dietary RQ <sup>2</sup> |
| Wheat   |                                               | Short Grass                        | 3.94           | <0.01                            | 0.01                               |
| W IICai | 0.0164                                        | Tall Grass                         | 1.80           | <0.01                            | <0.01                              |
|         |                                               | Broadleaf plants / small insects   | 2.21           | <0.01                            | < 0.01                             |
|         |                                               | Fruits, pods, seeds, large insects | 0.25           | <0.01                            | < 0.01                             |

# b. Mammals

No acute risk LOCs are exceeded with RQs <0.01. **Table 4.5** lists the dose-based acute mammalian RQs for proposed use of both the dry granule and water dispersible granule formulations of pyroxsulam.

| Tabl               | F                                |                       | and the second se | bw and I             | Jpper-Boun                | or Uses of Py<br>d Kenaga Re                             | sidues.                   |                          |
|--------------------|----------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|----------------------------------------------------------|---------------------------|--------------------------|
| Use                | Applicati<br>on Rate<br>Ibs ai/A | Body<br>Weight<br>(g) | RQs for<br>Granular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ma<br>Short<br>Grass | mmalian Acu<br>Tall Grass | tte RQs for Spec<br>Broadleaf<br>Plants/Small<br>Insects | ruits/Pods/<br>Lg Insects | ms <sup>2</sup><br>Sceds |
| <u></u>            |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                           | · · · · · · · · · · · · · · · · · · ·                    |                           |                          |
|                    | 1997 - A.                        | 15                    | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01               | < 0.01                    | < 0.01                                                   | < 0.01                    | < 0.01                   |
| Wheat              | 0.0164                           | 35                    | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.01               | < 0.01                    | < 0.01                                                   | < 0.01                    | < 0.01                   |
|                    |                                  | 1000                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.01               | < 0.01                    | < 0.01                                                   | < 0.01                    | < 0.01                   |
| <sup>1</sup> Acute | Risk LOCs;                       | non-listed sp         | ecies RQ>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 and listed         | species RQ 20.1           | [                                                        | - <u></u>                 |                          |

#### -33 of 154-

The non-listed and listed species chronic risk LOC (RQ>1.0) is not exceeded for the proposed use of pyroxsulam on wheat for mammals (RQs range from <0.01-0.08). Table 4.6 lists the dose-based chronic mammalian RQs for proposed uses of pyroxsulam.

| ALC: NOT STREET                        | Application      |                       | mmalian Acut | pper-Bound Kenaga Residues.<br>ian Acute RQs for Specified Food Items |                                      |                            |                |
|----------------------------------------|------------------|-----------------------|--------------|-----------------------------------------------------------------------|--------------------------------------|----------------------------|----------------|
| Use                                    | Rate<br>Ibs ai/A | Body<br>Weight<br>(g) | Short Grass  | Tall Grass                                                            | Broadleaf<br>Plants/Small<br>Insects | Fruits/Pods/<br>Lg Insects | "Seeds         |
|                                        |                  |                       |              |                                                                       |                                      |                            |                |
| ······································ | 1                | 15                    | 0.03         | 0.02                                                                  | 0.02                                 | <0.01                      | < 0.01         |
| Wheat                                  | 0.0164           | 15<br>35              | 0.03         | 0.02 0.01                                                             | 0.02                                 | <0.01<br><0.01             | <0.01<br><0.01 |

The RQs do not exceed the chronic risk LOCs for any proposed uses of pyroxsulam with RQs  $\leq 0.01$ . Table 4.7 lists chronic dietary-based mammalian RQs for proposed uses of pyroxsulam. These RQs are based on effects levels associated with chemical concentrations in feed.

| A start and | Pyroxsulam                   | Based on Upper-Bound      | l Kenaga V          | alues.                          |
|-------------|------------------------------|---------------------------|---------------------|---------------------------------|
| Use         | Application Rate<br>Ibs ai/A | Food Items                | EEC<br>(mg/kg)      | Chronic Dietary RQ <sup>1</sup> |
|             |                              |                           | 0.04                | -0.01                           |
|             |                              | Short Grass               | 3.94                | < 0.01                          |
| ** 74       | 0.0164                       | Short Grass<br>Tall Grass | <u>3.94</u><br>1.80 | <0.01                           |
| Wheat       | 0.0164                       |                           |                     |                                 |

# c. Terrestrial Plants

**Table 4.8** lists the terrestrial and semi-aquatic plant RQs for proposed uses of pyroxsulam based on results from TerrPlant v. 1.2.1. The analysis indicates that for dicotyledonous plants adjacent to pyroxsulam treated fields, the RQ exceeds the acute risk LOC ( $RQ \ge 1.0$ ) as a result of drift and for semi-aquatic dicots with exposure resulting from drift and channel runoff. For non-listed monocots, RQs exceed the LOC as a result of sheet runoff (dry scenario) and also for semiaquatic plants. The difference in risk estimates for the various scenarios is in part due to the fact that results from the vegetative vigor study are used for risk estimates associated with drift; the other scenarios incorporate toxicity values from the seedling emergence tests. For listed species, RQs exceeded the listed species acute risk LOC for semi-aquatic monocots and dicots. In addition, RQs exceeded the listed species acute risk LOC associated with spray drift and for plants in dry areas (sheet runoff) for monocots and dicots. These RQs are based on the maximum proposed use rate for winter wheat of 0.0164 lbs ai/A; RQs based on the lower proposed use rate for spring and winter wheat of 0.0132 lbs ai/A are slightly lower but the RQs still exceed the LOCs.

#### -34 of 154-

| Table 4.8 | . RQ Values for Terrestria<br>Based on Proposed           |                   |                                           | l to Pyroxsulam                                                                                                  |
|-----------|-----------------------------------------------------------|-------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|           | Toxicity Measurement                                      | RQs Based of      | on Tier II Seedling<br>egetative Vigor St | and the second |
| Plant     | Endpoint                                                  | Dry               | Drift                                     | Semi-aquatic                                                                                                     |
|           | Base                                                      | d on Ground Spa   | 1<br>ıy                                   |                                                                                                                  |
|           |                                                           | ant Species (Base |                                           |                                                                                                                  |
| Monocot   | 0.00022 lbs ai./A Seed Emerg<br>0.00056 lbs ai/A Veg Vig  | 4.5               | 0.75                                      | 38                                                                                                               |
| Dicot     | 0.00057 lbs ai/A Seed Emerg<br>0.000052 lbs ai/A Veg Vig  | 1.7               | 3.2                                       | 15                                                                                                               |
|           | Listed Plant Spec                                         | ies (Based on NO  | AEC or EC <sub>05</sub> )                 |                                                                                                                  |
| Monocot   | 0.00006 lbs ai/A Seed Emerg<br>0.000046 lbs ai/A Veg Vig  | 16                | 2.7                                       | 139                                                                                                              |
| Dicot     | 0.000036 lbs ai/A Seed Emerg<br>0.000031 lbs ai/A Veg Vig | 27                | 5.3                                       | 232                                                                                                              |
| · · ·     | Base                                                      | d on Aerial Spra  | y                                         |                                                                                                                  |
|           |                                                           | Dry               | Drift                                     | Semi-aquatic                                                                                                     |
|           | Non-Listed Pl                                             | ant Species (Base | d on EC <sub>25</sub> )                   |                                                                                                                  |
| Monocot   | 0.00022 lbs ai./A Seed Emerg<br>0.00056 lbs ai/A Veg Vig  | 7.5               | 3.7                                       | 41                                                                                                               |
| Dicot     | 0.00057 lbs ai/A Seed Emerg<br>0.000052 lbs ai/A Veg Vig  | 2.9               | 16                                        | 16                                                                                                               |
|           | Listed Plant Spec                                         | ies (Based on NO  | AEC or EC <sub>05</sub> )                 |                                                                                                                  |
| Monocot   | 0.00006 lbs ai/A Seed Emerg<br>0.000046 lbs ai/A Veg Vig  | 27                | 14                                        | 150                                                                                                              |
| Dicot     | 0.000036 lbs ai/A Seed Emerg<br>0.000031 lbs ai/A Veg Vig | 46                | 26                                        | 251                                                                                                              |

# **B. Risk Description**

The available data on the fate and effects of pyroxsulam are sufficient to address the risk hypothesis for all taxa, as specified in the Overview Document (USEPA, 2004). Although no effects data were submitted for estuarine/marine animal species, the physicochemical properties, proposed uses, and toxicity to freshwater animals indicates that effects data are not required for estuarine/marine animal species at this time. The results of this screening-level risk assessment indicate some components of the risk hypothesis are accepted; there is potential for direct adverse acute effects for and terrestrial and semi-aquatic monocot and dicot plants. These results are based on modeled spray application rates of 0.0164lbs a.i./A per year, which represents the proposed use of pyroxsulam applied at the maximum label rate; risk conclusions are the same based on the slightly lower rate of 0.0132 lbs a.i./A per year associated with the winter and spring wheat use.

### -35 of 154-

# **Risk to Aquatic Organisms**

1.

Aquatic EECs were based on PRZM/EXAMS and represent peak and chronic values of pyroxsulam that may be present in a representative farm pond water body. The results of the screening-level analysis indicate that the potential of pyroxsulam to adversely affect aquatic freshwater animals is low. Risk quotients for freshwater fish and invertebrates are all below 0.01; no acute or chronic risk LOCs are exceeded. In addition, pyroxsulam appears to pose little potential for adverse effects to aquatic plants with RQs for non-vascular and vascular plants that are below 1.0. However, given the potential for effects on terrestrial and semi-aquatic plant species associated with the use of pyroxsulam, indirect effects on aquatic species are possible via potential alterations in riparian habitat.

#### a. Freshwater Fish

Acute and chronic RQs for freshwater fish are below acute and chronic risk LOCs, indicating that direct effects to freshwater fish are unlikely for the use of pyroxsulam on wheat.

The freshwater fish toxicity data indicate that pyroxsulam and degradates are practically nontoxic to tested species, which partly explains why RQ values are below the LOCs. Extrapolation to other freshwater fish is uncertain. In all likelihood, more sensitive species exist; however, given the low potential for adverse effect to tested species, the potential for adverse effects on freshwater fish or aquatic-phase amphibians is believed to be low.

# b. Freshwater Invertebrates

Acute and chronic RQs for freshwater invertebrates are below acute and chronic risk LOCs, indicating a low potential for direct adverse effects to freshwater invertebrates based on the use of pyroxsulam on wheat.

The freshwater invertebrate toxicity data indicate that pyroxsulam is practically non-toxic to tested species. Extrapolation to other freshwater invertebrates is uncertain. In all likelihood, more sensitive species exist but given the low potential for adverse effects based on tested species, the potential for adverse effects on other freshwater invertebrates is expected to be low.

Additionally, a chronic chironimid study indicated that the 7-OH metabolite of pyroxsulam is slightly toxic to this species with a NOAEC of 30 mg/L. Peak EECs for the total toxic residues are 0.18 ppb and represent the highest concentration obtained in model results; the ratio of exposure to toxicity is below 0.001, well below the aquatic species LOCs. Furthermore, the estimated 21-day pore water EEC of 0.08ppb suggests that exposures to sediment-dwelling invertebrates are unlikely to approach toxicity thresholds.

## c. Estuarine/Marine Fish

The potential for adverse effects including acute mortality for estuarine/marine fish is likely low, based on the results of the screening assessment; acute RQs for wheat are well below the acute risk LOC for freshwater fish. No acute or chronic estuarine/marine fish toxicity data were

-36 of 154-

submitted for pyroxsulam, however, given the low potential for adverse effects in freshwater fish species, the potential for chronic effects in estuarine/marine fish species is presumed to be low.

# d. Estuarine/marine Invertebrates

Acute and chronic RQs for freshwater invertebrates are below acute risk LOCs for the proposed use of pyroxsulam on wheat, indicating that a potential for direct adverse effects to estuarine/marine invertebrates is likely low as well.

There are no estuarine/marine invertebrate toxicity data for pyroxsulam although it is characterized as practically non-toxic to tested freshwater species. Although there is uncertainty associated with the toxicity of pyroxsulam to estuarine/marine invertebrates due to a lack of data, it seems unlikely that estuarine/marine invertebrates would be so much more sensitive than freshwater invertebrates that RQs would exceed the LOC; estuarine/marine species would have to be tens of thousands times more sensitive. In all likelihood, more sensitive species exist but given the low potential for effects to tested species, the potential for adverse effects on estuarine/marine invertebrates is expected to be low.

# e. Aquatic Plants

Based on predicted EECs for the modeled pyroxsulam use and available toxicity data, LOCs are not exceeded for non-listed or listed vascular and non-vascular aquatic plants. In part, the low RQs for aquatic plants, despite the intended use as an herbicide, is due to the relatively low toxicity of pyroxsulam to aquatic plants. In addition, the fairly low application rate likely contributes to the low potential for adverse effects to aquatic plants.

# 2. Risk to Terrestrial Organisms

a. Birds

No avian acute or chronic risk LOCs are exceeded for any uses of pyroxsulam indicating that the potential for adverse effects on birds is low. Toxicity studies on pyroxsulam indicate that technical grade pyroxsulam is practically non-toxic to birds on an acute oral and acute dietary exposure basis. Results from the chronic study yielded a NOAEC for Mallard ducks exposed to pyroxsulam of 500 mg/kg feed, based on reduced body weight. Taken as a whole, the risk estimation results and the toxicity data indicate a low potential for direct adverse effects to avian species associated with the proposed use of pyroxsulam. However, given the potential for effects on birds are possible. Since plants comprise vital components of all habitats and ecosystems, if alterations in the abundance of plants or in the composition of habitats (plant community) were to occur as a result of pyroxsulam use, then it is possible that some bird species may be affected. Potential indirect effects might include a decrease or change in the forage base or reduction in the availability of suitable nesting habitats.

b. Mammals

#### -37 of 154-

Acute risks to wild mammals were evaluated using a common laboratory rat  $LD_{50}$  value (3129 mg/kg bw). Pyroxsulam is practically non-toxic to mammals on an acute exposure basis. Calculated dose-based RQs for all proposed uses of pyroxsulam on wheat are below the acute risk LOC. The low apparent acute toxicity of pyroxsulam and the calculated RQs indicate a low potential for direct adverse effects to mammals associated with the use of pyroxsulam on wheat. Similarly, an evaluation of chronic risks showed that the dose-based chronic risk LOCs are not exceeded for the proposed use of pyroxsulam on wheat. Taken as a whole, the toxicity data and the risk estimates indicate that the potential for adverse effects to mammals associated with the use of pyroxsulam on wheat is low. However, similar to the potential for indirect effects to birds, the use of pyroxsulam could indirectly affect mammals by altering critical habitat components. An alteration in the abundance or composition of plant species in a given habitat in such a way as to disrupt normal behaviors (like mating).

# c. Potential Risk to Birds and Mammals: BCF Analysis

A fish bioconcentration study was not submitted for pyroxsulam because of its low  $K_{OW}$ . Because bioconcentration of pyroxsulam is unlikely, risks to piscivorous birds and mammals associated with the proposed use of pyroxsulam on wheat are unlikely.

#### d. Plants

Tier II plant studies demonstrate the potential for pyroxsulam to affect terrestrial dicot and monocot plants. Exposure levels equivalent to a 25% effect level were 0.00056 lbs a.i./A for monocots and 0.000052 lbs a.i./A for dicots for the vegetative vigor study. Results from the seedling emergence test indicated that a 25% effect level was 0.00022 lbs a.i./a for monocots and 0.00057 lbs a.i./a for dicots. Risk quotients for terrestrial plants ranged from 0.75 to 16 and for semi-aquatic plants RQs ranged from 15 to 251. Taken as a whole, the toxicity studies and the RQs indicate a potential for adverse effects to terrestrial plants as a result of exposures to pyroxsulam. Risk quotients for both monocots and dicots exceed the listed species acute risk LOC for terrestrial and semi-aquatic plants.

As with any toxicity test, there are uncertainties regarding whether test species adequately represent the range of possible sensitivities in the wild. Plants tested are crop plants, typically subjected to hundreds of years of human selection. It is likely that some native species are more sensitive than commonly used agricultural test species given the tremendous variation and number of wild plant species. Tests using a broader range of species may help reduce this uncertainty; however, a critical review paper McKelvey *et al.* (2002) suggests that, in general, crop testing may be sufficiently protective of most plants. Further supporting this contention is a review paper by Clark *et al.* (2004) which indicates that the current agricultural species used for testing are at least as sensitive as non-crop species in 95% of cases evaluated. Importantly, however, these authors also point out that there is no one species or endpoint that is consistently the most sensitive for all species and that numerous factors can confound comparison of test results. Moreover, neither study was a comprehensive review of the relative sensitivity of all (or even most) plants; therefore, considerable uncertainty still remains concerning the adequacy of

-38 of 154-

test species in representing non-test species. In the submitted toxicity tests for pyroxsulam, 10 species (4 monocots, 6 dicots) are used to represent all plant species.

There are several uncertainties regarding the use of TerrPlant to assess risk to plants. One is whether the default assumption of 5% spray drift (from aerial application) is sufficiently protective. Estimates made from actual drift assessments range to higher than 20% for fine sprays, which may result in an underestimation of risks to plants is underestimated. To gain a better understanding of the potential for spray drift to affect terrestrial plants. Tier I AgDRIFT<sup>®</sup> modeling for aerial application (v. 2.01) was used to determine how far off-field pyroxsulam levels would remain above the lowest vegetative vigor EC25 for dicotyledonous plants (0.000052 lbs a.i./A). AgDRIFT<sup>®</sup> utilizes empirical data to estimate off-site deposition of aerial and ground applied pesticides, and acts as a tool for evaluating the potential of buffer zones to protect sensitive habitats from undesired exposures. Assuming the maximum single application rate of 0.0164 lbs a.i./A, fine to medium droplet size,10 mph winds, and 10 ft application height, plants may be exposed to levels of pyroxsulam above the EC<sub>25</sub> for up to and beyond 1000 feet from the treated field; this combination of application rate and variables exceeds the range of AgDRIFT® (1000 ft). If droplet size is increased to medium-coarse, plants may be exposed to levels of pyroxsulam above the  $EC_{25}$  for up to 850 feet from the treated field, while the use of coarse to very coarse droplet size would result in plants potentially being exposed to pyroxsulam at levels above the EC<sub>25</sub> for up to 500 feet from the treated field. Alternatively, if droplet size were reduced to very fine to fine, the distance from the treated field where spray drift might exceed the EC<sub>25</sub> extends beyond the range that AgDRIFT<sup>®</sup> calculates (>1000 ft). Clearly, droplet size has a significant impact on the extent of spray drift. For listed plant species, all estimated distances would be even greater. A number of factors other than droplet size can significantly impact spray drift including wind speed, release height, nozzle size and angle, boom width, etc. These results are based on a ground application; simulations involving aerial applications would produce greater distances from the treated field. AgDRIFT<sup>®</sup> allows for higher tier assessments although these were not conducted for pyroxsulam. More details concerning the specifics and uncertainties of AgDRIFT<sup>®</sup> are available online at www.agdrift.com.

Screening-level estimates of exposure to semi-aquatic plants is estimated using TerrPlant, which combines exposure due to runoff and drift. TerrPlant assumes that drift and runoff concentrations are uniform over the non-target area. In the field, decreasing concentration gradients would be expected for each of these exposure pathways as the distance increases from the application site. If the dimensions (*i.e.* length and width) of the target area and non-target area were defined, the uncertainties associated with these assumptions could be explored. TerrPlant assumes a 10 to 1 ratio of target area to semi-aquatic non-target area, which is based on research indicating a pond located in Georgia with a 6-7 foot typical depth and a requirement of 2 acre drainage areas per foot of depth (USDA, 1997). Although the data are derived from observations of aquatic areas. However, there is uncertainty associated with the depth of the ponds used for modeling purposes and the expected depth of a semi-aquatic area.

Another uncertainty associated with estimating risks to plants is that current assessment methods account for only a single application of the chemical since it is assumed that effects to plants would likely manifest after a single application and that toxicological response is less dependent

on subsequent exposures. It may be difficult to confidently apply this reasoning to all plants under all circumstances; therefore, the assumption of a single application remains a source of uncertainty. However, for the proposed use of pyroxsulam, only one application is permitted; if any future proposed uses require multiple applications, this source of uncertainty could play an important role.

#### e. Non-Target Terrestrial Invertebrates

EFED currently does not estimate risk quotients for terrestrial non-target insects. However, a label statement is required to protect foraging honeybees when the  $LD_{50}$  is  $< 11 \mu g/bee$ . Based on the acute contact toxicity study to honeybees, the  $LD_{50}$  for pyroxsulam is  $>107 \mu g/bee$ . This classifies pyroxsulam as practically non-toxic to honeybees on an acute contact exposure basis.

Data are available on the toxicity of pyroxsulam to earthworms. A brief analysis indicates that the NOAEC is < 10,000 mg/kg soil, an estimate of pyroxsulam in soil assuming even distribution to a depth of 5cm is 0.86 mg/kg soil. Although the NOAEC is below 10,000 mg/kg soil, it would have to be below 1.0 for there to be potential effects to earthworms which appears unlikely.

# 3. Federally Threatened and Endangered (Listed) Species of Concern

Section 7 of the Endangered Species Act, 16 U.S.C. Section 1536(a)(2), requires all federal agencies to consult with the National Marine Fisheries Service (NMFS) for marine and anadromous listed species, or the United States Fish and Wildlife Service (FWS) for listed wildlife and freshwater organisms, if they are proposing an "action" that may affect listed species or their designated critical habitat. Each federal agency is required under the Act to ensure that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of a listed species or result in the destruction or adverse modification of designated critical habitat. To jeopardize the continued existence of a listed species means "to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of the species" (50 C.F.R. § 402.02).

To facilitate compliance with the requirements of the Endangered Species Act (subsection (a)(2)), the Office of Pesticide Programs has established procedures to evaluate whether a proposed registration action may directly or indirectly appreciably reduce the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of any listed species (USEPA, 2004). After the Agency's screening level risk assessment is conducted, if any of the Agency's listed species LOCs are exceeded for either direct or indirect effects, an analysis is conducted to determine if any listed or candidate species may co-occur in the area of the proposed pesticide use or areas downstream or downwind that could be contaminated from drift or runoff/erosion. If listed or candidate species may be present in the proposed action area, further biological assessment is undertaken. The extent to which listed species may be at risk is considered which then determines the need for the development of a more comprehensive consultation package, as required by the Endangered Species Act.

-40 of 154-

The federal action addressed herein is the proposed registration of pesticide products that contain the active ingredient pyroxsulam. Pyroxsulam is proposed for use on wheat. Wheat production areas are predominantly found in the states of California, Mississippi, Arkansas, Louisiana, Texas, and Missouri. However, wheat production has been documented in Illinois, Florida, Oklahoma and Tennessee, although to a lesser degree (USDA, 2007).

# a. Action Area

For listed species assessment purposes, the action area is considered to be the area affected directly or indirectly by pyroxsulam use and not merely the immediate area where pyroxsulam is applied. At the initial screening-level, the risk assessment considers broadly described taxonomic groups and conservatively assumes that listed species within those broad groups are co-located with the pesticide treatment area. This means that terrestrial plants and wildlife are assumed to be located on or adjacent to the treated site and aquatic organisms are assumed to be located in a surface water body adjacent to the treated site. The assessment also assumes that the listed species are located within an assumed area, which has the relatively highest potential exposure to the pesticide, and that exposures are likely to decrease with distance from the treatment area. **Section 1.0** of this risk assessment presents the proposed pesticide use sites that are used to establish initial co-location of species with treatment areas.

#### b. Taxonomic Groups Potentially at Risk

If the assumptions associated with the screening-level action area result in RQs that are below the listed species LOCs, a "no effect" determination conclusion is made with respect to listed species in that taxa, and no further refinement of the action area is necessary. Furthermore, RQs below the listed species LOCs for a given taxonomic group indicate no concern for indirect effects on listed species that depend upon the taxonomic group for which the RQ was calculated. However, in situations where the screening assumptions lead to RQs in excess of the listed species LOCs for a given taxonomic group, a potential for a "may affect" conclusion exists and may be associated with direct effects on listed species belonging to that taxonomic group or may extend to indirect effects upon listed species that depend upon that taxonomic group as a resource. In such cases, additional information on the biology of listed species, the locations of these species, and the locations of use sites are considered to determine the extent to which screening assumptions regarding an action area apply to a particular listed organism. These subsequent refinement steps will consider how this information would impact the action area for a particular listed organism and potentially include areas of exposure that are downwind and downstream of the pesticide use site.

Assessment endpoints, exposure pathways, the conceptual model addressing proposed pyroxsulam uses, and the associated exposure and effects analyses conducted for the pyroxsulam screening-level risk assessment are in **Sections 2 to 3**. The assessment endpoints used in the screening-level risk assessment include those defined operationally as reduced survival and reproductive impairment for both aquatic and terrestrial animal species and survival, reproduction, and growth of aquatic and terrestrial plant species from both direct acute and chronic exposures. These assessment endpoints address the standard set forth in the Endangered Species Act requiring federal agencies to ensure that any action they authorize does not

appreciably reduce the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of the species. Risk estimates (RQs) which, integrating exposure and effects, are calculated for broad based taxonomic groups in the screening-level risk assessment presented in **Section 4**.

Both acute endangered species and chronic risk LOCs are considered in the screening-level risk assessment to identify direct and indirect effects to taxa of listed species. This section identifies direct effect concerns, by taxa, that are triggered by exceeding endangered LOCs in the screening level risk assessment, with an evaluation of the potential probability of individual effects for exposures that may occur at the established endangered species LOC. Data on exposure and effects collected under field conditions are evaluated to make determinations on the predictive utility of the direct effect screening assessment findings to listed species. Additionally, the results of the screen for indirect effects to listed species, using direct effect acute and chronic LOCs for each taxonomic group, is presented and evaluated.

A description of the potential direct effects associated with exposure to pyroxsulam for each of the taxonomic groups is provided below. **Table 4.9** provides a summary of the potential direct and indirect effects for federally listed species, including the range of RQ values.

| Table 4.9.Summary of DirectoryListed Species Taxonomic | Direct Effects      | RO                    | A WAY WITH A MAXIMUM AND ADDRESS OF A WAY AND AND AND ADDRESS A | Indirect Effects                                                                                                 |
|--------------------------------------------------------|---------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Group of Concern                                       | Direct Effects      | LQ.                   | Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Associated Taxa <sup>1</sup>                                                                                     |
| Aquatic vascular plants                                | None                | and the second of the | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| Aquatic non-vascular plants                            | None                |                       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| Estuarine/marine non-<br>vascular plants               | None                |                       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| Dicot terrestrial plants                               | Acute: plant growth | 0.49-6.83             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| Monocot terrestrial plants                             | Acute: plant growth | 0.75-68.33            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an a                                                                         |
| Freshwater fish                                        | None                | and the second second | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Terrestrial Plants                                                                                               |
| Estuarine/Marine fish                                  | None                | and the second second | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second |
| Freshwater invertebrates                               | None                |                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Terrestrial Plants</b>                                                                                        |
| Estuarine/Marine<br>Invertebrates                      | None                |                       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| Mollusks                                               | None                |                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Terrestrial Plants                                                                                               |
| Mammals                                                | None                |                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Terrestrial Plants                                                                                               |
| Birds                                                  | None                |                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Terrestrial Plants                                                                                               |
| Terrestrial invertebrates                              | None                |                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Terrestrial Plants                                                                                               |

<sup>1</sup>Associated Taxa refers to those taxa for which there are direct effects that may indirectly affect a listed species taxa.

# Listed Species Direct Effects

#### Freshwater Fish and Amphibians

i.

For the proposed use of pyroxsulam on wheat, acute and chronic LOCs are not exceeded for freshwater fish and aquatic phase amphibians with all RQs  $\leq 0.01$ .

Freshwater Invertebrates

-42 of 154-

For the proposed use of pyroxsulam on wheat, acute and chronic LOCs are not exceeded for freshwater invertebrates with all RQs  $\leq 0.01$ .

# Estuarine/Marine Fish and Invertebrates

No data were submitted regarding the toxicity of pyroxsulam to estuarine/marine fish or invertebrates. However, the risks to freshwater fish and invertebrates are expected to be low; this is due, in large part, to the lack of toxicity of pyroxsulam to representative species from these taxa. Although estuarine/marine fish and invertebrates are physiologically different than freshwater species, they would have to be thousands of times more sensitive than freshwater counterparts, which seems unlikely. Hence, direct effects to estuarine/marine fish and invertebrates is not expected.

# Aquatic Plants

The listed species acute risk LOCs are not exceeded for vascular and non-vascular aquatic plants for the use of pyroxsulam on wheat. Therefore, direct effects to aquatic plants are not expected for the proposed use of pyroxsulam on wheat.

### Birds

The listed species acute and chronic risk LOCs for birds, reptiles, and terrestrial-phase amphibians are not exceeded for the use of pyroxsulam on wheat applied at the maximum label rates. Both acute and chronic RQs are <0.01.

#### Mammals

Listed species acute risk LOCs ( $RQ \ge 0.1$ ) for direct effects of pyroxsulam on mammals are not exceeded for the proposed use of pyroxsulam on wheat; all acute RQs <0.01. Similarly, listed species chronic risk LOCs ( $RQ \ge 1.0$ ) are not exceeded for the proposed use of pyroxsulam on wheat.

#### Terrestrial Plants

Listed species acute risk LOCs ( $RQ \ge 1.0$ ) for direct effects of pyroxsulam on semi-aquatic plants are exceeded for a single application for the proposed use of pyroxsulam with RQs ranging from 3.44-68.33 for dicots and monocots, respectively. In addition, for terrestrial plants exposed to pyroxsulam via spray drift, the listed species acute risk LOC is exceeded for monocots an dicots from both ground spray and aerial spray. Listed species acute risk LOCs are exceeded for terrestrial monocot plants adjacent to treated areas.

#### ii. Probit Dose-Response Analysis

Listed Animal Species Probability of Effects on Individuals

#### -43 of 154-

The probability of individual effects at the acute endangered species LOC (RQ = 0.05 which is equivalent to 1/20 of the LC<sub>50</sub> or EC<sub>50</sub>) for each major listed species' taxonomic group and the probability of individual effects at estimated acute RQs above the endangered species acute risk LOC is provided here. In addition, extrapolation of low probability events such as those occurring at the LOC, are associated with a high degree of uncertainty. Since an LD<sub>50</sub> or LC<sub>50</sub> could not be estimated for most aquatic or terrestrial animal species a slope value is not available. Assuming a default slope of 4.5, the probability of individual effects if exposures were to occur at the LOC for birds and mammals is 1 in 2.9E05; for freshwater fish and invertebrates the probability of individual effects is 1 in 4.2E08.

# Listed Plant Species Probability of Effects on Individuals

For plants, a probit dose-response analysis is not conducted since the Tier II plant tests do not evaluate mortality ( $LC_{50}$ ) and instead measures the inhibitory effects of a chemical; therefore it is difficult to estimate the probability that an individual will be affected.

# iii. Indirect Effects

Pesticides have the potential to cause indirect effects to endangered or threatened species by, for example, perturbing forage or prey availability, altering the extent of nesting habitat, *etc.* The potential for indirect effects is determined by comparing RQs to the listed and non-listed species LOCs. If the RQ exceeds the listed species LOC then there is the potential for indirect effects to listed species dependent on those species for which the RQ exceeded the listed species LOC. Similarly, if the RQ exceeds the non-listed species LOC there is the potential for indirect effects to listed species that are generally dependent on organisms from the taxa for which RQs exceed the LOC.

The screening-level analysis indicated that, for the proposed use on wheat, pyroxsulam has the potential to cause deleterious effects in exposed terrestrial and semi-aquatic plant species (Section 4). Terrestrial plants had the highest RQs for both uses of pyroxsulam, ranging from This suggests potential concern for indirect effects on listed terrestrial and aquatic 0.49-57.4. organisms dependant upon these plant species as food items or as important habitat components. A potential drop in plant biomass associated with pyroxsulam use, for example, may significantly alter habitat suitability. While it is likely that plant communities can be repopulated by immigrants and living breeders after the use of pesticides, if the habitat is altered at a critical life-cycle juncture, over a large area or of if it is altered for long enough duration, some species may have difficulty surviving. Importantly, even if the plant biomass of a particular habitat is not significantly altered in the long-term, changes in plant community structure as a result of differential sensitivity to pyroxsulam could result in significant ecological changes. The toxicity data for pyroxsulam indicates that there are differences in the sensitivity of monocotyledonous and dicotyledonous plants and that there is variation in sensitivity within the tested species; this variability suggests that plant community structure could be significantly altered in habitats where pyroxsulam is present. Even if changes in habitat were not permanent, if they were to occur during a sensitive part of the life cycle, such as reproduction or development, significant indirect effects might be expected. A starting point for evaluating the potential risk of such

scenarios would be to first identify listed species likely to occur in the proposed pyroxsulam use areas and their associated life histories and determine if use is likely to overlap with a sensitive life-cycle component. Overlap in this case, would consist of temporal and spatial co-occurrence of pyroxsulam use and species.

The information presented on indirect effects serves as a guide to establish the need for and extent of additional analyses that may be performed using Services-provided "species profiles" as well as evaluations of the geographical and temporal nature of the exposure to ascertain if a "not likely to adversely affect" determination can be made. The degree to which additional analyses are performed is commensurate with the predicted probability of adverse effects from the comparison of the dose-response information with the EECs. The greater the probability that exposures will produce effects on a taxa, the greater the concern for potential indirect effects for listed species dependant upon that taxa, and therefore, the more intensive the analysis on the potential listed species of concern, their locations relative to the use site, and information regarding the use scenario (*e.g.*, timing, frequency, and geographical extent of pesticide application).

# iv. Listed Species Occurrence Associated with Pyroxsulam Uses

A preliminary analysis of the co-occurrence of listed plant species and the proposed use of pyroxsulam was conducted using OPP's LOCATES database (Version 2.10). The objective is to provide insight into the potential for exposure of listed species and to identify those areas, crop uses, and listed species that warrant further attention. A tabulation of the number of unique listed plant species in each state associated with proposed uses of pyroxsulam is provided in **Table 4.10**.

Based the results of the LOCATES database query, there are a total of 134 listed species from all taxa associated with counties where pyroxsulam may potentially be used on wheat. A total of 8 states have listed species associated with crops on which pyroxsulam may be used. California has the highest number (72) of listed species that may co-occur with proposed pyroxsulam use areas. The taxa that has the highest number of listed species is dicot plants with a total of 40 unique species for all states for which there is a record of wheat cultivation.

In general, for all proposed uses of pyroxsulam there is at least one, and usually more, listed species that may potentially occur in or near a proposed use area. Appendix G lists the occurrence in each state of counties that have a listed species of specified taxa and the total list of endangered species that may co-occur with proposed uses of pyroxsulam and a comprehensive list of species in counties where pyroxsulam may be used. This preliminary analysis indicates that there is a potential for pyroxsulam use to overlap with listed species and that a more refined assessment is warranted. The more refined assessment should involve clear delineation of the action area associated with proposed uses of pyroxsulam and best available information on the temporal and spatial co-location of listed species with respect to the action area. This analysis has not been conducted for this assessment.

-45 of 154-

| Table 4.10                    | ). Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ibula                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                    |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | cies                                     | that (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )ceur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in                                                                                                               |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                               | - 1635 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an a | Pyre                                     | oxsula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m U                                                                                                                                                                                                                                 | se A               | reas                                      | for A                                    | ll Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | posec                                   | l Uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .3. S.C.<br>3. 2                                                                                                 |
| State                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - ejio                                   | P. Scholar                               | ne sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                     | a started          | eries a re-                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | an a | i de service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1949 (M. 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |
| State                         | 1. 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.4                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.5kg                                                                                                                                                                                                                              |                    | in the state                              |                                          | - Deligne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | Cassing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 12124.00                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Addres in                                |                                          | strain in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                    | an a  | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012 E.S.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2011 - Constanting  | 3.05 A                                   | A DEPOSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 (34 S - 18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Supp. Supp.                                                                                                      |
|                               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and and                                  | A CARACTER STATE                         | 2000 - Constanting - Constanti | 4                                                                                                                                                                                                                                   |                    |                                           |                                          | Contractory of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | - Stevenson                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                               | JS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stande                                   |                                          | a start and a start and a start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - S                                                                                                                                                                                                                                 | d                  |                                           | allies                                   | All Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er anderen                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| and the second second         | ubians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | id                                       |                                          | A CRAWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SO.                                                                                                                                                                                                                                 | Chistacean         | a an an an an an an                       | & a                                      | Station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gastropod                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | · ·                                      | ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sugar La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                |
|                               | phild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arachnid                                 |                                          | alve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confer                                                                                                                                                                                                                              | stac               | 10                                        | IS &                                     | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lon                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lichen              |                                          | Monoco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.000                                                                                                            |
| A large states and the second | Ymi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e,                                       | Birds                                    | Bival                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Barry                                                                                                                                                                                                                           | Ę                  | Dio                                       | Fems                                     | Fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | jas                                     | Inse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ici                 | Mai                                      | Moi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Velo -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -17.58 (I)<br>-19.98                                                                                             |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                        |                                          | E<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Y</b>                                                                                                                                                                                                                            |                    |                                           | and a constant                           | Provinsion and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the pay of the second                   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S. F. C. Propieto   |                                          | B. Balansi anan K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| Alabama                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | р. — Р. Т.                               | 3.65                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nial separat                                                                                                                                                                                                                        | 1                  | 2 10 · · ·                                | 3                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                      | ¥K K∔te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 4e                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mr.S.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
| Arizona                       | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                          | e set i s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an in an                                                                                                                                                                                                                            | 5 - 10<br>8.6      | 9                                         |                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | . 8                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                |
| Arkansas                      | el coltante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7                                      | 2                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a de la contra de la<br>Contra de la contra d | 1                  | 4 4                                       | tinatati j                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·               | 100 3 Car                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| California                    | - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | · 油14                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                                                                                                                                                                                                                                  | 9                  | 116                                       |                                          | +28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | -18                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| Colorado                      | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1                                      | 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a net conserve                                                                                                                                                                                                                      | 11                 |                                           |                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | $\geq 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 2                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CARDING TO F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a                                                                                                                |
| Connecticut                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | The second                               | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     | 80, <sup>1</sup> - |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | CA Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND BUILDER LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sec.                                                                                                             |
| Delaware                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 38. <b>F</b> 27                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                    |                                           |                                          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | an e revenierae<br>Salationentie<br>Salationentie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |
| Florida                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1997                                     | Bard Grands                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | -22 -                                     |                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | CA CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                   | $\sim \eta_{ m in}$                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29                                                                                                               |
| Georgia                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 1991 B                                 | 4                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | na an an Anna an Anna<br>An Anna an Anna Anna                                                                                                                                                                                       | 1                  |                                           | 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | della.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 333 B.                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| Idaho                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | The second                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | -                  |                                           |                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | 4                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in and a state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| Illinois                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 2                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 行用                                                                                                                                                                                                                                  | 1                  | - 7n - 4                                  | 8<br>6                                   | +-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | 2                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| Indiana                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 2                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ala dina di<br>MANGRA                                                                                                                                                                                                               |                    | - 44<br>- 44<br>- 44                      | 1                                        | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>            | ATTER T                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alore Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |
| Iowa<br>Kansas                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 A.S.                                 | el . Artes                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    |                                           |                                          | ×4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | enge<br>effeste Jose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 2<br>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A PLANE AND A PLAN |                                                                                                                  |
| Kansas<br>Kentucky            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | 1                  | and grades                                |                                          | Sate Sate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | augus 3                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Louisiana                     | an ann an ann an an an an an an an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1764 - 1900 - 19                                                                                                                                                                                                                    | 1                  |                                           | 1                                        | 言語の言語                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2                                        | 90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Maine                         | 。<br>一般的问题                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 42 7                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second                                                                                                                                                                                                                      |                    | in the first of                           | <u>ь</u>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contractor Contractor (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |
| Maryland                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1 and the second                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     | . 8<br>고프 토리       |                                           |                                          | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e di Aner                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2112              | 2.                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a de la composición de |
| Massachusetts                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                     |                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Teacher that a                                                                                                                                                                                                                      | 1. A.L.            |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V 1945              |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ا بارېد.                                                                                                         |
| Michigan                      | tertanter i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | and the store                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    |                                           | 1                                        | Statistics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at a state                              | Anterio de la compañía de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 3.00                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second s | -                                                                                                                |
| Minnesota                     | a dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Present -                                |                                          | $\frac{\tilde{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     | 1                  | 2                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Mississippi                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | la an                                    | 5                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | 12 2 200                                  | 1                                        | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2010                                    | and Collinson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125.0               | 3                                        | 154 A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page -                                                                                                           |
| Missouri                      | dis. in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | 2                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | 1                  | 7                                         |                                          | and These                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                       | 2 em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 2.                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                |
| Montana                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                    |                                           |                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | an Bico                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Nebraska                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ning opposite the second                                                                                                                                                                                                            |                    |                                           |                                          | $2^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                |
| Nevada                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | and the second second                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                    | n alter 7 south                           |                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | . de large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| New Hampshire                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | an a | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | 1.00               | a a the generation                        |                                          | * mentions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | diana an                                | - State of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. T. Photos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |
| New Jersey                    | ner seiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | 1.000              | 2                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Part Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prosta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
| New Mexico                    | 2.LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 6                                        | 1. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The Albert                                                                                                                                                                                                                          | 2                  | 10.                                       |                                          | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                       | in the second se |                     | $2^{\prime\prime}$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | an and a start of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $= (a_{n+1}^{2})_{n+1}$                                                                                          |
| New York                      | A ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in the second second                     | 2 2 2 mill                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in a share c                                                                                                                                                                                                                        |                    | 33                                        | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | and It.                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . Instant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.11                                                                                                             |
| North Carolina                | が設置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                        | ·許有 論:                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | - 20                                      |                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                   | 4                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |
| North Dakota                  | and the second s | With the                                 | 3.4                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e de la constante<br>a la constante da series                                                                                                                                                                                       |                    |                                           | , p                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · (2019年)。                              | ani ana a tanai ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 films                                                                                                          |
| Ohio                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | harres h                                 | 1.1.1                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second second                                                                                                                                                                                                               | usaup - i          | 4                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S. Carton                               | And And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u, E                | * 2                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196 ju.                                                                                                          |
| Oklahoma                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | 6**                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Spit-In                                                                                                                                                                                                                           |                    | and the second                            |                                          | 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | aller THE SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I.                  | 3                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cardings and start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |
| Oregon                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.45                                     | 14.5                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | 1                  | <b>E</b>                                  | - 46 A # 33                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | di Secolo<br>Secolo | a ar Angel                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en ingli                                                                                                         |
| Pennsylvania                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | T. F                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | en fin spiright pri<br>Sili stationalisma |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | And Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Rhode Island                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | - 1                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | and Approx                                |                                          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 P.              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                         |
| South Carolina                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 4                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | 12                                        | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | - Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| South Dakota                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 194                                    | 3.3                                      | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                    | 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   |                                          | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | L.L.L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 刻也                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 장생                                                                                                               |
| Tennessee                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                        | 3                                        | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | 1. 1. s.           | 15.                                       | 1                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                       | ADDING O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   | 34                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A CONTRACT OF A  | hills                                                                                                            |
| Texas                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                       | 1 1290                                   | ite de la Coloria.<br>Recipiente coloria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     | 1                  | 19                                        |                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                       | 9-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 1444<br>144 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | u<br>Dhùr                                                                                                        |
| Utah                          | all contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e and die                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | 3-51               | 19,                                       |                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Mariana<br>An State                                                                                            |
| Vermont                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sa Martin                                | and the second second                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | international and a second and a second                                                                                                                     | ajor de            |                                           | The Assault                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1997 - 1 <sup>2</sup> 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>1 a (11</u>      | Alles 1"                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Virginia                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 2100                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W 200 hor                                                                                                                                                                                                                           | 2                  | 12                                        | L. S. 2014<br>J. D. Soc                  | The Trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                       | 3e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 5                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Washington<br>West Virginia   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an e Mer<br>Geologia                     | 2-12<br>2-12                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d of a                                                                                                                                                                                                                              | 1                  |                                           | 1000<br>Ali 200                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 4<br>7<br>4                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| West Virginia<br>Wisconsin    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ai secolo                                | -0-3                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | 4                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>.</b>                                | - 2. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 24                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tabilitati a status<br>tablati batan Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - بنيايين                                                                                                        |
| Wisconsin                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | n Line Street                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                    | and the second                            |                                          | all a state of the |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 24                                       | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n de Anaca.<br>Pre Maria                                                                                         |

-46 of 154-

# C. Description of Assumptions, Limitations, and Data Gaps

# 1. Assumptions and Limitations Related to Exposure for All Taxa

This screening-level risk assessment relies on proposed labeled statements of the maximum rate of pyroxsulam application for use on spring and winter wheat. The label specifies that pyroxsulam is to be applied only once per growing season, which translates to once per year for these varieties of wheat. The frequency at which actual uses approach the maximum is dependant on agricultural conditions (presence of weeds) and market forces. Moreover, conditions can change from year to year as weed resistance changes through time. It is important to realize that while a certain use pattern may prevail at present; these patterns can change as a result of varying conditions.

# 2. Assumptions and Limitations of Aquatic Exposure Estimates

The screening models PRZM and EXAMS are not designed to simulate real events or typical exposure. These models should simply indicate which chemicals surpass high-end levels of concern and warrant refinement of risk.

# 3. Assumptions and Limitations of Terrestrial Exposure Estimates

#### a. Location of plant species

For screening-level risk assessments for terrestrial plants, all estimated exposures are for plants that occur off the treated field. Exposure is therefore a function of the amount of pesticide that leaves the treated area and enters surrounding habitat via spray drift, runoff, or both.

# b. Routes of exposure

Screening-level risk assessments for spray applications of pesticides consider exposure to plants to occur either through soil mediated pathways or through topical application but not both. This is primarily due to the fact that submitted toxicity studies do not evaluate combined exposures. Moreover, the only way this would likely occur in the field is if there were multiple applications with root uptake occurring from left over residues of the first application and topical exposure ring occurs as a result of subsequent applications. Current approaches to assessing risks to plants do not take into account multiple applications; however, proposed uses for pyroxsulam are limited to single applications per year.

# c. Incidental Pesticide Releases Associated with Use

This risk assessment is based on the assumption that the entire treatment area is subject to pyroxsulam application at the proposed application rates. In reality, there is the potential for uneven application of pyroxsulam through such plausible incidents as changes in calibration of application equipment, spillage, and localized releases at specific areas of the treated field that are associated with specifics of the type of application equipment used (*e.g.*, increased application at turnabouts when using older ground application equipment).

#### -47 of 154-

For this assessment, the default foliar dissipation half-life of 35 days (Willis and McDowell, 1987) was used to estimate decline in food-item residues as a function of time after application. Frequently, studies are available that allow an estimation of the foliar dissipation half-life for a given chemical. In this assessment, since no terrestrial animal RQs exceeded any LOCs, use of a foliar dissipation half-life specific to pyroxsulam would not have altered risk conclusions and hence was not used. For other uses, however, a pyroxsulam-specific foliar dissipation half-life may be important in more accurately characterizing potential risks.

#### 4. Effects Assessment Assumptions and Limitation

### a. Age Class and Sensitivity of Effects Thresholds

It is generally recognized that test organism age may have a significant impact on the observed sensitivity to a toxicant. Although this source of variability is perhaps most well documented in animal species, it may apply to plant species as well. However, toxicity studies are generally limited to young plants or seedlings limiting the ability to interpret the differential sensitivity of various stages. Further complicating this issue is that some plants have very complex life histories that have hardly been characterized from a toxicological perspective.

# b. Lack of Effects Data for Amphibians and Reptiles

Currently, toxicity studies on amphibians and reptiles are not required for pesticide registration. Since these data are lacking, the Agency uses fish as surrogates for aquatic phase amphibians and birds as surrogates for terrestrial phase amphibians and reptiles. These surrogates are thought to be reflective of or protective (more sensitive) of herpetofauna. Amphibians are characterized by a permeable skin. The most important route of exposure for aquatic amphibians would likely be the dermal route. Using freshwater fish may be suitable surrogates since exposure would likely be surface area dependent and the gill surface of many fish is a fairly large surface area. Also, both fish and amphibians are ectothermic, so metabolic rates and demands would likely be similar. For terrestrial species, however, the difference between amphibians and birds and reptiles and birds is quite large. Terrestrial amphibians and reptiles are both ectothermic while birds are endothermic; birds have a higher basal metabolic rate required to maintain constant body temperature. The higher metabolic demands of birds may predispose birds to higher relative exposures. However, this does not address any potential differences in toxicity. To date, there are few controlled studies on reptile species that could be used to compare to similar studies on birds. A priori, there is no strong reason suggesting that one taxon is more or less sensitive than another. Further research is required to determine whether reptiles and terrestrialphase amphibians are suitably represented by bird species in assessing risks.

# c. Use of the Most Sensitive Species Tested

Although the screening risk assessment relies on a selected toxicity endpoint from the most sensitive species tested, it does not necessarily mean that the selected toxicity endpoints reflect the most sensitive species existing in a given environment. The relative position of the most sensitive species tested in the distribution of all possible species is a function of the overall

# -48 of 154-

variability among species to a particular chemical. The relationship between the sensitivity of the most tested species versus wild species (including listed species) is unknown and a source of significant uncertainty. The use of laboratory species has historically been driven by availability and ease of maintenance. A widespread comparison of species is lacking, however, even variation within a species can be quite high. Clark *et al.* (2004) conducted a fairly extensive review of available toxicity data on non-agricultural plants. The aim was to compare these toxicity data to data from typically used test species which are crop species. Although the authors identified several sources of uncertainty and variability that can complicate interpretation of results, they concluded that plants typically used for toxicity testing are at least as sensitive as non-crop species in 95% of the cases they evaluated. It is important to consider, however, that the available dataset on non-crop species is smaller than for crop species. Moreover, as mentioned previously, the complex and varied life history of plants, in general, may preclude a solid understanding of the relative sensitivities of plants used for toxicity testing and plants occurring in the wild.

# d. Data Gaps

The environmental fate and toxicology data requirements are not satisfied for a terrestrial food use. The submitted anaerobic aquatic metabolism, aerobic aquatic metabolism, and terrestrial field dissipation studies were supplemental and no anaerobic soil metabolism study was submitted. However, further submission of data may upgrade the submitted terrestrial field dissipation study. New anaerobic soil metabolism, anaerobic aquatic metabolism, and aerobic aquatic metabolism studies are not requested at this time because they are not expected to significantly alter risk conclusions.

Although no toxicity data were submitted for estuarine/marine animal species, the toxicity profile based on freshwater species and the physical properties of the chemical indicates that risks to estuarine/marine species are unlikely and that the toxicity data are not a requirement. However, without appropriate toxicity data, some uncertainty exists regarding the potential risks to estuarine/marine animal species associated with the proposed use of pyroxsulam on wheat.

# V. References

- Clark, J., Ortega, L.S., and Fairbrother, A. 2004. Sources of variability in plant toxicity testing. Chemosphere 57; pp. 1599-1612.
- Fletcher, J.S., J.E. Nellessen, and T.G. Pfleeger. 1994. Literature review and evaluation of the EPA food-chain (Kenaga) nomogram, and instrument for estimating pesticide residues on plants. Environmental Toxicology and Chemistry 13 (9):1383-1391.

Hoerger, F., and E.E. Kenaga. 1972. Pesticide residues on plants: Correlation of representative data as a basis for estimation of their magnitude in the environment. In F. Coulston and F. Korte, eds., Environmental Quality and Safety: Chemistry, Toxicology, and Technology, Georg Thieme Publ, Stuttgart, West Germany, pp. 9-28.

# -49 of 154-

- Kirkwood, J.H. 1983. A limit to metabolizable energy intake in mammals and birds. Comp. Biochem. Physiol. 75A:1-3.
- Mckelvey, R.A., Wright, J.P., and Honegger, J.L. 2002. A comparison of crop and non-crop plants as sensitive indicator species for regulatory testing. Pest Management Science 58; pp. 1161-1174.
- USDA. 2007. 2002 Census of Agriculture: Agricultural Atlas of the United States. U.S. Department of Agriculture, National Agricultural Statistics Service. Online at: http://www.nass.usda.gov/research/atlas02/. Accessed September, 2007.
- USDA. 2007. Agricultural Atlas of the United States. U.S. Department of Agriculture, National Agricultural Statistics Service, 2002 Census of Agriculture. Online at: http://www.nass.usda.gov/research/atlas02/
- USDA. 2007a. Crop Profiles. NSF Center for Integrated Pest Management (host). U.S. Department of Agriculture, Pest Management Centers. Last updated: Aug. 30, 2007. Online at: http://www.ipmcenters.org/cropprofiles/CP\_form.cfm
- USEPA. 1993. Wildlife Exposure Factors Handbook. EPA/600/R-13/187a, Office of Research and Development, Washington, D.C.
- USEPA 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F.
- USEPA. 2002. Guidance for Selecting Input Parameters in Modeling the Environmental Fate and Transport of Pesticides. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, Environmental Fate and Effects Division, Feb. 28, 2002. Online at: http://www.epa.gov/oppefed1/models/water/input\_guidance2\_28\_02.htm/
- USEPA. 2004. Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs, U.S. Environmental Protection Agency. Endangered and Threatened Species Effects Determinations. Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, Washington, D.C. January 23, 2004. Online at: http://www.epa.gov/oppfead1/endanger/consultation/ecorisk-overview.pdf
- USEPA. 2007. Water Models. U.S. Environmental Protection Agency, Pesticides: Science and Policy, Models and Databases. Last updated Aug. 23, 2007. Online at: http://www.epa.gov/oppefed1/models/water/.
- Willis, G.H., and L.L. McDowell. 1987. Pesticide Persistence on Foliage in Reviews of Environmental Contamination and Toxicology. 100:23-73.
  - A. Submitted Fate Studies

-50 of 154-

- MRID 46908303. Madsen, S. Group B: Physical and Chemical Properties of XDE-742. Study ID NAFST-06-086. Performed by Dow AgroSciences LLC, Indianapolis, IN, Dow AgroSciences LLC, New Plymouth, New Zealand, Huntingdon Life Sciences, Ltd., Cambridgeshire, England, and BASF Aktiengesellschaft, Limburgerhof, Germany. Submitted by Dow AgroSciences LLC, Indianapolis, IN. 15-Jun-2006.
- MRID 46908326. Yoder, R. N. 2004. Hydrolysis of XDE-742 at pH 5, 7, and 9. Study No. 040008. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 21-May-2004.
- MRID 46908328. Rutherford, L. A., Meitl, T. J., Balcer, J. L., and Linder, S. J. 2005. Photodegradation of XDE-742 on Soil. Study No. 040014. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 12-Apr-2005.
- MRID 46908329. Yoder, R. N., Smith, K. P., Balcer, J. L., and Linder, S.J. 2006. Aerobic Soil Degradation of <sup>14</sup>C-XDE-742 in Four European Soils. Study No. 030013. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 12-Jan-2006.
- MRID 46908331. Rutherford, L. A., Linder, S. J., and Balcer, J. L. 2005. Anaerobic Degradation of XDE-742 on One European Soil. Study No. 030051. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 17-Aug-2005.
- MRID 46908334. Roberts, D., Coukell, G., Schelle, G., and McLean, N. 2006. Terrestrial Field Dissipation of XDE-742 Herbicide and Cloquintocet Safener in Canada. Study ID 040037. Performed by ICMS, Inc., Manitoba, Canada and sponsored by Dow AgroSciences, Indianapolis, IN. 27-Jul-2006.
- MRID 46908336. Yoder, R. N., Cook, W. L., Meitl, T. J., Balcer, J. L., and Linder, S. J. 2006. Aerobic Aquatic Degradation of XDE-742 in Two European Sediment and Pond Water Systems. Study No. 030076. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 8-Feb-2006.
- MRID 47159601. Smith-Drake, J.K. 2004. Soil Batch Equilibrium Adsorption/ Desorption of <sup>14</sup>C-XDE-742; amendment to MRID 46908332. Study No. 030069. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 7-Apr-2004.
- MRID 47202701. Yoder, R. N., Smith, K. P., and Balcer, J. L. 2007. Aerobic Degradation of XDE-742 in 4 European Soils Employing Exhaustive Extraction Methods. Study No. 060113. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 11-May-2007.
- MRID (pending). Byrne, S. L., Meitl, T. J., Crabtree, A. B., Linder, S. L., and Balcer, J. L. 2006. Aqueous Photolysis of XDE-742 in pH 7 Buffer Using a Xenon Lamp. Study No. 040002. Performed and sponsored by Dow AgroSciences LLC, Indianapolis, IN. 10-Feb-2006.

#### -51 of 154-

# APPENDIX A. Preliminary Data Screen.



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460

> OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

# **MEMORANDUM**

**DATE:** October 24, 2006

SUBJECT: Preliminary Data Screen (DP Barcodes D333304, D333305 and D333306) of the Environmental Fate and Ecological Effects of XDE-742 (PC Code 108702)

**FROM:** Cheryl Sutton, Ph.D., Environmental Scientist Thomas Steeger, Ph.D., Senior Biologist

> Elizabeth Behl, Branch Chief Environmental Risk Branch 4 Environmental Fate and Effects Division

TO:

**THRU:** 

James Stone, Risk Manager Reviewer Joanne Miller, Risk Manager Registration Division

In a follow-up to the emails forwarded to the Registration Division on October 5, 2006, the Environmental Fate and Effects Division (EFED) has completed the preliminary screens of the environmental fate and ecological effect data submitted in support of the registration of XDE-742 (Pyroxsulam). Except for what appear to be a few minor discrepancies identified in Attachment 1, none of the ecological effect studies contain significant problems that would prevent their further review. Similarly, all of the environmental fate studies are deemed as reviewable; comments regarding each of the submitted studies are contained in Attachment 2. The ecological effect and environmental fate studies have been retrieved from the contractor, and EFED is awaiting the primary reviews from APVMA/Australia and PMRA/Canada, respectively.

-52 of 154-

# Attachment 1. Ecological Effect Data Screen

# <u>XDE-742</u>

| Guideline           | MRID                                                        | Study Title                                                                                                                                | Problems |
|---------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 71-1                | 469084-16                                                   | XDE-742 / BAS 770 H – Avian Single-Dose<br>Oral $LD_{50}$ on the Bobwhite Quail ( <i>Colinus</i><br><i>virgnianus</i> ).                   | NP       |
| 71-1                | 469084-17                                                   | XDE-742 / BAS 770 H – Avian Single-Dose<br>Oral $LD_{50}$ on the Mallard Duck ( <i>Anas</i><br><i>platyrhynchos</i> ).                     | NP       |
| 850.2200<br>(71-2b) | 469084-18                                                   | XDE-742 – Dietary Toxicity Test with the Mallard Duck (Anas platyrhynchos).                                                                | NP       |
| 850.2200<br>(71-2a) | 469084-19                                                   | XDE-742 – Dietary Toxicity Test with the<br>Northern Bobwhite Quail ( <i>Colinus</i><br><i>virginianus</i> ).                              | NP       |
| 850.2300<br>(71-4b) | 469084-20                                                   | XDE-742: Reproductive Toxicity Test with the Mallard Duck (Anas platyrhynchos).                                                            | NP       |
| 850.2300<br>(71-4a) | 469084-21                                                   | XDE-742: Reproductive Toxicity Test with the Northern Bobwhite Quail ( <i>Colinus virginiamus</i> ).                                       | NP       |
| 72-1                | 469084-22                                                   | XDE-742/BAS 770 H: Acute Toxicity Study<br>On The Fathead Minnow ( <i>Pimephales</i><br>promelas) In A Static System Over 96 Hours         | NP       |
| 72-1                | 469084-23                                                   | XDE-742/BAS 770 H: Acute Toxicity Study<br>On The Fathead Minnow ( <i>Oncorhynchus</i><br><i>mykiss</i> ) In A Static System Over 96 Hours | NP       |
| 72-1                | 469084-24                                                   | 7-OH Metabolite of XDE-742- Acute<br>Toxicity to Rainbow Trout ( <i>Oncorhynchus</i><br><i>mykiss</i> ) Under Static Conditions            | NP       |
| 72-1                | 469084-25                                                   | ASTA Metabolite of XDE-742: An Acute<br>Toxicity Study with the Rainbow Trout,<br>Oncorhynchus mykiss                                      | NP       |
| 72-2                | 469084-26                                                   | 7-OH Metabolite of XDE-742- Acute<br>Toxicity to Water Fleas, <i>Daphnia magna</i> ,<br>Under Static Conditions                            | NP       |
| 72-2                | 469084-27                                                   | ASTA Metabolite of XDE-742: An Acute<br>Toxicity Study with the Daphnid, <i>Daphnia</i><br>magna                                           | NP       |
| 72-2                | 469084-28                                                   | XDE-742: An Acute Toxicity Study with the Daphnid, <i>Daphnia magna</i>                                                                    | NP       |
| 72-4a               | 469084-30;<br>469086-26<br>(registrant-<br>prepared<br>DER) | XDE-742: Toxicity to the Early-Life Stages<br>of the Fathead Minnow, <i>Pimephales</i><br>promelas.                                        | NP       |
| 72-4b               | 469084-29                                                   | XDE-742: A 21-Day Chronic Toxicity Study with the Daphnid (Daphnia magna)                                                                  | NP       |

-53 of 154-

| 123-2     | 469084-31             | XDE-742-Growth Inhibition Test with<br>Freshwater Blue-Green Alga (Anabaena flos- | Test material was detected at a concentration above the LOQ in |
|-----------|-----------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|
|           |                       | aquae)                                                                            | the negative control at test                                   |
|           |                       |                                                                                   | termination; however, this was                                 |
|           |                       |                                                                                   | believed to be an error during                                 |
|           |                       |                                                                                   | analytical sampling.                                           |
| 123-2     | 469084-32             | XDE-742-Growth Inhibition Test with                                               | NP                                                             |
|           |                       | Freshwater Diatom (Navicula pelliculosa)                                          |                                                                |
| 850.4400  | 469084-33             | 7-OH Metabolite of XDE-742- Toxicity to                                           | NP                                                             |
| (123-2)   |                       | Duckweed, Lemna gibba                                                             |                                                                |
| 850.4400  | 469084-34             | ADTP Metabolite of XDE-742- Toxicity to                                           | NP                                                             |
| (123-2)   |                       | Duckweed, Lemna gibba                                                             |                                                                |
| 850.4400  | 469084-35             | 5,7-Di-OH Metabolite of XDE-742- Toxicity                                         | NP                                                             |
| (123-2)   |                       | to Duckweed, Lemna gibba                                                          |                                                                |
| 850.4400  | 469084-36             | 5-OH Metabolite of XDE-742- Toxicity to                                           | NP                                                             |
| (123-2)   | and the second second | Duckweed, Lemna gibba                                                             |                                                                |
| 850.4400  | 469084-37             | 6-C1-7-OH Metabolite of XDE-742- Toxicity                                         | NP                                                             |
| (123-2)   |                       | to Duckweed, Lemna gibba                                                          |                                                                |
| 850.4400  | 469084-38             | XDE-742 Sulfinic Acid Metabolite- Toxicity                                        | NP                                                             |
| (123-2)   |                       | to Duckweed, Lemna gibba                                                          |                                                                |
| 850.4225  | 469084-39             | Effects of GF-1674 on Seedling Emergence                                          | NP                                                             |
| (123-1b)  |                       | and Seedling Growth on Non-Target                                                 |                                                                |
|           |                       | Terrestrial Plants (Tier II)-2005                                                 |                                                                |
| 850.4250  | 469084-40             | Effects of GF-1674 on the Vegetative Vigor                                        | NP                                                             |
| (123-1a)  |                       | on Non-Target Terrestrial Plants (Tier II)-                                       |                                                                |
|           |                       | 2005                                                                              |                                                                |
| 123-2     | 469084-41             | XDE-742: Growth Inhibition Test with the                                          | NP                                                             |
|           |                       | Saltwater Diatom Skeletonema costatum                                             | 200                                                            |
| 850.4400  | 469084-42             | XDE-742: Growth Inhibition Test with the                                          | NP                                                             |
| (123-2)   | 1 (0 0 0 1 10         | Aquatic Plant, Lemna gibba                                                        | NP                                                             |
| 123-2     | 469084-43             | XDE-742 Sulfinic Acid Metabolite- Acute                                           | INP                                                            |
|           |                       | Toxicity to the Freshwater Green Alga,                                            |                                                                |
| 0.50 4400 | 460004.44             | Pseudokirchneriella subcapitata                                                   | NP                                                             |
| 850.4400  | 469084-44             | Inhibition of Growth of the Aquatic Plant                                         | INF                                                            |
| (123-2)   |                       | Duckweed, <i>Lemna gibba</i> , Following One and Three Day Exposures to XDE-742   |                                                                |
| 123-2     | 469084-45             | XDE-742: Growth Inhibition Test with the                                          | NP                                                             |
| 123-2     | 409084-45             | Freshwater Green Alga, <i>Pseudokirchneriella</i>                                 | 111                                                            |
|           |                       | subcapitata                                                                       |                                                                |
| 123-2     | 469084-46             | ADTP Metabolite of XDE-742- Acute                                                 | NP                                                             |
| 123-2     | 409084-40             | Toxicity to the Freshwater Green Alga,                                            |                                                                |
|           |                       | Pseudokirchneriella subcapitata                                                   |                                                                |
| 123-2     | 469084-47             | 5-OH Metabolite of XDE-742- Acute                                                 | NP                                                             |
| 125-2     | +02004-47             | Toxicity to the Freshwater Green Alga,                                            |                                                                |
|           | · .                   | Pseudokirchneriella subcapitata                                                   |                                                                |
| 123-2     | 469084-48             | 6-Cl-7-OH Metabolite of XDE-742- Acute                                            | NP                                                             |
| 123-2     | +0200+-+0             | Toxicity to the Freshwater Green Alga,                                            |                                                                |
|           |                       | Pseudokirchneriella subcapitata                                                   |                                                                |
| 123-2     | 469084-49             | 5,7-Di-OH Metabolite of XDE-742- Acute                                            | NP                                                             |
|           |                       | Toxicity to the Freshwater Green Alga,                                            |                                                                |
|           | а — А<br>-            | Pseudokirchneriella subcapitata                                                   |                                                                |
| 123-2     | 469084-50             | 7-OH Metabolite of XDE-742- Acute                                                 | NP                                                             |
|           |                       | Toxicity to the Freshwater Green Alga,                                            |                                                                |
|           |                       | Pseudokirchneriella subcapitata                                                   |                                                                |

-54 of 154-

| 123-2      | 469084-51      | ASTA Metabolite of XDE-742: Growth                        | NP                                                                                                         |
|------------|----------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|            |                | Inhibition Test with the Freshwater Green                 |                                                                                                            |
|            |                | Alga, Pseudokirchneriella subcapitata                     |                                                                                                            |
| 850.4400   | 469084-52      | ASTA Metabolite of XDE-742: Growth                        | NP                                                                                                         |
| (123-2)    |                | Inhibition Test with the Aquatic Plant                    |                                                                                                            |
|            |                | Duckweed, Lemna gibba                                     |                                                                                                            |
| OECD 207   | 469085-04      | 5-OH Metabolite of XDE-742: An Acute                      | NP                                                                                                         |
|            | · .            | Toxicity Study with the Earthworm in an                   |                                                                                                            |
|            |                | Artificial Soil Substrate                                 |                                                                                                            |
| OECD 207   | 469085-05      | XR-742: 14 Day Soil Exposure Acute                        | NP                                                                                                         |
|            |                | Toxicity to the Earthworm, Eisenia foetida                |                                                                                                            |
| OECD 207   | 469085-06      | 6-Cl-7-OH Metabolite of XDE-742: An Acute                 | NP                                                                                                         |
|            |                | Toxicity Study with the Earthworm in an                   |                                                                                                            |
|            |                | Artificial Soil Substrate                                 |                                                                                                            |
| OECD 207   | 469085-07      | 7-OH Metabolite of XDE-742: An Acute                      | NP                                                                                                         |
| 0202 207   | 103000 07      | Toxicity Study with the Earthworm in an                   |                                                                                                            |
|            | a shekara a sh | Artificial Soil Substrate                                 |                                                                                                            |
| OECD 213 & | 469085-08      | Effects of XDE-742/ BAS770H (Acute                        | NP                                                                                                         |
| 214        | 102002-00      | Contact and Oral) on Honey Bees Apis                      |                                                                                                            |
| 211        |                | mellifera L. In the Laboratory                            |                                                                                                            |
| OECD 219   | 469085-09      | 7-OH Metabolite of XDE-742 – Chironomid                   | NP                                                                                                         |
| (Non-G)    | 407005-09      | Toxicity Test with Midge ( <i>Chironomus</i>              |                                                                                                            |
| (11011-03) | 1              | <i>riparius</i> ) Under Static Conditions using           | •                                                                                                          |
|            |                | Spiked Water.                                             |                                                                                                            |
| OECD 219   | 469085-10      | XDE-742: 28-Day Chronic Toxicity Study                    | Midge larvae were added to                                                                                 |
| (Non-G)    | 102002 10      | with the Midge, <i>Chironomus riparius</i> , Using        | each vessel on the same day the                                                                            |
| (Iton G)   |                | Spiked Water in a Sediment-Water Exposure                 | vessels were spiked, and                                                                                   |
|            |                | System.                                                   | aeration was stopped for approx.                                                                           |
|            |                | 55500                                                     | 3 hours during and thereafter.                                                                             |
| OECD 222   | 469085-11      | 6-Cl-7-OH Metabolite of XDE-742: A                        | NP                                                                                                         |
| (Non-G)    | 102002 11      | Reproduction Study with the Earthworm in an               |                                                                                                            |
|            |                | Artificial Soil Substrate                                 |                                                                                                            |
| None       | 469085-12      | Herbicidal Activity of XDE-742 Soil                       | No quantitative data were                                                                                  |
|            | 10,000 12      | Metabolites on Weeds and Crops in a                       | provided on survival, plant                                                                                |
|            | 1              |                                                           |                                                                                                            |
|            |                | I LASCOVETY WEED MANAgement Level 3                       | I DEIGNI OF OTV WEIGHT I DEFETORE                                                                          |
|            |                | Discovery Weed Management Level 3<br>Postemergence Screen | height or dry weight. Therefore,                                                                           |
|            |                | Postemergence Screen                                      | this study cannot be considered                                                                            |
|            |                |                                                           | this study cannot be considered<br>for a traditional review as it only                                     |
|            |                |                                                           | this study cannot be considered<br>for a traditional review as it only<br>provides qualitative data on the |
|            |                |                                                           | this study cannot be considered<br>for a traditional review as it only                                     |

NP= no problem

-55 of 154-

# Attachment 2. Environmental Fate Data Screen

# New Chemical Screening Summary Environmental Fate – XDE-742

| Guideline | MRID                                | Study Title                             | Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reviewable<br>(Yes/No)                                                                                                                          |
|-----------|-------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 161-1     | 469083-26                           | Hydrolysis Study                        | No issues affecting the acceptability of the study were identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                             |
| 161-2     | 469083-27                           | Photodegradation in<br>Water            | At least one transformation product reacted<br>with the buffer used in the primary<br>experiment.<br>In a supplementary study using a different<br>buffer (TRIS) included in this MRID, the<br>buffer failed to adequately buffer and the pH<br>of the solution decreased from pH 7 to pH<br>5.4-5.9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes. The<br>supplementary<br>study appears to<br>support the rate of<br>degradation and<br>the identification<br>of transformation<br>products. |
| 161-3     | 469083-28                           | Photodegradation on<br>Soil             | No issues affecting the acceptability of the<br>studies were identified. The rate of<br>degradation in the dark control was much<br>faster in the dark control than in the irradiated<br>samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                             |
| 161-4     |                                     | Photodegradation in Air                 | A set of the set of |                                                                                                                                                 |
| 162-1     | 469083-29<br>469083-30<br>469083-35 | Aerobic Soil<br>Metabolism              | <ul> <li>MRIDs 46908329 and 46908335 are companion studies, with MRID 46908335 intended only to provide additional information on the rate of dissipation of XDE-742. In MRID 46908335, only the concentration of XDE-742 was measured; material balance and transformation products were not addressed.</li> <li>MIRD 46908330 was conducted using a transformation product. It was assumed that all extractable radioactivity was parent compound.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                                                                                                                             |
| 162-2     |                                     | Anaerobic Soil<br>Metabolism            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 |
| 162-3     | 469083-31                           | Anaerobic Aquatic<br>Metabolism         | This study was defined by the registrant as<br>anaerobic soil metabolism (162-2). However,<br>it is an anaerobic aquatic metabolism study<br>(162-3). The systems were incubated for 30<br>days under nitrogen prior to treatment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                             |
| 162-4     | 46908-36                            | Aerobic Aquatic<br>Metabolism           | No issues affecting the acceptability of the studies were identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                                                                                                                                             |
| 163-1     | 469083-32<br>469083-33              | Mobility -<br>Adsorption/Desorpti<br>on | No issues affecting the acceptability of the studies were identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                                                                                                                                             |

-56 of 154-

| Guideline | MRID                   | Study Title                                        | Issues                             | Reviewable<br>(Yes/No)                                                                                                                                    |
|-----------|------------------------|----------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 164-1     | 469083-34              | Terrestrial Field<br>Dissipation                   | The study was conducted in Canada. | Yes                                                                                                                                                       |
| 164-2     |                        | Aquatic Sediment<br>Dissipation                    |                                    |                                                                                                                                                           |
| 164-3     |                        | Forestry Dissipation                               |                                    |                                                                                                                                                           |
| 165-4     |                        | Fish Accumulation                                  |                                    |                                                                                                                                                           |
| 165-5     |                        | Accumulation in<br>Aquatic Non-target<br>Organisms |                                    |                                                                                                                                                           |
| 166-1     |                        | Groundwater                                        |                                    |                                                                                                                                                           |
| N/A       | 469083-16<br>469083-17 | Other Special Studies                              | Storage stability                  | MRID 469083-16<br>was conducted<br>using cloquintocet-<br>mexyl. This<br>compound is the<br>safener used with<br>XDE-742 in the<br>formulated<br>product. |

Note: The majority of MRIDs include data for two label positions. Although the radiolabeled positions were studied in separate experiments, the study authors combine the data into the same tables. In several cases, averaged data rather than data for the individual samples/different radiolabels are provided, so it is difficult to confirm the material balance.

-57 of 154-

# **APPENDIX B. Environmental Fate Data.**

Detailed information regarding the fate and transport of pyroxsulam in the environment is provided in the study summaries below.

# 161-1. Hydrolysis

# MRID 46908326 (Acceptable)

Hydrolysis of radiolabelled XDE-742 (labelled at a. the triazole ring and b. the pyridine ring) at 0.1 mg a.i/L was studied in the dark at 20 °C in sterile aqueous buffered solutions at pH 5 (sodium acetate buffer), pH 7 (TRIS buffer) and pH 9 (sodium tetraborate buffer) for 32 days. Samples were analysed at 0, 4, 7, 14, 21 and 32 days without extraction, and the XDE-742 residues were analysed by LSC and HPLC-radiochromatography (HLPC-RAM). There were no transformation products observed. At test termination, the concentration of the parent compound was 100 % in all three pH systems. There was no unidentified radioactivity and sample pH did not change throughout the study.

The half-life (lives)/ DT50 (50% decline times) of XDE-742 could not be determined in any of the three buffer systems studied as the parent compound was stable to hydrolysis.

# 161-2. Aqueous Photolysis

# MRID (pending) (Acceptable)

The aqueous phototransformation of radiolabeled XDE-742 (labeled in the 2-C and 6-C position of the pyrimidine ring (PY-label) or in the 2-C position of the triazolopyrimidine portion (TP-label)) was studied at 20 °C in sterile aqueous pH 7 HEPES buffered solution at an initial concentration of 1 mg a.i./L. 15 days of continuous irradiation was employed using a xenon lamp. A supplemental experiment was carried out using pH 7 TRIS buffer as an attempt to circumvent problems arising from the reaction of the HEPES buffer with the 742-ADTP transformation product. Samples were analyzed at 0, 2, 4, 8, and 20 hours, and 2, 4, 7, and 15 days after treatment (DAT), and were analyzed directly by LSC and HPLC. Identification of transformation products was done by LC-MS/MS. Traps for the collection of  $CO_2$  and organic volatiles were not used for the main test samples; a duplicate PY-labeled sample was irradiated for 15 days and used to determine the amount of volatile radioactivity at test termination. A PNAP/pyridine chemical actinometer solution was used to quantify the amount of light that the samples received, such that 1 day of continuous irradiation (DAT) was equated with 4.9 days of irradiation in the summer sun at 40° N latitude for that portion of the spectrum required for the study.

Material balance was  $97.5 \pm 4.6\%$  of the applied radioactivity for the irradiated samples and 100.5  $\pm 1.2\%$  applied radioactivity for the dark controls. No significant transformation occurred in the dark samples (100% of the applied radioactivity remained as parent at test termination), and the presence of unidentified products that were detected at low levels throughout the study likely results from (minor) contamination of the test material, not transformation.

-58 of 154-

In the irradiated samples, the concentration of the parent compound decreased from 99.0% at 0 DAT to 0.6% of the applied amount at 6.8 DAT. The parent compound was not detected at test termination (14.9 DAT). The two major transformation products detected in the irradiated samples were the 742-sulfinic acid (2-methoxy-4-(trifluoromethyl)pyridine-3-sulfinic acid) and 742-ADTP (5,7-dimethoxy[1,2,4]triazolo[1,4- $\alpha$ ]pyrimidin-2-amine), with maximum concentrations of 79.2% and 39.8% of the applied amount, respectively, at 3.8 DAT. An additional 7.9% of the radiation was present as a 742-ADTP + HEPES adduct at this time. Both major transformation product concentrations decreased through the remainder of the study, to 45.0% and 23.6% of the applied amount at study termination. The minor transformation products in the irradiated samples were the 742-sulfonic acid (2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonic acid), which formed in the PY-labeled samples at levels too low to be quantified, and multiple unknown minor products. Volatiles were found to be 1.2% of the applied radioactivity in the surrogate test (examined only at 14.9 DAT). The total unidentified radioactivity at test termination was 2.2% and 49-69% of the applied radioactivity in the dark and irradiated samples, respectively.

The photodegradation mechanism of XDE-742 appears to be cleavage of the sulfonamide bridge, yielding the 742-sulfinic acid, which may then oxidize to produce the small quantities of 742-sulfonic acid observed, and the 742-ADTP. The major transformation products are then further transformed to multiple, low level components which could not be separated nor identified in the study.

The environmental photolytic half-life, derived from the measured half-life in laboratory under artificial lamp, is predicted to be 4.5 days at 40° N latitude in summer sunlight (0.91 days continuous irradiance in the laboratory), and the  $t_{9/10}$  is predicted to be 14.7 days ( $r^2 = 0.9957$  for first order curve fit of non-zero concentration data).

The concentrations of the two major transformation products peaked at 3.8 DAT and were in decline by the end of the study (14.9 DAT). A supplemental study of the transformation of the 742-ADTP transformation product in three different solutions (pH 7 TRIS buffer, pH 7 HEPES buffer and HPLC-grade water) also gave an excellent fit to first-order kinetics ( $r^2$ = 0.9852- 0.9892), but the estimated t<sub>1/2</sub> for all three were between 22 and 23 days (approx 108-113 equivalent days at 40° N latitude in summer sunlight), which was in excess of the study duration of 15 days.

# **Results Synopsis**

Test medium: Source of irradiation: Half-life/DT50 for Dark: Half-life/DT50 for phototransformation:

Major transformation products: Minor transformation products: 0.01 M HEPES buffer at pH 7
Xenon lamp
no degradation occurred in the dark samples
0.91 days (laboratory); 4.5 days (expected at 40°N
latitude in summer sunlight)
742-ADTP, 742-sulfinic acid
742-sulfonic acid

This study is a revision of and replaces MRID 46908327.

-59 of 154-

# 161-3. Soil Photolysis

#### MRID 46908328 (Acceptable)

The phototransformation of <sup>14</sup>C-XDE-742 (two radiolabels: triazdopyrimidine and pyridine) was studied on a Charentilly silt loam soil (pH 6.2, organic carbon 1.0%) from France at 25 °C and 75% of 1/3 bar moisture using a xenon lamp as a light source. Samples, fortified at approximately 3 mg a.i./kg soil, were irradiated for up to the equivalent of 30 days of spring sunlight at 50° N latitude.

<sup>14</sup>C-XDE-742 was applied in water on the soil surface by positive displacement pipette. The treated samples were irradiated by continuous irradiation using a 6500 W xenon arc lamp, with an inner CERA filter and an outer Soda Lime filter. Irradiated test vessels were connected to traps containing ascarite for the collection of  $CO_2$  and acidic volatiles. Dark control samples were maintained in a dark incubator set at 25 °C. Samples were taken at 0, 1, 3, 7, 10, and 15 days after treatment for the determination of the parent compound and transformation products. The soil samples were extracted with 90:10 acetonitrile:0.1 N HCl and the <sup>14</sup>C-XDE-742 residues were analyzed by HPLC. Soils were not sterilized.

A PNAP/pyridine (p-nitroacetophenone/pyridine) chemical actinometer solution was used to quantitate the amount of light that the samples received. Based on the PNAP/pyridine actinometer data, 15 DAT of irradiation was equivalent to 30 days of irradiation in the spring sun at 50° N latitude.

The mass balance was  $97.1 \pm 5.7\%$  and  $96.2 \pm 4.8\%$  in the dark and irradiated samples, respectively. At the test termination, approximately 31% of the applied <sup>14</sup>C remained as the parent XDE-742 in the dark samples. The major biotransformation products identified in the dark samples were 5-OH-XDE-742 and 7-OH-XDE-742 formed at approximately 9% and 11% of applied radiocarbon, respectively. The minor biotransformation product identified in the dark samples was the 7-OH-6-Cl-XDE-742 formed at approximately 4% of applied radiocarbon. At study termination, levels of the transformation products 5-OH-XDE-742 and 7-OH-XDE-742 in the dark control samples remained stable at approximately 9% and 11% of applied, respectively, while 6-Cl-7-OH-XDE-742 was increasing.

In the irradiated samples, concentration of the parent XDE-742 decreased from 98.5% at day 0 to 60.7% of the applied amount at test termination. Since the transformation products formed in the irradiated samples were less than 6% of applied, they were not conclusively identified. In irradiated samples, at the end of the study, less than 1% of the applied radioactivity was present in the ascarite traps as evolved CO<sub>2</sub> and acid gases.

Extractable <sup>14</sup>C residues decreased from 98.9% of the applied amount at day 0 to 56.9% and 75.6% of the applied amount at termination in the dark and irradiated samples, respectively. In the irradiated samples, non-extractable <sup>14</sup>C residues increased from 0.3% of the applied amount at day 0 to 16.2% of the applied at study termination. Non-extractable residues in the dark samples were 0.3% of the applied amount at day 0, and 39.0% of the applied amount at test termination. XDE-742 transformed into non-extractable residues and volatiles when irradiated. Characterization of these residues from irradiated samples showed that 68% of <sup>14</sup>C non-extractable residues are associated with the fulvic acid fraction. Approximately 6% and 18% are associated with the humic

-60 of 154-

and acid humin fraction, respectively. For the dark control, 45%, 14% and 41% of the <sup>14</sup>C nonextractable residues were associated with the fulvic acid, humic acid and humin fraction, respectively. Unidentified radioactivity increased to 14.8% in the irradiated samples, however, no single transformation product was >6% in any single sample.

The transformation rate constants of XDE-742 in the dark and irradiated samples were 0.079 and 0.017 days<sup>-1</sup>, respectively. The transformation rate in the dark was greater than the total (phototransformation + non-phototransformation) rate; therefore, a  $k_{photolysis}$  could not be calculated. First order kinetic half-life values were 23 ( $r^2 => 0.92$ ) and 9 ( $r^2 => 0.92$ ) days for the light and dark samples, respectively. Since the soil samples were not sterilized, other possible routes of transformation such as biotransformation might have contributed to the transformation rates in this study.

#### **Results Synopsis**

Soil type: Charentilly silt loam Source of irradiation: Xenon lamp Half-life/DT<sub>50</sub> for dark: 9 days ( $r^2 => 0.92$ ) Half-life/DT<sub>50</sub> for irradiated: 23 days ( $r^2 => 0.92$ ) Half-life/DT<sub>50</sub> for phototransformation: Stable

Stable. (The metabolism rate in the dark was greater than the total (phototransformation + metabolism) rate; therefore, a  $k_{photolysis}$  couldn't be calculated.) None. None.

Major phototransformation products: Minor phototransformation products:

# 162-1. Aerobic Soil Metabolism

#### MRID 46908329 (Supplemental)

The biotransformation of radiolabeled XDE-742 was studied in one French and three German soils; a Charentilly light clay (France), a LUFA 3A clay loam, a Borstel loamy sand, and a Bruch West sandy loam for 133 days after treatment (DAT). Samples were treated separately with <sup>14</sup>C-XDE-742 radiolabeled at the 2 and 6 positions of the pyridine ring or at the 2-position of the triazolopyrimidine ring. XDE-742 was applied at the rate of 0.033 mg a.i./kg soil (equivalent to 25 g a.i./ha). Samples were incubated under aerobic conditions in the dark (20°C and 40% moisture holding capacity) for up to 4 months after treatment.

The test system consisted of two-chambered biometer flasks; one chamber containing 0.2 N NaOH for the collection of  $CO_2$ , and the other contained the treated soil. Samples were analysed at 0, 1, 3, 7, 14, 21, 29, 63, 94, and 133 days after treatment. One sample of each radiolabel was analysed at each time point. The soil samples were extracted three times with 90:10 acetonitrile: 1.0 N HCl and XDE-742 residues were analysed by HPLC. Five transformation products reaching concentrations of greater than 5% of the applied radioactivity were identified by a LC/MS comparison with authentic standards.

Average material balance values for the four tested soils were 99-101% of applied radioactivity. Several individual samples with recoveries less than 90% or greater than 110% of the applied radiocarbon were not used to determine transformation rates and their results were not reported.

The concentration of the parent compound decreased from approximately 100% at 0 DAT to less than 5% of the applied radioactivity at the end of study period.

XDE-742 aerobic soil transformation rates were calculated for all four tested soils. Half-lives ranged from 2 to 10 days on the four soils tested in this study. The corresponding  $t_{9/10s}$  ranged from 7 to 33 days.

Five transformation products reaching concentrations of greater than 5% of the applied radiocarbon were identified. The 5-OH-XDE-742 reached at a maximum concentration of 24% of the applied radiocarbon in the LUFA 3A clay loam at 3 DAT. The other four transformation products were observed at their maximum concentrations in the Charentilly light clay. The 7-OH-XDE-742 was observed at 13% of applied and the 6-Cl-7-OH-XDE-742 was observed at 26% of applied at 7 DAT. The transformation products cyanosulfonamide (CSF) and the pyridine sulfonic acid (PSA) reached their respective maximum concentrations of 8% and 6% of the applied at the 21-DAT and 1-month time points. All transformation products were observed at declining concentrations in all soil types at the end of the study period.

At the end of the study period, between 5 and 15% of the applied radioactivity was recovered in the gas traps and was identified as  $CO_2$ . Non-extractable residues (NER) accounted for up to 94% of the applied radioactivity, with 60-90% at study termination. The unidentified radioactivity was made up of several small, extractable transformation products in total accounting for less than 5% of the applied radioaction.

The degradation of <sup>14</sup>C-XDE-742 at 10°C was studied on one soil, the Charentilly light clay. At 10°C, the DT<sub>50</sub> was 14 days compared to 4 days at 20 °C. XDE-742 degradation was greatly reduced on Charentilly light clay soil samples sterilized with gamma irradiation. In sterilized soil at 20 °C, XDE-742 was projected to have a DT<sub>50</sub> greater than 450 days (extrapolated beyond test duration of 133 days), indicating that the transformation of XDE-742 in the soil was microbially-mediated. Results in the Charentilly light clay soil also demonstrate a correlation between the rate of transformation of the parent and the formation of the NER. The NER is a result of incorporation of the radiocarbon into the soil biomass. After four months, the slower transformation rate at 10°C still led to essentially complete transformation of the parent and incorporation of the radiocarbon into the soil NER pool (parent was 2.1-2.6% and NER was 46.3-53.3%), while the untransformed parent was still readily extractable in the sterile soil (between 83.8 and 89.7% of the applied radioactivity remained as parent, while only 10.0 to 10.5% was NER).

| Soil type   | Half-life (days) | t <sub>9/10</sub> (days) |
|-------------|------------------|--------------------------|
| Charentilly | 3.8              | 12.6                     |
| LUFA 3A     | 2.1              | 6.8                      |
| Borstel     | 10.0             | 33.3                     |
| Bruch West  | 2.7              | 9.1                      |

**Results Synopsis:** 

**Major transformation products:** 5-OH-XDE-742, 7-OH-XDE-742, 6-Cl-7-OH-XDE-742 (XDE-742 sulfonamide, formed in the supplementary study submitted).

# -62 of 154-

Minor transformation products: cyanosulfonamide (CFS) and pyridine sulfonic acid (PSA).

This study is classified as supplemental, as multiple solvent systems were not employed in a reasonable extraction attempt; non-extractable [<sup>14</sup>C]residues were measured at >10% of the applied by day 1, 3 or 7, were as high as 94%, and remained at 59-90% at study termination. A following study confirmed that multiple extraction procedures extracted up to 28.8% of the applied more than the extraction procedure of this study alone, which indicates that the results of this study are uncertain and should be superseded by those of the following study (Yoder *et al.*, 2007).

#### 162-1. Aerobic Soil Metabolism

#### MRID 46908335 (Unacceptable)

The aerobic soil transformation rate of XDE-742 was determined in 16 soils from five countries. XDE-742 was applied at approximately 0.03 mg/kg to soil at 40% MHC (moisture holding capacity). This application rate is equivalent to the anticipated maximum label rate of 25 g a.i./ha. Samples were incubated in the dark at 20 °C under aerobic conditions for up to 1 month after treatment.

Samples were analyzed until XDE-742 concentrations were below the level of detection (LOD) for at least two time points or for up 1 month of incubation, whichever was shorter. An LOQ of 1.5 ng/g and an LOD of 0.5 ng/g were established. The soil samples were extracted with 90:10 acetonitrile:1.0 N HCl and the residues of XDE-742 were analyzed by LC/MS/MS.

 $DT_{50}$  values ranged from 1 to 17 days; 12 of the 16 soils had  $DT_{50}$  values of less than 5 days. The aerobic soil degradation rate of XDE-742 was uniformly rapid, regardless of soil type. No single soil property examined correlated with the degradation rate of XDE-742 on aerobic soil.

This study is classified as unacceptable, as no material balance was provided; degradates and non-extractable residues were not measured; and multiple solvent systems were not employed in a reasonable extraction attempt. In a submitted aerobic soil metabolism study conducted with the same extraction procedure on radiolabeled XDE-742, non-extractable [<sup>14</sup>C]residues accounted for >10% of the applied by day 1, 3 or 7, were as high as 94%, and remained at 59-90% at study termination (MRID 46908329). Exhaustive extraction procedures performed in a supplemental study demonstrated that up to 28.8% of the applied in the non-extracted residues of the original study were extractable (Yoder *et al.*, 2007). Therefore, the degradation kinetics of XDE-742 and its degradates are uncertain in this study.

#### 162-1. Aerobic Soil Metabolism

#### MRID 47202701 (Acceptable)

The biotransformation of radiolabeled XDE-742 was studied in one French and three German soils; a Charentilly clay loam (France), a LUFA 3A clay loam, a Borstel sandy loam, and a Bruch West sandy loam for 118 days after treatment (DAT). Samples were treated separately with <sup>14</sup>C-XDE-742 radiolabeled at the 2 and 6 positions of the pyridine ring or at the 2-position

of the triazolopyrimidine ring. XDE-742 was applied at the rate of 0.033 mg a.i./kg soil (equivalent to 25 g a.i./ha). Samples were incubated under aerobic conditions in the dark (20°C and 40% moisture holding capacity) for up to 4 months after treatment. No sterile treatments were used.

The test system consisted of two-chambered biometer flasks; one chamber containing 0.2 N NaOH for the collection of  $CO_2$ , and the other contained the treated soil. Samples were analyzed at 0, 1, 4, 7, 14, 29, 42, 63, 82, 100, and 118 days after treatment. One sample of each radiolabel was analyzed at each time point. The soil samples were initially extracted three times with 90:10 acetonitrile: 1.0 N HCl. The acetonitrile extracts were neutralized and XDE-742 residues were analysed by HPLC after a concentration step.

Samples with more than 10% of the applied radioactivity unextracted after the initial extraction procedure were subjected to additional extractions. Samples were sequentially extracted 2x with 90:10 methanol: 5 N HCl, 2x with a borate aqueous buffer ( $pH \sim 10$ ) and 2x with 90:10 methanol: 2 N NaOH. These extracts were neutralized and combined before concentration. The combined, concentrated extracts were analyzed by HPLC.

Material balance was 99-103% ( $100.6 \pm 4.4\%$ ) of the applied amount. The concentration of the parent compound decreased from 95% of the applied amount at day 0, to 5% of the applied at the end of study period at all test sites. The DT50 and DT90 of XDE-742 in aerobic soil for all soil types ranged from 2.1 to 14.6 days, and from 6.8 to 48.4 days, respectively.

Two major and one minor transformation product identified by LC/MS in a previous XDE-742 aerobic soil biotransformation study were identified by reverse-phase HPLC retention time match with authentic standards. 5-OH-XDE-742 was detected at a maximum of 24.4% of applied radioactivity at day 4 in LUFA 3A clay loam, and had declined to less than 1% after 29 days. 6-Cl-7-OH-XDE-742 was detected at a maximum of 11% of the applied radioactivity in Charentilly clay loam on day 7, and had declined to 2.3% by study termination. The transformation product 7-OH-XDE-742 was observed at a maximum concentration of 7.9% of the applied radioactivity on day 14 in Borstel sandy loam, and had declined to 1.4% by study termination. Another major transformation product, not observed in the original study, was identified by LC/MS and comparison with an authentic standard of the XDE-742 sulfonamide. XDE-742 sulfonamide reached a maximum of 13.2% of application radioactivity at day 29 in Charentilly clay loam, and had declined to 8.6% at the end of the study. Two additional transformation products that reached 5% of applied in the original study, the cyanosulfonamide and the sulfonic acid of XDE-742, were not observed at concentrations above 4% of applied in this study.

At the end of the study period, up to 11% of the applied radioactivity was recovered in the caustic traps and was assumed to be  $CO_2$ . In all but the LUFA 3A clay loam, the TP-labelled traps consistently contained more radioactivity than the PY-labelled traps for the same time point. Conversely, higher amounts of radioactivity were extracted from the soil samples treated with PY-labelled XDE-742. XDE- 742 sulfonamide contains only the PY radiolabel and its appearance correlates with the higher percent extractable from the PY-labelled samples. Non-

-64 of 154-

extractable residues (NER) accounted for 37.9-82.8% of the applied radioactivity, even after the exhaustive extraction procedures.

The first step in XDE-742 aerobic soil degradation is de-methylation of one of the two methoxy groups on the triazolopyrimidine (TP) ring system to 5-OH-XDE-742 or 7-OH-XDE-742. The 7-OH transformation product can then undergo chlorination to form 6-Cl-7-OH-XDE-742. Further degradation of the TP ring system occurs to give the cyanosulfonamide, sulfonamide and sulfonic acid transformation products. The terminal transformation products are  $CO_2$  (minor) and bound residues (major).

# **Results Synopsis:**

| Soil type   | Half-life<br>(days) | t <sub>9/10</sub><br>(days) |
|-------------|---------------------|-----------------------------|
| Charentilly | 3.7                 | 12.4                        |
| LUFA 3A     | 2.1                 | 6.8                         |
| Borstel     | 14.6                | 48.4                        |
| Bruch West  | 5.0                 | 16.8                        |

Major transformation products: 5-OH-XDE-742, 6-Cl-7-OH-XDE-742, and XDE-742sulfonamide

**Minor transformation products:** 7-OH-XDE-742, cyanosulfonamide (CFS) and pyridine sulfonic acid (PSA).

#### 162-1. Aerobic Soil Metabolism

#### MRID 46908330 (Supplemental)

The transformation product 5,7-di-OH-XDE-742 is a soil transformation product of XDE-742 that exceeded 5% of applied material in the anaerobic aquatic transformation study. This transformation product, however, was not observed in the aerobic soil study. As part of the registration process and to provide degradation kinetics data for environmental fate simulation models, however, it was necessary to determine the degradation rate of this metabolite in an aerobic soil test system.

The biotransformation of radiolabeled 5,7-di-OH-XDE-742 was studied in a Borstel loamy sand (pH 6.8, organic carbon 0.9%) from Nienburg, Germany, a Limburgerhof loamy sand (pH 7.1, organic carbon 0.8%) from Rheinland-Pfalz, Germany, a Charentilly light clay (pH 6.1, organic carbon 1.0%) from France, and a Speyer LUFA 3A sandy clay loam (pH 8.0, organic carbon 1.3%) from Baden-Württemberg, Germany. <sup>14</sup>C-5,7-di-OH-XDE-742 was applied at a rate of 0.03 mg a.i./kg soil, equivalent to 25 g a.i./ha. This rate is equivalent to 1X the anticipated maximum use rate of 25 g a.i./ha of XDE-742 application. Samples were incubated for up to 14 days under aerobic conditions in the dark at 20 °C and 40% moisture-holding capacity.

The test system consisted of a two-chambered biometer flask with one chamber as a trap for the collection of  $CO_2$  and the other chamber for the soil. Samples were analyzed at 0, 2, 8, and

#### -65 of 154-

22 hours, 3, 7, and 14 days after treatment. The soil samples were extracted with a methanol:water (25:75) solution containing 0.05 M ammonium acetate on a horizontal shaker at low speed. Residues of 5,7-di-OH-XDE-742 were analysed by LSC. Representative 0 and 2 hour samples were analyzed by HPLC. Material balance for the four soils averaged 97 ± 4% (range = 85% to 107%) of the applied radioactivity. The average concentration of the test compound decreased from 90% of the applied radioactivity at Day 0 to 7% of the applied at the end of the study period. A stepwise approach was used to evaluate the degradation kinetics for 5,7-di-OH-XDE-742. First, simple first-order (SFO) kinetics calculated a geometric mean DT<sub>50</sub> of 0.4 days and DT<sub>90</sub> of 1.3 days. Next, first order multi-compartment (FOMC) kinetics calculated a geometric mean DT<sub>50</sub> of 0.2 days and a DT<sub>90</sub> of 8 days. The FOMC was a better fit for the data because it had a better curve fit, a more random distribution of the residuals, and the fit passed the  $\chi^2$  test at a lower error level.

No major or minor transformation products were identified. Averaged extractable <sup>14</sup>C-residues decreased from 90% of the applied radioactivity at Day 0 to 7% of applied at the end of the study period. Averaged non-extractable <sup>14</sup>C-residues increased from 9% of the applied amount at Day 0 to 83% of the applied at the end of the incubation period. At study termination, volatile transformation products accounted for up to 15% of the applied radioactivity.

#### **Results Synopsis:**

| Soil type                                | DT50                                             | DT 90                                    |
|------------------------------------------|--------------------------------------------------|------------------------------------------|
| Borstel loamy sand (Germany)             | First-order multi-                               | First-order multi-<br>compartment (FOMC) |
| Limburgerhof loamy sand (Germany)        | compartment (FOMC)                               | kinetics calculated a                    |
| Charentilly light clay (France)          | kinetics calculated a geometric mean of 0.2 days | geometric mean of 8<br>days              |
| Speyer JUFA 3A sandy clay loam (Germany) | (range: 0.1-0.37 days)                           | (range: 3-15 days)                       |

Major transformation products: None identified. Minor transformation products: None identified.

This study is classified as supplemental, as multiple solvent systems were not employed in a reasonable extraction attempt; non-extractable [ $^{14}$ C]residues were measured at >10% of the applied at 0-2 hours after treatment, were as high as 91%, and remained at 72-89% at study termination. Transformation products were not identified.

#### 162-3. Anaerobic Aquatic Metabolism

#### MRID 46908331 (Supplemental)

The anaerobic biotransformation of radiolabeled XDE-742 was studied in a flooded soil system using a Charentilly soil from France (soil texture silt loam, pH 6.2, organic carbon 1.0%) and HPLC-grade water for 126 days in the dark at 20 °C. XDE-742 was applied at the rate of 0.02 mg a.i./L (0.033 mg a.i./kg). The soil/water ratio used was 5:8. The test system consisted of two-chambered biometer flasks with traps for the collection of CO<sub>2</sub>. Anaerobicity of the soil was attempted by filling a sufficient layer of water over the soil and gently blowing nitrogen over the water to remove oxygen in the test system during dosing. Anaerobic conditions were maintained in soils (E<sub>h</sub> corrected to pH 7 = -134.3 to 54.2 mV). However anaerobic conditions could not be confirmed in the aqueous phase as E<sub>h</sub> 7 values were generally above the -100 mV criterion for anaerobicity stipulated by OECD Guideline No. 308 (mean E<sub>h</sub> 7 = -58.9 to 60.4), and dissolved oxygen levels ranged from 0.0 - 0.74 mg/L.

Samples were collected for analysis of parent and transformation products at 0, 1, 3, 7, 14, 30, 58, 74 or 78, and 126 days of incubation. At each time point the water and soil layers were transferred to a centrifuge tube and the layers were separated by centrifugation. Aliquots of the water were directly analyzed by LSC and HPLC and the soil samples were extracted on a horizontal shaker at low speed with 90:10 acetonitrile:1.0 N HCl. XDE-742 residues were analyzed by LSC and HPLC. Identification of the transformation products was initially performed by co-chromatography with authentic standards, and identifications were confirmed by LC/MS.

The test conditions outlined in the study protocol were maintained throughout the study. The total material balance in the water/soil system was  $98.3 \pm 2.3$  % of the applied radioactivity. The mean total recovery of the radiolabeled material was  $68.7 \pm 10.6$  % and  $23.0 \pm 3.9$  % of the applied radioactivity in the water and soil, respectively. Extractable <sup>14</sup>C residues in the soil increased from 16.7% at Day 0 to 27.6% at Day 74/78, before declining to 22.1% of the applied radioactivity at the end of the incubation period. Non-extractable <sup>14</sup>C residues (NER) in the soil increased from 0.6% at Day 0 to 25.7% of the applied radioactivity at study termination. At the end of the study 0.1% of the applied radioactivity was present as CO<sub>2</sub>.

The concentration of XDE-742 in water decreased from 80.5% at Day 0 to 71.6% at Day 30. After Day 30, concentration of XDE-742 decreased to 0% of the applied radioactivity at study termination. The concentration of XDE-742 in the soil increased from 16.7% at Day 0 to 24.9% at Day 30. After Day 30, concentration of XDE-742 decreased to 1.9% of the applied radioactivity at the end of the study period.

The major transformation products detected in water were 7-OH-XDE-742 and 5,7-diOH-XDE-742, with maximum concentrations of 48.6 % and 23.5 % of the applied amount, observed on the  $58^{th}$  day and  $126^{th}$  day of incubation, respectively. The corresponding concentrations in water at the end of the study were an average of 26.5 % and 23.1 % of the applied amount, respectively. The major transformation products detected in the soil were 7-OH-XDE-742 and 5,7-diOH-XDE-742, with maximum concentrations of 27.9 % and 4.4 % of the applied amount, observed on the  $58^{th}$  day and  $126^{th}$  day of incubation, respectively. The corresponding concentrations in soil at the end of the study were an average of 12.8 % and 4.1 % of the applied amount, respectively. No

-67 of 154-

minor transformation products were identified in the water or the soil. The unidentified <sup>14</sup>C ranged from 0.0 to 3.3 % of the applied amount.

Kinetics calculations were not conducted because anaerobic conditions in the aqueous phase were not assured throughout the study. XDE-742 was stable through the first 30 days, when redox potentials were the lowest ( $E_h$  7 range -10.2 to -143.3 mV). However, the sudden decrease in parent concentrations after Day 30 coincided with an increase in aqueous redox potential (range +8.5 to -80.0 mV), suggesting that changes in aerobicity in the test system may have lead to rapid biotransformation.

#### **Results Synopsis:**

Test system used: Charentilly silt loam covered by HPLC-grade water

 $DT_{50}$  in water: Not calculated Half-life/ $DT_{50}$  in sediment: Not calculated

Half-life/ $DT_{50}$  in the entire system: Not calculated due to loss of anaerobicity in aqueous phase. Major transformation products: 7-OH-XDE-742, 5,7-di-OH-XDE-742, NER Minor transformation products: CO<sub>2</sub>

This study is classified as supplemental, as anaerobic conditions were not assured and maintained. Dissolved oxygen was measured at all sampling times other than day 30 and redox potentials were unreasonably high. Also, multiple solvent systems were not employed in a reasonable extraction attempt.

XDE-742 did not significantly degrade through the first 30 days, when redox potentials were the lowest ( $E_h$  7 range -10.2 to -143.3 mV). However, a sudden decrease in parent concentrations after Day 30 coincided with an increase in aqueous redox potential (range +8.5 to -80.0 mV), suggesting that changes in aerobicity in the test system may have lead to rapid biotransformation. Therefore, XDE-742 is assumed stable in anaerobic aquatic systems.

#### 162-4. Aerobic Aquatic Metabolism

#### MRID 46908336 (Supplemental)

The aerobic biotransformation of <sup>14</sup>C- radiolabeled XDE-742 was studied in two pond water/sediment systems. One system was collected in England and one in France. The English test system consisted of pond water (pH 8.3), and sediment (sandy clay loam, pH 7.3, and organic carbon 2.2%). The French test system consisted of pond water (pH 8.1), and sediment (sand, pH 4.8, and organic carbon 2.9%). Samples were prepared in glass centrifuge tubes so that the sediment and water depths were approximately 2 and 6.0 cm, respectively. The test material was applied to the aqueous layer at a rate of 0.02 mg a.i./L. Samples were incubated in the dark at 20°C for up to 101 days after treatment.

Moist sediment was weighed into 55-mL centrifuge tubes. On an oven-dry basis, approximately 8 g or 11 g were weighed out for the English and French samples, respectively. Each sample was flooded with approximately 20 mL of pond water and pre-incubated for two weeks before dosing.

Samples were incubated using a flow-through system, in which moist air was passed through the samples continuously. The samples were connected to 0.2 M NaOH traps to capture any volatile degradates. Samples were analyzed after 0, 3, 7, 17, 33, 54, 75 and 101 days of incubation. The water layer was decanted and analyzed by LSC and reverse phase HPLC and the sediment samples were extracted with 90:10 acetonitrile: 0.1 N HCl. Extractable residues were analyzed by LSC and reverse phase HPLC. Identification of the transformation products was performed by LC/MS comparison with authentic standards.

Material balance for the total English system was  $98.7 \pm 4.2\%$  (91.0% to 106.9%) of the applied radioactivity. The concentration of XDE-742 in water decreased from 103.9% of the applied radioactivity at Day 0 to less than 5% at experimental termination. The concentration of XDE-742 in sediment increased from approximately 1% at Day 0 to 13% at Day 75.

Material balance for the French system was  $96.3 \pm 4.5\%$  (90.0% to 105.7%) of the applied radioactivity. The concentration of XDE-742 in water decreased from approximately 90% of the applied at Day 0 to less than 15% at Day 101. The concentration of XDE-742 in sediment decreased from approximately 16% of the applied radioactivity at Day 0 to less than 10% of applied at Day 75.

The major transformation products detected in the water were XDE-742 ATSA, which reached a maximum concentration of 10% at Day 54 and 7-OH-XDE-742, which reached 33% of the applied radioactivity at Day 17. Both transformation products reached their maximum aqueous concentration in the French sediment system. ATSA and 7-OH reached their maximum concentrations in the English water column of approximately 5% and 30%, respectively, at Day 33. A third peak, with a retention time of 14.7 minutes (more polar than XDE-742 ATSA), was observed at a maximum of 11% of the applied radioactivity at Day 75 in the English water column. This peak was also observed at 4% at Day 54 in the French water column.

The major transformation products detected in the sediment were 7-OH-XDE-742, and an unknown peak, reaching concentrations of 26% at Day 17 and 13% at Day 33, respectively in the French sediment. XDE-742 ATSA was observed at a maximum concentration of 5% of the applied radioactivity at Day 75 in the French sediment. ATSA accounted for less than 2% of the applied radiocarbon in the English sediment at any time point while 11% of the applied radioactivity was recovered as 7-OH at Day 33 in the English sediment. The unknown peak accounted for 10% of the applied radioactivity at Day 33 in the English sediment.

XDE-742 ATSA reached a total system maximum concentration of 6% of applied at Day 33 in the English system and 13% of applied at Day 54 in the French system. The maximum total concentration of 7-OH-XDE-742 was 40% at Day 33 in the English system and 58% of applied at Day 17 in the French system. The unknown transformation product reached a total system maximum concentration of 16% of the applied radiocarbon at Day 101 in the English system and Day 33 in the French system. No other unidentified transformation products accounted for more than 5% of the applied radioactivity in the total system.

-69 of 154-

Numerous attempts to generate sufficient mass of the unknown transformation product for identification efforts were unsuccessful. This unknown transformation product could be considered an anomaly generated under a very specific set of physico-chemical parameters in these sediment-water systems that were not re-created. The transformation product could be a metastable compound that can exist under anaerobic conditions but is unstable under aerobic conditions, as was observed for the related sulphonamide flumetsulam (7).

The English sediment extractable residues increased from approximately 1% at Day 0 to 12% of applied at the end of incubation period. The French sediment extractable residues accounted for 4-16% at Day 0 and approximately 30% of applied radioactivity at the end of incubation period. English sediment non-extractable residues increased from less than 1% at Day 0 to approximately 70% of the applied amount at the end of the study. French sediment non-extractable residues increased from less than 35% of the applied amount at Day 101. The caustic traps all contained less than 3% of the applied radioactivity.

First-order  $DT_{50}$  values of 24 and 12 days were calculated for XDE-742 in the entire English and French systems, respectively.  $DT_{50}$  values of 21 and 14 days were observed in the aqueous and sediment phases of the English system while  $DT_{50}$  values of 11 and 21 days were calculated in the French aqueous and sediment layers. Total system  $DT_{50}$  values for 7-OH-XDE-742 were 12 (English system) and 42 days (French system). Total system  $DT_{50}$  values for XDE-742 ATSA were 71 (English system) and 22 days (French system).

#### **Results Synopsis:**

| Test System               | DT <sub>50</sub><br>(days) | DT <sub>90</sub><br>(days) |
|---------------------------|----------------------------|----------------------------|
| English :                 |                            | 1                          |
| XDE-742 Total System      | 23.6                       | 78.3                       |
| Water phase               | 20.6                       | 68.3                       |
| Sediment phase            | 14.4                       | 47.8                       |
| 7-OH-XDE-742 Total System | 15.8                       | 52.4                       |
| Water phase               | 17.9                       | 59.3                       |
| Sediment phase            | 9.7                        | 32.2                       |
| XDE-742 ATSA Total System | 71.4                       | 237.2                      |
| French :                  |                            |                            |
| XDE-742 Total System      | 11.9                       | 39.5                       |
| Water phase               | 10.6                       | 35.2                       |
| Sediment phase            | 20.6                       | 68.5                       |
| 7-OH-XDE-742Total System  | 42.4                       | 140.9                      |
| Water phase               | 50.5                       | 167.9                      |
| Sediment phase            | N/A                        | N/A                        |
| XDE-742 ATSA Total System | 22.0                       | 73.1                       |

N/A—Degradation rate in sediment only could not be determined for 7-OH-XDE-742 because the concentration of the metabolite in the sediment was not declining at experimental termination. Due to the paucity of data available, only a total system degradation rate could be determined for XDE-742 ATSA in either test system.

Major transformation products: 7-OH-XDE-742, XDE-742 ATSA and an unknown compound more polar than XDE-742 ATSA.

Minor transformation products: No minor transformation products were identified.

This study is classified as supplemental, as multiple solvent systems were not employed in a reasonable extraction attempt; non-extractable [<sup>14</sup>C]residues were measured at >10% of the applied by day 17 or day 33 and were 42-73% at study termination. A following study of the submitted aerobic soil metabolism study confirmed that multiple extraction procedures extracted up to 28.8% of the applied more than the extraction procedure of this study alone, which indicates that the results of this study are uncertain (Yoder *et al.*, 2007).

#### 163-1. Batch Equilibrium

#### MRID 47159601 (Acceptable)

The adsorption/desorption characteristics of radiolabelled XDE-742 were studied in twenty soils of varying textures, organic matter contents and pHs in a batch equilibrium experiment. A preliminary (Tier 2) study was conducted using 16 European soils, 2 U. S. soils, and 2 Canadian soils to determine Kd values. Based on the results of the preliminary test, the definitive (Tier 3) isotherm test was conducted at a 1:5 soil:solution ratio with 10 European soils. The adsorption phase of the definitive isotherm study was carried out by equilibrating fresh soil with XDE-742 at 0.025, 0.050, 0.125, 0.250 and 0.500  $\mu$ g a.i./g soil (or, 0.005, 0.010, 0.025, 0.05 and 0.1  $\mu$ g a.i./mL) in the dark at 25 °C for 72 hours. The equilibration solution used was 0.01 M CaCl<sub>2</sub>, with a soil:solution ratio of 1:5. The desorption phase of the study was carried out by adding approximately the amount of 0.01 M CaCl<sub>2</sub> removed for adsorption and equilibrating in the dark at 25 °C for 24 hours. The samples were desorbed once. The supernatant solution after adsorption and desorption was separated by centrifugation and the XDE-742 residues were analyzed by HPLC with fraction collection. The fractions were then assayed by LSC. The soils were extracted three times with 90:10 acetone:0.1 N HCl. The extracts were concentrated using a turbo evaporator and analyzed by HPLC fitted with a fraction collector. The <sup>14</sup>C residue remaining in the soil after extraction was determined by combustion.

For the definitive isotherm study,  $K_d$  and  $K_{OC}$  values were re-calculated by the PMRA by combining data from both replicates into a single adsorption isotherm and by using single-point desorption isotherms from the highest test concentration. For the adsorption phase, the average  $K_d$  value for the ten soils was 0.57 mL/g (range 0.19 to 1.76 mL/g); the corresponding average  $K_{OC}$  values were 30.0 mL/g (range 7.1 to 54.3 mL/g). Following a single desorption cycle, the average  $K_d$  value for the ten soils was 0.42 mL/g (range 0.13 to 1.27 mL/g); the corresponding average  $K_{OC}$ -des value was 22.3 mL/g (range 5.0 to 46.0 mL/g).

When adsorption Koc values are plotted against the pH of the soil, the inverse relationship between Koc and pH is apparent. Since Koc is simply Kd/soil organic carbon content, this shows that pH is a good indicator of XDE-742 adsorption provided that the influence of organic carbon is also considered. In other words, adsorption of XDE-742 is influenced by both pH and soil organic carbon content, as the soil pH decreases the Koc value increases.

#### -71 of 154-

Freundlich adsorption isotherm plots were also generated by the PMRA reviewer for the definitive isotherm data. Freundlich adsorption correlation coefficients ranged from 0.809 to 0.995, and 1/n values from 0.93 to 1.21. Adsorption  $K_F$  values ranged from 0.18 to 1.60  $\mu g^{1-1/n}$ mL<sup>1/n</sup> g<sup>-1</sup>, and corresponding  $K_{FOC-ads}$  values ranged from 7.2 to 68.0  $\mu$ g<sup>1-1/n</sup> mL<sup>1/n</sup> g<sup>-1</sup>, respectively. Freundlich desorption correlation coefficients ranged from 0.883 to 0.999, and 1/n values ranged from 0.33 to 0.86. Desorption K<sub>F</sub> values ranged from 0.04 to 0.51  $\mu$ g<sup>1-1/n</sup> mL<sup>1/n</sup> g<sup>-1</sup>, and corresponding K<sub>FOC-des</sub> values ranged from 1.0 to 18.0  $\mu$ g<sup>1-1/n</sup> mL<sup>1/n</sup> g<sup>-1</sup>, respectively.

Adsorption of XDE-742 in the range of soils tested is generally linear with respect to concentration (*i.e.*, the majority of the slopes of the Freundlich adsorption coefficients [1/n] fall within the range of 0.9 - 1.1). Therefore, adsorption can be described using non-Freundlich  $K_{oc}$ ads values. Based on the PMRA-calculated adsorption coefficients in the ten soils used in the definitive study (average K<sub>OC-ads</sub> = 29.97 mL/g [range 7.09 to 54.26 mL/g]), XDE-742 Technical can be considered very highly mobile according to the classification criteria of McCall et al. (1981) and considered mobile to highly mobile according to the FAO classification shceme (FAO, 2000). Desorption coefficients (average  $K_{OC-des} = 22.3 \text{ mL/g} [range 5.0 to 46.0 \text{ mL/g}]$ ), indicate that XDE-742 does not bind irreversibly with soil, and can readily desorb.

|      | 4               |                | Adsorption - PMRA Values |                    |                                                                                                                  |                |                      |                       |  |  |  |  |  |
|------|-----------------|----------------|--------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|----------------|----------------------|-----------------------|--|--|--|--|--|
|      | ··· ••          | and states     | Fr                       | eundlich           | and an and a second s | Non-Freundlich |                      |                       |  |  |  |  |  |
| Soil | pH <sup>a</sup> | r <sup>2</sup> | 1/n                      | K <sub>F-ads</sub> | K <sub>FOC-ads</sub> b                                                                                           | r <sup>2</sup> | K <sub>d-ads</sub> c | K <sub>OC-ads</sub> c |  |  |  |  |  |
| M641 | 6.2             | 0.990          | 1.01                     | 0.50               | 55.4                                                                                                             | 0.990          | 0.49                 | 54.3                  |  |  |  |  |  |
| M642 | 7.8             | 0.984          | 0.94                     | 0.24               | 9.7                                                                                                              | 0.993          | 0.29                 | 11.8                  |  |  |  |  |  |
| M644 | 7.7             | 0.837          | 0.93                     | 0.18               | 22.7                                                                                                             | 0.422          | 0.22                 | 27.8                  |  |  |  |  |  |
| M645 | 7.8             | 0.809          | 1.21                     | 0.29               | 22.6                                                                                                             | 0.800          | 0.20                 | 15.0                  |  |  |  |  |  |
| M646 | 5.9             | 0.979          | 0.93                     | 1.04               | 38.6                                                                                                             | 0.957          | 1.32                 | 48.9                  |  |  |  |  |  |
| M649 | 7.6             | 0.948          | 0.98                     | 0.27               | 7.1                                                                                                              | 0.810          | 0.27                 | 7.1                   |  |  |  |  |  |
| M650 | 5.4             | 0.995          | 0.96                     | 1.60               | 43.3                                                                                                             | 0.992          | 1.76                 | 47.7                  |  |  |  |  |  |
| M660 | 6.3             | 0.913          | 0.97                     | 0.29               | 28.9                                                                                                             | 0.684          | 0.28                 | 28.5                  |  |  |  |  |  |
| M661 | 5.7             | 0.963          | 1.11                     | 0.88               | 68.0                                                                                                             | 0.989          | 0.67                 | 51.2                  |  |  |  |  |  |
| M662 | 7.9             | 0.931          | 0.98                     | 0.19               | 7.4                                                                                                              | 0.894          | 0.19                 | 7.5                   |  |  |  |  |  |

<sup>a</sup> soil pH <sup>b</sup>  $\mu$ g<sup>1-1/n</sup>mL<sup>1/n</sup>g mLg<sup>-1</sup>

**PMRA** Results Synopsis

-72 of 154-

| A    | 100             | A CONTRACTOR   |      | Deso                  | rption - PM    | RA Valu        | es                   |                     |
|------|-----------------|----------------|------|-----------------------|----------------|----------------|----------------------|---------------------|
|      |                 |                | Fr   | eundlich              | Non-Freundlich |                |                      |                     |
| Soil | pH <sup>a</sup> | r <sup>2</sup> | 1/n  | -K <sub>F-des</sub> b | KFOC-des       | r <sup>2</sup> | K <sub>d-des</sub> c | K <sub>OC-des</sub> |
| M641 | 6.2             | 0.986          | 0.50 | 0.15                  | 17             | 0.997          | 0.41                 | 46                  |
| M642 | 7.8             | 0.998          | 0.86 | 0.21                  | 8              | 0.990          | 0.28                 | 11                  |
| M644 | 7.7             | 0.996          | 0.34 | 0.04                  | 4              | 0.998          | 0.13                 | 16                  |
| M645 | 7.8             | 0.883          | 0.47 | 0.06                  | 4              | 0.841          | 0.18                 | 14                  |
| M646 | 5.9             | 0.987          | 0.35 | 0.25                  | 9              | 0.977          | 0.81                 | 30                  |
| M649 | 7.6             | 0.982          | 0.33 | 0.05                  | 1              | 0.947          | 0.18                 | 5                   |
| M650 | 5.4             | 0.998          | 0.54 | 0.51                  | 14             | 0.996          | 1.27                 | 34                  |
| M660 | 6.3             | 0.999          | 0.36 | 0.05                  | 5              | 0.997          | 0.18                 | 18                  |
| M661 | 5.7             | 0.998          | 0.56 | 0.24                  | 18             | 0.998          | 0.56                 | 43                  |
| M662 | 7.9             | 0.983          | 0.37 | 0.04                  | 2              | 0.933          | 0.15                 | 6                   |

<sup>a</sup> soil pH <sup>b</sup> μg<sup>1-1/n</sup>mL<sup>1/n</sup>g<sup>-1</sup>

° mLg<sup>-1</sup>

This study is a revision of and replaces MRID 46908332.

#### 163-1. Batch Equilibrium

#### MRID 46908333 (Supplemental)

The adsorption characteristics of radiolabeled XDE-742 transformation products 5-OH-XDE-742, 7-OH-XDE-742, 5,7di-OH-XDE-742, 6-Cl-7-OH-XDE-742, XDE-742 sulfonic acid, and XDE-742 cyanosulfonamide were studied in four soil types: a Charentilly loam (pH 6.3, 1.0% organic carbon) from France, a Speyer LUFA 3A sandy loam (pH 7.8, 2.5% organic carbon) from Germany, a Borstel loamy sand (pH 5.7, 1.3% organic carbon) from Germany, and a Bruch West sandy loam (pH 7.9, 2.5% organic carbon) from Germany. Soil samples were sterilized by gamma radiation prior to treatment with test material. Samples were sterilized to eliminate microbial degradation during the sorption tests.

To determine the soil: solution ratio, a preliminary study (Tier 1) was conducted. The adsorption phase of the study was carried out by equilibrating sterile soil with each transformation product in solution at nominal concentrations of 0.01 µg/mL solution in the dark at 25 °C. The equilibrating solution used was 0.01 M CaCl<sub>2</sub>, with soil: solution ratios of 1:2, 1:5 and 1:10. Samples were equilibrated for 2, 4, 8, 24 and 48 hours. Based on the results of the preliminary testing, a soil: solution ratio of 1:2 was selected for the subsequent experiments.

The objectives of the definitive test were to determine the  $K_d$  and  $K_{oc}$  of the six transformation products in the four soils. The adsorption phase of the study was carried out by equilibrating sterile soil with each transformation product in solution at nominal concentrations of 0.01 µg/mL solution in the dark at 25°C. The equilibrating solution used was 0.01 M CaCl<sub>2</sub>, with a soil: solution ratio

#### -73 of 154-

of 1:2. Samples were equilibrated for 2, 4, 8, 24 and 48 hours, except for the 5,7-dihydroxy-XDE-742.

Soil and aqueous phases were separated by centrifugation after the desorption step. Selected soil samples were extracted twice with 90:10 (v:v) acetonitrile: 0.1 N HCl, centrifuged, and the extracts decanted and combined. The aqueous solution and organic extracts were assayed by LSC. <sup>14</sup>C-residue remaining in the soil after extraction was determined by oxidative combustion. For the definitive adsorption study using these transformation products, the average adsorption  $K_d$  value for four soils and the corresponding average  $K_{\infty}$  values were calculated.

Representative samples of each type were analyzed by HPLC to determine stability of the test materials over the course of the study. The % purity for 5-OH-XDE-742, 6-Cl-7-OH-XDE-742, XDE-742 sulfonic acid and XDE-742 cyanosulfonamide metabolite samples did not change over the course of the study, proving their stability through the adsorption and extraction phases. 7OH-XDE-742 did show degradation over the course of the study. Also, 5,7-di-OH-XDE-742 had a low purity at the beginning of the experiment. All calculations were made on the assumption that 100% of the extractable <sup>14</sup>C-material was the starting test material and would therefore present the worst case scenario for the adsorption calculations.

The average mass balance for 6-Cl-7-OH-XDE-742 in all four soils at the end of the adsorption phase was  $100.5 \pm 1.6\%$  of the applied. The average mass balance in all four soils at the end of the adsorption phase was  $99.6 \pm 4.8\%$  of the applied for 5-OH-XDE-742. The average mass balance in all four soils at the end of the adsorption phase was  $101.4 \pm 0.8\%$  of the applied for 7OH-XDE-742. The average mass balance in all four soils at the end of the adsorption phase was  $101.4 \pm 0.8\%$  of the applied for 7OH-XDE-742. The average mass balance in all four soils at the end of the adsorption phase was  $101.7 \pm 3.1\%$  of the applied for 5,7-di-OH-XDE-742. The average mass balance in all four soils at the end of the adsorption phase was  $101.9 \pm 2.8\%$  of the applied for XDE-742 cyanosulfonamide. The average mass balance in all four soils at the end of the adsorption phase was  $107.2 \pm 1.9\%$  of the applied for XDE-742 sulfonic acid.

After 48 hours of equilibration, an average of 81.3%, 83.4%, 66.1% and 85.5% of the applied 6-Cl-7-OH-XDE-742 was recovered in the adsorption solution for the Charentilly loam, the Speyer LUFA 3A sandy loam, the Borstel loamy sand and the Bruch West sandy loam, respectively. An average of 92.9%, 96.5%, 86.2% and 97.4% of the applied 5-OH-XDE-742 was recovered in the adsorption solution for the Charentilly loam, the Speyer LUFA 3A sandy loam, the Borstel loamy sand and the Bruch West sandy loam, respectively. An average of 70.1%, 71.2%, 59.3% and 80.4% of the applied 7-OH-XDE-742 was recovered in the adsorption solution for the Charentilly loam, the Speyer LUFA 3A sandy loam, the Borstel loamy sand and the Bruch West sandy loam, respectively. An average of 26.7%, 60,0%, 25.4% and 59.3% of the applied 5,7-di-OH-XDE-742 was recovered in the adsorption solution for the Charentilly loam, the Speyer LUFA 3A sandy loam, the Borstel loamy sand and the Bruch West sandy loam, respectively. An average of 97.9%, 100.4%, 97.8% and 100.5% of the applied XDE-742 cyanosulfonamide was recovered in the adsorption solution for the Charentilly loam, the Speyer LUFA 3A sandy loam, the Borstel loamy sand and the Bruch West sandy loam, respectively. An average of 102.8%, 102.4%, 100.7% and 101.7% of the applied XDE-742 sulfonic acid was recovered in the adsorption solution for the Charentilly loam, the Speyer LUFA 3A sandy loam, the Borstel loamy sand and the Bruch West sandy loam, respectively.

-74 of 154-

The average 6-Cl-7-OH-XDE-742 adsorption  $K_d$  value was 0.571 mL/g; the average  $K_{oc}$  value was 40 mL/g (very high mobility). The average 5-OH-XDE-742 adsorption  $K_d$  value was 0.151 mL/g; the average Koc value was 11 mL/g (very high mobility). The average 7-OH-XDE-742 adsorption Kd value was 0.903 mL/g; the average  $K_{oc}$  value was 62 mL/g (high mobility). The average 5,7-di-OH-XDE-742 adsorption Kd value was 3.556 mL/g; the average  $K_{oc}$  value was 280 mL/g (moderate mobility). The average XDE-742 cyanosulfonamide adsorption Kd value was 0.073 mL/g; the average  $K_{oc}$  value was 7 mL/g (very high mobility). The average XDE-742 sulfonic acid adsorption Kd and  $K_{oc}$  values were <LOD (very high mobility).

#### **Results Synopsis:**

| Soil type:                                     | Charentilly<br>Loam                               | Speyer LUFA<br>3A               | Borstel<br>Loamy Sand | Bruch West<br>Sandy Loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|------------------------------------------------|---------------------------------------------------|---------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                | a standard an | Sandy Loam                      |                       | an Alfred and a second s |  |  |
|                                                | 6-                                                | Cl-7-OH-XDE-742                 | 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Amount adsorbed <sup>a</sup> :                 |                                                   |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Adsorption Kd (mL/g):                          | 0.473                                             | 0.404                           | 1.057                 | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Adsorption Koc (mL/g):                         | 47                                                | 16                              | 81                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Average K <sub>OC-ads</sub> (± S.D.)<br>(mL/g) | 40 (30)                                           | 40.(30)                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Mobility Classification*                       | Very high                                         |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                |                                                   | 5-OH-XDE-742                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Amount adsorbed <sup>a</sup> :                 |                                                   |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Adsorption Kd (mL/g):                          | 0.156                                             | 0.073                           | 0.322                 | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Adsorption Koc (mL/g):                         | 16                                                | 3                               | 22                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Average K <sub>OC-ads</sub> (± S.D.)<br>(mL/g) | 11 (8)                                            |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Mobility Classification*                       | Very high                                         |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                |                                                   | 7-OH-XDE-742                    | an                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Amount adsorbed <sup>a</sup> :                 |                                                   |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Adsorption Kd (mL/g):                          | 0.877                                             | 0.823                           | 1.408                 | 0.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Adsorption Koc (mL/g):                         | 88                                                | 33                              | 108                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Average K <sub>OC-ads</sub> (± S.D.)<br>(mL/g) | 62 (39)                                           | en en en Maria.<br>La constance |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Mobility Classification*                       | High                                              |                                 |                       | · _, · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                | 5,                                                | 7-di-OH-XDE-742                 | 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Amount adsorbed <sup>a</sup> :                 |                                                   |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Adsorption Kd (mL/g):                          | 5.572                                             | 1.333                           | 5.923                 | 1.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Adsorption Koc (mL/g):                         | 557                                               | 53                              | 456                   | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Average K <sub>OC-ads</sub> (± S.D.)<br>(mL/g) | 280 (255)                                         |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Mobility Classification*                       | Moderate                                          |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                | XDE-                                              | 742 cyanosulfonar               | mide                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Amount adsorbed <sup>a</sup> :                 |                                                   |                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Adsorption Kd (mL/g):                          | 0.098                                             | <lod<sup>b</lod<sup>            | 0.046                 | <lod<sup>b</lod<sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

-75 of 154-

| Soil type:                                     | Charentilly<br>Loam                                                                                     | Speyer LUFA<br>3A<br>Sandy Loam                                             | Borstel<br>Loamy Sand                           | Bruch West<br>Sandy Loam                                                                                                                                                                                                               |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adsorption Koc (mL/g):                         | 10                                                                                                      | <lod< td=""><td>4</td><td><lod< td=""></lod<></td></lod<>                   | 4                                               | <lod< td=""></lod<>                                                                                                                                                                                                                    |
| Average K <sub>OC-ads</sub> (± S.D.)<br>(mL/g) | 7 (4)                                                                                                   | an a                                    |                                                 |                                                                                                                                                                                                                                        |
| Mobility Classification*                       | Very high                                                                                               |                                                                             |                                                 | en<br>An an Antonio Antonio<br>Antonio Antonio |
| ·····                                          | XD                                                                                                      | E-742 sulfonic aci                                                          | d                                               | E dat (Alex), state op de                                                                                                                                                                                                              |
| Amount adsorbed <sup>a</sup> :                 |                                                                                                         |                                                                             | · .                                             |                                                                                                                                                                                                                                        |
| Adsorption Kd (mL/g):                          | <lod<sup>c</lod<sup>                                                                                    | <lod<sup>c</lod<sup>                                                        | <lod<sup>c</lod<sup>                            | <lod<sup>c</lod<sup>                                                                                                                                                                                                                   |
| Adsorption Koc (mL/g):                         | <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<> | <lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<> | <lod< td=""><td><lod< td=""></lod<></td></lod<> | <lod< td=""></lod<>                                                                                                                                                                                                                    |
| Average K <sub>OC-ads</sub> (± S.D.)<br>(mL/g) | <lod (no="" me<="" td=""><td>asurable adsorpti</td><td>on)</td><td></td></lod>                          | asurable adsorpti                                                           | on)                                             |                                                                                                                                                                                                                                        |
| Mobility Classification*                       | Very high                                                                                               |                                                                             |                                                 | a ta an an an an Anna an An                                                                                                                                                                                                            |

<sup>a</sup> Expressed as percent of the applied radioactivity

<sup>b</sup> LOD = 0.354% of applied <sup>14</sup>C or 0.38 ng

<sup>c</sup> LOD = 0.463% of applied <sup>14</sup>C or 0.45 ng

This study is classified supplemental, as it is conducted with transformation products at only one concentration. The results of this study complement the batch equilibrium study of the active ingredient.

#### 164-1. Terrestrial Field Dissipation

#### MRID 46908334 (Supplemental)

Field dissipation of GF-1442 under Canadian prairie field conditions was conducted in bare ground plots at 4 sites: Alberta (AB) (Ecoregion 9.1/9.2; sandy clay loam); Saskatchewan 1 (SK1) (Ecoregion 9.1/9.2, clay); Saskatchewan 1 (SK2) (Ecoregion 9.3, loam); and Manitoba (MB) (Ecoregion 9.2, clay loam). Sites SK2 and MB are found in Ecoregions relevant to use sites in the US.

The end-use product, GF-1442, was surface broadcast sprayed to achieve an XDE-742 (a.i.) application rate of 25 g a.i./ha in three replicate 32 m X 6 m plots at each site. Randomly placed application monitors (15 24-cm diameter filter paper circles per site) found that rates were 25.6, 25.6, 24.8 and 25.3 g a.i./ha in AB, SK1, SK2 and MB respectively. Field spiking was not conducted. All sites were irrigated (May-Sept) to a target of 110% of the 30 year precipitation normal. For the duration of the studies, total precipitation was 99%, 136%, 111% and 121% of normal for AB, SK1, SK2 and MB, respectively.

Soil samples were collected at: 0, 5, 7, 15, 22, 29, 68, 91, 120, 370, 403, 433 and 462 days postapplication in AB; 0, 7, 14, 20, 35, 59, 93, 136 and 370 days in SK1; 0, 3, 7, 14, 21, 28, 64, 94, 125 and 359 days in SK2; and 0, 3, 8, 15, 21, 28, 62, 92 and 126 days in MB. Samples were taken to a depth of 90 cm, segmented into 15 cm sections and combined to produce 3 composite

-76 of 154-

samples per 15 cm segment. Samples were analyzed for XDE-742 and the transformation products 7-OH-XDE-742, 5-OH-XDE-742 and 6-Cl-7-OH-XDE-742

At AB, the initial concentration was 12.8 g a.i./ha. XDE-742 dissipated steadily and rapidly from the maximum concentration. On day 370 the concentration was 1.3 g a.i./ha and at study termination the concentration was 0.8 g a.i./ha. The residues of XDE-742 were primarily detected in the top 30-cm soil profile. The major transformation products detected at AB were 7-OH-XDE-742 and 6-C1-7-OH-XDE-742. The 7-OH-XDE-742 maximum concentration was 5.3 g a.i./ha (parent equivalents) or 41% of initial parent, observed at 68-DAT in the upper 30-cm soil profile. However, there were detections in the 30-45 cm and 45-60 cm depths on day 5 for which there was no discussion by the study author. At the end of the study, 7-OH-XDE-742 was 1.5 g a.i./kg (parent equivalent) or 12% of the initial parent. The residues of 7-OH-XDE-742 were primarily detected in the top 15-cm soil profile. The 6-C1-7-OH-XDE-742 maximum concentration was 0.8 to 0.9 g a.i./kg or 6 to 7% of initial parent, observed at 68-DAT through 462-DAT, primarily observed in the top 15-cm soil profile.

At SK1, the initial concentration was 25.9 g a.i./ha. XDE-742 dissipated steadily and rapidly from the maximum concentration. On day 35 the parent was last detected at a concentration of 0.3 g a.i./ha and at study termination the concentration was 0 g a.i./ha. The residues of XDE-742 were primarily detected in the top 30-cm soil profile. The major transformation products detected at SK1 were 5-OH-XDE-742, 7-OH-XDE-742 and 6-Cl-7-OH-XDE-742. The 5-OH-XDE-742 maximum concentration and only day of detection was 0.5 g a.i./ha (parent equivalents) or 2% of initial parent, observed at 7-DAT in the upper 15-cm soil profile. The 7- OH-XDE-742 was 0.3 g a.i./kg (parent equivalent) or 1% of the initial parent on day 35. The residues of 7-OH-XDE-742 were primarily detected in the top 15-cm soil profile. The 6-Cl-7-OH-XDE-742 only concentration measured was 0.2 g a.i./kg or 1% of initial parent, observed on days 14, 35 and 370 in the top 15-cm soil profile.

At SK2, the initial concentration was 21.7 g a.i./ha. XDE-742 dissipated steadily and rapidly from the maximum concentration. On day 28 the parent was last detected at a concentration 0.2 g a.i./ha. The residues of XDE-742 were primarily detected in the top 15-cm soil profile. The major transformation products detected at SK2 were 7-OH-XDE-742 and 6-Cl-7-OH-XDE-742. The 7-OH-XDE-742 maximum concentration was 0.8 g a.i./ha (parent equivalents) or 4% of initial parent, observed on day 14 in the upper 15-cm soil profile. The last detection of 7-OH-XDE-742 was on day 21 at 0.4 g a.i./kg (parent equivalent) or 2% of the initial parent. The residues of 7-OH-XDE-742 were primarily detected in the top 15-cm soil profile. The 6-Cl-7-OH-XDE-742 maximum concentration was 0.7 g a.i./kg or 3% of initial parent, observed on day 14 at 0.1 g a.i./ha or 0.5% of the initial parent. All detections were primarily observed in the top 15-cm soil profile.

At MB, the initial concentration was 16.6 g a.i./ha and then rose to 17.0 g a.i./ha on day 3. XDE-742 dissipated steadily and rapidly from the maximum concentration. At study termination (126 DAT), the parent was detected at a concentration of 0.7 g a.i./ha. The residues of XDE-742 were detected primarily in the 30-cm soil profile, however, on day 15 there were detections in each

-77 of 154-

section down to a depth of 60 cm. The major transformation products detected at MB were 7-OH-XDE-742 and 6-Cl-7-OH-XDE-742. The 7-OH-XDE-742 maximum concentration was 1.3 g a.i./ha (parent equivalents) or 8% of initial parent, observed on day 28 in the upper 30-cm soil profile. The last detection of 7-OH-XDE-742 was on day 62 at 0.4 g a.i./kg (parent equivalent) or 2% of the initial parent. The residues of 7-OH-XDE-742 were primarily detected in the top 30-cm soil profile. The transformation product 6-Cl-7-OH-XDE-742 was not detected at the MB site.

Under field conditions, XDE-742 was found to have a DT50 ranging from 5 - 29 days and a DT90 ranging from 15 - 239 days, calculated using simple first order kinetics for all sites excluding Alberta, for which double first order in parallel models were used. The major transformation product 7-OH-XDE-742 was found to have a DT50 ranging from 3 - 97 days and a DT90 10-321 days. A DT50 could only be calculated for 6-Cl-7-OH-XDE-742 in the AB site at 84 days and the DT90 was found to be 279 days.

The maximum carry-over to the next growing season occurred at the AB site with 10% of the parent still present the following spring.

#### **Results Synopsis:**

MB

| <u> </u> |                        |          |              |
|----------|------------------------|----------|--------------|
| Site     | Half-life (non-linear) | DT50     | DT90         |
| AB       | 31 days                | ~29 days | 370-403 days |
| SK1      | 5 days                 | <7 days  | 14 days      |
| SK2      | 5 days                 | 3-7 days | 14-21 days   |

23 days

The field dissipation half-lives and dissipation times of parent XDE-742 were:

This study is classified as supplemental because samples were stored as long as 588 days. An ongoing storage stability study of XDE-742 and its transformation products has only confirmed stability for XDE-742, 5-OH-XDE-742, and 6-Cl-7-OH-XDE-742 in frozen soil samples for six months (MRID 46908317). 7-OH-XDE-742 displayed reduced recovery over six months in a loam soil. Pending results from the completed storage stability study, the dissipation kinetics of this study are uncertain.

<20 days

<93 days

## APPENDIX C. PRZM/EXAMS Input Data.

| Output File: XDE_Eco         |               |          |             |                                    |
|------------------------------|---------------|----------|-------------|------------------------------------|
| Metfile:                     | w14914.dvf    |          |             |                                    |
| PRZM scenario:               | NDwheatSTD.tx | t        |             |                                    |
| EXAMS environment file:      | pond298.exv   |          |             |                                    |
| Chemical Name:               | Pyroxsulam    |          |             |                                    |
| Description                  | Variable Name | Value    | Units       | Comments                           |
| Molecular weight             | mwt           | 434.4    | g/mol       | Commonis                           |
| Henry's Law Const.           | henry         | 10 11 1  | atm-m^3/mo  | 5]                                 |
| Vapor Pressure               | vapr          | 1e-9     | torr        | -                                  |
| Solubility                   | sol           | 32000    | mg/L        |                                    |
| Kd                           | Kd            |          | mg/L        |                                    |
| Koc                          | Koc           | 30.4     | mg/L        | · · · ·                            |
| Photolysis half-life         | kdp           | 0        | days        | Half-life                          |
| Aerobic Aquatic Metabolism   | kbacw         | 23.4     | days        | Halfife                            |
| Anaerobic Aquatic Metabolism | kbacs         | 0        | days        | Halfife                            |
| Aerobic Soil Metabolism      | asm           | 11.0     | days        | Halfife                            |
| Hydrolysis:                  | pH 5          | 0        | days        | Half-life                          |
| Hydrolysis:                  | pH 7          | 0        | days        | Half-life                          |
| Hydrolysis:                  | pH 9          | 0        | days        | Half-life                          |
| Method:                      | CAM           | 2        | integer     | See PRZM manual                    |
| Incorporation Depth:         | DEPI          | 0        | cm          |                                    |
| Application Rate:            | TAPP          | 0.0184   | kg/ha       |                                    |
| Application Efficiency:      | APPEFF        | .95      | fraction    |                                    |
| Spray Drift                  | DRFT          | .05      |             | pplication rate applied to pond    |
| Application Date             | Date          | 01-04    | dd/mm or do | mmm or dd-mm or dd-mmm             |
| Record 17:                   | FILTRA        |          |             |                                    |
|                              | IPSCND        | 1        |             |                                    |
|                              | UPTKF         |          |             |                                    |
| Record 18:                   | PLVKRT        |          |             |                                    |
|                              | PLDKRT        |          |             |                                    |
|                              | FEXTRC        | 0.5      |             |                                    |
| Flag for Index Res. Run      | IR            | EPA Pond |             |                                    |
| Flag for runoff calc.        | RUNOFF        | none     | none, month | ly or total(average of entire run) |
|                              |               |          |             |                                    |

-79 of 154-

Appendix D. Chemical Names, Structures, and Maximum Reported Amounts of Pyroxsulam and Its Degradates.

| Table D-1. Maximum Reported Amounts of Pyroxsulam Degradation Products. |                                                                                                                    |                                                                                                                                                                |                                                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
| Degradate                                                               | Maximum % of                                                                                                       | Study Type                                                                                                                                                     | MRID                                                                              |  |  |  |  |  |  |
|                                                                         | Applied                                                                                                            |                                                                                                                                                                |                                                                                   |  |  |  |  |  |  |
| XDE-742 sulfinic acid                                                   | 79.2% (3.8 d)                                                                                                      | Aqueous photolysis                                                                                                                                             | MRID pending                                                                      |  |  |  |  |  |  |
| XDE-742-ADTP                                                            | <b>39.8%</b> (3.8 d)                                                                                               | Aqueous photolysis                                                                                                                                             | MRID pending                                                                      |  |  |  |  |  |  |
| 5-OH-XDE-742                                                            | <b>24.1%</b> (3 d)<br><b>24.4%</b> (4 d)<br>2% (7 d) <sup>1</sup>                                                  | Aerobic soil metabolism<br>Aerobic soil metabolism<br>Terrestrial Field dissipation                                                                            | MRID 46908329<br>MRID 47202701<br>MRID 46908334                                   |  |  |  |  |  |  |
| 7-OH-XDE-742                                                            | <b>13.7%</b> (3 d)<br>7.9% (14 d)<br><b>76.5%</b> (58 d)<br><b>58.4%</b> 17 d)<br><b>41%</b> (68 d) <sup>1</sup>   | Aerobic soil metabolism<br>Aerobic soil metabolism<br>Anaerobic aquatic metabolism <sup>2</sup><br>Aerobic aquatic metabolism<br>Terrestrial Field dissipation | MRID 46908329<br>MRID 47202701<br>MRID 46908331<br>MRID 46908336<br>MRID 46908334 |  |  |  |  |  |  |
| 6-Cl-7-OH-XDE-742                                                       | <b>26.2%</b> (7 d)<br><b>11.0%</b> (7 d)<br>5-7% (68-462 d) <sup>1</sup>                                           | Aerobic soil metabolism<br>Aerobic soil metabolism<br>Terrestrial Field dissipation                                                                            | MRID 46908329<br>MRID 47202701<br>MRID 46908334                                   |  |  |  |  |  |  |
| XDE-742 sulfonamide                                                     | 13.2% (29 d)                                                                                                       | Aerobic soil metabolism                                                                                                                                        | MRID 47202701                                                                     |  |  |  |  |  |  |
| XDE-742 CSF                                                             | 8.1 (21 d)<br>0.7% (63 d)                                                                                          | Aerobic soil metabolism<br>Aerobic soil metabolism                                                                                                             | MRID 46908329<br>MRID 47202701                                                    |  |  |  |  |  |  |
| XDE-742 PSA                                                             | 5.9% (29 d)<br>3.6% (100 d)                                                                                        | Aerobic soil metabolism<br>Aerobic soil metabolism                                                                                                             | MRID 46908329<br>MRID 47202701                                                    |  |  |  |  |  |  |
| 5,7-diOH-XDE-742                                                        | 27.3% (126 d)                                                                                                      | Anaerobic aquatic metabolism <sup>2</sup>                                                                                                                      | MRID 46908331                                                                     |  |  |  |  |  |  |
| XDE-742-ATSA                                                            | 12.9% 54 d)                                                                                                        | Aerobic aquatic metabolism                                                                                                                                     | MRID 46908336                                                                     |  |  |  |  |  |  |
| CO <sub>2</sub>                                                         | 1.2% (15 d)<br>15.6% (133 d)<br>0.1% (14-126 d)<br>2.3% (75 d)                                                     | Aqueous photolysis<br>Aerobic soil metabolism<br>Anaerobic aquatic metabolism <sup>2</sup><br>Aerobic aquatic metabolism                                       | MRID pending<br>MRID 46908329<br>MRID 46908331<br>MRID 46908336                   |  |  |  |  |  |  |
| Unidentified/non-<br>extracted residues                                 | <b>69.9%</b> (14.9 d)<br><b>31.0%</b> (15 d)<br><b>94.1%</b> (29 d)<br><b>82.8%</b> (118 d)<br><b>76.5%</b> (54 d) | Aqueous photolysis<br>Soil photolysis<br>Aerobic soil metabolism<br>Aerobic soil metabolism<br>Aerobic aquatic metabolism                                      | MRID pending<br>MRID 46908328<br>MRID 46908329<br>MRID 47202701<br>MRID 46908336  |  |  |  |  |  |  |

<sup>1</sup> Terrestrial field dissipation values are expressed in percent of initial measured parent concentration. <sup>2</sup> Anaerobic conditions were not maintained in the anaerobic aquatic metabolism study. The degradates identified were likely the result of aerobic biodegradation.

-80 of 154-

Chemical Name Pyroxsulam, XDE-742

N-(5,7-dimethoxy[1,2,4]triazolo[1,5-α]]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3pyridinesulfonamide

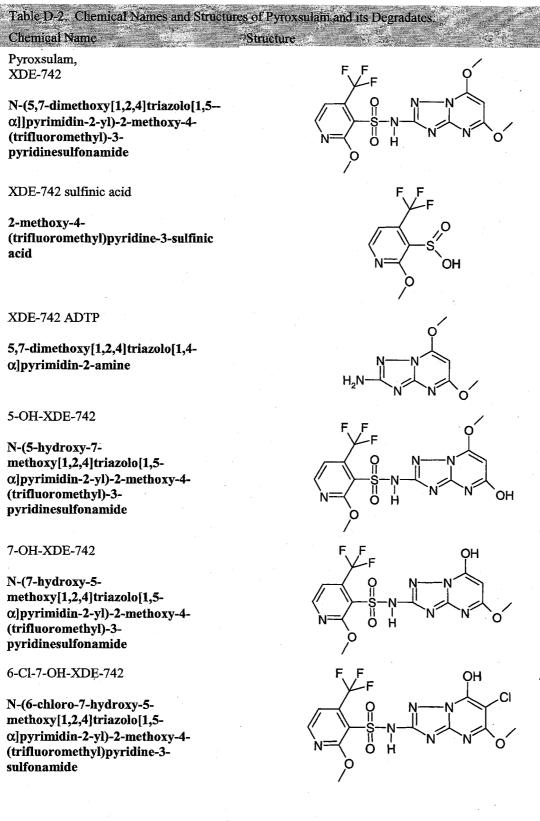
XDE-742 sulfinic acid

2-methoxy-4-(trifluoromethyl)pyridine-3-sulfinic acid

XDE-742 ADTP

5,7-dimethoxy[1,2,4]triazolo[1,4α]pyrimidin-2-amine

5-OH-XDE-742


N-(5-hydroxy-7methoxy[1,2,4]triazolo[1,5α]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3pyridinesulfonamide

7-OH-XDE-742

N-(7-hydroxy-5methoxy[1,2,4]triazolo[1,5α]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3pyridinesulfonamide

6-C1-7-OH-XDE-742

N-(6-chloro-7-hydroxy-5methoxy[1,2,4]triazolo[1,5α]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)pyridine-3sulfonamide



-81 of 154-

Chemical Name XDE-742 CSF,

Structure

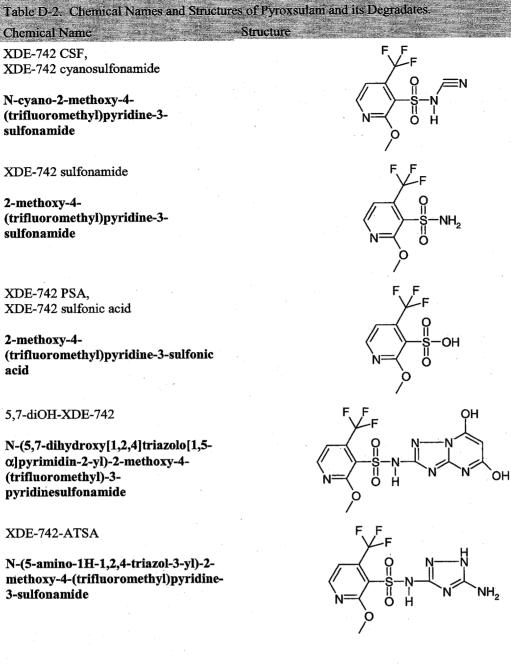
XDE-742 cyanosulfonamide

N-cyano-2-methoxy-4-(trifluoromethyl)pyridine-3sulfonamide

XDE-742 sulfonamide

2-methoxy-4-(trifluoromethyl)pyridine-3sulfonamide

XDE-742 PSA, XDE-742 sulfonic acid


2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonic acid

#### 5,7-diOH-XDE-742

N-(5,7-dihydroxy[1,2,4]triazolo[1,5α]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3pyridinesulfonamide

#### XDE-742-ATSA

N-(5-amino-1H-1,2,4-triazol-3-yl)-2methoxy-4-(trifluoromethyl)pyridine-3-sulfonamide



-82 of 154-

## APPENDIX E. Example TREX Input and Output for Pyroxsulam.

Summary of Risk Quotient Calculations Based on Upper Bound Kenaga EECs

|                          |                  |       | EECs and RQs |      |       |                                       |      |      |                            |    |
|--------------------------|------------------|-------|--------------|------|-------|---------------------------------------|------|------|----------------------------|----|
| Size<br>Class<br>(grams) | Adjusted<br>LD50 | Short | Short Grass  |      | Frass | Broadleaf<br>Plants/<br>Small Insects |      | Se   | s/Pods/<br>eds/<br>Insects |    |
|                          | ( <b>a</b> )     |       | EEC          | RQ   | EEC   | RQ                                    | EEC  | RQ   | EEC                        | RQ |
| 20                       | 1038.45          | 4.48  | 0.00         | 2.05 | 0.00  | 2.52                                  | 0.00 | 0.28 | 0.00                       |    |
| 100                      | 1322.00          | 2.56  | 0.00         | 1.17 | 0.00  | 1.44                                  | 0.00 | 0.16 | 0.00                       |    |

7

|      |         |                        | ]    | EECs ar | nd RQs                                | (    |                                         |      |
|------|---------|------------------------|------|---------|---------------------------------------|------|-----------------------------------------|------|
|      | Short ( | Short Grass Tall Grass |      | Grass   | Broadleaf<br>Plants/<br>Small Insects |      | Fruits/Pods/<br>Seeds/<br>Large Insects |      |
| LC50 | EEC     | RQ                     | EEC  | RQ      | EEC                                   | RQ   | EEC                                     | RQ   |
| 5000 | 3.94    | 0.00                   | 1.80 | 0.00    | 2.21                                  | 0.00 | 0.25                                    | 0.00 |

Size class not used for dietary risk quotients

I

Γ

| Table X. | Upper Bound Kenaga, Chronic Avian Dietary Based Risk Quotients |              |      |            |      |                                       |      |                                         |  |  |  |  |  |
|----------|----------------------------------------------------------------|--------------|------|------------|------|---------------------------------------|------|-----------------------------------------|--|--|--|--|--|
|          |                                                                | EECs and RQs |      |            |      |                                       |      |                                         |  |  |  |  |  |
| NOAEC    | Short (                                                        | Grass        | Tall | Tall Grass |      | Broadleaf<br>Plants/<br>Small Insects |      | Fruits/Pods/<br>Seeds/<br>Large Insects |  |  |  |  |  |
| (ppm)    |                                                                |              | EEC  | RQ         | EEC  | RQ                                    | EEC  | RQ                                      |  |  |  |  |  |
| 500      | 3.94                                                           | 0.01         | 1.80 | 0.00       | 2.21 | 0.00                                  | 0.25 | 0.00                                    |  |  |  |  |  |

Size class not used for dietary risk quotients

|      | Table X. U | pper Bound Kenaga, Acute Mammalian Dose-Based Risk Quotients |
|------|------------|--------------------------------------------------------------|
| Size | Adjusted   | EECs and RQs                                                 |

-83 of 154-

| Class<br>(grams) | LD50    | Short | Grass | Tall ( | Grass | Pla  | adleaf<br>ants/<br>Insects | See  | /Pods/<br>eds/<br>Insects | Gran | ivore |
|------------------|---------|-------|-------|--------|-------|------|----------------------------|------|---------------------------|------|-------|
|                  |         | EEC   | RQ    | EEC    | RQ    | EEC  | RQ                         | EEC  | RQ                        | EEC  | RQ    |
| 15               | 6877.01 | 3.75  | 0.00  | 1.72   | 0.00  | 2.11 | 0.00                       | 0.23 | 0.00                      | 0.05 | 0.00  |
| 35               | 5564.24 | 2.59  | 0.00  | 1.19   | 0.00  | 1.46 | 0.00                       | 0.16 | 0.00                      | 0.04 | 0.00  |
| 1000             | 2406.70 | 0.60  | 0.00  | 0.28   | 0.00  | 0.34 | 0.00                       | 0.04 | 0.00                      | 0.01 | 0.00  |

| Table | X. Upper I | Bound Ke |      | cute Ma<br>otients       | mmalia                                | n Dietary | y Based R           | lisk    |     |
|-------|------------|----------|------|--------------------------|---------------------------------------|-----------|---------------------|---------|-----|
|       | - 1        |          |      | EECs an                  | d RQs                                 |           |                     |         |     |
| LC50  | Short (    | Grass    | Tall | Grass                    | Broadleaf<br>Plants/<br>Small Insects |           | rass Plants/ Seeds/ |         | ds/ |
| (ppm) | EEC        | RQ       | EEC  | RQ                       | EEC                                   | RQ        | EEC                 | RQ      |     |
|       |            |          |      |                          |                                       |           |                     |         |     |
| 0     | 3.94       | #######  | 1.80 | - <del>           </del> | 2.21                                  | ######    | 0.25                | ####### |     |

Size class not used for dietary risk quotients

| Table X        | . Upper Bo | ound Ken |      | ronic M<br>otients | lammali                               | an Dieta | ry Based                 | Risk |
|----------------|------------|----------|------|--------------------|---------------------------------------|----------|--------------------------|------|
|                |            |          | ]    | EECs ar            | nd RQs                                |          |                          |      |
| NOAEC<br>(ppm) | Short (    | Frass    | Tall | Grass              | Broadleaf<br>Plants/<br>Small Insects |          | Fruits<br>See<br>Large l | ds/  |
| Γ              | EEC        | RQ       | EEC  | RQ                 | EEC                                   | RQ       | EEC                      | RQ   |
| 1000           | 3.94       | 0.00     | 1.80 | 0.00               | 2.21                                  | 0.00     | 0.25                     | 0.00 |

Size class not used for dietary risk quotients

| •                        | Table X. Uj       | oper Bou | ınd Ken | aga, Ch | ronic M | ammalia | n Dose-B                   | ased Ris | k Quotier                  | its  | ·     |
|--------------------------|-------------------|----------|---------|---------|---------|---------|----------------------------|----------|----------------------------|------|-------|
|                          |                   |          |         |         |         | EECs a  | and RQs                    |          |                            |      |       |
| Size<br>Class<br>(grams) | Adjusted<br>NOAEL | Short    | Grass   | Tall (  | Frass   | Pla     | adleaf<br>ants/<br>Insects | Se       | s/Pods/<br>eds/<br>Insects | Gran | ivore |
|                          |                   | EEC      | RQ      | EEC     | RQ      | EEC     | RQ                         | EEC      | RQ                         | EEC  | RQ    |
| 15                       | 109.89            | 3.75     | 0.03    | 1.72    | 0.02    | 2.11    | 0.02                       | 0.23     | 0.00                       | 0.05 | 0.00  |
| 35                       | 88.91             | 2.59     | 0.03    | 1.19    | 0.01    | 1.46    | 0.02                       | 0.16     | 0.00                       | 0.04 | 0.00  |
| 1000                     | 38.46             | 0.60     | 0.02    | 0.28    | 0.01    | 0.34    | 0.01                       | 0.04     | 0.00                       | 0.01 | 0.00  |

-84 of 154-

# **APPENDIX F.** Example Terrplant (v. 1.2.1) Input and Output for Pyroxsulam.

Green values signify user inputs (Tables 1, 2 and 4). Input and output guidance is in popups indicated by red arrows.

| Table 1. Chemical Ide        | ntity.     |  |
|------------------------------|------------|--|
| Chemical Name                | pyroxsulam |  |
| PC code                      | X          |  |
| Use                          | wheat      |  |
| <b>Application Method</b>    | 3          |  |
| Application Form             | X          |  |
| Solubility in Water<br>(ppm) | 3200       |  |

| Table 2. Input paramete | rs used to der | ve EECs. |       |
|-------------------------|----------------|----------|-------|
| Input Parameter         | Symbol         | Value    | Units |
| Application Rate        | A              | 0.0164   | y y   |
| Incorporation           | 1              | 1        | none  |
| Runoff Fraction         | R              | 0.05     | none  |
| Drift Fraction          | D              | 0.05     | none  |

| <b>ту.</b>         |                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------|
| Equation           | EEC                                                                                     |
| (A/I)*R            | 0.00082                                                                                 |
| (A/I)*R*10         | 0.0082                                                                                  |
| A*D                | 0.00082                                                                                 |
| ((A/I)*R)+(A*D)    | 0.00164                                                                                 |
| ((A/I)*R*10)+(A*D) | 0.00902                                                                                 |
|                    | Equation           (A/I)*R           (A/I)*R*10           A*D           ((A/I)*R)+(A*D) |

| ble 4. Plant surviva | al and growth data us | sed for RQ derivation | . Units are in y.  | al area and a strategy |  |  |  |
|----------------------|-----------------------|-----------------------|--------------------|------------------------|--|--|--|
|                      | Seedling              | Emergence             | e Vegetative Vigor |                        |  |  |  |
| Plant type           | EC25                  | NOAEC                 | EC25               | NOAEC                  |  |  |  |
| Monocot              | 0.00022               | 0.00006               | 0.00056            | 0.000046               |  |  |  |
| Dicot                | 0.00057               | 0.000036              | 0.000052           | 0.000031               |  |  |  |

| for spray drift.* |               |       |              |            |
|-------------------|---------------|-------|--------------|------------|
| Plant Type        | Listed Status | Dry   | Semi-Aquatic | Spray Drif |
| Monocot           | non-listed    | 7.45  | 41.00        | 3.73       |
| Monocot           | listed        | 27.33 | 150.33       | 13.67      |
| Dicot             | non-listed    | 2.88  | 15.82        | 15.77      |
| Dicot             | listed        | 45.56 | 250.56       | 26.45      |

-85 of 154-

### **APPENDIX G. Ecological Effects Assessment.**

## Species Listing by State with Use Criteria

No species were excluded Minimum of 1 Acre. All Medium Types Reported

Mammal, Marine mml, Bird, Amphibian, Reptile, Fish, Crustacean, Bivalve, Gastropod, Arachnid, Insect, Dicot, Monocot, Ferns, Conf/cycds, Coral, Lichen

wheat

| Alabama                     | (86) species:                                                                                                   |            | <u>Taxa</u>             | Critical Habitat |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|------------|-------------------------|------------------|
| Salamander, Flatwoods       | · · ·                                                                                                           | Threatened | Amphibian               | No               |
| (Ambystoma cingu            | latum)                                                                                                          | · · · · ·  | Freshwater, Vernal poo  |                  |
| Salamander, Red Hills       |                                                                                                                 | Threatened | Amphibian               | No               |
| (Phaeognathus hul           | brichti)                                                                                                        |            | Freshwater, Terrestrial |                  |
| Plover, Piping              |                                                                                                                 | Endangered | Bird                    | Yes              |
| (Charadrius melod           | us)                                                                                                             | ·          | Terrestrial             |                  |
| Stork, Wood                 |                                                                                                                 | Endangered | Bird                    | ∕ No             |
| (Mycteria american          | ,                                                                                                               |            | Terrestrial             |                  |
| Woodpecker, Red-cockade     | ed                                                                                                              | Endangered | Bird                    | No               |
| (Picoides borealis)         |                                                                                                                 |            | Terrestrial             |                  |
| Combshell, Southern (=Pe    | •                                                                                                               | Endangered | Bivalve                 | No               |
| (Epioblasma penita          | a)                                                                                                              |            | Freshwater              |                  |
| Combshell, Upland           |                                                                                                                 | Endangered | Bivalve                 | Yes              |
| (Epioblasma metas           | striata)                                                                                                        |            | Freshwater              |                  |
| Kidneyshell, Triangular     |                                                                                                                 | Endangered | Bivalve                 | Yes              |
| (Ptychobranchus g           | reenii)                                                                                                         |            | Freshwater              |                  |
| Mucket, Orangenacre         |                                                                                                                 | Threatened | Bivalve                 | Yes              |
| (Lampsilis perovali         | s), e al esta de la companya de la c |            | Freshwater              |                  |
| Mucket, Pink (Pearlymusse   | el)                                                                                                             | Endangered | Bivalve                 | No               |
| (Lampsilis abrupta)         | ) and the second sec |            | Freshwater              |                  |
| Mussel, Acomshell Southe    | ern' dia amin'ny faritr'o dia mampiasa dia mampiasa dia mampiasa dia mampiasa dia mampiasa dia mampiasa dia mam | Endangered | Bivalve                 | Yes              |
| (Epioblasma othca           | loogensis)                                                                                                      |            | Freshwater              |                  |
| Mussel, Alabama Moccasir    | nshell                                                                                                          | Threatened | Bivalve                 | Yes              |
| (Medionidus acutis          | simus)                                                                                                          |            | Freshwater              |                  |
| Mussel, Coosa Moccasinsl    | hell                                                                                                            | Endangered | Bivalve                 | Yes              |
| (Medionidus parvul          | lus)                                                                                                            |            | Freshwater              |                  |
| Mussel, Cumberland Comb     | bshell                                                                                                          | Endangered | Bivalve                 | Yes              |
| (Epioblasma brevio          | lens)                                                                                                           |            | Freshwater              |                  |
| Mussel, Dark Pigtoe         |                                                                                                                 | Endangered | Bivalve                 | Yes              |
| (Pleuroberna furvul         | m)                                                                                                              |            | Freshwater              |                  |
| Mussel, Fine-lined Pocketh  | book                                                                                                            | Threatened | Bivalve                 | Yes              |
| (Lampsilis altilis)         |                                                                                                                 |            | Freshwater              |                  |
| Mussel, Fine-rayed Pigtoe   |                                                                                                                 | Endangered | Bivalve                 | No               |
| (Fusconaia cuneol           | ション・ション かんしょう かんしょう かんしょう しんしょう                                                                                 | ~          | Freshwater              |                  |
| /26/2007 2:54:10 PM Ver. 2. | 10.3                                                                                                            |            |                         | Page 1 of 6      |
|                             |                                                                                                                 |            |                         |                  |

Page 1 of 68

-86 of 154-

| Alabama (86) species:                       |                       | Taxa        | Critical Habitat |
|---------------------------------------------|-----------------------|-------------|------------------|
| Mussel, Flat Pigtoe (=Marshall's Mussel)    | Endangered            | Bivalve     | No               |
| (Pleuroberna marshalli)                     | <b>F</b> udan sistent | Freshwater  |                  |
| Mussel, Heavy Pigtoe (=Judge Tait's Mussel) | Endangered            | Bivalve     | No               |
| (Pleurobema taitianum)                      | 71                    | Freshwater  | · •              |
| Mussel, Heelsplitter Inflated               | Threatened            | Bivalve     | No               |
| (Potamilus inflatus)                        | Endersonal            | Freshwater  |                  |
| Mussel, Ovate Clubshell                     | Endangered            | Bivalve     | Yes              |
| (Pleurobema perovatum)                      | ·                     | Freshwater  |                  |
| Aussel, Ring Pink (=Golf Stick Pearly)      | Endangered            | Bivalve     | No               |
| (Obovaria retusa)                           | ·                     | Freshwater  |                  |
| Mussel, Rough Pigtoe                        | Endangered            | Bivalve     | No               |
| (Pleurobema plenum)                         | <b></b> , ,           | Freshwater  |                  |
| Mussel, Shiny Pigtoe                        | Endangered            | Bivalve     | No               |
| (Fusconaia cor)                             |                       | Freshwater  |                  |
| Mussel, Shiny-rayed Pocketbook              | Endangered            | Bivalve     | No               |
| (Lampsilis subangulata)                     |                       | Freshwater  |                  |
| Aussel, Southern Clubshell                  | Endangered            | Bivalve     | Yes              |
| (Pleurobema decisum)                        | <b>.</b>              | Freshwater  |                  |
| /ussel, Southern Pigtoe                     | Endangered            | Bivalve     | Yes              |
| (Pleurobema georgianum)                     |                       | Freshwater  |                  |
| Pearlymussel, Alabama Lamp                  | Endangered            | Bivalve     | No ,             |
| (Lampsilis virescens)                       |                       | Freshwater  |                  |
| Pearlymussel, Cracking                      | Endangered            | Bivalve     | No               |
| (Hemistena lata)                            |                       | Freshwater  |                  |
| Pearlymussel, Cumberland Monkeyface         | Endangered            | Bivalve     | No               |
| (Quadrula intermedia)                       | (                     | Freshwater  |                  |
| Pearlymussel, Orange-footed                 | Endangered            | Bivalve     | No               |
| (Plethobasus cooperianus)                   |                       | Freshwater  |                  |
| Pearlymussel, Pale Lilliput                 | Endangered            | Bivalve     | No               |
| (Toxolasma cylindrellus)                    |                       | Freshwater  |                  |
| Pearlymussel, Turgid-blossom                | Endangered            | Bivalve     | No               |
| (Epioblasma turgidula)                      |                       | Freshwater  |                  |
| Pearlymussel, White Wartyback               | Endangered            | Bivalve     | No               |
| (Plethobasus cicatricosus)                  |                       | Freshwater  |                  |
| Stirrupshell                                | Endangered            | Bivalve     | No               |
| (Quadrula stapes)                           |                       | Freshwater  |                  |
| Shrimp, Alabama Cave                        | Endangered            | Crustacean  | No               |
| (Palaemonias alabamae)                      |                       | Freshwater  |                  |
| Amphianthus, Little                         | Threatened            | Dicot       | No               |
| (Amphianthus pusillus)                      |                       | Freshwater  |                  |
| Barbara Buttons, Mohr's                     | Threatened            | Dicot       | No               |
| (Marshallia mohrii)                         |                       | Terrestrial |                  |

Page 2 of 68

-87 of 154-

| Alabama (86) species:                     |            | Taxa Critica            | Habitat |
|-------------------------------------------|------------|-------------------------|---------|
| Bladderpod, Lyrate                        | Threatened | Dicot N                 | ,       |
| (Lesquerella lyrata)                      |            | Terrestrial             |         |
| Clover, Leafy Prairie                     | Endangered | Dicot N                 | o       |
| (Dalea foliosa)                           |            | Terrestrial             |         |
| Harperella                                | Endangered | Dicot N                 | o       |
| (Ptilimnium nodosum)                      |            | Freshwater              |         |
| Leather-flower, Alabama                   | Endangered | Dicot N                 | 0       |
| (Clematis socialis)                       |            | Terrestrial             |         |
| Leather-flower, Morefield's               | Endangered | Dicot N                 | 0       |
| (Clematis morefieldii)                    | Ū          | Terrestrial             |         |
| Pitcher-plant, Alabama Canebrake          | Endangered | Dicot N                 | 0       |
| (Sarracenia rubra alabamensis)            | Ū          | Freshwater, Terrestrial |         |
| Pitcher-plant, Green                      | Endangered | Dicot N                 | o       |
| (Sarracenia oreophila)                    | •          | Terrestrial, Freshwater |         |
| Potato-bean, Price's                      | Threatened | Dicot N                 | 0       |
| (Apios priceana)                          |            | Terrestrial             |         |
| Fern, Alabama Streak-sorus                | Threatened | Ferns N                 | 0       |
| (Thelypteris pilosa var. alabamensis)     |            | Terrestrial             |         |
| Fern, American hart's-tongue              | Threatened | Ferns N                 | o       |
| (Asplenium scolopendrium var. americanum) |            | Terrestrial             |         |
| Quillwort, Louisiana                      | Endangered | Fems N                  | 0       |
| (Isoetes louisianensis)                   |            | Freshwater, Terrestrial |         |
| Cavefish, Alabama                         | Endangered | Fish Y                  | es      |
| (Speoplatyrhinus poulsoni)                |            | Freshwater              |         |
| Chub, Spotfin                             | Threatened | Fish Y                  | es      |
| (Erimonax monachus)                       |            | Freshwater              | • 1     |
| Darter, Boulder                           | Endangered | Fish N                  | o       |
| (Etheostoma wapiti)                       |            | Freshwater              |         |
| Darter, Goldline                          | Threatened | Fish N                  | 0       |
| (Percina aurolineata)                     |            | Freshwater              |         |
| Darter, Slackwater                        | Threatened | Fish Y                  | es      |
| (Etheostoma boschungi)                    |            | Freshwater              |         |
| Darter, Snail                             | Threatened | Fish N                  | 0       |
| (Percina tanasi)                          |            | Freshwater              |         |
| Darter, Vermilion                         | Endangered | Fish N                  | 0       |
| (Etheostoma chermocki)                    |            | Freshwater              |         |
| Darter, Watercress                        | Endangered | Fish N                  | 0       |
| (Etheostoma nuchale)                      |            | Freshwater              |         |
| Madtom, Yellowfin                         | Threatened | Fish Y                  | es      |
| (Noturus flavipinnis)                     |            | Freshwater              |         |
| Sculpin, Pygmy                            | Threatened | Fish N                  | 0       |
| (Cottus paulus (=pygmaeus))               |            | Freshwater              |         |

Page 3 of 68

-88 of 154-

| Alabama (86) species:                 | · · ·      | Таха                       | Critical Habitat |
|---------------------------------------|------------|----------------------------|------------------|
| Shiner, Blue                          | Threatened | Fish                       | No               |
| (Cyprinella caerulea)                 |            | Freshwater                 |                  |
| Shiner, Cahaba                        | Endangered | Fish                       | No               |
| (Notropis cahabae)                    |            | Freshwater                 |                  |
| Shiner, Palezone                      | Endangered | Fish                       | No               |
| (Notropis albizonatus)                |            | Freshwater                 |                  |
| Sturgeon, Alabama                     | Endangered | Fish                       | No               |
| (Scaphirhynchus suttkusi)             |            | Freshwater                 |                  |
| Sturgeon, Gulf                        | Threatened | Fish                       | Yes              |
| (Acipenser oxyrinchus desotoi)        |            | Saltwater, Freshwater      |                  |
| Campeloma, Slender                    | Endangered | Gastropod                  | No               |
| (Campeloma decampi)                   |            | Freshwater                 |                  |
| Elimia, Lacy                          | Threatened | Gastropod                  | No               |
| (Elimia crenatella)                   |            | Freshwater                 | н.<br>Н          |
| Pebblesnail, Flat                     | Endangered | Gastropod                  | No               |
| (Lepyrium showalteri)                 |            | Freshwater                 |                  |
| Riversnail, Anthony's                 | Endangered | Gastropod                  | No               |
| (Athearnia anthonyi)                  |            | Freshwater                 |                  |
| Rocksnail, Painted                    | Threatened | Gastropod                  | No               |
| (Leptoxis taeniata)                   |            | Freshwater                 |                  |
| Rocksnail, Plicate                    | Endangered | Gastropod                  | No               |
| (Leptoxis plicata)                    |            | Freshwater                 |                  |
| Rocksnail, Round                      | Threatened | Gastropod                  | No               |
| (Leptoxis ampla)                      |            | Freshwater                 |                  |
| Snail, Armored                        | Endangered | Gastropod                  | No               |
| (Pyrgulopsis (=Marstonia) pachyta)    |            | Freshwater                 |                  |
| Snail, Lioplax Cylindrical            | Endangered | Gastropod                  | No               |
| (Lioplax cyclostomaformis)            |            | Freshwater                 |                  |
| Snail, Tulotoma                       | Endangered | Gastropod                  | No               |
| (Tulotoma magnifica)                  |            | Terrestrial                |                  |
| Bat, Gray                             | Endangered | Mammal                     | No               |
| (Myotis grisescens)                   |            | Subterraneous, Terrestri   | al               |
| Bat, Indiana                          | Endangered | Mammal                     | Yes              |
| (Myotis sodalis)                      |            | Subterraneous, Terrestri   | al               |
| Mouse, Alabama Beach                  | Endangered | Mammal                     | Yes              |
| (Peromyscus polionotus ammobates)     |            | Terrestrial, Coastal (neri | tic)             |
| Mouse, Perdido Key Beach              | Endangered | Mammal                     | Yes              |
| (Peromyscus polionotus trissyllepsis) |            | Coastal (neritic)          |                  |
| Grass, Tennessee Yellow-eyed          | Endangered | Monocot                    | No               |
| (Xyris tennesseensis)                 |            | Terrestrial                |                  |
| Trillium, Relict                      | Endangered | Monocot                    | No               |
| (Trillium reliquum)                   |            | Terrestrial                |                  |

Page 4 of 68

-89 of 154-

| Alabama                          | (86) species:             |                                       | <u>Taxa</u>             | Critical Habitat |
|----------------------------------|---------------------------|---------------------------------------|-------------------------|------------------|
| Water-plantain, Kral's           |                           | Threatened                            | Monocot                 | No               |
| (Sagittaria secundifolia         | a)                        |                                       | Freshwater              |                  |
| Sea turtle, loggerhead           |                           | Threatened                            | Reptile                 | No               |
| (Caretta caretta)                |                           |                                       | Saltwater               | · · · ·          |
| Snake, Eastern Indigo            |                           | Threatened                            | Reptile                 | No               |
| (Drymarchon corais co            | ouperi)                   |                                       | Terrestrial             |                  |
| Tortoise, Gopher                 |                           | Threatened                            | Reptile                 | No               |
| (Gopherus polyphemu              | IS)                       |                                       | Terrestrial             |                  |
| Turtle, Alabama Red-bellied      |                           | Endangered                            | Reptile                 | No               |
| (Pseudemys alabame               | nsis)                     |                                       | Terrestrial, Freshwater | and a second     |
| Turtle, Flattened Musk           |                           | Threatened                            | Reptile                 | No               |
| (Sternotherus depress            | sus)                      |                                       | Freshwater, Terrestrial |                  |
| Arizona                          | ( 36) species:            |                                       | Taxa                    | Critical Habitat |
| Frog, Chiricahua Leopard         |                           | Threatened                            | Amphibian               | No               |
| (Rana chiricahuensis)            |                           |                                       | Freshwater, Terrestrial |                  |
| Bobwhite, Masked                 |                           | Endangered                            | Bird                    | No               |
| (Colinus virginianus rid         | dgwayi)                   |                                       | Terrestrial             |                  |
| Condor, California               |                           | Endangered                            | Bird                    | Yes              |
| (Gymnogyps california            | anus)                     |                                       | Terrestrial             |                  |
| Flycatcher, Southwestern Will    | low                       | Endangered                            | Bird                    | Yes              |
| (Empidonax traillii exti         | ímus)                     | ۰.<br>۱                               | Terrestrial             |                  |
| Owl, Mexican Spotted             |                           | Threatened                            | Bird                    | Yes              |
| (Strix occidentalis luci         | da)                       |                                       | Terrestrial             |                  |
| Pygmy-owl, Cactus Ferrugino      | us                        | Endangered                            | Bird                    | No               |
| (Glaucidium brasilianu           | ım cactorum)              |                                       | Terrestrial             |                  |
| Rail, Yuma Clapper               |                           | Endangered                            | Bird                    | No               |
| (Rallus longirostris yul         | manensis)                 |                                       | Terrestrial             |                  |
| Blue-star, Kearney's             |                           | Endangered                            | Dicot                   | No               |
| (Amsonia kearneyana)             | 9                         |                                       | Terrestrial             |                  |
| Cactus, Arizona Hedgehog         |                           | Endangered                            | Dicot                   | No               |
| (Echinocereus trigloch           | nidiatus var. arizonicus) |                                       | Terrestrial             |                  |
| Cactus, Nichol's Turk's Head     |                           | Endangered                            | Dicot                   | No               |
| (Echinocactus horizon            | nthalonius var. nicholii) |                                       | Terrestrial             |                  |
| Cactus, Peebles Navajo           |                           | Endangered                            | Dicot                   | No               |
| (Pediocactus peeblesi            | ianus peeblesianus)       |                                       | Terrestrial             | · ·              |
| Cactus, Pima Pineapple           |                           | Endangered                            | Dicot                   | No               |
| (Coryphantha scheeri             | var. robustispina)        |                                       | Terrestrial             |                  |
| Cliffrose, Arizona               |                           | Endangered                            | Dicot                   | No               |
| (Purshia (=cowania) s            | ubintegra)                | · · · · · · · · · · · · · · · · · · · | Terrestrial             |                  |
| Fleabane, Zuni                   |                           | Threatened                            | Dicot                   | No               |
| (Erigeron rhizomatus)            |                           |                                       | Terrestrial             |                  |
| Umbel, Huachuca Water            |                           | Endangered                            | Dicot                   | Yes              |
| (Lilaeopsis schaffneria          | ana var. recurva)         |                                       | Terrestrial, Freshwater |                  |
| 9/26/2007 2:54:10 PM Ver. 2.10.3 | 3                         |                                       |                         | Page 5 of 68     |

-90 of 154-

| Arizona                   | (36) species:               |            | Taxa                 | Critical Habitat |
|---------------------------|-----------------------------|------------|----------------------|------------------|
| Chub, Bonytail            | · · ·                       | Endangered | Fish                 | Yes ·            |
| (Gila elegans)            |                             |            | Freshwater           |                  |
| Chub, Gila                |                             | Endangered | Fish                 | Yes              |
| (Gila intermedia)         |                             |            | Freshwater           |                  |
| Chub, Humpback            |                             | Endangered | Fish                 | Yes              |
| (Gila cypha)              |                             |            | Freshwater           | •                |
| Minnow, Loach             |                             | Threatened | Fish                 | Yes              |
| (Tiaroga cobitis)         |                             |            | Freshwater           | x                |
| Pupfish, Desert           |                             | Endangered | Fish                 | Yes              |
| (Cyprinodon mac           | ularius)                    |            | Freshwater           |                  |
| Spikedace                 |                             | Threatened | Fish                 | Yes              |
| (Meda fulgida)            |                             |            | Freshwater           |                  |
| Spinedace, Little Colorad | io                          | Threatened | Fish                 | Yes              |
| (Lepidomeda vitta         | ata)                        |            | Freshwater           |                  |
| Squawfish, Colorado       |                             | Endangered | Fish                 | Yes              |
| (Ptychocheilus lu         | cius)                       |            | Freshwater           |                  |
| Sucker, Razorback         |                             | Endangered | Fish                 | Yes              |
| (Xyrauchen texar          | nus)                        |            | Freshwater           |                  |
| Topminnow, Gila (Yaqui)   |                             | Endangered | Fish                 | No               |
| (Poeciliopsis occi        | identalis)                  | -          | Freshwater           |                  |
| Trout, Apache             |                             | Threatened | Fish                 | No               |
| (Oncorhynchus a           | pache)                      |            | Freshwater           |                  |
| Trout, Gila               |                             | Endangered | Fish                 | No               |
| (Oncorhynchus g           | ilae)                       |            | Freshwater           |                  |
| Bat, Lesser (=Sanborn's)  | Long-nosed                  | Endangered | Mammal               | No               |
| (Leptonycteris cu         | rasoae yerbabuenae)         |            | Subterraneous, Terre | strial           |
| Ferret, Black-footed      |                             | Endangered | Mammal               | No               |
| (Mustela nigripes)        | )´                          |            | Terrestrial          |                  |
| Jaguar                    |                             | Endangered | Mammal               | No               |
| (Panthera onca)           |                             |            | Terrestrial          |                  |
| Jaguarundi, Sinaloan      |                             | Endangered | Mammal               | No               |
| (Herpailurus (=Fe         | elis) yagouaroundi tolteca) |            | Terrestrial          |                  |
| Ocelot                    |                             | Endangered | Mammal               | No               |
| (Leopardus (≖Fel          | lis) pardalis)              |            | Terrestrial          |                  |
| Pronghorn, Sonoran        |                             | Endangered | Mammal               | No               |
| (Antilocapra ame          | ricana sonoriensis)         |            | Terrestrial          |                  |
| Squirrel, Mount Graham    | Red                         | Endangered | Mammal               | Yes              |
| (Tamiasciurus hu          | dsonicus grahamensis)       |            | Terrestrial          |                  |
| Wolf, Gray                |                             | Endangered | Mammal               | Yes              |
| (Canis lupus)             |                             |            | Terrestrial          |                  |
| Sedge, Navajo             |                             | Threatened | Monocot              | Yes              |
| (Carex specuicola         | a)                          |            | Terrestrial          |                  |
| Arkansas                  | (19) species:               |            | <u>Taxa</u>          | Critical Habitat |

Page 6 of 68

## -91 of 154-

| Arkansas (19) species:                       |            | Taxa Critical Habitat      |
|----------------------------------------------|------------|----------------------------|
| Tern, Interior (population) Least            | Endangered | Bird No                    |
| (Sterna antillarum)                          |            | Terrestrial                |
| Woodpecker, Red-cockaded                     | Endangered | Bird No                    |
| (Picoides borealis)                          |            | Terrestrial                |
| Fatmucket, Arkansas                          | Threatened | <b>Bivalve</b> No          |
| (Lampsilis powelli)                          |            | Freshwater                 |
| Mucket, Pink (Pearlymussel)                  | Endangered | Bivalve No                 |
| (Lampsilis abrupta)                          |            | Freshwater                 |
| Mussel, Scaleshell                           | Endangered | Bivalve No                 |
| (Leptodea leptodon)                          |            | Freshwater                 |
| Pearlymussel, Fat Pocketbook                 | Endangered | Bivalve No                 |
| (Potamilus capax)                            |            | Freshwater                 |
| Rock-pocketbook, Ouachita (=Wheeler's pm)    | Endangered | Bivalve No                 |
| (Arkansia wheeleri)                          |            | Freshwater                 |
| Crayfish, Cave (Cambarus aculabrum)          | Endangered | Crustacean No              |
| (Cambarus aculabrum)                         |            | Freshwater                 |
| Bladderpod, Missouri                         | Threatened | Dicot No                   |
| (Lesquerella filiformis)                     |            | Terrestrial                |
| Fruit, Earth (=geocarpon)                    | Threatened | Dicot No                   |
| (Geocarpon minimum)                          |            | Terrestrial                |
| Harperella                                   | Endangered | Dicot No                   |
| (Ptilimnium nodosum)                         | Ū          | Freshwater                 |
| Pondberry                                    | Endangered | Dicot No                   |
| (Lindera melissifolia)                       | Ũ          | Terrestrial                |
| Cavefish, Ozark                              | Threatened | Fish No                    |
| (Amblyopsis rosae)                           |            | Freshwater                 |
| Sturgeon, Pallid                             | Endangered | Fish No                    |
| (Scaphirhynchus albus)                       |            | Freshwater                 |
| Shagreen, Magazine Mountain                  | Threatened | Gastropod No               |
| (Mesodon magazinensis)                       |            | Terrestrial                |
| Beetle, American Burying                     | Endangered | Insect No                  |
| (Nicrophorus americanus)                     | Ŭ          | Terrestrial                |
| Bat, Gray                                    | Endangered | Mammal No                  |
| (Myotis grisescens)                          | -          | Subterraneous, Terrestrial |
| Bat, Indiana                                 | Endangered | Mammal Yes                 |
| (Myotis sodalis)                             |            | Subterraneous, Terrestrial |
| Bat, Ozark Big-eared                         | Endangered | Mammal No                  |
| (Corynorhinus (=Plecotus) townsendii ingens) | Ū          | Terrestrial, Subterraneous |
| California (230) species:                    |            | Taxa Critical Habitat      |
| Frog, California Red-legged                  | Threatened | Amphibian Yes              |
| (Rana aurora draytonii)                      |            | Terrestrial, Freshwater    |
| Frog, Mountain Yellow-legged                 | Endangered | Amphibian No               |
| (Gopherus agassizii)                         | Ŭ,         | Terrestrial, Freshwater    |
| 9/26/2007 2:54:11 DM Var 2:10 3              |            | Page 7 of 65               |

Page 7 of 68

-92 of 154-

| California (230) species:             |           | ۰,           | Taxa                    | Critical Habitat |
|---------------------------------------|-----------|--------------|-------------------------|------------------|
| Salamander, California Tiger          |           | Endangered   | Amphibian               | No               |
| (Ambystoma californiense)             |           |              | Terrestrial, Vernal poo | · · · · ·        |
| Salamander, Desert Slender            |           | Endangered   | Amphibian               | No               |
| (Batrachoseps aridus)                 |           |              | Freshwater, Terrestrial |                  |
| Salamander, Santa Cruz Long-toed      | 11 July 1 | Endangered   | Amphibian               | No               |
| (Ambystoma macrodactylum croceum)     |           |              | Freshwater, Vernal po   | ol, Terrestrial  |
| Toad, Arroyo Southwestern             |           | Endangered   | Amphibian               | Yes              |
| (Bufo californicus (=microscaphus))   |           |              | Freshwater, Terrestrial | L .              |
| Condor, California                    |           | Endangered   | Bird                    | Yes              |
| (Gymnogyps californianus)             |           |              | Terrestrial             |                  |
| Flycatcher, Southwestern Willow       |           | Endangered   | Bird                    | Yes              |
| (Empidonax traillii extimus)          |           |              | Terrestrial             |                  |
| Gnatcatcher, Coastal California       |           | Threatened   | Bird                    | Yes              |
| (Polioptila californica californica)  |           |              | Terrestrial             |                  |
| Murrelet, Marbled                     |           | Threatened   | Bird                    | Yes              |
| (Brachyramphus marmoratus marmoratus) |           |              | Freshwater, Terrestrial | , Saltwater      |
| Owl, Northern Spotted                 |           | Threatened   | Bird                    | Yes              |
| (Strix occidentalis caurina)          |           |              | Terrestrial             | 1                |
| Pelican, Brown                        |           | Endangered   | Bird                    | No               |
| (Pelecanus occidentalis)              |           |              | Terrestrial             |                  |
| Plover, Western Snowy                 |           | Threatened   | Bird                    | Yes              |
| (Charadrius alexandrinus nivosus)     |           |              | Terrestrial             |                  |
| Rail, California Clapper              |           | Endangered   | Bird                    | No               |
| (Rallus longirostris obsoletus)       |           |              | Terrestrial             |                  |
| Rail, Light-footed Clapper            |           | Endangered   | Bird                    | No               |
| (Rallus longirostris levipes)         |           |              | Terrestrial             |                  |
| Rail, Yuma Clapper                    |           | Endangered   | Bird                    | No               |
| (Rallus longirostris yumanensis)      |           |              | Terrestrial             |                  |
| Shrike, San Clemente Loggerhead       |           | Endangered   | Bird                    | No               |
| (Lanius Iudovicianus mearnsi)         |           |              | Terrestrial             |                  |
| Sparrow, San Clemente Sage            |           | Threatened   | Bird                    | No               |
| (Amphispiza belli clementeae)         |           |              | Terrestrial             |                  |
| Tern, California Least                |           | Endangered   | Bird                    | No               |
| (Sterna antillarum browni)            |           | ge.eu        | Terrestrial             |                  |
| Vireo, Least Bell's                   |           | Endangered   | Bird                    | Yes              |
| (Vireo bellii pusillus)               |           | 2.104.190.04 | Terrestrial             | 100              |
| Cypress, Gowen                        |           | Threatened   | Conf/cycds              | No               |
| (Cupressus goveniana ssp. goveniana)  |           | meateried    | Terrestrial             | NO               |
| Abalone, White                        |           | Endangered   | Crustacean              | No               |
| (Haliotis sorenseni)                  |           | LINGUIGEICU  | Saltwater               | INU              |
| Crayfish, Shasta                      |           | Endangered   | _                       | No               |
| (Pacifastacus fortis)                 |           | Lindangered  | Crustacean              | No               |
| (raulasiaus iulis)                    |           |              | Freshwater              |                  |

Page 8 of 68

-93 of 154-

| California (230) species:                   | ·<br>. :   | Taxa                | Critical Habitat |
|---------------------------------------------|------------|---------------------|------------------|
| Fairy Shrimp, Conservancy Fairy             | Endangered | Crustacean          | Yes              |
| (Branchinecta conservatio)                  |            | Vernal pool         |                  |
| Fairy Shrimp, Longhorn                      | Endangered | Crustacean          | Yes              |
| (Branchinecta longiantenna)                 |            | Vernal pool         |                  |
| Fairy Shrimp, Riverside                     | Endangered | Crustacean          | Yes              |
| (Streptocephalus woottoni)                  |            | Vernal pool         |                  |
| Fairy Shrimp, San Diego                     | Endangered | Crustacean          | Yes              |
| (Branchinecta sandiegonensis)               |            | Vernal pool         |                  |
| Fairy Shrimp, Vernal Pool                   | Threatened | Crustacean          | Yes              |
| (Branchinecta lynchi)                       |            | Vernal pool         |                  |
| Shrimp, California Freshwater               | Endangered | Crustacean          | No               |
| (Syncaris pacifica)                         |            | Freshwater          |                  |
| Tadpole Shrimp, Vernal Pool                 | Endangered | Crustacean          | Yes              |
| (Lepidurus packardi)                        |            | Vernal pool         |                  |
| Adobe Sunburst, San Joaquin                 | Threatened | Dicot               | No               |
| (Pseudobahia peirsonii)                     |            | Terrestrial         |                  |
| Allocarya, Calistoga                        | Endangered | Dicot               | No               |
| (Plagiobothrys strictus)                    |            | Vernal pool         |                  |
| Ambrosia, San Diego                         | Endangered | Dicot               | No               |
| (Ambrosia pumila)                           |            | Terrestrial         |                  |
| Baccharis, Encinitas                        | Threatened | Dicot               | No               |
| (Baccharis vanessae)                        |            | Terrestrial         |                  |
| Barberry, Nevin's                           | Endangered | Dicot               | No               |
| (Berberis nevinii)                          |            | Terrestrial         |                  |
| Bird's-beak, Palmate-bracted                | Endangered | Dicot               | No               |
| (Cordylanthus palmatus)                     |            | Terrestrial         |                  |
| Bird's-beak, Pennell's                      | Endangered | Dicot               | No               |
| (Cordylanthus tenuis ssp. capillaris)       |            | Terrestrial         | · · · ·          |
| Bird's-beak, salt marsh                     | Endangered | Dicot               | No               |
| (Cordylanthus maritimus ssp. maritimus)     |            | Saltwater           |                  |
| Bird's-beak, Soft                           | Endangered | Dicot               | No               |
| (Cordylanthus mollis ssp. mollis)           |            | Brackish, Saltwater |                  |
| Bladderpod, San Bernardino Mountains        | Endangered | Dicot               | Yes              |
| (Lesquerella kingii ssp. bernardina)        |            | Terrestrial         | 1                |
| Bluecurls, Hidden Lake                      | Threatened | Dicot               | No               |
| (Trichostema austromontanum ssp. compactum) |            | Terrestrial         |                  |
| Broom, San Clemente Island                  | Endangered | Dicot               | No               |
| (Lotus dendroideus ssp. traskiae)           |            | Terrestrial         |                  |
| Buckwheat, Cushenbury                       | Endangered | Dicot               | Yes              |
| (Eriogonum ovalifolium var. vineum)         | -          | Terrestrial         |                  |
| Buckwheat, Southern Mountain Wild           | Threatened | Dicot               | No               |
| (Eriogonum kennedyi var. austromontanum)    |            | Terrestrial         |                  |
|                                             |            |                     |                  |

Page 9 of 68

-94 of 154-

| California (230) species:               |            | Taxa        | Critical Habitat                                                                                                 |
|-----------------------------------------|------------|-------------|------------------------------------------------------------------------------------------------------------------|
| Bush-mallow, San Clemente Island        | Endangered | Dicot       | No                                                                                                               |
| (Malacothamnus clementinus)             |            | Terrestrial |                                                                                                                  |
| Button-celery, San Diego                | Endangered | Dicot       | No                                                                                                               |
| (Eryngium aristulatum var. parishii)    |            | Terrestrial |                                                                                                                  |
| Cactus, Bakersfield                     | Endangered | Dicot       | No                                                                                                               |
| (Opuntia treleasei)                     |            | Terrestrial |                                                                                                                  |
| Ceanothus, Coyote                       | Endangered | Dicot       | No                                                                                                               |
| (Ceanothus ferrisae)                    |            | Terrestrial |                                                                                                                  |
| Ceanothus, Vail Lake                    | Threatened | Dicot       | No                                                                                                               |
| (Ceanothus ophiochilus)                 |            | Terrestrial |                                                                                                                  |
| Checker-mallow, Keck's                  | Endangered | Dicot       | Yes                                                                                                              |
| (Sidalcea keckii)                       |            | Terrestrial |                                                                                                                  |
| Checker-mallow, Kenwood Marsh           | Endangered | Dicot       | No                                                                                                               |
| (Sidalcea oregana ssp. valida)          |            | Terrestrial |                                                                                                                  |
| Checker-mallow, Pedate                  | Endangered | Dicot       | No                                                                                                               |
| (Sidalcea pedata)                       |            | Terrestrial | 1999 - Alexandria - A |
| Clarkia, Pismo                          | Endangered | Dicot       | No                                                                                                               |
| (Clarkia speciosa ssp. immaculata)      |            | Terrestrial |                                                                                                                  |
| Clarkia, Springville                    | Threatened | Dicot       | No                                                                                                               |
| (Clarkia springvillensis)               |            | Terrestrial |                                                                                                                  |
| Clarkia, Vine Hill                      | Endangered | Dicot       | No                                                                                                               |
| (Clarkia imbricata)                     |            | Terrestrial |                                                                                                                  |
| Clover, Fleshy Owl's                    | Threatened | Dicot       | Yes                                                                                                              |
| (Castilleja campestris ssp. succulenta) |            | Vernal pool |                                                                                                                  |
| Clover, Monterey                        | Endangered | Dicot       | No                                                                                                               |
| (Trifolium trichocalyx)                 |            | Terrestrial |                                                                                                                  |
| Clover, Showy Indian                    | Endangered | Dicot       | No                                                                                                               |
| (Trifolium amoenum)                     |            | Terrestrial |                                                                                                                  |
| Crownbeard, Big-leaved                  | Threatened | Dicot       | No                                                                                                               |
| (Verbesina dissita)                     |            | Terrestrial | •                                                                                                                |
| Crownscale, San Jacinto Valley          | Endangered | Dicot       | No                                                                                                               |
| (Atriplex coronata var. notatior)       |            | Terrestrial |                                                                                                                  |
| Daisy, Parish's                         | Threatened | Dicot       | Yes                                                                                                              |
| (Erigeron parishii)                     |            | Freshwater  |                                                                                                                  |
| Dudleya, Marcescent                     | Threatened | Dicot       | No                                                                                                               |
| (Dudleya cymosa ssp. marcescens)        |            | Terrestrial |                                                                                                                  |
| Dudleya, Santa Clara Valley             | Endangered | Dicot       | No                                                                                                               |
| (Dudleya setchellii)                    |            | Terrestrial |                                                                                                                  |
| Dudleya, Santa Monica Mountains         | Threatened | Dicot       | No                                                                                                               |
| (Dudleya cymosa ssp. ovatifolia)        |            | Terrestrial |                                                                                                                  |
| Dwarf-flax, Marin                       | Threatened | Dicot       | No                                                                                                               |
| (Hesperolinon congestum)                |            | Terrestrial |                                                                                                                  |

Page 10 of 68

-95 of 154-

| California (230) species:                    |            | <u>Taxa</u> <u>Cri</u>         | tical Habitat |
|----------------------------------------------|------------|--------------------------------|---------------|
| Evening-primrose, Antioch Dunes              | Endangered | Dicot                          | Yes           |
| (Oenothera deltoides ssp. howellii)          |            | Terrestrial                    |               |
| Evening-primrose, San Benito                 | Threatened | Dicot                          | No            |
| (Camissonia benitensis)                      |            | Terrestrial                    | а."           |
| Fiddleneck, Large-flowered                   | Endangered | Dicot                          | Yes           |
| (Amsinckia grandiflora)                      |            | Terrestrial                    |               |
| Flannelbush, Mexican                         | Endangered | Dicot                          | No            |
| (Fremontodendron mexicanum)                  |            | Terrestrial                    |               |
| Gilia, Monterey                              | Endangered | Dicot                          | No            |
| (Gilia tenuiflora ssp. arenaria)             |            | Terrestrial                    |               |
| Golden Sunburst, Hartweg's                   | Endangered | Dicot                          | No            |
| (Pseudobahia bahiifolia)                     |            | Terrestrial                    |               |
| Goldfields, Burke's                          | Endangered | Dicot                          | No            |
| (Lasthenia burkei)                           | · ·        | Terrestrial                    |               |
| Goldfields, Contra Costa                     | Endangered | Dicot                          | Yes           |
| (Lasthenia conjugens)                        |            | Terrestrial                    |               |
| Grass, Hairy Orcutt                          | Endangered | Dicot                          | Yes           |
| (Orcuttia pilosa)                            |            | Vernal pool                    |               |
| Grass, Sacramento Orcutt                     | Endangered | Dicot                          | Yes           |
| (Orcuttia viscida)                           |            | Vernal pool                    |               |
| Grass, Slender Orcutt                        | Threatened | Dicot                          | Yes           |
| (Orcuttia tenuis)                            |            | Vernal pool                    |               |
| Jewelflower, California                      | Endangered | Dicot                          | No            |
| (Caulanthus californicus)                    |            | Terrestrial                    |               |
| Jewelflower, Tiburon                         | Endangered | Dicot                          | No            |
| (Streptanthus niger)                         |            | Terrestrial                    |               |
| Larkspur, Baker's                            | Endangered | Dicot                          | Yes           |
| (Delphinium bakeri)                          |            | Terrestrial                    |               |
| Larkspur, San Clemente Island                | Endangered | Dicot                          | No            |
| (Delphinium variegatum ssp. kinkiense)       |            | Terrestrial                    |               |
| Larkspur, Yellow                             | Endangered | Dicot                          | Yes           |
| (Delphinium luteum)                          |            | Terrestrial                    |               |
| Layia, Beach                                 | Endangered | Dicot                          | No            |
| (Layia carnosa)                              |            | Terrestrial, Coastal (neritic) |               |
| Lupine, Clover                               | Endangered | Dicot                          | No            |
| (Lupinus tidestromii)                        |            | Coastal (neritic)              |               |
| Lupine, Nipomo Mesa                          | Endangered | Dicot                          | No            |
| (Lupinus nipomensis)                         |            | Coastal (neritic)              |               |
| Mallow, Kern                                 | Endangered | Dicot                          | No            |
| (Eremalche kernensis)                        |            | Terrestrial                    |               |
| Manzanita, Del Mar                           | Endangered | Dicot                          | No            |
| (Arctostaphylos glandulosa ssp. crassifolia) |            | Terrestrial                    |               |

Page 11 of 68

-96 of 154-

| California (230) species:                           |            | Taxa                     | Critical Habitat |
|-----------------------------------------------------|------------|--------------------------|------------------|
| Manzanita, Morro                                    | Threatened | Dicot                    | No               |
| (Arctostaphylos morroensis)                         |            | Terrestrial              |                  |
| Manzanita, Pallid                                   | Threatened | Dicot                    | No               |
| (Arctostaphylos pallida)                            |            | Terrestrial              |                  |
| Meadowfoam, Butte County                            | Endangered | Dicot                    | Yes              |
| (Limnanthes floccosa ssp. californica)              |            | Vernal pool              |                  |
| Meadowfoam, Sebastopol                              | Endangered | Dicot                    | No               |
| (Limnanthes vinculans)                              |            | Freshwater, Terrestrial  |                  |
| Milk-vetch, Braunton's                              | Endangered | Dicot                    | No               |
| (Astragalus brauntonii)                             |            | Terrestrial              |                  |
| Milk-vetch, Clara Hunt's                            | Endangered | Dicot                    | No               |
| (Astragalus clarianus)                              |            | Terrestrial              |                  |
| Milk-vetch, Coachella Valley                        | Endangered | Dicot                    | Yes              |
| (Astragalus lentiginosus var. coachellae)           | . –        | Terrestrial              |                  |
| Milk-vetch, Coastal Dunes                           | Endangered | Dicot                    | No               |
| (Astragalus tener var. titi)                        |            | Terrestrial              |                  |
| Milk-vetch, Cushenbury                              | Endangered | Dicot                    | Yes              |
| (Astragalus albens)                                 |            | Terrestrial              |                  |
| Milk-vetch, Lane Mountain                           | Endangered | Dicot                    | Yes              |
| (Astragalus jaegerianus)                            | •          | Terrestrial              |                  |
| Milk-vetch, Pierson's                               | Threatened | Dicot                    | Yes              |
| (Astragalus magdalenae var. peirsonii)              |            | Terrestrial              |                  |
| Milk-vetch, Triple-ribbed                           | Endangered | Dicot                    | No               |
| (Astragalus tricarinatus)                           |            | Terrestrial              |                  |
| Mint, Otay Mesa                                     | Endangered | Dicot                    | No               |
| (Pogogyne nudiuscula)                               | · ·        | Terrestrial              |                  |
| Mint, San Diego Mesa                                | Endangered | Dicot                    | No               |
| (Pogogyne abramsii)                                 | <b>U</b>   | Terrestrial              |                  |
| Monardella, Willowy                                 | Endangered | Dicot                    | No               |
| (Monardella linoides ssp. viminea)                  | , U        | Terrestrial              |                  |
| Mountainbalm, Indian Knob                           | Endangered | Dicot                    | No               |
| (Eriodictyon altissimum)                            | , U        | Terrestrial              |                  |
| Mountain-mahogany, Catalina Island                  | Endangered | Dicot                    | No               |
| (Cercocarpus traskiae)                              |            | Terrestrial              |                  |
| Mustard, Slender-petaled                            | Endangered | Dicot                    | No               |
| (Thelypodium stenopetalum)                          |            | Terrestrial              |                  |
| Navarretia, Few-flowered                            | Endangered | Dicot                    | No               |
| (Navarretia leucocephala ssp. pauciflora (=N. pauci | •          | Vernal pool, Terrestrial |                  |
| Navarretia, Many-flowered                           | Endangered | Dicot                    | No               |
| (Navarretia leucocephala ssp. plieantha)            |            | Terrestrial, Vernal pool |                  |
| Navarretia, Spreading                               | Threatened | Dicot                    | No               |
| (Navarretia fossalis)                               |            | Vernal pool              |                  |

Page 12 of 68

-97 of 154-

| California (230) species:              |            | Taxa                   | Critical Habitat                                                                                               |
|----------------------------------------|------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| Oxytheca, Cushenbury                   | Endangered | Dicot                  | Yes                                                                                                            |
| (Oxytheca parishii var. goodmaniana)   |            | Terrestrial            | the second s |
| Paintbrush, Ash-grey Indian            | Threatened | Dicot                  | No                                                                                                             |
| (Castilleja cinerea)                   |            | Terrestrial            |                                                                                                                |
| Paintbrush, San Clemente Island Indian | Endangered | Dicot                  | No                                                                                                             |
| (Castilleja grisea)                    |            | Terrestrial            |                                                                                                                |
| Paintbrush, Tiburon                    | Endangered | Dicot                  | No                                                                                                             |
| (Castilleja affinis ssp. neglecta)     |            | Terrestrial            |                                                                                                                |
| Pentachaeta, Lyon's                    | Endangered | Dicot                  | No                                                                                                             |
| (Pentachaeta lyonii)                   |            | Terrestrial            |                                                                                                                |
| Pentachaeta, White-rayed               | Endangered | Dicot                  | No                                                                                                             |
| (Pentachaeta bellidiflora)             |            | Terrestrial            |                                                                                                                |
| Phiox, Yreka                           | Endangered | Dicot                  | No                                                                                                             |
| (Phlox hirsuta)                        |            | Terrestrial            |                                                                                                                |
| Potentilla, Hickman's                  | Endangered | Dicot                  | No                                                                                                             |
| (Potentilla hickmanii)                 |            | Terrestrial            |                                                                                                                |
| Pussypaws, Mariposa                    | Threatened | Dicot                  | No                                                                                                             |
| (Calyptridium pulchellum)              |            | Terrestrial            |                                                                                                                |
| Rock-cress, McDonald's                 | Endangered | Dicot                  | No                                                                                                             |
| (Arabis mcdonaldiana)                  |            | Terrestrial            | •                                                                                                              |
| Rock-cress, Santa Cruz Island          | Endangered | Dicot                  | No                                                                                                             |
| (Sibara filifolia)                     | •          | Terrestrial            |                                                                                                                |
| Rush-rose, Island                      | Threatened | Dicot                  | No                                                                                                             |
| (Helianthemum greenei)                 |            | Terrestrial            |                                                                                                                |
| Sandwort, Bear Valley                  | Threatened | Dicot                  | No                                                                                                             |
| (Arenaria ursina)                      |            | Terrestrial            | · .                                                                                                            |
| Sandwort, Marsh                        | Endangered | Dicot                  | No                                                                                                             |
| (Arenaria paludicola)                  |            | Freshwater, Terrestria | al                                                                                                             |
| Sea-blite, California                  | Endangered | Dicot                  | No                                                                                                             |
| (Suaeda californica)                   |            | Terrestrial            |                                                                                                                |
| Spineflower, Howell's                  | Endangered | Dicot                  | No                                                                                                             |
| (Chorizanthe howellii)                 |            | Terrestrial            |                                                                                                                |
| Spineflower, Monterey                  | Threatened | Dicot                  | Yes                                                                                                            |
| (Chorizanthe pungens var. pungens)     |            | Terrestrial            | · · · ·                                                                                                        |
| Spineflower, Orcutt's                  | Endangered | Dicot                  | No                                                                                                             |
| (Chorizanthe orcuttiana)               |            | Terrestrial            |                                                                                                                |
| Spineflower, Robust                    | Endangered | Dicot                  | Yes                                                                                                            |
| (Chorizanthe robusta var. robusta)     |            | Terrestrial            |                                                                                                                |
| Spineflower, Slender-horned            | Endangered | Dicot                  | No                                                                                                             |
| (Dodecahema leptoceras)                | · · · · ·  | Terrestrial            |                                                                                                                |
| Spineflower, Sonoma                    | Endangered | Dicot                  | No                                                                                                             |
| (Chorizanthe valida)                   |            | Terrestrial            |                                                                                                                |
|                                        |            |                        |                                                                                                                |

Page 13 of 68

-98 of 154-

**US EPA ARCHIVE DOCUMENT** 

| California (230) species:              |      |             | Taxa                      | Critical Habitat |
|----------------------------------------|------|-------------|---------------------------|------------------|
| Spurge, Hoover's                       |      | Threatened  | Dicot                     | Yes              |
| (Chamaesyce hooveri)                   | ,    |             | Vernal pool               |                  |
| Stickyseed, Baker's                    |      | Endangered  | Dicot                     | No               |
| (Blennosperma bakeri)                  |      |             | Vernal pool               |                  |
| Stonecrop, Lake County                 |      | Endangered  | Dicot                     | No               |
| (Parvisedum leiocarpum)                |      | Ŭ           | Vernal pool               |                  |
| Taraxacum, California                  |      | Endangered  | Dicot                     | No               |
| (Taraxacum californicum)               |      | <b>U</b>    | Terrestrial               |                  |
| Tarplant, Otay                         |      | Threatened  | Dicot                     | Yes              |
| (Deinandra (=Hemizonia) conjugens)     |      |             | Terrestrial               |                  |
| Tarplant, Santa Cruz                   |      | Threatened  | Dicot                     | Yes              |
| (Holocarpha macradenia)                |      |             | Terrestrial               |                  |
| Thistle, Chorro creek Bog              |      | Endangered  | Dicot                     | No               |
| (Cirsium fontinale var. obispoense)    |      |             | Terrestrial, Freshwater   |                  |
| Thistle, Fountain                      |      | Endangered  | Dicot                     | No               |
| (Cirsium fontinale var. fontinale)     |      | Lindangorod | Terrestrial               |                  |
| Thistle, La Graciosa                   |      | Endangered  | Dicot                     | Yes              |
| (Cirsium loncholepis)                  |      |             | Coastal (neritic), Freshv |                  |
| Thistle, Suisun                        |      | Endangered  | Dicot                     | No               |
| (Cirsium hydrophilum var. hydrophilum) |      |             | Brackish, Terrestrial     |                  |
| Thornmint, San Diego                   | e ef | Threatened  | Dicot                     | No               |
| (Acanthomintha ilicifolia)             |      |             | Terrestrial               | 110              |
| Tuctoria, Green's                      | 1. A | Endangered  | Dicot                     | Yes              |
| (Tuctoria greenei)                     |      |             | Vernal pool               | 100              |
| Wallflower, Contra Costa               |      | Endangered  | Dicot                     | Yes              |
| (Erysimum capitatum var. angustatum)   |      | Lindangerea | Terrestrial               | 100              |
| Wallflower, Menzie's                   |      | Endangered  | Dicot                     | No               |
| (Erysimum menziesii)                   |      |             | Terrestrial               | 1                |
| Watercress, Gambel's                   |      | Endangered  | Dicot                     | No               |
| (Rorippa gambellii)                    |      |             | Terrestrial, Brackish, Fr |                  |
| Woodland-star, San Clemente Island     |      | Endangered  | Dicot                     | No               |
| (Lithophragma maximum)                 |      |             | Terrestrial               |                  |
| Woolly-star, Santa Ana River           | 1    | Endangered  | Dicot                     | No               |
| (Eriastrum densifolium ssp. sanctorum) |      |             | Terrestrial               | 110              |
| Woolly-threads, San Joaquin            |      | Endangered  | Dicot                     | No               |
| (Monolopia (=Lembertia) congdonii)     |      | Lindangorod | Terrestrial               |                  |
| Chub, Bonytail                         |      | Endangered  | Fish                      | Yes              |
| (Gila elegans)                         |      | Lindangoroa | Freshwater                | 100              |
| Chub, Hutton Tui                       |      | Threatened  | Fish                      | No               |
| (Gila bicolor ssp.)                    |      | . moutoriou | Freshwater                | <b>U</b> F1      |
| Chub, Mohave Tui                       |      | Endangered  | Fish                      | No               |
|                                        |      | Lindingorod | Freshwater                |                  |
| (Gila bicolor mohavensis)              |      |             | rresnwater                |                  |

Page 14 of 68

-99 of 154-

#### California

#### (230) species:

Goby, Tidewater (Eucyclogobius newberryi) Pupfish, Desert (Cyprinodon macularius) Salmon, Chinook (California Coastal Run) (Oncorhynchus (=Salmo) tshawytscha) Salmon, Chinook (Central Valley Fall Run) (Oncorhynchus (=Salmo) tshawytscha) Salmon, Chinook (Central Valley Spring Run) (Oncorhynchus (=Salmo) tshawytscha) Salmon, Chinook (Sacramento River Winter Run) (Oncorhynchus (=Salmo) tshawytscha) Salmon, Coho (Central California Coast population) (Oncorhynchus (=Salmo) kisutch) Salmon, Coho (Southern OR/Northern CA Coast) (Oncorhynchus (=Salmo) kisutch) Smelt, Delta (Hypomesus transpacificus) Squawfish, Colorado (Ptychocheilus lucius) Steelhead, (California Central Valley population) (Oncorhynchus (=Salmo) mykiss) Steelhead, (Central California Coast population) (Oncorhynchus (=Salmo) mykiss) Steelhead, (Northern California population) (Oncorhynchus (=Salmo) mykiss) Steelhead, (South-Central California population) (Oncorhynchus (=Salmo) mykiss) Steelhead, (Southern California population) (Oncorhynchus (=Salmo) mykiss) Stickleback, Unarmored Threespine (Gasterosteus aculeatus williamsoni) Sturgeon, green (Acipenser medirostris) Sucker, Lost River (Deltistes luxatus) Sucker, Modoc (Catostomus microps) Sucker, Razorback (Xyrauchen texanus) Sucker, Santa Ana (Catostomus santaanae)

9/26/2007 2:54:11 PM Ver. 2.10.3

| Endangered  | <u>Taxa</u><br>Fish                                                                                              | <u>Critical Habitat</u><br>Yes        |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| Lindangered | Freshwater                                                                                                       | 105                                   |  |  |
| Endangered  | Fish                                                                                                             | Yes                                   |  |  |
| Endangerea  | Freshwater                                                                                                       | 100                                   |  |  |
| Threatened  | Fish                                                                                                             | Yes                                   |  |  |
|             | Freshwater, Saltwater                                                                                            |                                       |  |  |
| Threatened  | Fish                                                                                                             | No                                    |  |  |
|             | Brackish, Freshwater,                                                                                            | Saltwater                             |  |  |
| Threatened  | Fish                                                                                                             | Yes                                   |  |  |
|             | Brackish, Saltwater, F                                                                                           | reshwater                             |  |  |
| Endangered  | Fish                                                                                                             | No                                    |  |  |
| Ū           | Saltwater, Freshwater                                                                                            | r, Brackish                           |  |  |
| Endangered  | Fish                                                                                                             | No                                    |  |  |
| <b>-</b> .  | Saltwater, Brackish, F                                                                                           | reshwater                             |  |  |
| Threatened  | Fish                                                                                                             | Yes                                   |  |  |
|             | Freshwater, Brackish, Saltwater                                                                                  |                                       |  |  |
| Threatened  | Fish                                                                                                             | Yes                                   |  |  |
| •           | Freshwater, Brackish                                                                                             |                                       |  |  |
| Endangered  | Fish                                                                                                             | Yes                                   |  |  |
|             | Freshwater                                                                                                       |                                       |  |  |
| Threatened  | Fish                                                                                                             | Yes                                   |  |  |
|             | Brackish, Freshwater,                                                                                            | Saltwater                             |  |  |
| Threatened  | Fish                                                                                                             | Yes                                   |  |  |
|             | Freshwater, Saltwater                                                                                            | r, Brackish                           |  |  |
| Threatened  | Fish                                                                                                             | No                                    |  |  |
|             | Saltwater, Brackish, F                                                                                           | reshwater                             |  |  |
| Threatened  | Fish                                                                                                             | Yes                                   |  |  |
|             | Freshwater, Saltwater                                                                                            |                                       |  |  |
| Endangered  | Fish                                                                                                             | Yes                                   |  |  |
|             | Brackish, Saltwater, F                                                                                           |                                       |  |  |
| Endangered  | Fish                                                                                                             | No                                    |  |  |
|             | Freshwater                                                                                                       |                                       |  |  |
| Threatened  | Fish                                                                                                             | No                                    |  |  |
|             |                                                                                                                  | · · · · · · · · · · · · · · · · · · · |  |  |
| Endangered  | Fish                                                                                                             | No                                    |  |  |
|             | Freshwater                                                                                                       | ×                                     |  |  |
| Endangered  | Fish                                                                                                             | Yes                                   |  |  |
| Enden d     | Freshwater                                                                                                       | V · ·                                 |  |  |
| Endangered  | Fish                                                                                                             | Yes                                   |  |  |
| Throatened  | Freshwater                                                                                                       | Vaa                                   |  |  |
| Threatened  | Fish<br>Freshwater                                                                                               | Yes                                   |  |  |
|             | I ICOIWAIGI                                                                                                      |                                       |  |  |
|             | and the second |                                       |  |  |

Page 15 of 68

-100 of 154-

| California                                       | (230) species:            |            | <u>Taxa</u>              | Critical Habitat |
|--------------------------------------------------|---------------------------|------------|--------------------------|------------------|
| Sucker, Shortnose                                |                           | Endangered | Fish                     | No               |
| (Chasmistes brevirostris)                        |                           |            | Freshwater               |                  |
| Trout, Lahontan Cutthroat                        |                           | Threatened | Fish                     | No               |
| (Oncorhynchus clarki henshawi)                   |                           |            | Freshwater               |                  |
| Trout, Little Kern Golden                        |                           | Threatened | Fish                     | Yes              |
| (Oncorhynchus aguabonita whitei)                 |                           |            | Freshwater               |                  |
| Trout, Paiute Cutthroat                          |                           | Threatened | Fish                     | No               |
| (Oncorhynchus clarki seleniris)                  |                           |            | Freshwater               |                  |
| Snail, Morro Shoulderband                        |                           | Endangered | Gastropod                | Yes              |
| (Helminthoglypta walkeriana)                     |                           |            | Terrestrial              |                  |
| Beetle, Delta Green Ground                       |                           | Threatened | Insect                   | Yes              |
| (Elaphrus viridis)                               |                           |            | Vernal pool, Terrestrial |                  |
| Beetle, Valley Elderberry Longhorn               |                           | Threatened | Insect                   | Yes              |
| (Desmocerus californicus dimorphus)              |                           |            | Terrestrial              |                  |
| Butterfly, Bay Checkerspot (Wright's euphydryas) |                           | Threatened | Insect                   | Yes              |
| (Euphydryas editha bayensis)                     |                           |            | Terrestrial              |                  |
| Butterfly, Behren's Silverspot                   |                           | Endangered | insect                   | No               |
| (Speyeria zerene behrensii)                      |                           |            | Terrestrial              |                  |
| Butterfly, El Segundo Blue                       |                           | Endangered | Insect                   | No               |
| (Euphilotes battoide                             | es allyni)                |            | Terrestrial              |                  |
| Butterfly, Lange's Metalma                       | rk                        | Endangered | Insect                   | No               |
| (Apodemia mormo                                  | langei)                   |            | Terrestrial              |                  |
| Butterfly, Lotis Blue                            |                           | Endangered | Insect                   | No               |
| (Lycaeides argyrognomon lotis)                   |                           |            | Terrestrial              |                  |
| Butterfly, Mission Blue                          |                           | Endangered | Insect                   | No               |
| (Icaricia icarioides missíonensis)               |                           |            | Terrestrial              |                  |
| Butterfly, Myrtle's Silverspot                   |                           | Endangered | Insect                   | No               |
| (Speyeria zerene myrtleae)                       |                           |            | Terrestrial              |                  |
| Butterfly, Palos Verdes Blue                     |                           | Endangered | Insect                   | Yes              |
| (Glaucopsyche lyge                               | damus palosverdesensis)   |            | Terrestrial              |                  |
| Butterfly, Quino Checkerspot                     |                           | Endangered | Insect                   | Yes              |
| (Euphydryas editha                               | t quino (=E. e. wrighti)) |            | Terrestrial              |                  |
| Butterfly, Smith's Blue                          |                           | Endangered | Insect                   | No               |
| (Euphilotes enoptes smithi)                      |                           |            | Terrestrial              |                  |
| Fly, Delhi Sands Flower-loving                   |                           | Endangered | Insect                   | No               |
| (Rhaphiomidas terminatus abdominalis)            |                           |            | Terrestrial              |                  |
| Moth, Kern Primrose Sphinx                       |                           | Threatened | Insect                   | No               |
| (Euproserpinus euterpe)                          |                           |            | Terrestrial              |                  |
| Skipper, Carson Wandering                        |                           | Endangered | Insect                   | No               |
| (Pseudocopaeodes eunus obscurus)                 |                           |            | Terrestrial              |                  |
| Skipper, Laguna Mountain                         |                           | Endangered | Insect                   | No               |
| (Pyrgus ruralis lagu                             | inae)                     |            | Terrestrial              |                  |

Page 16 of 68

# -101 of 154-

| California (230) species:               |            | <u>Taxa</u>             | Critical Habita |
|-----------------------------------------|------------|-------------------------|-----------------|
| Fox, San Joaquin Kit                    | Endangered | Mammal                  | No              |
| (Vulpes macrotis mutica)                |            | Terrestrial             |                 |
| Fox, Santa Catalina Island              | Endangered | Mammal                  | Yes             |
| (Urocyon littoralis catalinae)          |            | Terrestrial             |                 |
| Kangaroo Rat, Fresno                    | Endangered | Mammal                  | Yes             |
| (Dipodomys nitratoides exilis)          |            | Terrestrial             |                 |
| Kangaroo Rat, Giant                     | Endangered | Mammal                  | No              |
| (Dipodomys ingens)                      |            | Terrestrial             |                 |
| Kangaroo Rat, Morro Bay                 | Endangered | Mammal                  | Yes             |
| (Dipodomys heermanni morroensis)        |            | Terrestrial             |                 |
| Kangaroo Rat, San Bernardino Merriam's  | Endangered | Mammal                  | Yes             |
| (Dipodomys merriami parvus)             |            | Terrestrial             |                 |
| Kangaroo Rat, Stephens'                 | Endangered | Mammal                  | No              |
| (Dipodomys stephensi (incl. D. cascus)) |            | Terrestrial             |                 |
| Kangaroo Rat, Tipton                    | Endangered | Mammal                  | No              |
| (Dipodomys nitratoides nitratoides)     |            | Terrestrial             |                 |
| Mountain Beaver, Point Arena            | Endangered | Mammal                  | No              |
| (Aplodontia rufa nigra)                 |            | Freshwater, Terrestrial | ł               |
| Mouse, Pacific Pocket                   | Endangered | Mammal                  | No              |
| (Perognathus longimembris pacificus)    |            | Terrestrial             |                 |
| Mouse, Salt Marsh Harvest               | Endangered | Mammal                  | No              |
| (Reithrodontomys raviventris)           |            | Terrestrial             |                 |
| Rabbit, Riparian Brush                  | Endangered | Mammal                  | No              |
| (Sylvilagus bachmani riparius)          | ,          | Terrestrial             |                 |
| Sheep, Peninsular Bighorn               | Endangered | Mammal                  | Yes             |
| (Ovis canadensis)                       |            | Terrestrial             |                 |
| Sheep, Sierra Nevada Bighorn            | Endangered | Mammal                  | No              |
| (Ovis canadensis californiana)          |            | Terrestrial             |                 |
| Shrew, Buena Vista Lake Ornate          | Endangered | Mammal                  | Yes             |
| (Sorex ornatus relictus)                |            | Terrestrial             |                 |
| /ole, Amargosa                          | Endangered | Mammal                  | Yes             |
| (Microtus californicus scirpensis)      | -          | Terrestrial             |                 |
| Woodrat, Riparian                       | Endangered | Mammal                  | No              |
| (Neotoma fuscipes riparia)              | -          | Terrestrial             |                 |
| Otter, Southern Sea                     | Threatened | Marine mml              | No              |
| (Enhydra lutris nereis)                 |            | Saltwater               |                 |
| Alopecurus, Sonoma                      | Endangered | Monocot                 | No              |
| (Alopecurus aequalis var. sonomensis)   |            | Terrestrial             |                 |
| Amole, Cammatta Canyon                  | Threatened | Monocot                 | Yes             |
| (Chlorogalum purpureum var. reductum)   |            | Terrestrial             |                 |
| Amole, Purple                           | Threatened | Monocot                 | Yes             |
| (Chlorogalum purpureum var. purpureum)  |            | Terrestrial             |                 |

Page 17 of 68

-102 of 154-

| California                  | (230) species:   |             | Taxa                     | Critical Habitat |
|-----------------------------|------------------|-------------|--------------------------|------------------|
| Bluegrass, Napa             |                  | Endangered  | Monocot                  | No               |
| (Poa napensis)              |                  |             | Terrestrial, Freshwater  | •                |
| Bluegrass, San Bernardino   |                  | Endangered  | Monocot                  | No               |
| (Poa atropurpurea)          |                  |             | Terrestrial              |                  |
| Brodiaea, Thread-leaved     |                  | Threatened  | Monocot                  | Yes              |
| (Brodiaea filifolia)        |                  |             | Terrestrial              |                  |
| Grass, California Orcutt    |                  | Endangered  | Monocot                  | No               |
| (Orcuttia californica       | ı)               |             | Vernal pool, Terrestrial | I .              |
| Grass, Colusa               |                  | Threatened  | Monocot                  | No               |
| (Neostapfia colusar         | na) 🧳            |             | Vernal pool              |                  |
| Grass, San Joaquin Valley   | Orcutt           | Threatened  | Monocot                  | Yes              |
| (Orcuttia inaequalis        | ;)               |             | Vernal pool              |                  |
| Grass, Solano               |                  | Endangered  | Monocot                  | Yes              |
| (Tuctoria mucronata         | a)               | -           | Vernal pool, Terrestrial | ł                |
| Lily, Pitkin Marsh          |                  | Endangered  | Monocot                  | No               |
| (Lilium pardalinum :        | ssp. pitkinense) | -           | Freshwater               |                  |
| Onion, Munz's               |                  | Endangered  | Monocot                  | No               |
| (Allium munzii)             |                  | C C         | Terrestrial              |                  |
| Piperia, Yadon's            |                  | Endangered  | Monocot                  | No               |
| (Piperia yadonii)           |                  |             | Terrestrial              |                  |
| Sedge, White                |                  | Endangered  | Monocot                  | No               |
| (Carex albida)              |                  | <b>-</b>    | Freshwater, Terrestrial  |                  |
| Lizard, Blunt-nosed Leopar  | ď                | Endangered  | Reptile                  | No               |
| (Gambelia silus)            | -<br>            |             | Terrestrial              |                  |
| Lizard, Coachella Valley Fr | inge-toed        | Threatened  | Reptile                  | Yes              |
| (Uma inornata)              | ingo toou        | inicatoriou | Terrestrial              |                  |
| Lizard, Island Night        |                  | Threatened  | Reptile                  | No               |
| (Xantusia riversiana        | 3)               | moutonou    | Terrestrial              |                  |
| Sea turtle, olive ridley    | ~/               | Threatened  | Reptile                  | No               |
| (Lepidochelys oliva         | cea)             | modellou    | Saltwater                |                  |
| Snake, Giant Garter         |                  | Threatened  | Reptile                  | No               |
| (Thamnophis gigas           | 3                | meatened    | Freshwater, Terrestrial  |                  |
| Tortoise, Desert            | )                | Threatened  | Reptile                  | Yes              |
|                             | ii)              | meateneu    | Terrestrial              | res              |
| (Gopherus agassizi          |                  | Thursday    |                          | N                |
| Whipsnake (=Striped Race    |                  | Threatened  | Reptile                  | Yes              |
| (Masticophis lateral        | iis euryxammus)  |             | Terrestrial              |                  |
| Colorado                    | (21) species:    | •           | <u>Taxa</u>              | Critical Habitat |
| Crane, Whooping             |                  | Endangered  | Bird                     | Yes              |
| (Grus americana)            |                  |             | Terrestrial, Freshwater  |                  |
| Owl, Mexican Spotted        |                  | Threatened  | Bird                     | Yes              |
| (Strix occidentalis la      | ucida)           |             | Terrestrial              |                  |
| Bladderpod, Dudley Bluffs   |                  | Threatened  | Dicot                    | No               |
| (Lesquerella conge          | sta)             |             | Terrestrial              |                  |
| · · ·                       |                  |             |                          |                  |

Page 18 of 68

### -103 of 154-

| Colorado (21) species:                |             | <u>Taxa</u> | Critical Habitat |
|---------------------------------------|-------------|-------------|------------------|
| Butterfly Plant, Colorado             | Threatened  | Dicot       | Yes              |
| (Gaura neomexicana var. coloradensis) |             | Terrestrial |                  |
| Cactus, Knowlton                      | Endangered  | Dicot       | No               |
| (Pediocactus knowltonii)              |             | Terrestrial |                  |
| Cactus, Mesa Verde                    | Threatened  | Dicot       | No               |
| (Sclerocactus mesae-verdae)           |             | Terrestrial |                  |
| Cactus, Uinta Basin Hookless          | Threatened  | Dicot       | No               |
| (Sclerocactus glaucus)                |             | Terrestrial |                  |
| Milk-vetch, Mancos                    | Endangered  | Dicot       | No               |
| (Astragalus humillimus)               | _           | Terrestrial |                  |
| Twinpod, Dudley Bluffs                | Threatened  | Dicot       | No               |
| (Physaria obcordata)                  |             | Terrestrial |                  |
| Wild-buckwheat, Clay-loving           | Endangered  | Dicot       | Yes              |
| (Eriogonum pelinophilum)              | -           | Terrestrial |                  |
| Chub, Bonytail                        | Endangered  | Fish        | Yes              |
| (Gila elegans)                        | Ŭ           | Freshwater  |                  |
| Chub, Humpback                        | Endangered  | Fish        | Yes              |
| (Gila cypha)                          | Ū.          | Freshwater  |                  |
| Squawfish, Colorado                   | Endangered  | Fish        | Yes              |
| (Ptychocheilus lúcius)                | U U         | Freshwater  |                  |
| Sucker, Razorback                     | Endangered  | Fish        | Yes              |
| (Xyrauchen texanus)                   | Ū           | Freshwater  |                  |
| Trout, Bull                           | Threatened  | Fish        | No               |
| (Salvelinus confluentus)              |             | Freshwater  |                  |
| Trout, Greenback Cutthroat            | Threatened  | Fish        | No               |
| (Oncorhynchus clarki stomias)         |             | Freshwater  |                  |
| Butterfly, Uncompangre Fritillary     | Endangered  | Insect      | No               |
| (Boloria acrocnema)                   | -           | Terrestrial |                  |
| Skipper, Pawnee Montane               | Threatened  | Insect      | No               |
| (Hesperia leonardus montana)          |             | Terrestrial |                  |
| Ferret, Black-footed                  | Endangered  | Mammal      | No               |
| (Mustela nigripes)                    | -           | Terrestrial |                  |
| Mouse, Preble's Meadow Jumping        | Threatened  | Mammal      | Yes              |
| (Zapus hudsonius preblei)             |             | Terrestrial |                  |
| Ladies'-tresses, Ute                  | Threatened  | Monocot     | No               |
| (Spiranthes diluvialis)               |             | Terrestrial |                  |
| <i>Connecticut</i> (3) species:       |             | Taxa        | Critical Habitat |
| Plover, Piping                        | Endangered  | Bird        | Yes              |
| (Charadrius melodus)                  | Lindangorod | Terrestrial | 100              |
| Mussel, Dwarf Wedge                   | Endangered  | Bivalve     | No               |
| (Alasmidonta heterodon)               | Endangerou  | Freshwater  |                  |
| Sturgeon, Shortnose                   | Endangered  | Fish        | No               |
| Stargeon, Shoralose                   | Lindangered | 1 1011      |                  |

Page 19 of 68

Saltwater, Freshwater

-104 of 154-

(Acipenser brevirostrum)

9/26/2007 2:54:11 PM Ver. 2.10.3

| Delaware                                       | (6) species:                          |            |              | <u>Taxa</u>               | Critical Habitat |
|------------------------------------------------|---------------------------------------|------------|--------------|---------------------------|------------------|
| Plover, Piping                                 |                                       | 2 <b>-</b> | Endangered   | Bird                      | Yes              |
| (Charadrius meloo                              | tus)                                  |            |              | Terrestrial               |                  |
| Sturgeon, Shortnose                            |                                       |            | Endangered   | Fish                      | No               |
| (Acipenser breviro                             | istrum)                               |            |              | Saltwater, Freshwater     |                  |
| Squirrel, Delmarva Penins                      | sula Fox                              |            | Endangered   | Mammal                    | No               |
| (Sciurus niger cine                            | ereus)                                |            |              | Terrestrial               |                  |
| Pink, Swamp                                    |                                       |            | Threatened   | Monocot                   | No               |
| (Helonias bullata)                             |                                       |            |              | Terrestrial, Freshwater   |                  |
| Pogonia, Small Whorled                         |                                       |            | Threatened   | Monocot                   | No               |
| (Isotria medeoloid                             | es)                                   |            | ,            | Terrestrial               |                  |
| Furtle, Bog (Northern pop                      | ulation)                              |            | Threatened   | Reptile                   | No               |
| (Clemmys muhlen                                | bergii)                               |            |              | Terrestrial, Freshwater   | N 14             |
| Florida                                        | (56) species:                         | 2          |              | Taxa                      | Critical Habitat |
| Salamander, Flatwoods                          | ()                                    |            | Threatened   | Amphibian                 | No               |
| (Ambystoma cing                                | ulatum)                               | ,          |              | Freshwater, Vernal po     |                  |
| Caracara, Audubon's Cre                        |                                       |            | Threatened   | Bird                      | No               |
| (Polyborus plancu                              |                                       |            |              | Terrestrial               |                  |
| Kite, Everglade Snail                          |                                       |            | Endangered   | Bird                      | Yes              |
| (Rostrhamus soci                               | abilis plumbeus)                      |            |              | Terrestrial               | 100              |
| Plover, Piping                                 |                                       |            | Endangered   | Bird                      | Yes              |
| (Charadrius meloc                              | dus)                                  |            |              | Terrestrial               | 100              |
| Scrub-Jay, Florida                             |                                       |            | Threatened   | Bird                      | No               |
| (Aphelocoma coel                               | rulescens)                            |            | moateriou    | Terrestrial               | 110              |
| Sparrow, Florida Grassho                       | •                                     |            | Endangered   | Bird                      | No               |
|                                                | vannarum floridanus)                  |            | Lindangorod  | Terrestrial               | 190              |
| Stork, Wood                                    |                                       |            | Endangered   | Bird                      | No               |
| (Mycteria america                              | na)                                   |            | Lindangorod  | Terrestrial               |                  |
| Noodpecker, Red-cockac                         |                                       |            | Endangered   | Bird                      | No               |
| (Picoides borealis                             |                                       |            | g            | Terrestrial               |                  |
| Bankclimber, Purple                            | ,                                     |            | Threatened   | Bivalve                   | No               |
| Elliptoideus sloat                             | ianus)                                |            |              | Freshwater                |                  |
| Mussel, Gulf Moccasinshe                       |                                       |            | Endangered   | Bivalve                   | No               |
| (Medionidus penid                              |                                       |            |              | Freshwater                |                  |
| Mussel, Oval Pigtoe                            |                                       |            | Endangered   | Bivalve                   | No               |
| (Pleuroberna pyrif                             | orme)                                 |            | Lindangered  | Freshwater                | 110              |
| Mussel, Shiny-rayed Pock                       |                                       |            | Endangered   | Bivalve                   | No               |
| (Lampsilis subang                              |                                       |            |              | Freshwater                |                  |
| Slabshell, Chipola                             | unatur/                               |            | Threatened   | Bivalve                   | No               |
| Elliptio chipolaen                             | eie)                                  |            | modelleu     | Freshwater                |                  |
|                                                | 510)                                  |            | Endangered   | Bivalve                   | No               |
| Threeridge, Fat (Mussel)                       | <i>ii</i> )                           |            | Linuarigered | Bivalve                   | No               |
| (Amblema neislen                               | ν<br>·                                |            | Endongered   |                           | <sup>'</sup> Nie |
| Forrovo Florida                                |                                       |            |              |                           |                  |
| Torreya, Florida<br><i>(Torreya taxifolia)</i> | · · · · · · · · · · · · · · · · · · · |            | Endangered   | Conf/cycds<br>Terrestrial | No               |

Page 20 of 68

-105 of 154-

| Florida (56) species:                       |            | Taxa                   | Critical Habitat                                                                                               |
|---------------------------------------------|------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| Birds-in-a-nest, White                      | Threatened | Dicot                  | No                                                                                                             |
| (Macbridea alba)                            |            | Terrestrial            | · · · · · ·                                                                                                    |
| Blazing Star, Scrub                         | Endangered | Dicot                  | No                                                                                                             |
| (Liatris ohlingerae)                        |            | Terrestrial            |                                                                                                                |
| Bonamia, Florida                            | Threatened | Dicot                  | No                                                                                                             |
| (Bonamia grandiflora)                       |            | Terrestrial            | ÷.                                                                                                             |
| Buckwheat, Scrub                            | Threatened | Dicot                  | No                                                                                                             |
| (Eriogonum longifolium var. gnaphalifolium) |            | Terrestrial            |                                                                                                                |
| Butterwort, Godfrey's                       | Threatened | Dicot                  | No                                                                                                             |
| (Pinguicula ionantha)                       |            | Terrestrial, Freshwate | r - Carl                                                                                                       |
| Fringe Tree, Pygmy                          | Endangered | Dicot                  | No                                                                                                             |
| (Chionanthus pygmaeus)                      |            | Terrestrial            |                                                                                                                |
| Harebells, Avon Park                        | Endangered | Dicot                  | No                                                                                                             |
| (Crotalaria avonensis)                      |            | Terrestrial            |                                                                                                                |
| Hypericum, Highlands Scrub                  | Endangered | Dicot                  | No                                                                                                             |
| (Hypericum cumulicola)                      |            | Terrestrial            |                                                                                                                |
| Lupine, Scrub                               | Endangered | Dicot                  | No                                                                                                             |
| (Lupinus aridorum)                          |            | Terrestrial            |                                                                                                                |
| Meadowrue, Cooley's                         | Endangered | Dicot                  | No                                                                                                             |
| (Thalictrum cooleyi)                        |            | Terrestrial            |                                                                                                                |
| Mustard, Carter's                           | Endangered | Dicot                  | No                                                                                                             |
| (Warea carteri)                             |            | Terrestrial            |                                                                                                                |
| Pinkroot, Gentian                           | Endangered | Dicot                  | No                                                                                                             |
| (Spigelia gentianoides)                     |            | Terrestrial            |                                                                                                                |
| Plum, Scrub                                 | Endangered | Dicot                  | No                                                                                                             |
| (Prunus geniculata)                         |            | Terrestrial            |                                                                                                                |
| Polygala, Lewton's                          | Endangered | Dicot                  | No                                                                                                             |
| (Polygala lewtonii)                         |            | Terrestrial            |                                                                                                                |
| Rosemary, Short-leaved                      | Endangered | Dicot                  | No                                                                                                             |
| (Conradina brevifolia)                      |            | Terrestrial            |                                                                                                                |
| Sandlace                                    | Endangered | Dicot                  | No                                                                                                             |
| (Polygonella myriophylla)                   |            | Terrestrial            | and a second |
| Spurge, Telephus                            | Threatened | Dicot                  | No                                                                                                             |
| (Euphorbia telephioides)                    |            | Terrestrial            |                                                                                                                |
| Warea, Wide-leaf                            | Endangered | Dicot                  | No                                                                                                             |
| (Warea amplexifolia)                        |            | Terrestrial            |                                                                                                                |
| Whitlow-wort, Papery                        | Threatened | Dicot                  | No                                                                                                             |
| (Paronychia chartacea)                      |            | Terrestrial            |                                                                                                                |
| Wings, Pigeon                               | Threatened | Dicot                  | No                                                                                                             |
| (Clitoria fragrans)                         |            | Terrestrial            |                                                                                                                |
| Wireweed                                    | Endangered | Dicot                  | No                                                                                                             |
| (Polygonella basiramia)                     |            | Terrestrial            |                                                                                                                |

Page 21 of 68

-106 of 154-

|                                       |             | · · · · ·    |                          | 1 C              |
|---------------------------------------|-------------|--------------|--------------------------|------------------|
| Florida (56) speci                    | es:         |              | <u>Taxa</u>              | Critical Habita  |
| Ziziphus, Florida                     | 19 - Ay - A | Endangered   | Dicot                    | No               |
| (Ziziphus celata)                     |             |              | Terrestrial              |                  |
| Darter, Okaloosa                      | · .         | Endangered   | Fish                     | No               |
| (Etheostoma okaloosae)                |             |              | Freshwater               |                  |
| Sturgeon, Gulf                        |             | Threatened   | Fish                     | Yes              |
| (Acipenser oxyrinchus desotoi)        |             |              | Saltwater, Freshwater    | •                |
| Cladonia, Florida Perforate           |             | Endangered   | Lichen                   | No               |
| (Cladonia perforata)                  |             |              | Terrestrial              |                  |
| Bat, Gray                             |             | Endangered   | Mammal                   | No               |
| (Myotis grisescens)                   |             |              | Subterraneous, Terres    | strial           |
| Bat, Indiana                          |             | Endangered   | Mammal                   | Yes              |
| (Myotis sodalis)                      |             |              | Subterraneous, Terres    | strial           |
| Mouse, Choctawhatchee Beach           |             | Endangered   | Mammal                   | Yes              |
| (Peromyscus polionotus allophrys)     |             |              | Coastal (neritic), Terre | estrial          |
| Mouse, Perdido Key Beach              |             | Endangered   | Mammal                   | Yes              |
| (Peromyscus polionotus trissyllepsis) |             | •            | Coastal (neritic)        |                  |
| Panther, Florida                      | •           | Endangered   | Mammal                   | No               |
| (Puma (=Felis) concolor coryi)        |             |              | Terrestrial              |                  |
| Vole, Florida Salt Marsh              |             | Endangered   | Mammal                   | No               |
| (Microtus pennsylvanicus dukecampbe   | lli)        |              | Terrestrial, Brackish    |                  |
| Manatee, West Indian                  |             | Endangered   | Marine mml               | Yes              |
| (Trichechus manatus)                  |             | ,<br>,       | Saltwater                |                  |
| Beargrass, Britton's                  |             | Endangered   | Monocot                  | No               |
| (Nolina brittoniana)                  |             | g            | Terrestrial              |                  |
| Sea turtle, green                     |             | Endangered   | Reptile                  | No               |
| (Chelonia mydas)                      |             |              | Saltwater                |                  |
| Sea turtle, hawksbill                 |             | Endangered   | Reptile                  | Yes              |
| (Eretmochelys imbricata)              |             | Lindaligerou | Saltwater                | 100              |
| Sea turtle, Kemp's ridley             |             | Endangered   | Reptile                  | No               |
| (Lepidochelys kempii)                 |             | Lindarigoroa | Saltwater                |                  |
| Sea turtle, leatherback               |             | Endangered   | Reptile                  | Yes              |
| (Dermochelys coríacea)                |             | Endungerou   | Saltwater                | 100              |
| Sea turtle, loggerhead                |             | Threatened   | Reptile                  | No               |
| (Caretta caretta)                     |             | modelonou    | Saltwater                |                  |
| Skink, Blue-tailed Mole               |             | Threatened   | Reptile                  | No               |
| (Eumeces egregius lividus)            |             | moatened     | Terrestrial              | NO               |
| Skink, Sand                           |             | Threatened   | Reptile                  | No               |
|                                       |             | meatened     | Terrestrial              | No               |
| (Neoseps reynoldsi)                   |             | Threatoned   |                          | No               |
| Snake, Eastern Indigo                 |             | Threatened   | Reptile                  | No               |
| (Drymarchon corais couperi)           |             |              | Terrestrial              |                  |
| Georgia (56) speci                    | es:         |              | <u>Taxa</u>              | Critical Habita  |
| Salamander, Flatwoods                 |             | Threatened   | Amphibian                | No               |
| (Ambystoma cingulatum)                |             |              | Freshwater, Vernal po    | ool, Terrestrial |
| 26/2007 2:54:11 PM Ver. 2.10.3        |             |              |                          | Page 22          |
| -0/200/ 2.34.11 FIVE Y 66. 2.10.3     |             |              |                          | Page 22          |

Page 22 of 68

-107 of 154-

### Georgia

### (56) species:

Plover, Piping (Charadrius melodus) Stork, Wood (Mycteria americana) Warbler (=Wood), Kirtland's (Dendroica kirtlandii) Woodpecker, Red-cockaded (Picoides borealis) Bankclimber, Purple (Elliptoideus sloatianus) Combshell, Upland (Epioblasma metastriata) Kidneyshell, Triangular (Ptychobranchus greenii) Mucket, Pink (Pearlymussel) (Lampsilis abrupta) Mussel, Acomshell Southern (Epioblasma othcaloogensis) Mussel, Alabama Moccasinshell (Medionidus acutissimus) Mussel, Coosa Moccasinshell (Medionidus parvulus) Mussel, Fine-lined Pocketbook (Lampsilis altilis) Mussel, Gulf Moccasinshell (Medionidus penicillatus) Mussel, Oval Pigtoe (Pleurobema pyriforme) Mussel, Ovate Clubshell (Pleurobema perovatum) Mussel, Shiny-rayed Pocketbook (Lampsilis subangulata) Mussel, Southern Clubshell (Pleuroberna decisum) Mussel, Southern Pigtoe (Pleurobema georgianum) Threeridge, Fat (Mussel) (Amblema neislerii) Torreya, Florida (Torreya taxifolia) Amphianthus, Little (Amphianthus pusillus)

9/26/2007 2:54:11 PM Ver. 2.10.3

|                | •                        |
|----------------|--------------------------|
| Endangered     | <u>Taxa</u><br>Bird      |
| Linualigered   | Terrestrial              |
| Endangered     | Bird                     |
| Tedensored     | Terrestrial<br>Bird      |
| Endangered     | Terrestrial              |
| Endangered     | Bird                     |
| Threatened     | Bivalve                  |
| Enders several | Freshwater               |
| Endangered     | Bivalve<br>Freshwater    |
| Endangered     | Bivalve                  |
|                | Freshwater               |
| Endangered     | Bivalve                  |
| Endengered     | Freshwater<br>Bivalve    |
| Endangered     | Freshwater               |
| Threatened     | Bivalve                  |
|                | Freshwater               |
| Endangered     | Bivalve                  |
| Thursday       | Freshwater               |
| Threatened     | Bivalve<br>Freshwater    |
| Endangered     | Bivalve                  |
|                | Freshwater               |
| Endangered     | Bivalve                  |
| Endengered     | Freshwater<br>Bivalve    |
| Endangered     | Freshwater               |
| Endangered     | Bivalve                  |
| <b>.</b>       | Freshwater               |
| Endangered     | Bivalve<br>Freshwater    |
| Endangered     | Bivalve                  |
|                | Freshwater               |
| Endangered     | Bivalve                  |
| Endangered     | Freshwater<br>Conf/cvcds |
|                | Terrestrial              |
| Threatened     | Dicot                    |
|                | Freshwater               |

**Critical Habitat** Yes No No No No Yes Yes No Yes Yes Yes Yes No No Yes No Yes Yes No No No

Page 23 of 68

-108 of 154-

| Georgia                  | (56) species: |               | <u>Taxa</u>             | Critical Habit |
|--------------------------|---------------|---------------|-------------------------|----------------|
| Barbara Buttons, Mohr's  |               | Threatened    | Dicot                   | No             |
| (Marshallia mohrii)      |               |               | Terrestrial             |                |
| Campion, Fringed         |               | Endangered    | Dicot                   | No             |
| (Silene polypetala)      |               |               | Terrestrial             |                |
| Dropwort, Canby's        |               | Endangered    | Dicot                   | No             |
| (Oxypolis canbyi)        |               |               | Terrestrial, Freshwater |                |
| Harperella               |               | Endangered    | Dicot                   | No             |
| (Ptilimnium nodosum)     |               | -             | Freshwater              |                |
| Pitcher-plant, Green     |               | Endangered    | Dicot                   | No             |
| (Sarracenia oreophila)   |               | ·             | Terrestrial, Freshwater |                |
| Pondberry                |               | Endangered    | Dicot                   | No             |
| (Lindera melissifolia)   |               |               | Terrestrial             |                |
| Rattleweed, Hairy        |               | Endangered    | Dicot                   | No             |
| (Baptisia arachnifera)   |               |               | Terrestrial             |                |
| Skullcap, Large-flowered |               | Threatened    | Dicot                   | No             |
| (Scutellaria montana)    |               |               | Terrestrial             |                |
| Spiraea, Virginia        |               | Threatened    | Dicot                   | No             |
| (Spiraea virginiana)     |               |               | Terrestrial             | ,,,,,          |
| Sumac, Michaux's         |               | Endangered    | Dicot                   | No             |
| (Rhus michauxii)         |               | Lindangered   | Terrestrial             |                |
| Quillwort, Black-spored  |               | Endangered    | Ferns                   | No             |
| (Isoetes melanospora)    |               | Lindaligo.ou  | Vernal pool             |                |
| Quillwort, Mat-forming   |               | Endangered    | Ferns                   | No             |
| (Isoetes tegetiformans)  |               | Endangered    | Vernal pool             |                |
| Chub, Spotfin            |               | Threatened    | Fish                    | Yes            |
| (Erimonax monachus)      |               | meateriou     | Freshwater              | 163            |
| Darter, Amber            |               | Endangered    | Fish                    | Yes            |
| (Percina antesella)      |               | Lindangered   | Freshwater              | 165            |
| Darter, Cherokee         |               | Threatened    | Fish                    | No             |
| (Etheostoma scotti)      |               | meatened      | Freshwater              | NU             |
| Darter, Etowah           |               | Endangered    | Fish                    | No             |
| (Etheostoma etowahae)    |               | Endangered    | Freshwater              | NO             |
| Darter, Goldline         |               | Threatened    | Fish                    | No             |
| (Percina aurolineata)    |               | meatened      | Freshwater              | NO             |
| Darter, Snail            |               | Threatened    | Fish                    | No             |
| •                        |               | Threatened    |                         | No             |
| (Percina tanasi)         |               | <br>Endenward | Freshwater              | Vee            |
| Logperch, Conasauga      |               | Endangered    | Fish                    | Yes            |
| (Percina jenkinsi)       |               | Thursday      | Freshwater              |                |
| Madtom, Yellowfin        |               | Threatened    | Fish                    | Yes            |
| (Noturus flavipinnis)    |               |               | Freshwater              |                |
| Shiner, Blue             |               | Threatened    | Fish                    | No             |
| (Cyprinella caerulea)    |               |               | Freshwater              |                |

Page 24 of 68

-109 of 154-

| Georgia (56) species:                                                             |            | <u>Taxa</u>                     | Critical Habita |
|-----------------------------------------------------------------------------------|------------|---------------------------------|-----------------|
| Sturgeon, Gulf                                                                    | Threatened | Fish                            | Yes             |
| (Acipenser oxyrinchus desotoi)                                                    |            | Saltwater, Freshwater           |                 |
| Sturgeon, Shortnose                                                               | Endangered | Fish                            | No              |
| (Acipenser brevirostrum)                                                          |            | Saltwater, Freshwater           |                 |
| Beetle, American Burying                                                          | Endangered | Insect                          | No              |
| (Nicrophorus americanus)                                                          |            | Terrestrial                     |                 |
| Bat, Gray                                                                         | Endangered | Mammal                          | No              |
| (Myotis grisescens)                                                               |            | Subterraneous, Terrest          | rial            |
| Bat, Indiana                                                                      | Endangered | Mammal                          | Yes             |
| (Myotis sodalis)                                                                  |            | Subterraneous, Terrest          | rial            |
| Nanatee, West Indian                                                              | Endangered | Marine mml                      | Yes             |
| (Trichechus manatus)                                                              |            | Saltwater                       |                 |
| Grass, Tennessee Yellow-eyed                                                      | Endangered | Monocot                         | No              |
| (Xyris tennesseensis)                                                             |            | Terrestrial                     |                 |
| Pogonia, Small Whorled                                                            | Threatened | Monocot                         | No              |
| (Isotria medeoloides)                                                             |            | Terrestrial                     | •               |
| Trillium, Persistent                                                              | Endangered | Monocot                         | No              |
| (Trillium persistens)                                                             |            | Terrestrial                     |                 |
| rillium, Relict                                                                   | Endangered | Monocot                         | No              |
| (Trillium reliquum)                                                               |            | Terrestrial                     |                 |
| Vater-plantain, Kral's                                                            | Threatened | Monocot                         | No              |
| (Sagittaria secundifolia)                                                         |            | Freshwater                      |                 |
| Sea turtle, loggerhead                                                            | Threatened | Reptile                         | No              |
| (Caretta caretta)                                                                 |            | Saltwater                       |                 |
| Snake, Eastern Indigo                                                             | Threatened | Reptile                         | No              |
| (Drymarchon corais couperi)                                                       | .,         | Terrestrial                     |                 |
| Idaho (21) species:                                                               |            | Taxa                            | Critical Habita |
| Crane, Whooping                                                                   | Endangered | Bird                            | Yes             |
| (Grus americana)                                                                  | Endangered | Terrestrial, Freshwater         | 100             |
| Catchfly, Spalding's                                                              | Threatened | Dicot                           | No              |
| (Silene spaldingii)                                                               | meateried  | Terrestrial                     | No              |
| Four-o'clock, Macfarlane's                                                        | Threatened | Dicot                           | No              |
| (Mirabilis macfarlanei)                                                           | Inteatened | Terrestrial                     | NO              |
| Iowellia, Water                                                                   | Threatened | Dicot                           | No              |
|                                                                                   | meatened   |                                 | NO              |
| <i>(Howellia aquatilis)</i><br>Salmon, Chinook (Snake River Fall Run)             | Threatened | Freshwater<br>Fish              | No              |
|                                                                                   | meateneu   |                                 |                 |
| (Oncorhynchus (=Salmo) tshawytscha)                                               | Threatened | Freshwater, Saltwater,          |                 |
| Salmon, Chinook (Snake River spring/summer)                                       | Threatened | Fish<br>Brookieb Soltwater Fr   | Yes             |
| (Oncorhynchus (=Salmo) tshawytscha)                                               | Endermond  | Brackish, Saltwater, Fr         |                 |
| samon sockeye (Snake Biyer nonulation)                                            | Endangered | Fish                            | No              |
| Salmon, Sockeye (Snake River population)                                          |            | Brackish, Saltwater, Fr         |                 |
| (Oncorhynchus (=Salmo) nerka)                                                     |            |                                 |                 |
| <i>(Oncorhynchus (=Salmo) nerka)</i><br>Steelhead, (Snake River Basin population) | Threatened | Fish                            | Yes             |
| (Oncorhynchus (=Salmo) nerka)                                                     | Threatened | Fish<br>Freshwater, Brackish, S |                 |

-110 of 154-

| daho (21) species:                                                                                              |                              | <u>Taxa</u>           | Critical Habitat |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|------------------|
| turgeon, White                                                                                                  | Endangered                   | Fish                  | Yes              |
| (Acipenser transmontanus)                                                                                       | <b>The set of the set of</b> | Saltwater, Freshwater | 1                |
| rout, Bull                                                                                                      | Threatened                   | Fish                  | No               |
| (Salvelinus confluentus)                                                                                        |                              | Freshwater            |                  |
| rout, Bull (Columbia River population)                                                                          | Threatened                   | Fish                  | Yes              |
| (Salvelinus confluentus)                                                                                        | · <u> </u>                   | Freshwater            |                  |
| rout, Bull (Klamath River population)                                                                           | Threatened                   | Fish                  | Yes              |
| (Salvelinus confluentus)                                                                                        |                              | Freshwater            |                  |
| impet, Banbury Springs                                                                                          | Endangered                   | Gastropod             | No               |
| (Lanx sp.)                                                                                                      |                              | Freshwater            |                  |
| nail, Bliss Rapids                                                                                              | Threatened                   | Gastropod             | No               |
| (Taylorconcha serpenticola)                                                                                     |                              | Freshwater            |                  |
| nail, Snake River Physa                                                                                         | Endangered                   | Gastropod             | No               |
| (Physa natricina)                                                                                               |                              | Terrestrial           |                  |
| inail, Utah Valvata                                                                                             | Endangered                   | Gastropod             | No               |
| (Valvata utahensis)                                                                                             |                              | Terrestrial           |                  |
| pringsnail, Bruneau Hot                                                                                         | Endangered                   | Gastropod             | No               |
| (Pyrgulopsis bruneauensis)                                                                                      |                              | Freshwater            |                  |
| lear, Grizzly                                                                                                   | Threatened                   | Mammal                | No               |
| (Ursus arctos horribilis)                                                                                       |                              | Terrestrial           |                  |
| Caribou, Woodland                                                                                               | Endangered                   | Mammal                | No               |
| (Rangifer tarandus caribou)                                                                                     |                              | Terrestrial           |                  |
| quirrel, Northern Idaho Ground                                                                                  | Threatened                   | Mammai                | No               |
| (Spermophilus brúnneus brunneus)                                                                                |                              | Terrestrial           |                  |
| Volf, Gray                                                                                                      | Endangered                   | Mammal                | Yes              |
| (Canis lupus)                                                                                                   |                              | Terrestrial           |                  |
| Illinois (25) species:                                                                                          |                              | Taxa                  | Critical Habita  |
| Plover, Piping                                                                                                  | Endangered                   | Bird                  | Yes              |
| (Charadrius melodus)                                                                                            | •                            | Terrestrial           |                  |
| ern, Interior (population) Least                                                                                | Endangered                   | Bird                  | No               |
| (Sterna antillarum)                                                                                             |                              | Terrestrial           |                  |
| anshell                                                                                                         | Endangered                   | Bivalve               | No               |
| (Cyprogenia stegaria)                                                                                           |                              | Freshwater            |                  |
| lucket, Pink (Pearlymussel)                                                                                     | Endangered                   | Bivalve               | No               |
| (Lampsilis abrupta)                                                                                             |                              | Freshwater            |                  |
| Aussel, Clubshell                                                                                               | Endangered                   | Bivalve               | No               |
| (Pleuroberna clava)                                                                                             | gorou                        | Freshwater            |                  |
| Pearlymussel, Fat Pocketbook                                                                                    | Endangered                   | Bivalve               | No               |
| (Potamilus capax)                                                                                               | Endangereu                   | Freshwater            |                  |
| Pearlymussel, Higgins' Eye                                                                                      | Endangered                   | Bivalve               | No               |
| (Lampsilis higginsii)                                                                                           | Lindangered                  | Freshwater            | INO              |
| <i>(Lampsilis nigginsil)</i><br>Pearlymussel, Orange-footed                                                     | Endoncorod                   |                       | Nia              |
| ( BATTY TTTTS SAN STRATTS BATTY BATTY BATTY AND A SAN A S | Endangered                   | Bivaive               | No               |
| (Plethobasus cooperianus)                                                                                       | Ū.                           | Freshwater            |                  |

# -111 of 154-

| Illinois (25) species:            |             |                           | Critical Habitat |
|-----------------------------------|-------------|---------------------------|------------------|
| Pearlymussel, White Wartyback     | Endangered  | Bivalve                   | No               |
| (Plethobasus cicatricosus)        | · .         | Freshwater                |                  |
| Amphipod, Illinois Cave           | Endangered  | Crustacean                | No               |
| (Gammarus acherondytes)           |             | Subterraneous, Freshwa    |                  |
| Aster, Decurrent False            | Threatened  | Dicot                     | No               |
| (Boltonia decurrens)              |             | Terrestrial, Freshwater   |                  |
| Clover, Leafy Prairie             | Endangered  | Dicot                     | No               |
| (Dalea foliosa)                   |             | Terrestrial               | •                |
| Clover, Prairie Bush              | Threatened  | Dicot                     | No               |
| (Lespedeza leptostachya)          |             | Terrestrial               |                  |
| Daisy, Lakeside                   | Threatened  | Dicot                     | No               |
| (Hymenoxys herbacea)              |             | Freshwater                |                  |
| Milkweed, Mead's                  | Threatened  | Dicot                     | No               |
| (Asclepias meadii)                | n.          | Terrestrial               |                  |
| Potato-bean, Price's              | Threatened  | Dicot                     | No               |
| (Apios priceana)                  |             | Terrestrial               |                  |
| Thistle, Pitcher's                | Threatened  | Dicot                     | No               |
| (Cirsium pitcheri)                |             | Terrestrial               |                  |
| Sturgeon, Pallid                  | Endangered  | Fish                      | No               |
| (Scaphirhynchus albus)            |             | Freshwater                |                  |
| Snail, Iowa Pleistocene           | Endangered  | Gastropod                 | No               |
| (Discus macclintocki)             |             | Terrestrial               |                  |
| Butterfly, Karner Blue            | Endangered  | Insect                    | No               |
| (Lycaeides melissa samuelis)      |             | Terrestrial               |                  |
| Dragonfly, Hine's Emerald         | Endangered  | Insect                    | Yes              |
| (Somatochlora hineana)            |             | Freshwater, Terrestrial   |                  |
| Bat, Gray                         | Endangered  | Mammal                    | No               |
| (Myotis grisescens)               |             | Subterraneous, Terrestri  | al               |
| Bat, Indiana                      | Endangered  | Mammal                    | Yes              |
| (Myotis sodalis)                  | -           | Subterraneous, Terrestria | al               |
| Orchid, Eastern Prairie Fringed   | Threatened  | Monocot                   | No               |
| (Platanthera leucophaea)          |             | Terrestrial               |                  |
| Pogonia, Small Whorled            | Threatened  | Monocot                   | No               |
| (Isotria medeoloides)             |             | Terrestrial               | •                |
| Indiana (23) species:             |             | Taxa                      | Critical Habitat |
| Plover, Piping                    | Endangered  | Bird                      | Yes              |
| (Charadrius melodus)              | Lindangereu | Terrestrial               |                  |
| Tern, Interior (population) Least | Endangered  | Bird                      | No               |
| (Sterna antillarum)               | Lindangereu | Terrestrial               |                  |
| (Sterna antiliarum)<br>Fanshell   | Endangered  | Bivalve                   | No               |
| Falishell                         | Endangered  | Freshwater                |                  |

*(Cyprogenia stegaria)* Mucket, Pink (Pearlymussel) *(Lampsilis abrupta)* 

9/26/2007 2:54:12 PM Ver. 2.10.3

-112 of 154-

Endangered

Bivalve

Freshwater

No

Page 27 of 68

**US EPA ARCHIVE DOCUMENT** 

| Indiana                   | (23) species:                           |            | Taxa                   | Critical Habitat |
|---------------------------|-----------------------------------------|------------|------------------------|------------------|
| Mussel, Clubshell         |                                         | Endangered | Bivalve                | No               |
| (Pleuroberna cl           | ava)                                    |            | Freshwater             |                  |
| Mussel, Ring Pink (=G     | olf Stick Pearly)                       | Endangered | Bivalve                | No               |
| (Obovaria retus           | a)                                      |            | Freshwater             |                  |
| Mussel, Rough Pigtoe      |                                         | Endangered | Bivalve                | No               |
| (Pleuroberna pl           | lenum)                                  | • • •      | Freshwater             |                  |
| Pearlymussel, Fat Pocl    | ketbook                                 | Endangered | Bivalve                | No               |
| (Potamilus cap            |                                         | Ŧ          | Freshwater             |                  |
| Pearlymussel, Orange-     | footed                                  | Endangered | Bivalve                | No               |
| (Plethobasus c            | ooperianus)                             | · ·        | Freshwater             |                  |
| Pearlymussel, Tubercle    |                                         | Endangered | Bivalve                | No               |
| (Epioblasma to            |                                         | · ·        | Freshwater             |                  |
| Pearlymussel, White C     |                                         | Endangered | Bivalve                | No               |
| •                         | oliquata perobliqua)                    |            | Freshwater             |                  |
| Pearlymussel, White W     |                                         | Endangered | Bivalve                | No               |
| (Plethobasus c            | -                                       |            | Freshwater             |                  |
| Riffleshell, Northern     |                                         | Endangered | Bivalve                | No               |
| (Epioblasma to            | rulosa rangiana)                        |            | Freshwater             |                  |
| Clover, Running Buffal    |                                         | Endangered | Dicot                  | No               |
| (Trifolium stolo          |                                         |            | Terrestrial            |                  |
| Goldenrod, Short's        |                                         | Endangered | Dicot                  | No               |
| (Solidago short           | (i)                                     | Ū          | Terrestrial            |                  |
| Milkweed, Mead's          |                                         | Threatened | Dicot                  | No               |
| (Asclepias mea            | dii)                                    |            | Terrestrial            |                  |
| Thistle, Pitcher's        |                                         | Threatened | Dicot                  | No               |
| (Cirsium pitche           | ri)                                     |            | Terrestrial            |                  |
| Butterfly, Kamer Blue     |                                         | Endangered | Insect                 | No               |
| (Lycaeides mel            | issa samuelis)                          | Ū          | Terrestrial            |                  |
| Butterfly, Mitchell's Sat | •                                       | Endangered | Insect                 | No               |
| -                         | itchellii mitchellii)                   | · ·        | Terrestrial            |                  |
| Bat, Gray                 |                                         | Endangered | Mammal                 | No               |
| (Myotis grisesc           | ens)                                    |            | Subterraneous, Terres  |                  |
| Bat, Indiana              |                                         | Endangered | Mammal                 | Yes              |
| (Myotis sodalis)          | )                                       | •          | Subterraneous, Terres  | strial           |
| Orchid, Eastern Prairie   |                                         | Threatened | Monocot                | No               |
| (Platanthera let          | •                                       |            | Terrestrial            |                  |
| Snake, Northern Copp      |                                         | Threatened | Reptile                | No               |
|                           | ogaster neglecta)                       |            | Freshwater, Terrestria |                  |
| Iowa                      | (14) species:                           |            | Taxa                   | Critical Habitat |
| Plover, Piping            | , , , , , , , , , , , , , , , , , , , , | Endangered | Bird                   | Yes              |
| (Charadrius me            | elodus)                                 |            | Terrestrial            |                  |
| Tern, Interior (populatio |                                         | Endangered | Bird                   | No               |
| (Sterna antillari         | -                                       | -          | Terrestrial            |                  |
|                           |                                         |            |                        |                  |

Page 28 of 68

## -113 of 154-

| lowa (14) species:                        |            | Taxa                   | Critical Habitat |
|-------------------------------------------|------------|------------------------|------------------|
| Pearlymussel, Fat Pocketbook              | Endangered | Bivalve                | No               |
| (Potamilus capax)                         |            | Freshwater             |                  |
| Pearlymussel, Higgins' Eye                | Endangered | Bivalve                | No               |
| (Lampsilis higginsii)                     |            | Freshwater             |                  |
| Clover, Prairie Bush                      | Threatened | Dicot                  | No               |
| (Lespedeza leptostachya)                  |            | Terrestrial            |                  |
| Milkweed, Mead's                          | Threatened | Dicot                  | No               |
| (Asclepias meadii)                        |            | Terrestrial            |                  |
| Monkshood, Northern Wild                  | Threatened | Dicot                  | No               |
| (Aconitum noveboracense)                  |            | Terrestrial            | *                |
| Fern, American hart's-tongue              | Threatened | Ferns                  | No               |
| (Asplenium scolopendrium var. americanum) |            | Terrestrial            |                  |
| Shiner, Topeka                            | Endangered | Fish                   | Yes              |
| (Notropis topeka (=tristis))              |            | Freshwater             |                  |
| Sturgeon, Pallid                          | Endangered | Fish                   | No               |
| (Scaphirhynchus albus)                    | Ū.         | Freshwater             |                  |
| Snail, Iowa Pleistocene                   | Endangered | Gastropod              | No               |
| (Discus macclintocki)                     | 0          | Terrestrial            |                  |
| Bat, Indiana                              | Endangered | Mammal                 | Yes              |
| (Myotis sodalis)                          | C C        | Subterraneous, Terres  | strial           |
| Orchid, Eastern Prairie Fringed           | Threatened | Monocot                | No               |
| (Platanthera leucophaea)                  |            | Terrestrial            |                  |
| Orchid, Western Prairie Fringed           | Threatened | Monocot                | No               |
| (Platanthera praeclara)                   |            | Terrestrial            |                  |
| Kansas (12) species:                      |            | Taxa                   | Critical Habitat |
| Crane, Whooping                           | Endangered | Bird                   | Yes              |
| (Grus americana)                          |            | Terrestrial, Freshwate | r                |
| Plover, Piping                            | Endangered | Bird                   | Yes              |
| (Charadrius melodus)                      |            | Terrestrial            |                  |
| Tern, Interior (population) Least         | Endangered | Bird                   | No               |
| (Stema antillarum)                        |            | Terrestrial            |                  |
| Milkweed, Mead's                          | Threatened | Dicot                  | No               |
| (Asclepias meadii)                        |            | Terrestrial            |                  |
| Madtom, Neosho                            | Threatened | Fish                   | No               |
| (Noturus placidus)                        |            | Freshwater             |                  |
| Shiner, Arkansas River                    | Threatened | Fish                   | Yes              |
| (Notropis girardi)                        |            | Freshwater             |                  |
| Shiner, Topeka                            | Endangered | Fish                   | Yes              |
| (Notropis topeka (=tristis))              |            | Freshwater             |                  |
| Sturgeon, Pallid                          | Endangered | Fish                   | No               |
| (Scaphirhynchus albus)                    | _          | Freshwater             |                  |
| Beetle, American Burying                  | Endangered | Insect                 | No               |
| (Nicrophorus americanus)                  | -          | Terrestrial            |                  |
| 9/26/2007 2:54:12 PM Ver. 2.10.3          |            |                        | Page 29 of 68    |
|                                           |            |                        | 5                |

-114 of 154-

| <b>Kansas</b><br>Bat, Gray    | (12) species:                         | Endengered        | <u>Taxa</u>          | Critical Habita |
|-------------------------------|---------------------------------------|-------------------|----------------------|-----------------|
|                               |                                       | Endangered        | Mammal<br>Outstand   | No              |
| (Myotis grisescens)           |                                       | <b>F</b> adadanad | Subterraneous, Terre |                 |
| Ferret, Black-footed          |                                       | Endangered        | Mammal               | No              |
| (Mustela nigripes)            |                                       | Thus shows a      | Terrestrial          | ,               |
| Orchid, Western Prairie Fri   | •                                     | Threatened        | Monocot              | No              |
| (Platanthera praec            | ara)                                  |                   | Terrestrial          |                 |
| Kentucky                      | (47) species:                         |                   | <u>Taxa</u>          | Critical Habita |
| Plover, Piping                |                                       | Endangered        | Bird                 | Yes             |
| (Charadrius melod             | us)                                   | r.                | Terrestrial          |                 |
| Tern, Interior (population) I | _east                                 | Endangered        | Bird                 | No              |
| (Sterna antillarum)           |                                       |                   | Terrestrial          |                 |
| Warbler (=Wood), Kirtland     | S                                     | . Endangered      | Bird                 | No              |
| (Dendroica kirtland           | <i>ii)</i>                            |                   | Terrestrial          |                 |
| Warbler, Bachman's            |                                       | Endangered        | Bird                 | No              |
| (Vermivora bachma             | anii)                                 |                   | Terrestrial          |                 |
| Woodpecker, Ivory-billed      |                                       | Endangered        | Bird                 | No              |
| (Campephilus princ            | cipalis)                              |                   | Terrestrial          |                 |
| Woodpecker, Red-cockade       | ed                                    | Endangered        | Bird                 | No              |
| (Picoides borealis)           |                                       |                   | Terrestrial          |                 |
| Fanshell                      |                                       | Endangered        | Bivalve              | No              |
| (Cyprogenia stegal            | ria)                                  |                   | Freshwater           |                 |
| Mucket, Pink (Pearlymusse     | el)                                   | Endangered        | Bivalve              | No              |
| (Lampsilis abrupta)           | • • • • • • • • • • • • • • • • • • • |                   | Freshwater           |                 |
| Mussel, Clubshell             |                                       | Endangered        | Bivalve              | No              |
| (Pleurobema clava             | <b>)</b>                              |                   | Freshwater           |                 |
| Mussel, Cumberland Comi       | oshell                                | Endangered        | Bivalve              | Yes             |
| (Epioblasma brevid            | lens)                                 |                   | Freshwater           |                 |
| Mussel, Cumberland Elkto      | e                                     | Endangered        | Bivalve              | Yes             |
| (Alasmidonta atrop            | urpurea)                              |                   | Freshwater           |                 |
| Mussel, Oyster                |                                       | Endangered        | Bivalve              | Yes             |
| (Epioblasma capsa             | eformis)                              |                   | Freshwater           |                 |
| Mussel, Ring Pink (=Golf S    | tick Pearly)                          | Endangered        | Bivalve              | No              |
| (Obovaria retusa)             |                                       |                   | Freshwater           |                 |
| Mussel, Rough Pigtoe          |                                       | Endangered        | Bivalve              | No              |
| (Pleurobema plenu             | im)                                   |                   | Freshwater           |                 |
| Mussel, Winged Mapleleaf      |                                       | Endangered        | Bivalve              | No              |
| (Quadrula fragosa)            |                                       |                   | Freshwater           |                 |
| Pearlymussel, Appalachiar     | n Monkeyface                          | Endangered        | Bivalve              | No              |
| (Quadrula sparsa)             |                                       |                   | Freshwater           |                 |
| Pearlymussel, Cracking        |                                       | Endangered        | Bivalve              | No              |
| (Hemistena lata)              |                                       |                   | Freshwater           |                 |
| Pearlymussel, Cumberland      | d Bean                                | Endangered        | Bivalve              | No              |
| (Villosa trabalis)            |                                       |                   | Freshwater           |                 |

.

**US EPA ARCHIVE DOCUMENT** 

-115 of 154-

| (Dromus dromas)FreshwaterPearlymussel, Fat PocketbookEndangeredBivalveNo(Podias fabula)EndangeredBivalveNo(Pegias fabula)EndangeredBivalveNo(Pedias fabula)FreshwaterFreshwaterPearlymussel, Orange-footedEndangeredBivalveNo(Piethobasus cooperianus)FreshwaterFreshwaterPearlymussel, Purple Cat's PawEndangeredBivalveNo(Epioblasma obliquate obliquate)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo <th>Kentucky</th> <th>(47) species:</th> <th></th> <th><u>Taxa</u></th> <th>Critical Habitat</th>                                                                                                                                                                                                                                                                                                                      | Kentucky                   | (47) species:                         |            | <u>Taxa</u> | Critical Habitat |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|------------|-------------|------------------|
| Pearlymussel, Fat Pocketbook<br>(Potamilus capax)Endangered<br>FreshwaterBivalve<br>FreshwaterNoPearlymussel, Little-wing<br>(Plefhobasus cooperianus)Endangered<br>(Plefhobasus cooperianus)Bivalve<br>FreshwaterNoPearlymussel, Orange-tooted<br>(Plefhobasus cooperianus)Endangered<br>FreshwaterBivalve<br>PreshwaterNoPearlymussel, Purple Cat's Paw<br>(Epioblasma colliquata obliquata)FreshwaterNoPearlymussel, Tubercled-blossom<br>(Epioblasma torulosa torulosa)FreshwaterNoPearlymussel, Vibite Wartyback<br>(Epioblasma torulosa torulosa)Endangered<br>FreshwaterBivalve<br>NoNoPearlymussel, Vibite Wartyback<br>(Epioblasma torulosa torulosa)Endangered<br>FreshwaterBivalve<br>NoNoPearlymussel, Vibite Wartyback<br>(Epioblasma torulosa torulosa)Endangered<br>FreshwaterBivalve<br>NoNo(Epioblasma florentina florentina)FreshwaterNoFreshwater(Epioblasma florentina walker (=E. walkeri))FreshwaterNo(Epioblasma florentina walker (=E. walkeri)) <t< td=""><td>Pearlymussel, Dromedary</td><td></td><td>Endangered</td><td>Bivalve</td><td>No</td></t<>                                                  | Pearlymussel, Dromedary    |                                       | Endangered | Bivalve     | No               |
| (Potamilus capax)FreshwaterPeatrymussel, Little-wingEndangeredBivalveNo(Pegias fabula)FreshwaterNoPeatrymussel, Orange-tootedEndangeredBivalveNo(Piethobasus cooperianus)FreshwaterNoPeatrymussel, Purple Cat's PawEndangeredBivalveNo(Epioblasma coliquata coliquata)FreshwaterNoPeatrymussel, Tuberoled-blossomEndangeredBivalveNo(Epioblasma torulosa torulosa)FreshwaterNoPeatrymussel, Vubite WartybackEndangeredBivalveNo(Epioblasma torulosa countosa)FreshwaterNoPeatrymussel, Vubite WartybackEndangeredBivalveNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma forentina forentina)FreshwaterNo(Epioblasma forentina forentina)FreshwaterNo(Epioblasma forentina walkeri (-E. walkeril))FreshwaterNo(Epioblasma forentina walkeri (-E. walkeril))FreshwaterNo(Epioblasma forentina walkeri (-E. walkeril))FreshwaterNo(Epioblasma forentina walkeri (-E. walkeril))TerrestrialNo(Palaemonias ganteri)TerrestrialNo(Cover, Running BuffaloEndangeredDicotNo(Solidago shortii)TerrestrialNo(Solidago shortii)TerrestrialNo(Solidago shortii)TerrestrialNo(Arabis perstellata E. L. Braun var. ampla Rollins)Terrestrial <td>,</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                | ,                          |                                       |            |             |                  |
| Pearlymussel, Little-wing<br>(Pegias fabula)Endangered<br>FrestwaterBivalve<br>FrestwaterPearlymussel, Orange-footed<br>(Pielthobasus cooperianus)Endangered<br>FrestwaterBivalve<br>No<br>FrestwaterPearlymussel, Purple Cat's Paw<br>(Epibblasma obliquata obliquata)Endangered<br>FrestwaterBivalve<br>No<br>FrestwaterPearlymussel, Tuberclef-blossom<br>(Epibblasma torulosa torulosa)Endangered<br>FrestwaterBivalve<br>No<br>FrestwaterPearlymussel, White Wartyback<br>(Epibblasma forentina florentina)Endangered<br>FrestwaterBivalve<br>No<br>FrestwaterPearlymussel, Vellow-blossom<br>(Epibblasma forentina florentina)Endangered<br>FrestwaterBivalve<br>No<br>FrestwaterPitfleshell, Northern<br>(Epibblasma forentina florentina)Endangered<br>FrestwaterBivalve<br>No<br>FrestwaterRiffleshell, Tan<br>(Epibblasma forentina walkeri (=E. walkeri))Endangered<br>FrestwaterBivalve<br>No<br>FrestwaterShrimp, Kentucky Cave<br>(Solidago abonifizum)Endangered<br>FrestwaterDioot<br>No<br>TerrestrialGoldenrod, Short's<br>(Solidago abonifizum)Endangered<br>FrestwaterDioot<br>No<br>TerrestrialGoldenrod, Short's<br>(Arabis parteliata E. L. Braun var. ampla Rollins)Terrestrial<br>TerrestrialRock-cress, Small<br>(Corradina verticilata)Endangered<br>Lotot<br>TerrestrialDioot<br>No<br>Yes<br>TerrestrialRock-cress, Small<br>(Corradina verticilata)Endangered<br>DiootDioot<br>Yes<br>TerrestrialRock-cress, Small<br>(Corradina verticilata)Endangered<br>DiootDioot<br>Yes<br>TerrestrialRock-cress, Sma |                            | ook                                   | Endangered |             | No               |
| (Pegias fabula)FreshwaterPeatrymussel, Orange-footedEndangeredBivalveNo(Plethobasus cooperianus)EndangeredBivalveNo(Epioblasma cobliquata obliquata)FreshwaterNo(Epioblasma cobliguata obliquata)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Plethobasus cicatricosus)FreshwaterNo(Epioblasma torulosa torulosa)FreshwaterNo(Epioblasma forentina florentina)EndangeredBivalveNo(Epioblasma forentina florentina)FreshwaterNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Solidago shorti)TerrestrialNo <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                    |                            |                                       |            |             |                  |
| Pearlymussel, Orange-footedEndangeredBivalveNo(Pielthobasus cooperianus)FreshwaterPearlymussel, Purple Cat's PawEndangeredBivalveNo(Epioblasma obliquata obliquata)FreshwaterPearlymussel, Tubercled-blossomEndangeredBivalveNo(Epioblasma torulosa torulosa)FreshwaterNo(Pearlymussel, White WartybackEndangeredBivalveNo(Pearlymussel, White WartybackEndangeredBivalveNo(Pearlymussel, Vellow-blossomEndangeredBivalveNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))Terrestrial <t< td=""><td></td><td></td><td>Endangered</td><td></td><td>No</td></t<>                                                                                                                                                                                                                              |                            |                                       | Endangered |             | No               |
| (Plethobasus cooperianus)FreshwaterPearlymussel, Purple Cat's PawEndangeredBivalveNo(Epioblasma obliquata obliquata)FreshwaterNoPearlymussel, Tubercled-blossomEndangeredBivalveNo(Epioblasma torulosa torulosa)FreshwaterNoPearlymussel, White WarlybackEndangeredBivalveNo(Plethobasus cicatricosus)FreshwaterNo(Epioblasma fiorentina fiorentina)EndangeredBivalveNo(Epioblasma fiorentina fiorentina)EndangeredBivalveNo(Epioblasma fiorentina aukeri (=E. walkeri))FreshwaterNo(Epioblasma fiorentina walkeri (=E. walkeri))EndangeredDicotNo(Epioblasma forentina walkeri (=E. walkeri))EndangeredDicotNo(Epioblasma forentina walkeri (=E. walkeri))EndangeredDicotNo(Epioblasma forentina walkeri (=E. walkeri))EndangeredDicotNo(Epioblasma forentina walkeri (=E. walkeri))EndangeredDicotNo(Epioblasma fiorentina)EndangeredDicotNo                                                                                                                                                                                                                                                                                                                                     |                            |                                       |            |             | <br>             |
| Pearlymussel, Purple Cat's PawEndangeredBivalveNo(Epioblasma obliquata obliquata)FreshwaterPearlymussel, Tubercled-blossomEndangeredBivalveNo(Epioblasma forulosa forulosa)FreshwaterNoPearlymussel, White WartybackEndangeredBivalveNo(Piethobasus cicatricosus)FreshwaterNoNo(Piethobasma foruntina florentina)FreshwaterNoNo(Epioblasma forulosa rangiana)FreshwaterNoNo(Epioblasma foruntina warkeri (=E. warkeri))FreshwaterNoNo(Epioblasma foruntina warkeri (=E. warkeri))FreshwaterNoNo(Pataemonias ganteri)FreshwaterNoNoNo(Solidason afonitina warkeri (=E. warkeri))FreshwaterNoNo(Solidason aforentina warkeri (=E. warkeri))FreshwaterNoNo(Pataemonias ganteri)FreshwaterNoNoNo(Solidason shoriti)EndangeredDicotNoNo(Solidago abontin)TerrestrialNoNoNoNo(Solidago abontin)TerrestrialNoNoNoNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialNoNoNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialNoNoNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialNoNoNoNo(Arabis perstellata E. L. Braun var. perstellata FermaloiTerres                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                          |                                       | Endangered |             | No               |
| (Epioblasma obliquata obliquata)FreshwaterPearlymussel, Tuboraled-blossomEndangeredBivalveNo(Epioblasma torulosa torulosa)FreshwaterNoPearlymussel, White WatybackEndangeredBivalveNo(Plethobasus cicatricosus)FreshwaterNo(Epioblasma florentina)EndangeredBivalveNo(Epioblasma florentina)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa torulosa rangiana)FreshwaterNo(Epioblasma torulosa torulosa rangiana)FreshwaterNo(Epioblasma torulosa torulosa rangiana)FreshwaterNo(Epioblasma torulosa torulosa rangiana)EndangeredDicotNo(Epioblasma torulosa torulosa rangiana)FreshwaterNo(Epioblasma torulosa torulosa)EndangeredDicotNo(Epioblasma torulosa panter)EndangeredDicotNo(Tritidium stoloniferum)Terrestrial                                                                                                                                                                                                                                                                                                                                                                                          | •                          |                                       |            |             |                  |
| Pearlymussel, Tuberclei-blossomEndangeredBivalveNo(Epioblasma torulosa torulosa)FreshwaterPreshwaterNoPearlymussel, While WartybackEndangeredBivalveNo(Plethobasus cicatricosus)FreshwaterNoFreshwaterPearlymussel, Vellow-blossomEndangeredBivalveNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNoShrimp, Kentucky CaveEndangeredBivalveNo(Palaemonias ganteri)FreshwaterNoClover, Running BuffaloEndangeredDicotNo(Solidago shorti)TerrestrialNoGoldenrod, Mnite-hairedDicotNo(Solidago albopilosa)TerrestrialPotato-bean, Price'sThreatenedDicotNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotNo(Arabis perstellata E. L. Braun var. ampla Ro                                                                                                                                                                                                                                                                                                                                                                                          | •                          |                                       | Endangered |             | No               |
| (Epioblasma torulosa torulosa)FreshwaterPearlymussel, White WartybackEndangeredBivalveNo(Piethobasus cicatricosus)FreshwaterNoPearlymussel, Yellow-biossomEndangeredBivalveNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma forentina florentina)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma torulosa ganteri)FreshwaterNo(Epioblasma torulosa ganteri)FreshwaterNo(Dover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialNo(Solidago shorti)TerrestrialNo(Solidago shorti)TerrestrialNo(Solidago shorti)TerrestrialNo(Arabis persteliata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotNo(Arabis persteliata E. L. Braun var. persteliata Famalo)TerrestrialRock-cress, SmallEndangeredDicotNo(Conradina verticilata)TerrestrialTerrestrialRock-cress, SmallEndangeredDicotNo(Arabis persteliata E. L. Braun var. persteliata Famalo)<                                                                                                                                                                                                                                                                                                                                                                                               | (Epioblasma obliqu         | iata obliquata)                       |            | Freshwater  |                  |
| Pearlymussel, White Wartyback<br>(Plethobasus cicatricosus)Endangered<br>FreshwaterBivalve<br>FreshwaterNoPearlymussel, Vellow-blossomEndangeredBivalveNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina florentina)FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterYesShrimp, Kentucky CaveEndangeredDicotNo(Palaemonias ganteri)EndangeredDicotNo(Trifolium stoloniferum)TerrestrialNoGoldenrod, Short'sEndangeredDicotNo(Solidago shorti)TerrestrialNoGoldenrod, Short'sThreatenedDicotNo(Solidago shorti)TerrestrialNo(Solidago shorti)TerrestrialNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRosemary, CumberlandEndangeredDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernalo)TerrestrialRosemary, CumberlandEndangeredDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernalo)TerrestrialRosemary, CumberlandEndangeredDicot <t< td=""><td>Pearlymussel, Tubercled-b</td><td>lossom</td><td>Endangered</td><td>Bivalve</td><td>No</td></t<>                                                                                                                                                                                                                                                 | Pearlymussel, Tubercled-b  | lossom                                | Endangered | Bivalve     | No               |
| (Plethobasus cicatricosus)FreshwaterPearlymussel, Yellow-blossomEndangeredBivalveNo(Epioblasma florentina florentina)FreshwaterNoRiffleshell, NorthernEndangeredBivalveNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterYes(Palaemonias ganteri)FreshwaterNo(Diver, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialNo(Solidago shortii)TerrestrialNo(Solidago albopilosa)TerrestrialNo(Apios priceana)TerrestrialNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotNo(Conradina verticillata)TerrestrialNoSandwort, CumberlandEndangeredDicotNo(Arabis perstellata E. L. Braun var. perstellata Fermalo)TerrestrialRock-cress, SmallEndangeredDicotNo(Arabis perstellata E. L. Braun var. perstellata Fermalo)Terrestrial                                                                                                                                                                                                                                                                                                                                                                         | (Epioblasma torulos        | sa torulosa)                          |            | Freshwater  |                  |
| Pearlymussel, Yellow-blossomEndangeredBivalveNo(Epioblasma florentina florentina)FreshwaterFreshwaterRiffleshell, NorthernEndangeredBivalveNo(Epioblasma torulosa rangiana)FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterNo(Palaemonias ganteri)FreshwaterYesClover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestriatNo(Solidago shortii)TerrestriatNo(Solidago shortii)TerrestriatNo(Solidago albopilosa)TerrestriatNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestriatNoRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestriatYesRosemary, CumberlandThreatenedDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestriatRosemary, CumberlandThreatenedDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestriatShrime, CumberlandThreatenedDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestriatSandwort, CumberlandThreatenedDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernald)Terrestriat                                                                                                                                                                                                                                                                                                                                                  | Pearlymussel, White Warty  | /back                                 | Endangered | Bivalve     | No               |
| (Epioblasma florentina)FreshwaterRiffleshell, NorthernEndangeredBivalveNo(Epioblasma torulosa rangiana)FreshwaterFreshwaterNoRiffleshell, TanEndangeredBivalveNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterYes(Epioblasma florentina walkeri (=E. walkeri))FreshwaterYes(Epiatemonias ganteri)FreshwaterYes(Palaemonias ganteri)FreshwaterYesClover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialTerrestrialGoldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialTerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialTerrestrialPotato-bean, Price'sThreatenedDicotYes(Arabis perstellata E. L. Braun var, ampla Rollins)TerrestrialYesRock-cress, SmallEndangeredDicotYes(Conradina verticillata)TerrestrialYesSandwort, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialTerrestrialSpiraea, VirginiaThreatenedDicotNo(Solidago albopilosa)TerrestrialTerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var, ampla Rollins)TerrestrialSandwort, CumberlandEndangeredDicotN                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Plethobasus cicatr        | ricosus)                              |            | Freshwater  |                  |
| Riffleshell, NorthermEndangeredBivalveNo(Epioblasma torulosa rangiana)FreshwaterFreshwaterRiffleshell, TanEndangeredBivalveNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterFreshwaterShrimp, Kentucky CaveEndangeredCrustaceanYes(Palaemonias ganteri)FreshwaterFreshwaterClover, Running BuffaloNo(Clover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialNoStateget (Solidago shortii)Goldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialNoStateget (Solidago albopilosa)No(Solidago albopilosa)TerrestrialTerrestrialStateget (Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYesYes(Arabis perstellata E. L. Braun var. appla Rollins)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialTerrestrialSandwort, CumberlandEndangeredDicotNo(Arabis perstellata E. L. Braun var. perstellata Fermalo)TerrestrialRosemary, CumberlandTerrestrialTerrestrialSandwort, CumberlandEndangeredDicotNo(Conradina verticillata)TerrestrialTerrestrialSandwort, Cumberlandensis)TerrestrialStateget (Arabis perstellata E. L. Braun Set (Stateget (Arabis perstellata E.                                                                                                                                                                                                                                                                                                                                              | Pearlymussel, Yellow-bloss | som                                   | Endangered | Bivalve     | No               |
| (Epioblasma torulosa rangiana)FreshwaterRiffleshell, TanEndangeredBivalveNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterFreshwaterShrimp, Kentucky CaveEndangeredCrustaceanYes(Palaemonias ganteri)FreshwaterFreshwaterClover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialNo(Solidago shortii)EndangeredDicotNo(Solidago shortii)TerrestrialNo(Solidago albopilosa)TerrestrialNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmaltEndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRosemary, CumberlandThreatenedDicotNo(Cornadina verticillata)TerrestrialNoSandwort, CumberlandEndangeredDicotNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRosemary, CumberlandThreatenedDicotNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRosemary, CumberlandThreatenedDicotNo(Cornadina verticillata)TerrestrialSitematicaSandwort, CumberlandThreatenedDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernado)TerrestrialSandwort, CumberlandThreatenedDicotNo(Arabis perstellata E. L. Braun var. perstellata Fernado) <t< td=""><td>(Epioblasma florent</td><td>tina florentina)</td><td></td><td>Freshwater</td><td></td></t<>                                                                                                                                                                                                                                                                     | (Epioblasma florent        | tina florentina)                      |            | Freshwater  |                  |
| Riffleshell, TanEndangeredBivalveNo(Epioblasma florentina walkeri (=E. walkeri))FreshwaterFreshwaterShrimp, Kentucky CaveEndangeredCrustaceanYes(Palaemonias ganteri)FreshwaterCrustaceanYesClover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialTerrestrialGoldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialTerrestrialGoldenrod, White-hairedDicotNoNo(Solidago shortii)TerrestrialNo(Solidago shortii)TerrestrialNo(Solidago shortii)TerrestrialNo(Solidago shortii)TerrestrialNo(Solidago shortii)TerrestrialNo(Solidago shortii)TerrestrialNo(Arabis periceana)TerrestrialNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialTerrestrialSandwort, CumberlandTerrestrialTerrestrialSpiraea, VirginiaThreatenedDicotNo(Arenaria cumberlandensis)TerrestrialTerrestrialDace, BlacksideThreatenedDicotNo(Arenaria cumberlandensis)TerrestrialT                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffleshell, Northern      |                                       | Endangered | Bivalve     | No               |
| (Epioblasma florentina walkeri (=E. walkeri))FreshwaterShrimp, Kentucky CaveEndangeredCrustaceanYes(Palaemonias ganteri)FreshwaterClover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialGoldenrod, Short'sEndangeredDicotNo(Solidago shorti)TerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago shorti)TerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialPotato-bean, Price'sThreatenedDicotNo(Apios priceana)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. aperstellata Fernald)TerrestrialRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedDicotNo(Arenaria cumberlandensis)TerrestrialSpiraea, Virginiana)TerrestrialDace, BlacksideThreatenedDicot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Epioblasma torulos        | sa rangiana)                          |            | Freshwater  |                  |
| Shrimp, Kentucky CaveEndangeredCrustaceanYes(Palaemonias ganteri)FreshwaterClover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialGoldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialTerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialNo(Apios priceana)TerrestrialNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialNoSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialNoSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialTerrestrialDace, BlacksideThreatenedDicotNo(Spiraea virginiana)TerrestrialNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Riffleshell, Tan           |                                       | Endangered | Bivalve     | No               |
| (Palaemonias ganteri)FreshwaterClover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialGoldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialPotato-bean, Price'sThreatenedDicotNo(Apios priceana)TerrestrialRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRosemary, CumberlandThreatenedDicotNo(Corradina verticillata)TerrestrialSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedDicotNo(Spiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Epioblasma florent        | tina walkeri (=E. walkeri))           |            | Freshwater  |                  |
| Clover, Running BuffaloEndangeredDicotNo(Trifolium stoloniferum)TerrestrialTerrestrialGoldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialTerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialNo(Apios priceana)ThreatenedDicotNo(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialYesRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. appla Rollins)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialYesSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialYesSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialYesDace, BlacksideThreatenedDicotNo(Spiraea kirginiana)TerrestrialYesDace, BlacksideThreatenedDicotNo(Spiraea kirginiana)TerrestrialYes(Spiraea kirginiana)TerrestrialYes(Spiraea kirginiana)TerrestrialYes(Spiraea kirginiana)TerrestrialYes(Spiraea kirginiana)TerrestrialYes(Spiraea kirginiana)TerrestrialYes(Spiraea kirginiana)TerrestrialYes(Spiraea kirgin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shrimp, Kentucky Cave      |                                       | Endangered | Crustacean  | Yes              |
| (Trifolium stoloniferum)TerrestrialGoldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialPotato-bean, Price'sThreatenedDicotNo(Apios priceana)TerrestrialYesRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialYesRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialYesSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialYesSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialYesDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Palaemonias gante         | eri)                                  |            | Freshwater  |                  |
| Goldenrod, Short'sEndangeredDicotNo(Solidago shortii)TerrestrialNoGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialNoPotato-bean, Price'sThreatenedDicotNo(Apios priceana)TerrestrialTerrestrialRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialYesRock-cress, SmallDicotYesYes(Arabis perstellata E. L. Braun var. perstellata Fernalo)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialNoSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialNoSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)ThreatenedDicotNoDace, BlacksideThreatenedDicotNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Clover, Running Buffalo    |                                       | Endangered | Dicot       | No               |
| (Solidago shortii)TerrestrialGoldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialNoPotato-bean, Price'sThreatenedDicotNo(Apios priceana)TerrestrialTerrestrialYesRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialYesRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialYesSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialYesSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)ThreatenedDicotNoDace, BlacksideThreatenedDicotNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Trifolium stolonifer      | rum)                                  |            | Terrestrial |                  |
| Goldenrod, White-hairedThreatenedDicotNo(Solidago albopilosa)TerrestrialNoPotato-bean, Price'sThreatenedDicotNo(Apios priceana)TerrestrialTerrestrialYesRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialYesRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernalo)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Arabis perstellata F. L. Braun var. perstellata Fernalo)TerrestrialNoSandwort, CumberlandThreatenedDicotNo(Arania verticillata)TerrestrialNoNoSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialTerrestrialNoDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Goldenrod, Short's         | •                                     | Endangered | Dicot       | No               |
| (Solidago albopilosa)TerrestrialPotato-bean, Price'sThreatenedDicotNo(Apios priceana)TerrestrialTerrestrialRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialYesRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernalo)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)ThreatenedDicotNoSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialYesYesSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)ThreatenedDicotNoDace, BlacksideThreatenedTerrestrialYes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Solidago shortii)         |                                       |            | Terrestrial |                  |
| Potato-bean, Price'sThreatenedDicotNo(Apios priceana)TerrestrialTerrestrialTerrestrialRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialTerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialTerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialNo(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialNo(Conradina verticillata)ThreatenedDicotNo(Arenaria cumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialNoIterrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialIterrestrialDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Goldenrod, White-haired    |                                       | Threatened | Dicot       | No               |
| (Apios priceana)TerrestrialRock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialYesRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialYesRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)ThreatenedDicotNoSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialYesYesSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)ThreatenedDicotNoDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Solidago albopilos        | a)                                    |            | Terrestrial |                  |
| Rock-cress, Large (=Braun's)EndangeredDicotYes(Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialTerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialTerrestrialRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)ThreatenedDicotNoSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialTerrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)ThreatenedDicotNoDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Potato-bean, Price's       |                                       | Threatened | Dicot       | No               |
| (Arabis perstellata E. L. Braun var. ampla Rollins)TerrestrialRock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialNoRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialNoSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialNoSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)ThreatenedDicotNoDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Apios priceana)           |                                       |            | Terrestrial |                  |
| Rock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialTerrestrialRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialNo(Conradina verticillata)EndangeredDicotNo(Arenaria cumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialNoSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialNoDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rock-cress, Large (=Braun  | 's)                                   | Endangered | Dicot       | Yes              |
| Rock-cress, SmallEndangeredDicotYes(Arabis perstellata E. L. Braun var. perstellata Fernald)TerrestrialTerrestrialRosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialNo(Conradina verticillata)EndangeredDicotNo(Arenaria cumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialNoSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialNoDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Arabis perstellata        | E. L. Braun var. ampla Rollins)       |            | Terrestrial |                  |
| Rosemary, CumberlandThreatenedDicotNo(Conradina verticillata)TerrestrialTerrestrialSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialTerrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)ThreatenedDicotNoDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                       | Endangered | Dicot       | Yes              |
| (Conradina verticillata)TerrestrialSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Arabis perstellata l      | E. L. Braun var. perstellata Fernald) | -          | Terrestrial |                  |
| (Conradina verticillata)TerrestrialSandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rosemary, Cumberland       | 1                                     | Threatened | Dicot       | No               |
| Sandwort, CumberlandEndangeredDicotNo(Arenaria cumberlandensis)TerrestrialSpiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | ata)                                  |            | Terrestrial |                  |
| Spiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | . •                                   | Endangered |             | No               |
| Spiraea, VirginiaThreatenedDicotNo(Spiraea virginiana)TerrestrialDace, BlacksideThreatenedFishNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Arenaria cumberla         | ndensis)                              | <b>U</b>   | Terrestrial |                  |
| (Spiraea virginiana) Terrestrial Dace, Blackside Threatened Fish No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · ·                        |                                       | Threatened |             | No               |
| Dace, Blackside Threatened Fish No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | )                                     |            |             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ., ,                       |                                       | Threatened |             | No               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                          | andensis)                             |            | Freshwater  | *                |

Page 31 of 68

-116 of 154-

| <b>Kentucky</b> (47) species:<br>Darter, Bluemask (=jewel) | Endangered  | <u>Taxa</u> (<br>Fish     | Critical Habitat |
|------------------------------------------------------------|-------------|---------------------------|------------------|
| (Etheostoma /)                                             | Endangered  |                           | No               |
| Darter, Relict                                             | Endangered  | Freshwater                | Nie              |
|                                                            | Endangered  | Fish<br>Freshwater        | No               |
| <i>(Etheostoma chienense)</i><br>Shiner, Palezone          | Endangered  | Fish                      | No               |
| (Notropis albizonatus)                                     | Endangered  | Freshwater                | No               |
|                                                            | Endangered  | Fish                      | Na               |
| Sturgeon, Pallid                                           | Endangered  | Freshwater                | No               |
| <i>(Scaphirhynchus albus)</i><br>Beetle, American Burying  | Endengered  |                           | Nie              |
|                                                            | Endangered  | Insect                    | No               |
| (Nicrophorus americanus)                                   | Endengered  | Terrestrial               | Nia              |
| Bat, Gray                                                  | Endangered  | Mammal                    | No               |
| (Myotis grisescens)                                        |             | Subterraneous, Terrestria |                  |
| Bat, Indiana                                               | Endangered  | Mammal                    | Yes              |
| (Myotis sodalis)                                           | Enderster   | Subterraneous, Terrestria |                  |
| Bat, Virginia Big-eared                                    | Endangered  | Mammal                    | Yes              |
| (Corynorhinus (=Plecotus) townsendii virginianus)          | , ,         | Terrestrial, Subterraneou | S                |
| Louisiana (21) species:                                    |             | Taxa C                    | Critical Habitat |
| Pelican, Brown                                             | Endangered  | Bird                      | No               |
| (Pelecanus occidentalis)                                   |             | Terrestrial               |                  |
| Plover, Piping                                             | Endangered  | Bird                      | Yes              |
| (Charadrius melodus)                                       |             | Terrestrial               |                  |
| Tern, California Least                                     | Endangered  | Bird                      | No               |
| (Sterna antillarum browni)                                 |             | Terrestrial               |                  |
| Tern, Interior (population) Least                          | Endangered  | Bird                      | No               |
| (Sterna antillarum)                                        |             | Terrestrial               |                  |
| Woodpecker, Red-cockaded                                   | Endangered  | Bird                      | No               |
| (Picoides borealis)                                        |             | Terrestrial               |                  |
| Mucket, Pink (Pearlymussel)                                | Endangered  | Bivalve                   | No               |
| (Lampsilis abrupta)                                        | -           | Freshwater                |                  |
| Mussel, Heelsplitter Inflated                              | Threatened  | Bivalve                   | No               |
| (Potamilus inflatus)                                       |             | Freshwater                |                  |
| Pearlshell, Louisiana                                      | Threatened  | Bivalve                   | No               |
| (Margarítifera hembeli)                                    |             | Freshwater                |                  |
| Chaffseed, American                                        | Endangered  | Dicot                     | No               |
| (Schwalbea americana)                                      |             | Terrestrial               |                  |
| Quillwort, Louisiana                                       | Endangered  | Ferns                     | No               |
| (Isoetes louisianensis)                                    |             | Freshwater, Terrestrial   |                  |
| Sturgeon, Gulf                                             | Threatened  | Fish                      | Yes              |
| (Acipenser oxyrinchus desotoi)                             |             | Saltwater, Freshwater     |                  |
| Sturgeon, Pallid                                           | Endangered  | Fish                      | No               |
| (Scaphirhynchus albus)                                     | Lindingorou | Freshwater                |                  |
| Bear, Louisiana Black                                      | Threatened  | Mammal                    | No               |
| (Ursus americanus luteolus)                                | rineateriou | Terrestrial               |                  |

Page 32 of 68

-117 of 154-

| Louisiana                                      | (21) species:                                                                                                   |    |                             | <u>Taxa</u>             | Critical Habitat |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----|-----------------------------|-------------------------|------------------|
| Manatee, West Indian                           |                                                                                                                 |    | Endangered                  | Marine mml              | Yes              |
| (Trichechus manatus)                           | 1                                                                                                               |    |                             | Saltwater               |                  |
| Sea turtle, green                              |                                                                                                                 |    | Endangered                  | Reptile                 | No               |
| (Chelonia mydas)                               |                                                                                                                 |    |                             | Saltwater               |                  |
| Sea turtle, hawksbill                          |                                                                                                                 |    | Endangered                  | Reptile                 | Yes              |
| (Eretmochelys imbricata                        | ) – Maria                                                                                                       |    |                             | Saltwater               |                  |
| Sea turtle, Kemp's ridley                      |                                                                                                                 |    | Endangered                  | Reptile                 | No               |
| (Lepidochelys kempii)                          |                                                                                                                 |    |                             | Saltwater               |                  |
| Sea turtle, leatherback                        |                                                                                                                 |    | Endangered                  | Reptile                 | Yes              |
| (Dermochelys coriacea)                         | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |    | -                           | Saltwater               |                  |
| Sea turtle, loggerhead                         |                                                                                                                 |    | Threatened                  | Reptile                 | No               |
| (Caretta caretta)                              |                                                                                                                 |    |                             | Saltwater               |                  |
| Tortoise, Gopher                               |                                                                                                                 |    | Threatened                  | Reptile                 | No               |
| (Gopherus polyphemus)                          |                                                                                                                 |    |                             | Terrestrial             |                  |
| Turtle, Ringed Sawback                         |                                                                                                                 |    | Threatened                  | Reptile                 | No               |
| (Graptemys oculifera)                          | •                                                                                                               |    | Theatened                   | Freshwater, Terrestria  |                  |
|                                                |                                                                                                                 |    |                             | Treatimater, Terreatina |                  |
| Maine                                          | (4) species:                                                                                                    |    |                             | <u>Taxa</u>             | Critical Habita  |
| Plover, Piping                                 |                                                                                                                 | к. | Endangered                  | Bird                    | Yes              |
| (Charadrius melodus)                           |                                                                                                                 |    |                             | Terrestrial             |                  |
| Tern, Roseate                                  |                                                                                                                 |    | Endangered                  | Bird                    | No               |
| (Sterna dougallii dougal                       | lii)                                                                                                            |    |                             | Terrestrial             |                  |
| Salmon, Atlantic                               |                                                                                                                 |    | Endangered                  | Fish                    | No               |
| (Salmo salar)                                  |                                                                                                                 |    | . –                         | Brackish, Saltwater, F  | reshwater        |
| Pogonia, Small Whorled                         |                                                                                                                 |    | Threatened                  | Monocot                 | No               |
| (Isotria medeoloides)                          |                                                                                                                 |    |                             | Terrestrial             |                  |
| Maryland                                       | (15) species:                                                                                                   |    |                             | Таха                    | Critical Habita  |
| Plover, Piping                                 |                                                                                                                 |    | Endangered                  | Bird                    | Yes              |
| (Charadrius melodus)                           |                                                                                                                 |    | •                           | Terrestrial             |                  |
| Mussel, Dwarf Wedge                            |                                                                                                                 |    | Endangered                  | Bivalve                 | No               |
| (Alasmidonta heterodor                         | <b>.</b>                                                                                                        |    | Lindangoroa                 | Freshwater              |                  |
| Dropwort, Canby's                              | <b>7</b>                                                                                                        |    | Endangered                  | Dicot                   | No               |
| (Oxypolis canbyi)                              |                                                                                                                 |    | Endangered                  | Terrestrial, Freshwate  |                  |
|                                                |                                                                                                                 |    | Endangered                  | Dicot                   | No               |
| Gerardia, Sandplain                            |                                                                                                                 |    | Endangered                  |                         | NO               |
| (Agalinis acuta)                               |                                                                                                                 |    |                             | Terrestrial             | No               |
| Harperella                                     |                                                                                                                 |    | Endangered                  | Dicot                   | No               |
| (Ptilimnium nodosum)                           |                                                                                                                 |    | <u> </u>                    | Freshwater              |                  |
| Joint-vetch, Sensitive                         |                                                                                                                 |    | Threatened                  | Dicot                   | No               |
| (Aeschynomene virginic                         | a)                                                                                                              |    |                             | Terrestrial, Brackish   | · • •            |
| Darter, Maryland                               | ·                                                                                                               |    | Endangered                  | Fish                    | Yes              |
| (Etheostoma sellare)                           |                                                                                                                 |    |                             | Freshwater              |                  |
|                                                |                                                                                                                 |    | English and a second second | Fish                    | No               |
| Sturgeon, Shortnose<br>(Acipenser brevirostrum |                                                                                                                 |    | Endangered                  | Saltwater, Freshwater   |                  |

Page 33 of 68

-118 of 154-

| Maryland (15) species:                  |              | Taxa Critical H                | labita |
|-----------------------------------------|--------------|--------------------------------|--------|
| Beetle, Northeastern Beach Tiger        | Threatened   | Insect No                      |        |
| (Cicindela dorsalis dorsalis)           |              | Terrestrial                    |        |
| Beetle, Puritan Tiger                   | Threatened   | Insect No                      |        |
| (Cicindela puritana)                    |              | Terrestrial, Coastal (neritic) |        |
| Bat, Indiana                            | Endangered   | Mammal Yes                     |        |
| (Myotis sodalis)                        |              | Subterraneous, Terrestrial     |        |
| Squirrel, Delmarva Peninsula Fox        | Endangered   | Mammal No                      |        |
| (Sciurus niger cinereus)                |              | Terrestrial                    |        |
| Bulrush, Northeastern (=Barbed Bristle) | Endangered   | Monocot No                     |        |
| (Scirpus ancistrochaetus)               |              | Terrestrial, Freshwater        |        |
| Pink, Swamp                             | Threatened   | Monocot No                     |        |
| (Helonias bullata)                      |              | Terrestrial, Freshwater        |        |
| urtle, Bog (Northern population)        | Threatened   | Reptile No                     |        |
| (Clemmys muhlenbergii)                  |              | Terrestrial, Freshwater        |        |
| Massachusetts (7) species:              |              | Taxa Critical H                | labita |
| Plover, Piping                          | Endangered   | Bird Yes                       |        |
| (Charadrius melodus)                    |              | Terrestrial                    |        |
| ern, Roseate                            | Endangered   | Bird No                        |        |
| (Sterna dougallii dougallii)            | -            | Terrestrial                    |        |
| turgeon, Shortnose                      | Endangered   | Fish No                        |        |
| (Acipenser brevirostrum)                | U            | Saltwater, Freshwater          |        |
| eetle, Puritan Tiger                    | Threatened   | Insect No                      |        |
| (Cicindela puritana)                    |              | Terrestrial, Coastal (neritic) |        |
| lat, Indiana                            | Endangered   | Mammal Yes                     |        |
| (Myotis sodalis)                        | Lindaligerou | Subterraneous, Terrestrial     |        |
| Pogonia, Small Whorled                  | Threatened   | Monocot No                     |        |
| (Isotria medeoloides)                   | meateried    | Terrestrial                    |        |
| Turtle, Bog (Northern population)       | Threatened   |                                |        |
|                                         | Inreateneo   | Reptile No                     |        |
| (Clemmys muhlenbergii)                  |              | Terrestrial, Freshwater        |        |
| Michigan (20) species:                  |              | Taxa Critical H                | labita |
| lover, Piping                           | Endangered   | Bird Yes                       |        |
| (Charadrius melodus)                    |              | Terrestrial                    |        |
| Varbler (=Wood), Kirtland's             | Endangered   | Bird No                        |        |
| (Dendroica kirtlandii)                  |              | Terrestrial                    |        |
| fussel, Clubshell                       | Endangered   | Bivalve No                     |        |
| (Pleurobema clava)                      |              | Freshwater                     |        |
| Riffleshell, Northern                   | Endangered   | Bivalve No                     |        |
| (Epioblasma torulosa rangiana)          | -<br>1       | Freshwater                     |        |
| Daisy, Lakeside                         | Threatened   | Dicot No                       |        |
| (Hymenoxys herbacea)                    |              | Freshwater                     |        |
| Goldenrod, Houghton's                   | Threatened   | Dicot No                       |        |
| 70Idenirod. Houdhion S                  |              |                                |        |

Page 34 of 68

-119 of 154-

| Michigan (20) species:                    |                  | Taxa                    | Critical Habita |
|-------------------------------------------|------------------|-------------------------|-----------------|
| lonkey-flower, Michigan                   | Endangered       | Dicot                   | No              |
| (Mimulus glabratus var. michiganensis)    |                  | Terrestrial, Freshwater | • • • • •       |
| histle, Pitcher's                         | Threatened       | Dicot                   | No              |
| (Cirsium pitcheri)                        |                  | Terrestrial             |                 |
| em, American hart's-tongue                | Threatened       | Ferns                   | No              |
| (Asplenium scolopendrium var. americanum) |                  | Terrestrial             | an an an air a  |
| eetle, Hungerford's Crawling Water        | Éndangered       | Insect                  | No              |
| (Brychius hungerfordi)                    |                  | Freshwater              |                 |
| Butterfly, Karner Blue                    | Endangered       | Insect                  | No              |
| (Lycaeides melissa samuelis)              |                  | Terrestrial             |                 |
| sutterfly, Mitchell's Satyr               | Endangered       | Insect                  | No              |
| (Neonympha mitchellii mitchellii)         | g                | Terrestrial             |                 |
| Dragonfly, Hine's Emerald                 | Endangered       | Insect                  | Yes             |
| (Somatochlora hineana)                    | Littangorou      | Freshwater, Terrestria  |                 |
| at. Indiana                               | Endangered       | Mammal                  | Yes             |
| (Myotis sodalis)                          | Endangered       | Subterraneous, Terres   | •               |
|                                           | Threatened       | Mammal                  | No              |
| ynx, Canada                               | meateneu         | Terrestrial             | NO              |
| (Lynx canadensis)                         | Endermored       |                         | Vee             |
| Volf, Gray                                | Endangered       | Mammal                  | Yes             |
| (Canis lupus)                             | _                | Terrestrial             | NI-             |
| is, Dwarf Lake                            | Threatened       | Monocot                 | No              |
| (Iris lacustris)                          |                  | Terrestrial             |                 |
| Drchid, Eastern Prairie Fringed           | Threatened       | Monocot                 | No              |
| (Platanthera leucophaea)                  |                  | Terrestrial             |                 |
| Pogonia, Small Whorled                    | Threatened       | Monocot                 | No              |
| (Isotria medeoloides)                     |                  | Terrestrial             |                 |
| Snake, Northern Copperbelly Water         | Threatened       | Reptile                 | No              |
| (Nerodia erythrogaster neglecta)          |                  | Freshwater, Terrestria  | 1               |
| Minnesota (11) species:                   |                  | Taxa                    | Critical Habita |
| Plover, Piping                            | Endangered       | Bird                    | Yes             |
| (Charadrius melodus)                      | Lindangonou      | Terrestrial             |                 |
| fussel, Winged Mapleleaf                  | Endangered       | Bivalve                 | No              |
| (Quadrula fragosa)                        | Engangeroa       | Freshwater              |                 |
|                                           | Endangered       | Bivalve                 | No              |
| Pearlymussel, Higgins' Eye                | Endangered       |                         | NO              |
| (Lampsilis higginsii)                     | Threatened       | Freshwater              | No              |
| Clover, Prairie Bush                      | Threatened       | Dicot                   | INU             |
| (Lespedeza leptostachya)                  | These steers and | Terrestrial             | No.             |
| Roseroot, Leedy's                         | Threatened       | Dicot                   | No              |
| (Sedum integrifolium ssp. leedyi)         |                  | Terrestrial             | <b>\</b>        |
| Shiner, Topeka                            | Endangered       | Fish                    | Yes             |
| (Notropis topeka (=tristis))              |                  | Freshwater              |                 |
| Butterfly, Karner Blue                    | Endangered       | Insect                  | No              |
| (Lycaeides melissa samuelis)              |                  | Terrestrial             |                 |
|                                           |                  |                         |                 |

-120 of 154-

| Minnesota (11) species:                                            |              | <u>Taxa</u>             | Critical Habita |
|--------------------------------------------------------------------|--------------|-------------------------|-----------------|
| Lynx, Canada                                                       | Threatened   | Mammal                  | No              |
| (Lynx canadensis)                                                  |              | Terrestrial             |                 |
| Wolf, Gray                                                         | Threatened   | Mammal                  | Yes             |
| (Canis lupus)                                                      |              | Terrestrial             |                 |
| Lily, Minnesota Trout                                              | Endangered   | Monocot                 | No              |
| (Erythronium propullans)                                           |              | Terrestrial             |                 |
| Orchid, Western Prairie Fringed                                    | Threatened   | Monocot                 | No              |
| (Platanthera praeclara)                                            |              | Terrestrial             |                 |
| <i>Mississippi</i> (30) species:                                   |              | Taxa                    | Critical Habita |
| Frog, Dusky Gopher (Mississippi DPS)                               | Endangered   | Amphibian               | No              |
| (Rana capito sevosa)                                               |              | Terrestrial, Freshwater |                 |
| Crane, Mississippi Sandhill                                        | Endangered   | Bird                    | Yes             |
| (Grus canadensis pulla)                                            | Lindungeren  | Terrestrial, Freshwater |                 |
| Pelican, Brown                                                     | Endangered   | Bird                    | No              |
| (Pelecanus occidentalis)                                           | Lindaligerou | Terrestrial             |                 |
| Plover, Piping                                                     | Endangered   | Bird                    | Yes             |
| (Charadrius melodus)                                               | Lindangered  | Terrestrial             | 163             |
| Tem, Interior (population) Least                                   | Endangered   | Bird                    | No              |
| (Sterna antillarum)                                                | Lindangered  | Terrestrial             | NO              |
| Woodpecker, Red-cockaded                                           | Endangered   | Bird                    | No              |
| (Picoides borealis)                                                | Lindangered  | Terrestrial             | NO ,            |
| Combshell, Southern (=Penitent mussel)                             | Endangered   | Bivalve                 | No              |
| (Epioblasma penita)                                                | Endangered   | Freshwater              | INO             |
| Mucket, Orangenacre                                                | Threatened   | Bivalve                 | Vaa             |
| (Lampsilis perovalis)                                              | meatened     | Freshwater              | Yes             |
| Mussel, Alabama Moccasinshell                                      | Threatened   | Bivalve                 | Ves             |
| (Medionidus acutissimus)                                           | rineateneu   |                         | Yes             |
|                                                                    | Endengered   | Freshwater              | No              |
| Mussel, Black (=Curtus' Mussel) Clubshell                          | Endangered   | Bivalve                 | No              |
| (Pleurobema curtum)<br>Museel Heavy Pictor (- Judge Teitle Museel) |              | Freshwater              | . Nie           |
| Mussel, Heavy Pigtoe (=Judge Tait's Mussel)                        | Endangered   | Bivalve                 | No              |
| (Pleurobema taitianum)<br>Nuesel Haelenlitter lefleted             | Threatangel  | Freshwater              | Nie             |
| Mussel, Heelsplitter Inflated                                      | Threatened   | Bivalve                 | No              |
| (Potamilus inflatus)                                               | Fadaaaaad    | Freshwater              | Mar             |
| Mussel, Ovate Clubshell                                            | Endangered   | Bivalve                 | Yes             |
| (Pleurobema perovatum)                                             |              | Freshwater              |                 |
| Mussel, Southern Clubshell                                         | Endangered   | Bivalve                 | Yes             |
| (Pleurobema decisum)                                               | -            | Freshwater              |                 |
| Pondberry                                                          | Endangered   | Dicot                   | No              |
| (Lindera melissifolia)                                             |              | Terrestrial             |                 |
| Potato-bean, Price's                                               | Threatened   | Dicot                   | No              |
| (Apios priceana)                                                   |              | Terrestrial             |                 |
| Quillwort, Louisiana                                               | Endangered   | Fems                    | No              |
| (Isoetes louisianensis)                                            |              | Freshwater, Terrestrial |                 |

-121 of 154-

| Mississippi ( 30) species:       | , · ·      | Taxa                    | Critical Habita |
|----------------------------------|------------|-------------------------|-----------------|
| arter, Bayou                     | Threatened | Fish                    | No              |
| (Etheostoma rubrum)              | •          | Freshwater              |                 |
| turgeon, Gulf                    | Threatened | Fish                    | Yes             |
| (Acipenser oxyrinchus desotoi)   |            | Saltwater, Freshwater   |                 |
| urgeon, Pallid                   | Endangered | Fish                    | No              |
| (Scaphirhynchus albus)           |            | Freshwater              |                 |
| at, Gray                         | Endangered | Mammal                  | No              |
| (Myotis grisescens)              |            | Subterraneous, Terrest  | rial            |
| at, Indiana                      | Endangered | Mammal                  | Yes             |
| (Myotis sodalis)                 |            | Subterraneous, Terrest  | rial            |
| ear, Louisiana Black             | Threatened | Mammai                  | No              |
| (Ursus americanus luteolus)      |            | Terrestrial             |                 |
| ea turtle, green                 | Endangered | Reptile                 | No              |
| (Chelonia mydas)                 | _          | Saltwater               |                 |
| ea turtle, Kemp's ridley         | Endangered | Reptile                 | No              |
| (Lepidochelys kempii)            | ÷          | Saltwater               |                 |
| ea turtle, loggerhead            | Threatened | Reptile                 | No              |
| (Caretta caretta)                |            | Saltwater               |                 |
| nake, Eastern Indigo             | Threatened | Reptile                 | No              |
| (Drymarchon corais couperi)      |            | Terrestrial             |                 |
| prtoise, Gopher                  | Threatened | Reptile                 | No              |
| (Gopherus polyphemus)            |            | Terrestrial             |                 |
| Irtle, Ringed Sawback            | Threatened | Reptile                 | No              |
| (Graptemys oculifera)            |            | Freshwater, Terrestrial |                 |
| Intle, Yellow-blotched Map       | Threatened | Reptile                 | No              |
| (Graptemys flavimaculata)        |            | Freshwater, Terrestrial |                 |
|                                  |            | _                       | <u> </u>        |
| <b>lissouri</b> (29) species:    |            | Taxa                    | Critical Habita |
| over, Piping                     | Endangered | Bird                    | Yes             |
| (Charadrius melodus)             | · · ·      | Terrestrial             |                 |
| rn, Interior (population) Least  | Endangered | Bird                    | No              |
| (Sterna antillarum)              |            | Terrestrial             |                 |
| ucket, Pink (Pearlymussel)       | Endangered | Bivalve                 | No              |
| (Lampsilis abrupta)              |            | Freshwater              |                 |
| ussel, Scaleshell                | Endangered | Bivalve                 | No              |
| (Leptodea leptodon)              |            | Freshwater              |                 |
| ussel, Winged Mapleleaf          | Endangered | Bivalve                 | No              |
| (Quadrula fragosa)               |            | Freshwater              |                 |
| artymussel, Curtis'              | Endangered | Bivalve                 | No              |
| (Epioblasma florentina curtisii) |            | Freshwater              |                 |
| arlymussel, Fat Pocketbook       | Endangered | Bivalve                 | No              |
| (Potamilus capax)                |            | Freshwater              | · · ·           |
| arlymussel, Higgins' Eye         | Endangered | Bivalve                 | No              |
| (Lampsilis higginsii)            |            | Freshwater              |                 |

-122 of 154-

**US EPA ARCHIVE DOCUMENT** 

| Missouri                                              | (29) species: | <b>F</b> actor <b>1</b> |                                     | Critical Habita |
|-------------------------------------------------------|---------------|-------------------------|-------------------------------------|-----------------|
| Crayfish, Cave (Cambarus aculabrum)                   |               | Endangered              | Crustacean                          | No              |
| (Cambarus aculab                                      | rum)          | -                       | Freshwater                          |                 |
| Aster, Decurrent False                                |               | Threatened              | Dicot                               | No              |
| (Boltonia decurren                                    | (S)           |                         | Terrestrial, Freshwater             |                 |
| Bladderpod, Missouri                                  |               | Threatened              | Dicot                               | No              |
| (Lesquerella filifon                                  | nis)          | <b>–</b>                | Terrestrial                         |                 |
| Clover, Running Buffalo                               |               | Endangered              | Dicot                               | No              |
| (Trifolium stolonife                                  | rum)          | Thusstand               | Terrestrial                         |                 |
| Fruit, Earth (=geocarpon)                             |               | Threatened              | Dicot                               | No              |
| (Geocarpon minim                                      | um)           | Thursday                | Terrestrial                         |                 |
| Ailkweed, Mead's                                      | -<br>-        | Threatened              | Dicot                               | No              |
| (Asclepias meadii)                                    |               | Codensioned             | Terrestrial                         | <b>N</b> 1-     |
| ondberry                                              |               | Endangered              | Dicot                               | No              |
| (Lindera melissifol                                   | iaj           | Threatened              | Terrestrial                         | NI-             |
| Sneezeweed, Virginia                                  |               | meatened                | Dicot                               | No              |
| (Helenium virginic                                    | umij          | Thursday                | Vernal pool                         | N               |
| Cavefish, Ozark                                       |               | Threatened              | Fish                                | No              |
| (Amblyopsis rosae                                     | 9             | Endencered              | Freshwater                          | Maa             |
| Chub, Humpback                                        |               | Endangered              | Fish                                | Yes             |
| (Gila cypha)                                          |               | Threatened              | Freshwater                          | Ver             |
| Darter, Niangua                                       |               | Threatened              | Fish                                | Yes             |
| (Etheostoma niang                                     | juae)         | Threatened              | Freshwater                          | N               |
| Adtom, Neosho                                         | •             | Threatened              | Fish                                | No              |
| (Noturus placidus)                                    |               |                         | Freshwater                          | X               |
| Shiner, Topeka                                        | -triata))     | Endangered              | Fish                                | Yes             |
| (Notropis topeka (                                    | =unsus))      | Threatened              | Freshwater                          |                 |
| Sturgeon, Gulf                                        | shup dagatai) | Threatened              | Fish                                | Yes             |
| (Acipenser oxyrind                                    | ands desolory | Endencered              | Saltwater, Freshwater<br>Fish       | Ne              |
| Sturgeon, Pallid                                      |               | Endangered              | Freshwater                          | No              |
| <i>(Scaphirhynchus a</i>                              | •             | Endangered              |                                     | No              |
| Cavesnail, Tumbling Cree<br>(Antrobia culveri)        | ĸ             | Endangered              | Gastropod<br>Subterraneous, Freshwa | No              |
|                                                       |               | Endangered              |                                     |                 |
| Beetle, American Burying<br>(Nicrophorus ame          | ricanus)      | Endangered              | Insect<br>Terrestrial               | No              |
| Dragonfly, Hine's Emerald                             |               | Endangered              | Insect                              | Yes             |
| (Somatochlora hin                                     |               | Littlangered            | Freshwater, Terrestrial             | 165             |
| Bat, Gray                                             | Ganaj         | Endangered              | Mammal                              | No              |
| (Myotis grisescens                                    | \$1           | Endangered              | Subterraneous, Terrestr             | No              |
| at, Indiana                                           | 7/            | Endangered              | Mammal                              | Yes             |
|                                                       |               | Endangered              | Mammai<br>Subterraneous, Terrestr   |                 |
| <i>(Myotis sodalis)</i><br>Drchid, Western Prairie Fr | inged         | Threatened              | Monocot                             | No              |
| (Platanthera praed                                    | -             | meatened                | Terrestrial                         | NU              |

Montana

9/26/2007 2:54:12 PM Ver. 2.10.3

(12) species:

Critical Habitat Page 38 of 68

<u>Taxa</u>

-123 of 154-

| Montana (12) species:                     |              | <u> </u>                | Critical Habita |
|-------------------------------------------|--------------|-------------------------|-----------------|
| rane, Whooping                            | Endangered   | Bird                    | Yes             |
| (Grus americana)                          |              | Terrestrial, Freshwater |                 |
| lover, Piping                             | Endangered   | Bird                    | Yes             |
| (Charadrius melodus)                      |              | Terrestrial             |                 |
| em, Interior (population) Least           | Endangered   | Bird                    | No              |
| (Sterna antillarum)                       |              | Terrestrial             |                 |
| atchfly, Spalding's                       | Threatened   | Dicot                   | No              |
| (Silene spaldingii)                       |              | Terrestrial             |                 |
| owellia, Water                            | Threatened   | Dicot                   | No              |
| (Howellia aquatilis)                      |              | Freshwater              |                 |
| turgeon, Pallid                           | Endangered   | Fish                    | No              |
| (Scaphirhynchus albus)                    | 1            | Freshwater              |                 |
| rout, Bull                                | Threatened   | Fish                    | No              |
| (Salvelinus confluentus)                  |              | Freshwater              |                 |
| out, Bull (Columbia River population)     | Threatened   | Fish                    | Yes             |
| (Salvelinus confluentus)                  |              | Freshwater              |                 |
| out, Bull (Klamath River population)      | Threatened   | Fish                    | Yes             |
| (Salvelinus confluentus)                  |              | Freshwater              |                 |
| sar, Grizzly                              | Threatened   | Mammal                  | No              |
| (Ursus arctos horribilis)                 |              | Terrestrial             |                 |
| erret. Black-footed                       | Endangered   | Mammal                  | No              |
| (Mustela nigripes)                        |              | Terrestrial             |                 |
| olf, Gray                                 | Endangered   | Mammal                  | Yes             |
| (Canis lupus)                             |              | Terrestrial             |                 |
| Vebraska (10) species:                    |              | Taxa                    | Critical Habita |
| rane, Whooping                            | Endangered   | Bird                    | Yes             |
| (Grus americana)                          | Ū            | Terrestrial, Freshwater |                 |
| over, Piping                              | Endangered   | Bird                    | Yes             |
| (Charadrius melodus)                      |              | Terrestrial             |                 |
| ern, Interior (population) Least          | Endangered   | Bird                    | No              |
| (Sterna antillarum)                       | • • • •      | Terrestrial             |                 |
| utterfly Plant, Colorado                  | Threatened   | Dicot                   | Yes             |
| (Gaura neomexicana var. coloradensis)     |              | Terrestrial             |                 |
| enstemon, Biowout                         | Endangered   | Dicot                   | No              |
| (Penstemon haydenii)                      |              | Terrestrial             |                 |
| niner, Topeka                             | Endangered   | Fish                    | Yes             |
| (Notropis topeka (=tristis))              | Lindaligerou | Freshwater              | 100             |
| turgeon, Pallid                           | Endangered   | Fish                    | No              |
| (Scaphirhynchus albus)                    | Lindangered  | Freshwater              |                 |
| eetle, Salt Creek Tiger                   | Endengerez   | _                       | No              |
| -                                         | Endangered   | Insect                  | No              |
| (Cicindela nevadica lincolniana)          | E. J         | Terrestrial<br>Mammal   | No              |
|                                           |              | Mammal                  | INO             |
| erret, Black-footed<br>(Mustela nigripes) | Endangered   | Terrestrial             | 140             |

-124 of 154-

| <b>Nebraska</b> (10) species:<br>Orchid, Western Prairie Fringed<br>( <i>Platanthera praeclara</i> ) | Threatened | <u>Taxa</u><br>Monocot<br>Terrestriał | <u>Critical Habitat</u><br>No |
|------------------------------------------------------------------------------------------------------|------------|---------------------------------------|-------------------------------|
| Nevada (19) species:                                                                                 |            | Taxa                                  | Critical Habitat              |
| Blazing Star, Ash Meadows                                                                            | Threatened | Dicot                                 | Yes                           |
| (Mentzelia leucophylla)                                                                              |            | Terrestrial                           |                               |
| Centaury, Spring-loving                                                                              | Threatened | Dicot                                 | Yes                           |
| (Centaurium namophilum)                                                                              | t.         | Terrestrial                           |                               |
| Gumplant, Ash Meadows                                                                                | Threatened | Dicot                                 | Yes                           |
| (Grindelia fraxino-pratensis)                                                                        |            | Terrestrial                           |                               |
| Ivesia, Ash Meadows                                                                                  | Threatened | Dicot                                 | Yes                           |
| (Ivesia kingii var. eremica)                                                                         |            | Terrestrial                           |                               |
| Milk-vetch, Ash Meadows                                                                              | Threatened | Dicot                                 | Yes                           |
| (Astragalus phoenix)                                                                                 |            | Terrestrial                           |                               |
| Niterwort, Amargosa                                                                                  | Endangered | Dicot                                 | Yes                           |
| (Nitrophila mohavensis)                                                                              |            | Terrestrial                           |                               |
| Sunray, Ash Meadows                                                                                  | Threatened | Dicot                                 | Yes                           |
| (Enceliopsis nudicaulis var. corrugata)                                                              |            | Terrestrial                           |                               |
| Dace, Ash Meadows Speckled                                                                           | Endangered | Fish                                  | Yes                           |
| (Rhinichthys osculus nevadensis)                                                                     | Ū          | Freshwater                            |                               |
| Dace, Desert                                                                                         | Threatened | Fish                                  | Yes                           |
| (Eremichthys acros)                                                                                  |            | Freshwater                            |                               |
| Poolfish, Pahrump (= Pahrump Killifish)                                                              | Endangered | Fish                                  | No                            |
| (Empetrichthys latos)                                                                                | -          | Freshwater                            |                               |
| Pupfish, Ash Meadows Amargosa                                                                        | Endangered | Fish                                  | Yes                           |
| (Cyprinodon nevadensis mionectes)                                                                    | Ū.         | Freshwater                            |                               |
| Pupfish, Devils Hole                                                                                 | Endangered | Fish                                  | No                            |
| (Cyprinodon diabolis)                                                                                |            | Freshwater                            |                               |
| Pupfish, Warm Springs                                                                                | Endangered | Fish                                  | No                            |
| (Cyprinodon nevadensis pectoralis)                                                                   | -          | Freshwater                            |                               |
| Spinedace, White River                                                                               | Endangered | Fish                                  | Yes                           |
| (Lepidomeda albivallis)                                                                              | -          | Freshwater                            |                               |
| Springfish, Railroad Valley                                                                          | Threatened | Fish                                  | Yes                           |
| (Crenichthys nevadae)                                                                                |            | Freshwater                            |                               |
| Trout, Bull                                                                                          | Threatened | Fish                                  | No                            |
| (Salvelinus confluentus)                                                                             |            | Freshwater                            |                               |
| Trout, Lahontan Cutthroat                                                                            | Threatened | Fish                                  | No                            |
| (Oncorhynchus clarki henshawi)                                                                       |            | Freshwater                            |                               |
| Naucorid, Ash Meadows                                                                                | Threatened | Insect                                | Yes                           |
| (Ambrysus amargosus)                                                                                 |            | Terrestrial                           |                               |
| Tortoise, Desert                                                                                     | Threatened | Reptile                               | Yes                           |
| (Gopherus agassizii)                                                                                 |            | Terrestrial                           |                               |
| New Hampshire (1) species:                                                                           |            | Taxa                                  | Critical Habitat              |

Page 40 of 68

-125 of 154-

| <b>New Hampshire</b> (1) species:<br>Mussel, Dwarf Wedge | Endangered | <u>Taxa</u><br>Bivalve | Critical Habita |
|----------------------------------------------------------|------------|------------------------|-----------------|
| (Alasmidonta heterodon)                                  |            | Freshwater             |                 |
| <b>New Jersey</b> (10) species:                          |            | Taxa                   | Critical Habita |
| Curlew, Eskimo                                           | Endangered | Bird                   | No              |
| (Numenius borealis)                                      |            | Terrestrial            |                 |
| Plover, Piping                                           | Endangered | Bird                   | Yes             |
| (Charadrius melodus)                                     |            | Terrestrial            |                 |
| Chaffseed, American                                      | Endangered | Dicot                  | No              |
| (Schwalbea americana)                                    |            | Terrestrial            |                 |
| Joint-vetch, Sensitive                                   | Threatened | Dicot                  | No              |
| (Aeschynomene virginica)                                 |            | Terrestrial, Brackish  |                 |
| Sturgeon, Shortnose                                      | Endangered | Fish                   | No              |
| (Acipenser brevirostrum)                                 | C          | Saltwater, Freshwater  |                 |
| Bat, Indiana                                             | Endangered | Mammal                 | Yes             |
| (Myotis sodalis)                                         | U          | Subterraneous, Terres  | strial          |
| Beaked-rush, Knieskern's                                 | Threatened | Monocot                | No              |
| (Rhynchospora knieskernii)                               |            | Terrestrial            |                 |
| Pink, Swamp                                              | Threatened | Monocot                | No              |
| (Helonias bullata)                                       |            | Terrestrial, Freshwate | r               |
| Pogonia, Small Whorled                                   | Threatened | Monocot                | No              |
| (Isotria medeoloides)                                    |            | Terrestrial            |                 |
| Turtle, Bog (Northern population)                        | Threatened | Reptile                | No              |
| (Clemmys muhlenbergii)                                   |            | Terrestrial, Freshwate | r <sub></sub>   |
| New Mexico (34) species:                                 |            | Taxa                   | Critical Habita |
| Frog, Chiricahua Leopard                                 | Threatened | Amphibian              | No              |
| (Rana chiricahuensis)                                    |            | Freshwater, Terrestria | 1               |
| Crane, Whooping                                          | Endangered | Bird                   | Yes             |
| (Grus americana)                                         |            | Terrestrial, Freshwate | r .             |
| Falcon, Northern Aplomado                                | Endangered | Bird                   | No              |
| (Falco femoralis septentrionalis)                        |            | Terrestrial            |                 |
| Flycatcher, Southwestern Willow                          | Endangered | Bird                   | Yes             |
| (Empidonax traillii extimus)                             |            | Terrestrial            |                 |
| Owl, Mexican Spotted                                     | Threatened | Bird                   | Yes             |
| (Strix occidentalis lucida)                              |            | Terrestrial            |                 |
| Plover, Piping                                           | Endangered | Bird                   | Yes             |
| (Charadrius melodus)                                     | -          | Terrestrial            |                 |
| Tern, Interior (population) Least                        | Endangered | Bird                   | No              |
| (Sterna antillarum)                                      | •          | Terrestrial            |                 |
| Amphipod, Noel's                                         | Endangered | Crustacean             | No              |
| (Gammarus desperatus)                                    | <b>.</b>   | Freshwater             |                 |
| Isopod, Socorro                                          | Endangered | Crustacean             | No              |
| (Thermosphaeroma thermophilus)                           | 0          | Freshwater             |                 |

.

Page 41 of 68

-126 of 154-

| New Mexico (34) species:                           |             | Taxa                    | Critical Habita |
|----------------------------------------------------|-------------|-------------------------|-----------------|
| Cactus, Knowlton                                   | Endangered  | Dicot                   | No              |
| (Pediocactus knowltonii)                           |             | Terrestrial             |                 |
| Cactus, Kuenzler Hedgehog                          | Endangered  | Dicot                   | No              |
| (Echinocereus fendleri var. kuenzleri)             |             | Terrestrial             |                 |
| Cactus, Lee Pincushion                             | Threatened  | Dicot                   | No              |
| (Coryphàntha sneedii var. leei)                    |             | Terrestrial             |                 |
| Cactus, Mesa Verde                                 | Threatened  | Dicot                   | No              |
| (Sclerocactus mesae-verdae)                        |             | Terrestrial             |                 |
| Cactus, Sneed Pincushion                           | Endangered  | Dicot                   | No              |
| (Coryphantha sneedii var. sneedii)                 |             | Terrestrial             |                 |
| pomopsis, Holy Ghost                               | Endangered  | Dicot                   | No              |
| (Ipomopsis sancti-spiritus)                        |             | Terrestrial             |                 |
| Allk-vetch, Mancos                                 | Endangered  | Dicot                   | No              |
| (Astragalus humillimus)                            | •           | Terrestrial             |                 |
| Pennyroyal, Todsen's                               | Endangered  | Dicot                   | Yes             |
| (Hedeoma todsenii)                                 | ·           | Terrestrial             |                 |
| Sunflower, Pecos                                   | Threatened  | Dicot                   | No              |
| (Helianthus paradoxus)                             |             | Terrestrial, Freshwater | r ,             |
| Vild-buckwheat, Gypsum                             | Threatened  | Dicot                   | Yes             |
| (Eriogonum gypsophilum)                            |             | Terrestrial             |                 |
| Bambusia, Pecos                                    | Endangered  | Fish                    | No              |
| (Gambusia nobilis)                                 | J J         | Freshwater              |                 |
| Ainnow, Rio Grande Silvery                         | Endangered  | Fish                    | Yes             |
| (Hybognathus amarus)                               |             | Freshwater              |                 |
| Shiner, Arkansas River                             | Threatened  | Fish                    | Yes             |
| (Notropis girardi)                                 |             | Freshwater              |                 |
| Shiner, Beautiful                                  | Threatened  | Fish                    | Yes             |
| (Cyprinella formosa)                               |             | Freshwater              |                 |
| hiner, Pecos Bluntnose                             | Threatened  | Fish                    | Yes             |
| (Notropis simus pecosensis)                        |             | Freshwater              | 100             |
| Squawfish, Colorado                                | Endangered  | Fish                    | Yes             |
| (Ptychocheilus lucius)                             | Lindangorod | Freshwater              | 163             |
| Sucker, Razorback                                  | Endangered  | Fish                    | Yes             |
| (Xyrauchen texanus)                                | Chidangered | Freshwater              | 165             |
| rout, Gila                                         | Endangered  | Fish                    | No              |
| (Oncorhynchus gilae)                               | Lindangered | Freshwater              |                 |
| Snail, Pecos Assiminea                             | Endengered  |                         | Yes             |
| (Assiminea pecos)                                  | Endangered  | Gastropod<br>Freshwater | 1 62            |
|                                                    | Endongorod  |                         | No              |
| Springsnail, Alamosa                               | Endangered  | Gastropod               | No              |
| <i>(Tryonia alamosae)</i><br>Springsnail, Koster's | Enderson    | Freshwater              | N1-             |
|                                                    | Endangered  | Gastropod               | No              |
| (Juturnia kosteri)                                 |             | Terrestrial             |                 |

Page 42 of 68

## -127 of 154-

| New Mexico (34) species:<br>Springsnail, Roswell | Endangered   | Taxa<br>Gastropod       | Critical Habitat |
|--------------------------------------------------|--------------|-------------------------|------------------|
| (Pyrgulopsis roswellensis)                       |              | Freshwater              |                  |
| Springsnail, Socorro                             | Endangered   | Gastropod               | No               |
| (Pyrgulopsis neomexicana)                        |              | Freshwater              |                  |
| Ferret, Black-footed                             | Endangered   | Mammal                  | No               |
| (Mustela nigripes)                               |              | Terrestrial             |                  |
| Nolf, Gray                                       | Endangered   | Mammal                  | Yes              |
| (Canis lupus)                                    | Lindarigeroa | Terrestrial             | 100              |
| New York (13) species:                           |              | Taxa                    | Critical Habitat |
| Plover, Piping                                   | Endangered   | Bird                    | Yes              |
| (Charadrius melodus)                             | Lindangered  | Terrestrial             | 100              |
| Fern, Roseate                                    | Endangered   | Bird                    | No               |
| (Sterna dougallii dougallii)                     | Endangered   | Terrestrial             |                  |
| Aussel, Dwarf Wedge                              | Endangered   | Bivalve                 | No               |
| (Alasmidonta heterodon)                          | Endangered   | Freshwater              |                  |
| Amaranth, Seabeach                               | Threatened   | Dicot                   | No               |
| (Amaranthus pumilus)                             | meateried    | Coastal (neritic)       | 110              |
| Gerardia, Sandplain                              | Endangered   | Dicot                   | No               |
| (Agalinis acuta)                                 | Endangered   | Terrestrial             | NO               |
| Roseroot, Leedy's                                | Threatened   | Dicot                   | No               |
| (Sedum integrifolium ssp. leedyi)                | moatened     | Terrestrial             |                  |
| Fern, American hart's-tongue                     | Threatened   | Ferns                   | No               |
| (Asplenium scolopendrium var. americanum)        | Incatoriou   | Terrestrial             |                  |
| Sturgeon, Shortnose                              | Endangered   | Fish                    | No               |
| (Acipenser brevirostrum)                         | Endangered   | Saltwater, Freshwater   | 110              |
| Snail, Chittenango Ovate Amber                   | Threatened   | Gastropod               | No               |
| (Succinea chittenangoensis)                      | Thouldhou    | Terrestrial, Freshwater |                  |
| Butterfly, Karner Blue                           | Endangered   | Insect                  | No               |
| (Lycaeides melissa samuelis)                     | Linderigeree | Terrestrial             |                  |
| Bat. Indiana                                     | Endangered   | Mammal                  | Yes              |
| (Myotis sodalis)                                 | Endangered   | Subterraneous, Terres   |                  |
| Pogonia, Small Whorled                           | Threatened   | Monocot                 | No               |
| (Isotria medeoloides)                            | Theatened    | Terrestrial             | 110              |
| Furtle, Bog (Northern population)                | Threatened   | Reptile                 | No               |
| (Clemmys muhlenbergii)                           | Incatence    | Terrestrial, Freshwater |                  |
|                                                  |              |                         |                  |
| North Carolina (53) species:                     | <b>.</b>     | Taxa                    | Critical Habitat |
| Spider, Spruce-fir Moss                          | Endangered   | Arachnid                | Yes              |
| (Microhexura montivaga)                          | <u> </u>     | Terrestrial             |                  |
| Plover, Piping                                   | Endangered   | Bird                    | Yes              |
| (Charadrius melodus)                             |              | Terrestrial             |                  |
| Stork, Wood                                      | Endangered   | Bird                    | No               |

Page 43 of 68

-128 of 154-

| North Carolina (53) species:<br>Tem, Roseate | Endangered                             | <u>Taxa</u><br>Bird     | Critical Habitat |
|----------------------------------------------|----------------------------------------|-------------------------|------------------|
| (Sterna dougallii dougallii)                 | Lindangoroa                            | Terrestrial             |                  |
| Woodpecker, Red-cockaded                     | Endangered                             | Bird                    | No               |
| (Picoides borealis)                          | Lindangerou                            | Terrestrial             | 110              |
| Elktoe, Appalachian                          | Endangered                             | Bivalve                 | Yes              |
| (Alasmidonta raveneliana)                    | Endangerou                             | Freshwater              | 163              |
| Mussel, Dwarf Wedge                          | Endangered                             | Bivalve                 | No               |
| (Alasmidonta heterodon)                      | Lindangorod                            | Freshwater              | 110              |
| Mussel, Heelsplitter Carolina                | Endangered                             | Bivalve                 | Yes              |
| (Lasmigona decorata)                         | Endangerou                             | Freshwater              | 100              |
| Mussel, Oyster                               | Endangered                             | Bivalve                 | Yes              |
| (Epioblasma capsaeformis)                    | Lindangorod                            | Freshwater              | 103              |
| Pearlymussel, Little-wing                    | Endangered                             | Bivalve                 | No               |
| (Pegias fabula)                              | Linderigered                           | Freshwater              |                  |
| Purple Bean                                  | Endangered                             | Bivalve                 | Yes              |
| (Villosa perpurpurea)                        | Linddingorod                           | Freshwater              | 103              |
| Spinymussel, James River                     | Endangered                             | Bivalve                 | No               |
| (Pleuroberna collina)                        | Lindangorod                            | Freshwater              |                  |
| Spinymussel, Tar River                       | Endangered                             | Bivalve                 | No               |
| (Elliptio steinstansana)                     |                                        | Freshwater              |                  |
| Amaranth, Seabeach                           | Threatened                             | Dicot                   | No               |
| (Amaranthus pumilus)                         | , in outer out                         | Coastal (neritic)       |                  |
| Avens, Spreading                             | Endangered                             | Dicot                   | No               |
| (Geum radiatum)                              |                                        | Terrestrial             |                  |
| Bittercress, Small-anthered                  | Endangered                             | Dicot                   | No               |
| (Cardamine micranthera)                      | . •                                    | Terrestrial             |                  |
| Blazing Star, Heller's                       | Threatened                             | Dicot                   | No               |
| (Liatris helleri)                            |                                        | Terrestrial             |                  |
| Bluet, Roan Mountain                         | Endangered                             | Dicot                   | No               |
| (Hedyotis purpurea var. montana)             |                                        | Terrestrial             |                  |
| Chaffseed, American                          | Endangered                             | Dicot                   | No               |
| (Schwalbea americana)                        | 5                                      | Terrestrial             |                  |
| Coneflower, Smooth                           | Endangered                             | Dicot                   | No               |
| (Echinacea laevigata)                        |                                        | Terrestrial             |                  |
| Dropwort, Canby's                            | Endangered                             | Dicot                   | No               |
| (Oxypolis canbyi)                            | ······································ | Terrestrial, Freshwater |                  |
| Goldenrod, Blue Ridge                        | Threatened                             | Dicot                   | No               |
| (Solidago spithamaea)                        | · · · · · · · · · · · · · · · · · · ·  | Terrestrial             | -                |
| Harperella                                   | Endangered                             | Dicot                   | No               |
| (Ptilimnium nodosum)                         |                                        | Freshwater              |                  |
| Heartleaf, Dwarf-flowered                    | Threatened                             | Dicot                   | No               |
| (Hexastylis naniflora)                       |                                        | Terrestrial             |                  |

Page 44 of 68

-129 of 154-

| North Carolina (53) species:       |            |                            | tical Habita |
|------------------------------------|------------|----------------------------|--------------|
| Heather, Mountain Golden           | Threatened | Dicot                      | Yes          |
| (Hudsonia montana)                 |            | Terrestrial                |              |
| Joint-vetch, Sensitive             | Threatened | Dicot                      | No           |
| (Aeschynomene virginica)           |            | Terrestrial, Brackish      |              |
| Loosestrife, Rough-leaved          | Endangered | Dicot                      | No           |
| (Lysimachia asperulaefolia)        |            | Terrestrial                |              |
| Meadowrue, Cooley's                | Endangered | Dicot                      | No           |
| (Thalictrum cooleyi)               |            | Terrestrial                |              |
| Pitcher-plant, Mountain Sweet      | Endangered | Dicot                      | No           |
| (Sarracenia rubra ssp. jonesii)    |            | Freshwater, Terrestrial    |              |
| Pondberry                          | Endangered | Dicot                      | No           |
| (Lindera melissifolia)             |            | Terrestrial                |              |
| Spiraea, Virginia                  | Threatened | Dicot                      | No           |
| (Spiraea virginiana)               |            | Terrestrial                |              |
| Sumac, Michaux's                   | Endangered | Dicot                      | No           |
| (Rhus michauxii)                   |            | Terrestrial                |              |
| Sunflower, Schweinitz's            | Endangered | Dicot                      | No           |
| (Helianthus schweinitzii)          |            | Terrestrial                |              |
| Chub, Spotfin                      | Threatened | Fish                       | Yes          |
| (Erimonax monachus)                |            | Freshwater                 |              |
| Shiner, Cape Fear                  | Endangered | Fish                       | Yes          |
| (Notropis mekistocholas)           |            | Freshwater                 |              |
| Silverside, Waccamaw               | Threatened | Fish                       | Yes          |
| (Menidia extensa)                  |            | Freshwater                 |              |
| Sturgeon, Shortnose                | Endangered | Fish                       | No           |
| (Acipenser brevirostrum)           |            | Saltwater, Freshwater      |              |
| Butterfly, Saint Francis' Satyr    | Endangered | Insect                     | No           |
| (Neonympha mitchellii francisci)   |            | Terrestrial                |              |
| Lichen, Rock Gnome                 | Endangered | Lichen                     | No           |
| (Gymnoderma lineare)               |            | Terrestrial                |              |
| Bat, Gray                          | Endangered | Mammal                     | No           |
| (Myotis grisescens)                |            | Subterraneous, Terrestrial |              |
| Bat, Indiana                       | Endangered | Mammal                     | Yes          |
| (Myotis sodalis)                   |            | Subterraneous, Terrestrial |              |
| Squirrel, Carolina Northern Flying | Endangered | Mammal                     | No           |
| (Glaucomys sabrinus coloratus)     | -          | Terrestrial                |              |
| Manatee, West Indian               | Endangered | Marine mml                 | Yes          |
| (Trichechus manatus)               | -          | Saltwater                  |              |
| Arrowhead, Bunched                 | Endangered | Monocot                    | No           |
| (Sagittaria fasciculata)           |            | Freshwater                 |              |
| Irisette, White                    | Endangered | Monocot                    | No           |
| (Sisyrinchium dichotomum)          | Ū.         | Terrestrial                |              |

Page 45 of 68

-130 of 154-

| North Carolina                    | ( 53) species:                          | · · ·      | <u>Taxa</u>             | Critical Habitat |
|-----------------------------------|-----------------------------------------|------------|-------------------------|------------------|
| Pink, Swamp                       |                                         | Threatened | Monocot                 | No               |
| (Helonias bullata)                |                                         | ,          | Terrestrial, Freshwater |                  |
| Pogonia, Small Whorled            |                                         | Threatened | Monocot                 | No               |
| (Isotria medeoloides)             |                                         |            | Terrestrial             |                  |
| Sedge, Golden                     |                                         | Endangered | Monocot                 | No               |
| (Carex lutea)                     |                                         |            | Terrestrial             |                  |
| Sea turtle, green                 |                                         | Endangered | Reptile                 | No               |
| (Chelonia mydas)                  |                                         |            | Saltwater               |                  |
| Sea turtle, hawksbill             |                                         | Endangered | Reptile                 | Yes              |
| (Eretmochelys imbricata           | 1)                                      |            | Saltwater               |                  |
| Sea turtle, Kemp's ridley         |                                         | Endangered | Reptile                 | No               |
| (Lepidochelys kempii)             |                                         |            | Saltwater               |                  |
| Sea turtle, leatherback           |                                         | Endangered | Reptile                 | Yes              |
| (Dermochelys coriacea)            |                                         |            | Saltwater               |                  |
| Sea turtle, loggerhead            |                                         | Threatened | Reptile                 | No               |
| (Caretta caretta)                 |                                         |            | Saltwater               |                  |
| North Dakota                      | (5) species:                            | 1          | Taxa                    | Critical Habitat |
| Crane, Whooping                   |                                         | Endangered | Bird                    | Yes              |
| (Grus americana)                  | · · · · ·                               |            | Terrestrial, Freshwater |                  |
| Plover, Piping                    |                                         | Endangered | Bird                    | Yes              |
| (Charadrius melodus)              |                                         |            | Terrestrial             |                  |
| Tern, Interior (population) Least |                                         | Endangered | Bird                    | No               |
| (Sterna antillarum)               |                                         |            | Terrestrial             |                  |
| Sturgeon, Pallid                  |                                         | Endangered | Fish                    | No               |
| (Scaphirhynchus albus)            |                                         |            | Freshwater              |                  |
| Orchid, Western Prairie Fringeo   | l · · · · · · · · · · · · · · · · · · · | Threatened | Monocot                 | No               |
| (Platanthera praeclara)           |                                         |            | Terrestrial             |                  |
| Ohio                              | (22) species:                           |            | Taxa                    | Critical Habitat |
| Plover, Piping                    |                                         | Endangered | Bird                    | Yes              |
| (Charadrius melodus)              |                                         |            | Terrestrial             |                  |
| Fanshell                          |                                         | Endangered | Bivalve                 | No               |
| (Cyprogenia stegaria)             |                                         |            | Freshwater              | · · ·            |
| Mucket, Pink (Pearlymussel)       |                                         | Endangered | Bivalve                 | No               |
| (Lampsilis abrupta)               |                                         |            | Freshwater              |                  |
| Mussel, Clubshell                 |                                         | Endangered | Bivalve                 | No               |
| (Pleuroberna clava)               |                                         |            | Freshwater              |                  |
| Pearlymussel, Purple Cat's Pav    | V.                                      | Endangered | Bivalve                 | No               |
| (Epioblasma obliquata o           | obliquata)                              |            | Freshwater              |                  |
| Pearlymussel, White Cat's Paw     |                                         | Endangered | Bivalve                 | No               |
| (Epioblasma obliquata j           |                                         | -          | Freshwater              |                  |
|                                   | • •                                     |            |                         |                  |
| Riffleshell, Northern             | •                                       | Endangered | Bivalve                 | No               |

Page 46 of 68

-131 of 154-

|                                   |                   | ×                      |                  |
|-----------------------------------|-------------------|------------------------|------------------|
| Ohio (22) species:                |                   | Taxa                   | Critical Habitat |
| Clover, Running Buffalo           | Endangered        | Dicot                  | No               |
| (Trifolium stoloniferum)          |                   | Terrestrial            |                  |
| Daisy, Lakeside                   | Threatened        | Dicot                  | No               |
| (Hymenoxys herbacea)              | •                 | Freshwater             | . <sup>16</sup>  |
| Monkshood, Northern Wild          | Threatened        | Dicot                  | No               |
| (Aconitum noveboracense)          |                   | Terrestrial            | and an an an     |
| Spiraea, Virginia                 | Threatened        | Dicot                  | No               |
| (Spiraea virginiana)              | modelinea         | Terrestrial            |                  |
| Madtom, Scioto                    | Endangered        | Fish                   | No               |
|                                   | Lindangered       | Freshwater             | 110              |
| (Noturus trautmani)               | Endeward          |                        | Nie              |
| Beetle, American Burying          | Endangered        | Insect                 | No               |
| (Nicrophorus americanus)          |                   | Terrestrial            |                  |
| Butterfly, Karner Blue            | Endangered        | Insect                 | No               |
| (Lycaeides melissa samuelis)      |                   | Terrestrial            |                  |
| Butterfly, Mitchell's Satyr       | Endangered        | Insect                 | No               |
| (Neonympha mitchellii mitchellii) |                   | Terrestrial            |                  |
| Dragonfly, Hine's Emerald         | Endangered        | Insect                 | Yes              |
| (Somatochlora hineana)            |                   | Freshwater, Terrestria | al               |
| Bat, Gray                         | Endangered        | Mammal                 | No               |
| (Myotis grisescens)               | Ŭ                 | Subterraneous, Terre   | strial           |
| Bat, Indiana                      | Endangered        | Mammal                 | Yes              |
| (Myotis sodalis)                  |                   | Subterraneous, Terre   |                  |
| Orchid, Eastern Prairie Fringed   | Threatened        | Monocot                | No               |
| -                                 | Theatened         | Terrestrial            |                  |
| (Platanthera leucophaea)          | Thursday          |                        | Nia              |
| Pogonia, Small Whorled            | Threatened        | Monocot                | No               |
| (Isotria medeoloides)             |                   | Terrestrial            |                  |
| Snake, Lake Erie Water            | Threatened        | Reptile                | No               |
| (Nerodia sipedon insularum)       |                   | Terrestrial, Freshwate | er               |
| Snake, Northern Copperbelly Water | Threatened        | Reptile                | No               |
| (Nerodia erythrogaster neglecta)  |                   | Freshwater, Terrestria | al               |
| Oklahoma (18) species:            |                   | <u>Taxa</u>            | Critical Habitat |
| Crane, Whooping                   | Endangered        | Bird                   | Yes              |
| (Grus americana)                  | -                 | Terrestrial, Freshwate | er               |
| Curlew, Eskimo                    | Endangered        | Bird                   | No               |
| (Numenius borealis)               |                   | Terrestrial            |                  |
| Plover, Piping                    | Endangered        | Bird                   | Yes              |
| (Charadrius melodus)              | Endangered        | Terrestrial            |                  |
|                                   | Endensored        |                        | No               |
| Tern, Interior (population) Least | Endangered        | Bird                   | No               |
| (Sterna antillarum)               | <b>F</b> actor in | Terrestrial            | NI-              |
| Vireo, Black-capped               | Endangered        | Bird                   | No               |
| (Vireo atricapilla)               |                   | Terrestrial            |                  |
| Woodpecker, Red-cockaded          | Endangered        | Bird                   | No               |
| (Picoides borealis)               |                   | Terrestrial            |                  |
| /26/2007 2:54:13 PM Ver. 2.10.3   |                   |                        | Page 47 of       |
|                                   |                   |                        |                  |

-132 of 154-

| <b>Oklahoma</b><br>Aussel, Scaleshell                                                    | (18) species:                                                                                                                                                                                                                     | Endangered    | d <u>Taxa</u><br>Bivalve | Critical Habitat<br>No |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|------------------------|
| (Leptodea leptodon)                                                                      |                                                                                                                                                                                                                                   | Lindangoiot   | Freshwater               |                        |
| Rock-pocketbook, Ouachita (                                                              | -W/beelers nm)                                                                                                                                                                                                                    | Endangered    |                          | No                     |
| (Arkansia wheeleri)                                                                      |                                                                                                                                                                                                                                   | Lindingered   | Freshwater               | NO                     |
| Cavefish, Ozark                                                                          |                                                                                                                                                                                                                                   | Threatened    |                          | No                     |
| (Amblyopsis rosae)                                                                       |                                                                                                                                                                                                                                   | Inteatoneu    | Freshwater               |                        |
| Darter, Leopard                                                                          |                                                                                                                                                                                                                                   | Threatened    |                          | Yes                    |
| (Percina pantherina)                                                                     |                                                                                                                                                                                                                                   | meateneu      | Freshwater               | 162                    |
| Adtom, Neosho                                                                            |                                                                                                                                                                                                                                   | Threatened    |                          | No                     |
| (Noturus placidus)                                                                       |                                                                                                                                                                                                                                   | Inteatened    | Freshwater               | INO                    |
| Shiner, Arkansas River                                                                   |                                                                                                                                                                                                                                   | Threatened    |                          | Vac                    |
| (Notropis girardi)                                                                       |                                                                                                                                                                                                                                   | mealeneu      | Freshwater               | Yes                    |
|                                                                                          |                                                                                                                                                                                                                                   | Endongoro     |                          |                        |
| Beetle, American Burying                                                                 |                                                                                                                                                                                                                                   | Endangered    |                          | No                     |
| (Nicrophorus america                                                                     | (ius)                                                                                                                                                                                                                             | Endencere     | Terrestrial              | A1-                    |
| Bat, Gray                                                                                |                                                                                                                                                                                                                                   | Endangered    |                          | No                     |
| (Myotis grisescens)                                                                      |                                                                                                                                                                                                                                   | Endencere     | Subterraneous, Terre     |                        |
| Bat, Indiana                                                                             |                                                                                                                                                                                                                                   | Endangered    |                          | Yes                    |
| (Myotis sodalis)                                                                         | · · · ·                                                                                                                                                                                                                           | Fridancian    | Subterraneous, Terre     |                        |
| Bat, Ozark Big-eared                                                                     |                                                                                                                                                                                                                                   | Endangered    |                          | No                     |
|                                                                                          | otus) townsendii ingens)                                                                                                                                                                                                          | Thus stows of | Terrestrial, Subterran   |                        |
| Drchid, Eastern Prairie Fringe                                                           |                                                                                                                                                                                                                                   | Threatened    |                          | No                     |
| (Platanthera leucopha                                                                    | •                                                                                                                                                                                                                                 | Thursday      | Terrestrial              |                        |
| Drchid, Western Prairie Fring<br>Platanthera praeclara                                   |                                                                                                                                                                                                                                   | Threatened    | Monocot<br>Terrestrial   | No                     |
| Oregon                                                                                   | (41) species:                                                                                                                                                                                                                     |               | <u>Taxa</u>              | Critical Habitat       |
| Aurrelet, Marbled                                                                        |                                                                                                                                                                                                                                   | Threatened    |                          | Yes                    |
| (Brachyramphus man                                                                       | noratus marmoratus)                                                                                                                                                                                                               |               | Freshwater, Terrestria   | al, Saltwater          |
| Owl, Northern Spotted                                                                    |                                                                                                                                                                                                                                   | Threatened    | Bird                     | Yes                    |
| (Strix occidentalis cau                                                                  | rina)                                                                                                                                                                                                                             |               | Terrestrial              | ,                      |
| Pelican, Brown                                                                           |                                                                                                                                                                                                                                   | Endangered    | d Bird                   | No                     |
| (Pelecanus occidenta                                                                     | lis)                                                                                                                                                                                                                              |               | Terrestrial              |                        |
| Plover, Western Snowy                                                                    |                                                                                                                                                                                                                                   | Threatened    | Bird                     | Yes                    |
| (Charadrius alexandri                                                                    | nus nivosus)                                                                                                                                                                                                                      |               | Terrestrial              |                        |
| airy Shrimp, Vernal Pool                                                                 |                                                                                                                                                                                                                                   | Threatened    | Crustacean               | Yes                    |
| (Branchinecta lynchi)                                                                    |                                                                                                                                                                                                                                   |               | Vernal pool              |                        |
| Catchfly, Spalding's                                                                     | n al constante en la constante<br>En la constante en la constante | Threatened    |                          | No                     |
| (Silene spaldingii)                                                                      | - 14<br>-                                                                                                                                                                                                                         |               | Terrestrial              |                        |
| Checker-mallow, Nelson's                                                                 |                                                                                                                                                                                                                                   | Threatened    |                          | No                     |
| (Sidalcea nelsoniana)                                                                    |                                                                                                                                                                                                                                   |               | Terrestrial              |                        |
| Daisy, Willamette                                                                        |                                                                                                                                                                                                                                   | Endangered    |                          | No                     |
|                                                                                          | var decumbens)                                                                                                                                                                                                                    |               | Terrestrial              |                        |
| (Erigeron decumbers                                                                      |                                                                                                                                                                                                                                   |               |                          |                        |
| <i>(Erigeron decumbens</i><br>our-o'clock, Mactarlane's                                  | van dooumoonoy                                                                                                                                                                                                                    | Threatened    | Dicot                    | No                     |
| <i>(Erigeron decumbens</i><br>our-o'clock, Macfarlane's<br><i>(Mirabilis macfarlanei</i> |                                                                                                                                                                                                                                   | Threatened    | Dicot<br>Terrestrial     | No                     |

-133 of 154-

|                          |                                     |                 | 4                      |                        |
|--------------------------|-------------------------------------|-----------------|------------------------|------------------------|
| Oregon                   | (41) species:                       |                 | <u>Taxa</u>            | Critical Habitat       |
| Lomatium, Bradshaw's     |                                     | Endangered      | Dicot                  | No                     |
| (Lomatium brads)         | hawii)                              |                 | Terrestrial, Freshwate | er                     |
| Lomatium, Cook's         |                                     | Endangered      | Dicot                  | No                     |
| (Lomatium cookii)        | )                                   |                 | Vernal pool            |                        |
| Lupine, Kincaid's        |                                     | Threatened      | Dicot                  | No                     |
| (Lupinus sulphure        | eus (=oreganus) ssp. kincaidii (=va | ar. kincaidii)) | Terrestrial            |                        |
| Meadowfoam, Large-flow   | vered Woolly                        | Endangered      | Dicot                  | No                     |
| (Limnanthes floco        | cosa ssp. Grandiflora)              |                 | Vernal pool            |                        |
| Milk-vetch, Applegate's  |                                     | Endangered      | Dicot                  | No                     |
| (Astragalus apple        | gatei)                              |                 | Terrestrial            |                        |
| Thelypody, Howell's Spec | ctacular                            | Threatened      | Dicot                  | No                     |
| (Thelypodium how         | vellii spectabilis)                 |                 | Terrestrial            |                        |
| Chub, Hutton Tui         |                                     | Threatened      | Fish                   | No                     |
| (Gila bicolor ssp.)      | • • •                               |                 | Freshwater             |                        |
| Chub, Oregon             |                                     | Endangered      | Fish                   | No                     |
| (Oregonichthys c         | rameri)                             |                 | Freshwater             |                        |
| Dace, Foskett Speckled   |                                     | Threatened      | Fish                   | No                     |
| (Rhinichthys oscu        | llus ssp.)                          |                 | Freshwater             | 1                      |
| Salmon, Chinook (Lower   | Columbia River)                     | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         | =Salmo) tshawytscha)                |                 | Freshwater, Brackish   | , Saltwater            |
| Salmon, Chinook (Snake   | River Fall Run)                     | Threatened      | Fish                   | No                     |
|                          | =Salmo) tshawytscha)                |                 | Freshwater, Saltwate   | r, Brackish            |
| Salmon, Chinook (Snake   | River spring/summer)                | Threatened      | Fish                   | Yes                    |
|                          | =Salmo) tshawytscha)                |                 | Brackish, Saltwater,   | Freshwater             |
| Salmon, Chinook (Upper   | Columbia River Spring)              | Endangered      | Fish                   | Yes                    |
| (Oncorhynchus (=         | =Salmo) tshawytscha)                |                 | Freshwater, Saltwate   | r, Brackish            |
| Salmon, Chinook (Upper   | Willamette River)                   | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         | =Salmo) tshawytscha)                |                 | Saltwater, Brackish,   | Freshwater             |
| Salmon, Chum (Columbia   |                                     | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         | =Salmo) keta)                       |                 | Brackish, Freshwater   | , Saltwater            |
| Salmon, Coho (Southern   |                                     | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         | =Salmo) kisutch)                    |                 | Freshwater, Brackish   | , Saltwater            |
| Salmon, Sockeye (Snake   | River population)                   | Endangered      | Fish                   | No                     |
| (Oncorhynchus (=         | =Salmo) nerka)                      | -               | Brackish, Saltwater,   | Freshwater             |
| Steelhead, (Lower Colum  | bia River population)               | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         | =Salmo) mykiss)                     |                 | Brackish, Freshwater   | r, Saltwater           |
| Steelhead, (Middle Colun | nbia River population)              | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         |                                     |                 | Freshwater, Saltwate   | er, Brackish           |
| Steelhead, (Snake River  |                                     | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         | / -                                 |                 | Freshwater, Brackish   | n, Saltwater           |
| Steelhead, (Upper Colum  |                                     | Threatened      | Fish                   | Yes                    |
| (Oncorhynchus (=         |                                     |                 | Brackish, Saltwater,   | Freshwater             |
| •                        |                                     | * · · · ·       |                        | the part of the second |

Page 49 of 68

-134 of 154-

| Oregon (41) species:                           |            | Taxa                     | Critical Habitat |
|------------------------------------------------|------------|--------------------------|------------------|
| Steelhead, (Upper Willamette River population) | Threatened | Fish                     | Yes              |
| (Oncorhynchus (=Salmo) mykiss)                 |            | Brackish, Saltwater, Fre | shwater          |
| Sucker, Lost River                             | Endangered | Fish                     | No               |
| (Deltistes luxatus)                            |            | Freshwater               |                  |
| Sucker, Shortnose                              | Endangered | Fish                     | No               |
| (Chasmistes brevirostris)                      |            | Freshwater               |                  |
| Sucker, Warner                                 | Threatened | Fish                     | Yes              |
| (Catostomus warnerensis)                       |            | Freshwater               |                  |
| Trout, Bull                                    | Threatened | Fish                     | No               |
| (Salvelinus confluentus)                       |            | Freshwater               |                  |
| Trout, Bull (Columbia River population)        | Threatened | Fish                     | Yes              |
| (Salvelinus confluentus)                       |            | Freshwater               |                  |
| Trout, Bull (Klamath River population)         | Threatened | Fish                     | Yes              |
| (Salvelinus confluentus)                       |            | Freshwater               |                  |
| Butterfly, Fender's Blue                       | Endangered | Insect                   | No               |
| (Icaricia icarioides fenderi)                  | · · · · ·  | Terrestrial              |                  |
| Butterfly, Oregon Silverspot                   | Threatened | Insect                   | Yes              |
| (Speyeria zerene hippolyta)                    |            | Terrestrial              |                  |
| Deer, Columbian White-tailed                   | Endangered | Mammal                   | No               |
| (Odocoileus virginianus leucurus)              |            | Terrestrial              |                  |
| Fritillary, Gentner's                          | Endangered | Monocot                  | No               |
| (Fritillaria gentneri)                         |            | Terrestrial              | •                |
| Pennsylvania (8) species:                      |            | Taxa                     | Critical Habitat |
| Plover, Piping                                 | Endangered | Bird                     | Yes              |
| (Charadrius melodus)                           | <i>i</i> . | Terrestrial              |                  |
| Mussel, Clubshell                              | Endangered | Bivalve                  | No               |
| (Pleuroberna clava)                            |            | Freshwater               |                  |
| Riffleshell, Northern                          | Endangered | Bivalve                  | No               |
| (Epioblasma torulosa rangiana)                 |            | Freshwater               |                  |
| Bat, Indiana                                   | Endangered | Mammal                   | Yes              |
| (Myotis sodalis)                               |            | Subterraneous, Terresti  | ial              |
| Squirrel, Delmarva Peninsula Fox               | Endangered | Mammal                   | No               |
| (Sciurus niger cinereus)                       |            | Terrestrial              |                  |
| Bulrush, Northeastern (=Barbed Bristle)        | Endangered | Monocot                  | No               |
| (Scirpus ancistrochaetus)                      | -          | Terrestrial, Freshwater  |                  |
| Pogonia, Small Whorled                         | Threatened | Monocot                  | No               |
| (Isotria medeoloides)                          |            | Terrestrial              |                  |
| Turtle, Bog (Northern population)              | Threatened | Reptile                  | No               |
| (Clemmys muhlenbergii)                         |            | Terrestrial, Freshwater  |                  |
| Rhode Island (2) species:                      |            | <u>Taxa</u>              | Critical Habitat |
| Plover, Piping                                 | Endangered | Bird                     | Yes              |
|                                                |            |                          |                  |

-135 of 154-

Page 50 of 68

| <b>Rhode Island</b> (2) species:             | Endangered   | <u>Taxa</u><br>Fish     | Critical Habita   |
|----------------------------------------------|--------------|-------------------------|-------------------|
| Sturgeon, Shortnose (Acipenser brevirostrum) | Endangered   | Saltwater, Freshwater   | NO .              |
|                                              |              |                         | • ··· · · · · · · |
| South Carolina (36) species:                 |              | <u>Taxa</u>             | Critical Habita   |
| Salamander, Flatwoods                        | Threatened   | Amphibian               | No                |
| (Ambystoma cingulatum)                       |              | Freshwater, Vernal poo  |                   |
| Plover, Piping                               | Endangered   | Bird                    | Yes               |
| (Charadrius melodus)                         |              | Terrestrial             | NI                |
| Stork, Wood                                  | Endangered   | Bird                    | No                |
| (Mycteria americana)                         |              | Terrestrial             |                   |
| Narbler, Bachman's                           | Endangered   | Bird                    | No                |
| (Vermivora bachmanii)                        |              | Terrestrial             |                   |
| Noodpecker, Red-cockaded                     | Endangered   | Bird                    | No                |
| (Picoides borealis)                          | ·            | Terrestrial             |                   |
| Mussel, Heelsplitter Carolina                | Endangered   | Bivalve                 | Yes               |
| (Lasmigona decorata)                         |              | Freshwater              |                   |
| Amaranth, Seabeach                           | Threatened   | Dicot                   | No                |
| (Amaranthus pumilus)                         |              | Coastal (neritic)       |                   |
| Amphianthus, Little                          | Threatened   | Dicot                   | No                |
| (Amphianthus pusillus)                       |              | Freshwater              |                   |
| Chaffseed, American                          | Endangered   | Dicot                   | No                |
| (Schwalbea americana)                        |              | Terrestrial             |                   |
| Coneflower, Smooth                           | Endangered   | Dicot                   | No                |
| (Echinacea laevigata)                        |              | Terrestrial             | · ·               |
| Dropwort, Canby's                            | Endangered   | Dicot                   | No                |
| (Oxypolis canbyi)                            |              | Terrestrial, Freshwater | •                 |
| Gooseberry, Miccosukee                       | Threatened   | Dicot                   | No                |
| (Ribes echinellum)                           | ×.           | Terrestrial             |                   |
| Harperella                                   | Endangered   | Dicot                   | No                |
| (Ptilimnium nodosum)                         | _            | Freshwater              |                   |
| leartleaf, Dwarf-flowered                    | Threatened   | Dicot                   | No                |
| (Hexastylis naniflora)                       |              | Terrestrial             |                   |
| oosestrife, Rough-leaved                     | Endangered   | Dicot                   | No                |
| (Lysimachia asperulaefolia)                  | -            | Terrestrial             |                   |
| Pitcher-plant, Mountain Sweet                | Endangered   | Dicot                   | No                |
| (Sarracenia rubra ssp. jonesii)              |              | Freshwater, Terrestrial |                   |
| Pondberry                                    | Endangered   | Dicot                   | No                |
| (Lindera melissifolia)                       |              | Terrestrial             |                   |
| Sunflower, Schweinitz's                      | Endangered   | Dicot                   | No                |
| (Helianthus schweinitzii)                    |              | Terrestrial             |                   |
| Quiliwort, Black-spored                      | Endangered   | Ferns                   | No                |
| (Isoetes melanospora)                        | Lindangorod  | Vernal pool             |                   |
| Sturgeon, Shortnose                          | Endangered   | Fish                    | No                |
| (Acipenser brevirostrum)                     | Linuariyereu | Saltwater, Freshwater   | NU                |
|                                              |              | Janwaler, Freshwaler    |                   |

-136 of 154-

| South Carolina (36) species:     |              | Taxa                    | Critical Habita |
|----------------------------------|--------------|-------------------------|-----------------|
| chen, Rock Gnome                 | Endangered   | Lichen                  | No              |
| (Gymnoderma lineare)             |              | Terrestrial             |                 |
| at, Indiana                      | Endangered   | Mammal                  | Yes             |
| (Myotis sodalis)                 |              | Subterraneous, Terres   | trial           |
| lanatee, West Indian             | Endangered   | Marine mml              | Yes             |
| (Trichechus manatus)             |              | Saltwater               |                 |
| /hale, Finback                   | Endangered   | Marine mml              | No              |
| (Balaenoptera physalus)          |              | Saltwater               |                 |
| /hale, Humpback                  | Endangered   | Marine mml              | No              |
| (Megaptera novaeangliae)         | -            | Saltwater               |                 |
| rrowhead, Bunched                | Endangered   | Monocot                 | No              |
| (Sagittaria fasciculata)         |              | Freshwater              |                 |
| isette, White                    | Endangered   | Monocot                 | No              |
| (Sisyrinchium dichotomum)        | -            | Terrestrial             |                 |
| ink, Swamp                       | Threatened   | Monocot                 | No              |
| (Helonias bullata)               |              | Terrestrial, Freshwater |                 |
| ogonia, Small Whorled            | Threatened   | Monocot                 | No              |
| (Isotria medeoloides)            |              | Terrestrial             |                 |
| rillium, Persistent              | Endangered   | Monocot                 | No              |
| (Trillium persistens)            |              | Terrestrial             |                 |
| rillium, Relict                  | Endangered   | Monocot                 | No              |
| (Trillium reliquum)              |              | Terrestrial             |                 |
| ea turtle, green                 | Endangered   | Reptile                 | No              |
| (Chelonia mydas)                 | g            | Saltwater               |                 |
| ea turtle, Kemp's ridley         | Endangered   | Reptile                 | No              |
| (Lepidochelys kempii)            | Lindaligered | Saltwater               |                 |
| ea turtle, leatherback           | Endangered   | Reptile                 | Yes             |
| (Dermochelys coriacea)           | Endangered   | Saltwater               | 163             |
| ea turtle, loggerhead            | Threatened   | Reptile                 | No              |
| (Caretta caretta)                | meatened     | Saltwater               | NU              |
| nake, Eastern Indigo             | Threatened   | Reptile                 | No              |
| (Drymarchon corais couperi)      | THEALENEU    | Terrestrial             | UVU             |
|                                  |              | i circoliidi            |                 |
| South Dakota (8) species:        |              | <u>Taxa</u>             | Critical Habita |
| rane, Whooping                   | Endangered   | Bird                    | Yes             |
| (Grus americana)                 |              | Terrestrial, Freshwater |                 |
| lover, Piping                    | Endangered   | Bird                    | Yes             |
| (Charadrius melodus)             |              | Terrestrial             |                 |
| ern, Interior (population) Least | Endangered   | Bird                    | No              |
| (Sterna antillarum)              |              | Terrestrial             |                 |
| hiner, Topeka                    | Endangered   | Fish                    | Yes             |
| (Notropis topėka (=tristis))     |              | Freshwater              |                 |
| turgeon, Pallid                  | Endangered   | Fish                    | No              |
| (Scaphirhynchus albus)           |              | Freshwater              |                 |

-137 of 154-

| South Dakota (8) species:                                |                                       | Taxa        | Critical Habita |
|----------------------------------------------------------|---------------------------------------|-------------|-----------------|
| Beetle, American Burying                                 | Endangered                            | Insect      | No              |
| (Nicrophorus americanus)                                 |                                       | Terrestrial | •               |
| Ferret, Black-footed                                     | Endangered                            | Mammal      | No              |
| (Mustela nigripes)                                       |                                       | Terrestrial |                 |
| Orchid, Western Prairie Fringed                          | Threatened                            | Monocot     | No              |
| (Platanthera praeclara)                                  |                                       | Terrestrial |                 |
| Tennessee (82) species:                                  |                                       | Taxa        | Critical Habita |
| Spider, Spruce-fir Moss                                  | Endangered                            | Arachnid    | Yes             |
| (Microhexura montivaga)                                  |                                       | Terrestrial |                 |
| Stork, Wood                                              | Endangered                            | Bird        | No              |
| (Mycteria americana)                                     | r.                                    | Terrestrial |                 |
| Tern, Interior (population) Least                        | Endangered                            | Bird        | No              |
| (Sterna antillarum)                                      |                                       | Terrestrial |                 |
| Woodpecker, Red-cockaded                                 | Endangered                            | Bird        | No              |
| (Picoides borealis)                                      | •                                     | Terrestrial |                 |
| Combshell, Upland                                        | Endangered                            | Bivalve     | Yes             |
| (Epioblasma metastriata)                                 | <b>U</b>                              | Freshwater  |                 |
| Fanshell                                                 | Endangered                            | Bivalve     | No              |
| (Cyprogenia stegaria)                                    | U                                     | Freshwater  |                 |
| Kidneyshell, Triangular                                  | Endangered                            | Bivalve     | Yes             |
| (Ptychobranchus greenii)                                 |                                       | Freshwater  |                 |
| Mucket, Pink (Pearlymussel)                              | Endangered                            | Bivalve     | No              |
| (Lampsilis abrupta)                                      | · · · · · · · · · · · · · · · · · · · | Freshwater  |                 |
| Mussel, Alabama Moccasinshell                            | Threatened                            | Bivalve     | Yes             |
| (Medionidus acutissimus)                                 | incatoriou                            | Freshwater  |                 |
| Mussel, Clubshell                                        | Endangered                            | Bivalve     | No              |
| (Pleurobema clava)                                       | Lindarigorod                          | Freshwater  |                 |
| Mussel, Coosa Moccasinshell                              | Endangered                            | Bivalve     | Yes             |
| (Medionidus parvulus)                                    | Lindanigorod                          | Freshwater  |                 |
| Mussel, Cumberland Combshell                             | Endangered                            | Bivalve     | Yes             |
| (Epioblasma brevidens)                                   | Lindangorod                           | Freshwater  |                 |
| Mussel, Cumberland Elktoe                                | Endangered                            | Bivalve     | Yes             |
| (Alasmidonta atropurpurea)                               | Lindangorea                           | Freshwater  |                 |
| Mussel, Cumberland Pigtoe                                | Endangered                            | Bivalve     | No              |
| (Diametric all frames)                                   | Endangered                            | Freshwater  | 110             |
| (Pieurobema gibberum)<br>Mussel, Fine-lined Pocketbook   | Threatened                            | Bivalve     | Yes             |
| (Lampsilis altilis)                                      | Inteatened                            | Freshwater  | 165             |
| Mussel, Fine-rayed Pigtoe                                | Endangered                            | Bivalve     | No              |
| (Fusconaia cuneolus)                                     | Linuariyereu                          | Freshwater  | UV)             |
| ( <i>Fusconala cuneolus</i> )<br>Mussel, Ovate Clubshell | Endangered                            |             | Vac             |
|                                                          | Endangered                            | Bivalve     | Yes             |
| (Pleurobema perovatum)                                   | Codensora                             | Freshwater  | Vaa             |
| Mussel, Oyster                                           | Endangered                            | Bivalve     | Yes             |
| (Epioblasma capsaeformis)                                |                                       | Freshwater  |                 |

-138 of 154-

| Tennessee (82) species:                |            | Таха       | Critical Habitat |
|----------------------------------------|------------|------------|------------------|
| Mussel, Ring Pink (=Golf Stick Pearly) | Endangered | Bivalve    | No               |
| (Obovaria retusa)                      | -          | Freshwater |                  |
| Mussel, Rough Pigtoe                   | Endangered | Bivalve    | No               |
| (Pleuroberna plenum)                   |            | Freshwater |                  |
| Mussel, Shiny Pigtoe                   | Endangered | Bivalve    | No               |
| (Fusconaia cor)                        |            | Freshwater |                  |
| Mussel, Southern Pigtoe                | Endangered | Bivalve    | Yes              |
| (Pleurobema georgianum)                |            | Freshwater |                  |
| Pearlymussel, Alabama Lamp             | Endangered | Bivalve    | No               |
| (Lampsilis virescens)                  | -          | Freshwater |                  |
| Pearlymussel, Appalachian Monkeyface   | Endangered | Bivalve    | No               |
| (Quadrula sparsa)                      |            | Freshwater |                  |
| Pearlymussel, Birdwing                 | Endangered | Bivalve    | No               |
| (Conradilla caelata)                   |            | Freshwater |                  |
| Pearlymussel, Cracking                 | Endangered | Bivalve    | No               |
| (Hemistena lata)                       |            | Freshwater |                  |
| Pearlymussel, Cumberland Bean          | Endangered | Bivalve    | No               |
| (Villosa trabalis)                     |            | Freshwater |                  |
| Pearlymussel, Cumberland Monkeyface    | Endangered | Bivalve    | No               |
| (Quadrula intermedia)                  |            | Freshwater |                  |
| Pearlymussel, Dromedary                | Endangered | Bivalve    | No               |
| (Dromus dromas)                        |            | Freshwater |                  |
| Pearlymussel, Green-blossom            | Endangered | Bivalve    | No               |
| (Epioblasma torulosa gubernaculum)     |            | Freshwater |                  |
| Pearlymussel, Little-wing              | Endangered | Bivalve    | No               |
| (Pegias fabula)                        |            | Freshwater |                  |
| Pearlymussel, Orange-footed            | Endangered | Bivalve    | No               |
| (Plethobasus cooperianus)              |            | Freshwater |                  |
| Pearlymussel, Pale Lilliput            | Endangered | Bivalve    | No               |
| (Toxolasma cylindrellus)               |            | Freshwater |                  |
| Pearlymussel, Purple Cat's Paw         | Endangered | Bivalve    | No               |
| (Epioblasma obliquata obliquata)       |            | Freshwater |                  |
| Pearlymussel, Tubercled-blossom        | Endangered | Bivalve    | No               |
| (Epioblasma torulosa torulosa)         |            | Freshwater |                  |
| Pearlymussel, Turgid-blossom           | Endangered | Bivalve    | No               |
| (Epioblasma turgidula)                 | ч          | Freshwater |                  |
| Pearlymussel, White Wartyback          | Endangered | Bivalve    | No               |
| (Plethobasus cicatricosus)             |            | Freshwater |                  |
| Pearlymussel, Yellow-blossom           | Endangered | Bivalve    | No               |
| (Epioblasma florentina florentina)     |            | Freshwater |                  |
| Purple Bean                            | Endangered | Bivalve    | Yes              |
| (Villosa perpurpurea)                  |            | Freshwater |                  |

Page 54 of 68

## -139 of 154-

| Tennessee (82) species:                             |            | <u>Taxa</u>            | Critical Habitat |
|-----------------------------------------------------|------------|------------------------|------------------|
| Rabbitsfoot, Rough                                  | Endangered | Bivalve                | Yes              |
| (Quadrula cylindrica strigillata)                   |            | Freshwater             |                  |
| Riffleshell, Tan                                    | Endangered | Bivalve                | No               |
| (Epioblasma florentina walkerì (=E. walkerì))       |            | Freshwater             |                  |
| Crayfish, Nashville                                 | Endangered | Crustacean             | No               |
| (Orconectes shoupi)                                 |            | Freshwater             |                  |
| Aster, Ruth's Golden                                | Endangered | Dicot                  | No               |
| (Pityopsis ruthii)                                  |            | Terrestrial            |                  |
| Avens, Spreading                                    | Endangered | Dicot                  | No               |
| (Geum radiatum)                                     |            | Terrestrial            |                  |
| Bladderpod, Spring Creek                            | Endangered | Dicot                  | No               |
| (Lesquerella perforata)                             |            | Floodplain             |                  |
| Bluet, Roan Mountain                                | Endangered | Dicot                  | No               |
| (Hedyotis purpurea var. montana)                    |            | Terrestrial            |                  |
| Clover, Leafy Prairie                               | Endangered | Dicot                  | No               |
| (Dalea foliosa)                                     | ×          | Terrestrial            |                  |
| Coneflower, Tennessee Purple                        | Endangered | Dicot                  | No               |
| (Echinacea tennesseensis)                           |            | Terrestrial            |                  |
| Goldenrod, Blue Ridge                               | Threatened | Dicot                  | No               |
| (Solidago spithamaea)                               |            | Terrestrial            |                  |
| Ground-plum, Guthrie's                              | Endangered | Dicot                  | No               |
| (Astragalus bibullatus)                             |            | Terrestrial            |                  |
| Pitcher-plant, Green                                | Endangered | Dicot                  | No               |
| (Sarracenia oreophila)                              |            | Terrestrial, Freshwate | r                |
| Potato-bean, Price's                                | Threatened | Dicot                  | No               |
| (Apios priceana)                                    |            | Terrestrial            |                  |
| Rock-cress, Large (=Braun's)                        | Endangered | Dicot                  | Yes              |
| (Arabis perstellata E. L. Braun var. ampla Rollins) |            | Terrestrial            |                  |
| Rosemary, Cumberland                                | Threatened | Dicot                  | No               |
| (Conradina verticillata)                            |            | Terrestrial            |                  |
| Sandwort, Cumberland                                | Endangered | Dicot                  | No               |
| (Arenaria cumberlandensis)                          |            | Terrestrial            |                  |
| Skullcap, Large-flowered                            | Threatened | Dicot                  | No               |
| (Scutellaria montana)                               |            | Terrestrial            |                  |
| Spiraea, Virginia                                   | Threatened | Dicot                  | No               |
| (Spiraea virginiana)                                |            | Terrestrial            |                  |
| Fern, American hart's-tongue                        | Threatened | Ferns                  | No               |
| (Asplenium scolopendrium var. americanum)           |            | Terrestrial            |                  |
| Chub, Siender                                       | Threatened | Fish                   | Yes              |
| (Erimystax cahni)                                   |            | Freshwater             |                  |
| Chub, Spotfin                                       | Threatened | Fish                   | Yes              |
| (Erimonax monachus)                                 |            | Freshwater             |                  |

Page 55 of 68

-140 of 154-

| <b>Tennessee</b> ( 82) species:                                  |                    |                                     | Critical Habita |
|------------------------------------------------------------------|--------------------|-------------------------------------|-----------------|
| Dace, Blackside                                                  | Threatened         | Fish                                | No              |
| (Phoxinus cumberlandensis)                                       |                    | Freshwater                          |                 |
| Darter, Amber                                                    | Endangered         | Fish                                | Yes             |
| (Percina antesella)                                              |                    | Freshwater                          |                 |
| Darter, Bluemask (=jewel)                                        | Endangered         | Fish                                | No              |
| (Etheostoma /)                                                   |                    | Freshwater                          |                 |
| Darter, Boulder                                                  | Endangered         | Fish                                | No              |
| (Etheostoma wapiti)                                              |                    | Freshwater                          |                 |
| Darter, Duskytail                                                | Endangered         | Fish                                | No              |
| (Etheostoma percnurum)                                           |                    | Freshwater                          |                 |
| Darter, Slackwater                                               | Threatened         | Fish                                | Yes             |
| (Etheostoma boschungi)                                           |                    | Freshwater                          |                 |
| Darter, Snail                                                    | Threatened         | Fish                                | No              |
| (Percina tanasi)                                                 | -                  | Freshwater                          |                 |
| _ogperch, Conasauga                                              | Endangered         | Fish                                | Yes             |
| (Percina jenkinsi)                                               |                    | Freshwater                          |                 |
| Madtom, Pygmy                                                    | Endangered         | Fish                                | No              |
| (Noturus stanauli)                                               |                    | Freshwater                          |                 |
| Madtom, Smoky                                                    | Endangered         | Fish                                | Yes             |
| (Noturus baileyi)                                                |                    | Freshwater                          |                 |
| Madtom, Yellowfin                                                | Threatened         | Fish                                | Yes             |
| (Noturus flavipinnis)                                            | <b></b>            | Freshwater                          |                 |
| Shiner, Blue                                                     | Threatened         | Fish                                | No              |
| (Cyprinella caerulea)                                            |                    | Freshwater                          |                 |
| Sturgeon, Pallid                                                 | Endangered         | Fish                                | No              |
| <i>(Scaphirhynchus albus)</i><br>Marstonia, Royal (=Royal Snail) | Ender verst        | Freshwater                          |                 |
| (Pyrgulopsis ogmorhaphe)                                         | Endangered         | Gastropod                           | No              |
| Riversnail, Anthony's                                            |                    | Terrestrial                         |                 |
| (Athearnia anthonyi)                                             | Endangered         | Gastropod                           | No              |
| Snail, Painted Snake Coiled Forest                               | Threatened         | Freshwater                          |                 |
| (Anguispira picta)                                               | Threatened         | Gastropod                           | No              |
| ichen, Rock Gnome                                                | <b>F</b> indamound | Terrestrial                         |                 |
| (Gymnoderma lineare)                                             | Endangered         | Lichen                              | No              |
| Bat, Gray                                                        | Endongerad         | Terrestrial                         |                 |
| (Myotis grisescens)                                              | Endangered         | Mammal                              | No              |
| Bat, Indiana                                                     | Endemarked         | Subterraneous, Terrestria<br>Mammal |                 |
| (Myotis sodalis)                                                 | Endangered         |                                     | Yes             |
| Squirrel, Carolina Northern Flying                               | Endemanad          | Subterraneous, Terrestria           |                 |
| (Glaucomys sabrinus coloratus)                                   | Endangered         | Mammal                              | No              |
| Grass, Tennessee Yellow-eyed                                     | Endencered         | Terrestrial                         | Niz             |
| (Xyris tennesseensis)                                            | Endangered         | Monocot                             | No              |

Page 56 of 68

## -141 of 154-

| Pogonia, Small Whorled<br>(Isotria medeoloides)<br><b>Texas</b> (77) species<br>Salamander, Barton Springs<br>(Eurycea sosorum)<br>Salamander, San Marcos<br>(Eurycea nana)<br>Salamander, Texas Blind<br>(Typhlomolge rathbuni)<br>Toad, Houston<br>(Bufo houstonensis) | s: | Threatened<br>Endangered<br>Threatened | Amphibian<br>Freshwater, Terrestrial                | No<br><u>Critical Habita</u><br>No |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------|-----------------------------------------------------|------------------------------------|
| Texas(77) speciesSalamander, Barton Springs<br>(Eurycea sosorum)(77) speciesSalamander, San Marcos<br>(Eurycea nana)(70)Salamander, Texas Blind<br>(Typhlomolge rathbuni)(70)Toad, Houston(70)                                                                           | s: | -                                      | <u>Taxa</u><br>Amphibian<br>Freshwater, Terrestrial |                                    |
| Salamander, Barton Springs<br><i>(Eurycea sosorum)</i><br>Salamander, San Marcos<br><i>(Eurycea nana)</i><br>Salamander, Texas Blind<br><i>(Typhlomolge rathbuni)</i><br>Toad, Houston                                                                                   | s: | -                                      | Amphibian<br>Freshwater, Terrestrial                |                                    |
| <i>(Eurycea sosorum)</i><br>Salamander, San Marcos<br><i>(Eurycea nana)</i><br>Salamander, Texas Blind<br><i>(Typhlomolge rathbuni)</i><br>Toad, Houston                                                                                                                 |    | -                                      | Freshwater, Terrestrial                             | No                                 |
| Salamander, San Marcos<br><i>(Eurycea nana)</i><br>Salamander, Texas Blind<br><i>(Typhlomolge rathbuni)</i><br>Toad, Houston                                                                                                                                             |    | Threatened                             |                                                     |                                    |
| <i>(Eurycea nana)</i><br>Salamander, Texas Blind<br><i>(Typhlomolge rathbuni)</i><br>Toad, Houston                                                                                                                                                                       |    | Threatened                             |                                                     |                                    |
| <i>(Eurycea nana)</i><br>Salamander, Texas Blind<br><i>(Typhlomolge rathbuni)</i><br>Foad, Houston                                                                                                                                                                       |    |                                        | Amphibian                                           | Yes                                |
| Salamander, Texas Blind<br>(Typhlomolge rathbuni)<br>Toad, Houston                                                                                                                                                                                                       |    |                                        | Freshwater, Terrestrial                             |                                    |
| (Typhlomolge rathbuni)<br>Foad, Houston                                                                                                                                                                                                                                  |    | Endangered                             | Amphibian                                           | No                                 |
| oad, Houston                                                                                                                                                                                                                                                             |    |                                        | Subterraneous, Freshwa                              | ter                                |
|                                                                                                                                                                                                                                                                          |    | Endangered                             | Amphibian                                           | Yes                                |
| (Duio nousionensis)                                                                                                                                                                                                                                                      |    | Endangerea                             | Terrestrial, Freshwater                             |                                    |
| Harvestman, Bee Creek Cave                                                                                                                                                                                                                                               |    | Endangered                             | Arachnid                                            | No                                 |
|                                                                                                                                                                                                                                                                          |    | Endangered                             | Terrestrial, Subterraneou                           |                                    |
| (Texella reddelli)                                                                                                                                                                                                                                                       |    | Endangered                             | Arachnid                                            | No                                 |
| Harvestman, Bone Cave                                                                                                                                                                                                                                                    |    | Lindangered                            | Terrestrial, Subterraneou                           |                                    |
| (Texella reyesi)                                                                                                                                                                                                                                                         |    | Endonaceed                             |                                                     |                                    |
| Harvestman, Robber Baron Cave                                                                                                                                                                                                                                            |    | Endangered                             | Arachnid                                            | Yes                                |
| (Texella cokendolpheri)                                                                                                                                                                                                                                                  |    |                                        | Subterraneous, Terrestri                            |                                    |
| Meshweaver, Braken Bat Cave                                                                                                                                                                                                                                              |    | Endangered                             | Arachnid                                            | Yes                                |
| (Cicurina venii)                                                                                                                                                                                                                                                         |    |                                        | Terrestrial, Subterraneou                           |                                    |
| Pseudoscorpion, Tooth Cave                                                                                                                                                                                                                                               |    | Endangered                             | Arachnid                                            | No                                 |
| (Tartarocreagris texana)                                                                                                                                                                                                                                                 |    |                                        | Terrestrial, Subterraneou                           | JS                                 |
| Spider, Government Canyon Cave                                                                                                                                                                                                                                           |    | Endangered                             | Arachnid                                            | No                                 |
| (Neoleptoneta microps)                                                                                                                                                                                                                                                   |    |                                        | Subterraneous, Terrestri                            | al                                 |
| Spider, Madla's Cave                                                                                                                                                                                                                                                     |    | Endangered                             | Arachnid                                            | Yes                                |
| (Cicurina madla)                                                                                                                                                                                                                                                         |    |                                        | Subterraneous, Terrestri                            | al                                 |
| Spider, Robber Baron Cave                                                                                                                                                                                                                                                |    | Endangered                             | Arachnid                                            | Yes                                |
| (Cicurina baronia)                                                                                                                                                                                                                                                       |    |                                        | Terrestrial, Subterraneou                           | sL                                 |
| Spider, Tooth Cave                                                                                                                                                                                                                                                       |    | Endangered                             | Arachnid                                            | No                                 |
| (Neoleptoneta myopica)                                                                                                                                                                                                                                                   |    |                                        | Terrestrial, Subterraneou                           | s                                  |
| Spider, Vesper Cave                                                                                                                                                                                                                                                      |    | Endangered                             | Arachnid                                            | No                                 |
| (Cicurina vespera)                                                                                                                                                                                                                                                       |    |                                        | Subterraneous, Terrestri                            | al                                 |
| Crane, Whooping                                                                                                                                                                                                                                                          |    | Endangered                             | Bird                                                | Yes                                |
| (Grus americana)                                                                                                                                                                                                                                                         |    | J                                      | Terrestrial, Freshwater                             |                                    |
| Curlew, Eskimo                                                                                                                                                                                                                                                           |    | Endangered                             | Bird                                                | No                                 |
| (Numenius borealis)                                                                                                                                                                                                                                                      |    |                                        | Terrestrial                                         |                                    |
| Falcon, Northern Aplomado                                                                                                                                                                                                                                                |    | Endangered                             | Bird                                                | No                                 |
| (Falco femoralis septentrionalis)                                                                                                                                                                                                                                        |    |                                        | Terrestrial                                         |                                    |
| Flycatcher, Southwestern Willow                                                                                                                                                                                                                                          |    | Endangered                             | Bird                                                | Yes                                |
| (Empidonax traillii extimus)                                                                                                                                                                                                                                             |    | Lindengered                            | Terrestrial                                         | 100                                |
|                                                                                                                                                                                                                                                                          |    | Threatened                             | Bird                                                | Yes                                |
| Dwl, Mexican Spotted                                                                                                                                                                                                                                                     |    | meateneu                               |                                                     | 1 63                               |
| (Strix occidentalis lucida)                                                                                                                                                                                                                                              |    | En el e a en en en el                  | Terrestrial                                         | N-                                 |
| Pelican, Brown                                                                                                                                                                                                                                                           |    | Endangered                             | Bird                                                | No                                 |
| (Pelecanus occidentalis)                                                                                                                                                                                                                                                 |    |                                        | Terrestrial                                         |                                    |

-142 of 154-

|                                                |            |                       | -                |
|------------------------------------------------|------------|-----------------------|------------------|
| Texas (77) species:                            |            | Таха                  | Critical Habitat |
| Plover, Piping                                 | Endangered | Bird                  | Yes              |
| (Charadrius melodus)                           |            | Terrestrial           | •                |
| Prairie-chicken, Attwater's Greater            | Endangered | Bird                  | No               |
| (Tympanuchus cupido attwateri)                 |            | Terrestrial           |                  |
| Tern, Interior (population) Least              | Endangered | Bird                  | No               |
| (Sterna antillarum)                            |            | Terrestrial           |                  |
| Vireo, Black-capped                            | Endangered | Bird                  | No               |
| (Vireo atricapilla)                            |            | Terrestrial           |                  |
| Warbler (=Wood), Golden-cheeked                | Endangered | Bird                  | No               |
| (Dendroica chrysoparia)                        |            | Terrestrial           |                  |
| Woodpecker, Red-cockaded                       | Endangered | Bird                  | No               |
| (Picoides borealis)                            |            | Terrestrial           |                  |
| Amphipod, Peck's Cave                          | Endangered | Crustacean            | No               |
| (Stygobromus (=Stygonectes) pecki)             |            | Subterraneous, Freshw | ater             |
| Ambrosia, South Texas                          | Endangered | Dicot                 | No               |
| (Ambrosia cheiranthifolia)                     |            | Terrestrial           |                  |
| Ayenia, Texas                                  | Endangered | Dicot                 | No               |
| (Ayenia limitaris)                             |            | Terrestrial           |                  |
| Cactus, Black Lace                             | Endangered | Dicot                 | No               |
| (Echinocereus reichenbachii var. albertii)     |            | Terrestrial           |                  |
| Cactus, Bunched Cory                           | Threatened | Dicot                 | No               |
| (Coryphantha ramillosa)                        |            | Terrestrial           |                  |
| Cactus, Sneed Pincushion                       | Endangered | Dicot                 | No               |
| (Coryphantha sneedii var. sneedii)             |            | Terrestrial           |                  |
| Cactus, Star                                   | Endangered | Dicot                 | No               |
| (Astrophytum asterias)                         |            | Terrestrial           |                  |
| Cactus, Tobusch Fishhook                       | Endangered | Dicot                 | No               |
| (Ancistrocactus tobuschii)                     |            | Terrestrial           |                  |
| Dawn-flower, Texas Prairie (=Texas Bitterweed) | Endangered | Dicot                 | No               |
| (Hymenoxys texana)                             |            | Terrestrial           |                  |
| Dogweed, Ashy                                  | Endangered | Dicot                 | No               |
| (Thymophylla tephroleuca)                      |            | Terrestrial           |                  |
| Frankenia, Johnston's                          | Endangered | Dicot                 | No               |
| (Frankenia johnstonii)                         |            | Terrestrial           | ×                |
| Fruit, Earth (=geocarpon)                      | Threatened | Dicot                 | No               |
| (Geocarpon minimum)                            |            | Terrestrial           | •                |
| Manioc, Walker's                               | Endangered | Dicot                 | No               |
| (Manihot walkerae)                             |            | Terrestrial           |                  |
| Phlox, Texas Trailing                          | Endangered | Dicot                 | No               |
| (Phlox nivalis ssp. texensis)                  |            | Terrestrial           |                  |
| Poppy-mallow, Texas                            | Endangered | Dicot                 | No               |
| (Callirhoe scabriuscula)                       |            | Terrestrial           | -<br>-           |

Page 58 of 68

-143 of 154-

| ,                            |               |            |                         | · · ·          |
|------------------------------|---------------|------------|-------------------------|----------------|
| Texas                        | (77) species: |            | <u>Taxa</u>             | Critical Habit |
| Rush-pea, Slender            |               | Endangered | Dicot                   | No             |
| (Hoffmannseggia ten          | ella)         |            | Terrestrial             |                |
| Sand-verbena, Large-fruited  |               | Endangered | Dicot                   | No             |
| (Abronia macrocarpa          | )             |            | Terrestrial             |                |
| Snowbells, Texas             |               | Endangered | <b>Dicot</b>            | No             |
| (Styrax texanus)             |               |            | Terrestrial             |                |
| Sunflower, Pecos             |               | Threatened | Dicot                   | No             |
| (Helianthus paradoxu         | IS)           |            | Terrestrial, Freshwater |                |
| Wild-buckwheat, Gypsum       |               | Threatened | Dicot                   | Yes            |
| (Eriogonum gypsoph           | ilum)         |            | Terrestrial             |                |
| Darter, Fountain             |               | Endangered | Fish                    | Yes            |
| (Etheostoma fonticola        | a)            |            | Freshwater              |                |
| Gambusia, Clear Creek        |               | Endangered | Fish                    | No             |
| (Gambusia heterochi          | r)            |            | Freshwater              |                |
| Gambusia, Pecos              |               | Endangered | Fish                    | No             |
| (Gambusia nobilis)           | 4.1.1         |            | Freshwater              |                |
| Gambusia, San Marcos         |               | Endangered | Fish                    | Yes            |
| (Gambusia georgei)           |               | -          | Freshwater              |                |
| Minnow, Devils River         |               | Threatened | Fish                    | No             |
| (Dionda diaboli)             |               |            | Freshwater              |                |
| Pupfish, Comanche Springs    |               | Endangered | Fish                    | No             |
| (Cyprinodon elegans          | )             |            | Freshwater              |                |
| Pupfish, Leon Springs        |               | Endangered | Fish                    | Yes            |
| (Cyprinodon bovinus,         | )             | •          | Freshwater              |                |
| Shiner, Arkansas River       |               | Threatened | Fish                    | Yes            |
| (Notropis girardi)           |               |            | Freshwater              |                |
| Snail, Pecos Assiminea       |               | Endangered | Gastropod               | Yes            |
| (Assiminea pecos)            |               | -          | Freshwater              |                |
| Beetle, American Burying     |               | Endangered | Insect                  | No             |
| (Nicrophorus america         | anus)         |            | Terrestrial             |                |
| Beetle, Coffin Cave Mold     |               | Endangered | Insect                  | No             |
| (Batrisodes texanus)         | •             |            | Subterraneous           |                |
| Beetle, Comal Springs Dryop  | bid           | Endangered | Insect                  | No             |
| (Stygoparnus comale          |               | 0.00       | Subterraneous, Freshwa  | ater           |
| Beetle, Comal Springs Riffle | -             | Endangered | Insect                  | No             |
| (Heterelmis comalen          | sis)          |            | Subterraneous, Freshwa  |                |
| Beetle, Helotes Mold         |               | Endangered | Insect                  | Yes            |
| (Batrisodes venyivi)         |               |            | Subterraneous           |                |
| Beetle, Kretschmarr Cave M   | bld           | Endangered | Insect                  | No             |
| (Texamaurops redde           |               |            | Subterraneous           |                |
| Beetle, Tooth Cave Ground    |               | Endangered | Insect                  | No             |
| (Rhadine persephone          |               |            | Subterraneous           |                |

Page 59 of 68

-144 of 154-

| Texas                     | (77) species:                 |              | Taxa                   | Critical Habita |
|---------------------------|-------------------------------|--------------|------------------------|-----------------|
| Rhadine exilis (ncn)      |                               | Endangered   | Insect                 | Yes             |
| (Rhadine exilis)          | · · ·                         |              | Terrestrial, Subterran | eous            |
| Rhadine infernalis (ncn)  |                               | Endangered   | Insect                 | Yes             |
| (Rhadine infernal         | is)                           |              | Terrestrial, Subterran | eous            |
| Bear, Louisiana Black     |                               | Threatened   | Mammal                 | No              |
| (Ursus americant          | ıs luteolus)                  |              | Terrestrial            |                 |
| Jaguarundi, Gulf Coast    |                               | Endangered   | Mammal                 | No              |
| (Herpailurus (=Fe         | elis) yagouaroundi cacomitli) |              | Terrestrial            |                 |
| Jaguarundi, Sinaloan      |                               | Endangered   | Mammal                 | No              |
| (Herpailurus (=Fe         | elis) yagouaroundi tolteca)   |              | Terrestrial            |                 |
| Ocelot                    |                               | Endangered   | Mammal                 | No              |
| (Leopardus (=Fel          | is) pardalis)                 |              | Terrestrial            |                 |
| Ladies'-tresses, Navasota | a                             | Endangered   | Monocot                | No              |
| (Spiranthes parks         | sii)                          |              | Terrestrial            |                 |
| Pondweed, Little Aguja C  | •                             | Endangered   | Monocot                | No              |
| (Potamogeton cly          | •                             | Ũ            | Freshwater             |                 |
| Wild-rice, Texas          | ,                             | Endangered   | Monocot                | Yes             |
| (Zizania texana)          |                               |              | Freshwater             |                 |
| Sea turtle, green         |                               | Endangered   | Reptile                | No              |
| (Chelonia mydas)          | )                             | Linuxingereu | Saltwater              |                 |
| Sea turtle, hawksbill     |                               | Endangered   | Reptile                | Yes             |
| Eretmochelys im           | bricata)                      | Endurigered  | Saltwater              | 165             |
| Sea turtle, Kemp's ridley | billatay                      | Endangered   |                        | No              |
| (Lepidochelys ke          | mpii)                         | Endangered   | Reptile<br>Saltwater   | No              |
|                           |                               | Endengered   |                        | Vaa             |
| Sea turtle, leatherback   | riaccool                      | Endangered   | Reptile                | Yes             |
| (Dermochelys col          | nacea)                        | Thursday     | Saltwater              |                 |
| Sea turtle, loggerhead    |                               | Threatened   | Reptile                | No              |
| (Caretta caretta)         |                               | <b>T</b> i   | Saltwater              |                 |
| Snake, Concho Water       | 1-1-X                         | Threatened   | Reptile                | Yes             |
| (Nerodia paucima          | aculata)                      |              | Freshwater, Terrestri  | al              |
| Utah                      | (34) species:                 |              | Таха                   | Critical Habita |
| Flycatcher, Southwesterr  |                               | Endangered   | Bird                   | Yes             |
| (Empidonax trailli        | ii extimus)                   |              | Terrestrial            |                 |
| Owl, Mexican Spotted      |                               | Threatened   | Bird                   | Yes             |
| (Strix occidentalis       | s lucida)                     |              | Terrestrial            |                 |
| Bear-poppy, Dwarf         |                               | Endangered   | Dicot                  | No              |
| (Arctomecon hur           | nilis)                        |              | Terrestrial            |                 |
| Cactus, San Rafael        |                               | Endangered   | Dicot                  | No              |
| (Pediocactus des          | nainii)                       | Lindaligorou | Terrestrial            | 110             |
| Cactus, Siler Pincushion  | ,                             | Threatened   | Dicot                  | No              |
| •                         | chinocactus,=Utahia) sileri)  | Incatoned    | Terrestrial            | NU              |
| Cactus, Uinta Basin Hool  |                               | Threatened   |                        | No              |
| , ,                       |                               | meatened     | Dicot<br>Terrestrial   | No              |
| (Sclerocactus gla         | uuus/                         |              | renestial              |                 |

-145 of 154-

| Utah (34) species:                   |            | Taxa        | Critical Habitat                                                                                               |
|--------------------------------------|------------|-------------|----------------------------------------------------------------------------------------------------------------|
| Cactus, Winkler                      | Threatened | Dicot       | No a ser                                                                                                       |
| (Pediocactus winkleri)               |            | Terrestrial |                                                                                                                |
| Cactus, Wright Fishhook              | Endangered | Dicot       | No                                                                                                             |
| (Sclerocactus wrightiae)             |            | Terrestrial |                                                                                                                |
| Cycladenia, Jones                    | Threatened | Dicot       | No                                                                                                             |
| (Cycladenia jonesii (=humilis))      |            | Terrestrial | and the second                                                                                                 |
| Daisy, Maguire                       | Threatened | Dicot       | No                                                                                                             |
| (Erigeron maguirei)                  |            | Freshwater  |                                                                                                                |
| /lilk-vetch, Deseret                 | Threatened | Dicot       | No                                                                                                             |
| (Astragalus desereticus)             |            | Terrestrial | and the second second                                                                                          |
| /ilk-vetch, Heliotrope               | Threatened | Dicot       | Yes                                                                                                            |
| (Astragalus montii)                  |            | Terrestrial | 1                                                                                                              |
| Ailk-vetch, Holmgren                 | Endangered | Dicot       | No                                                                                                             |
| (Astragalus holmgreniorum)           |            | Terrestrial |                                                                                                                |
| /lilk-vetch, Shivwits                | Endangered | Dicot       | No                                                                                                             |
| (Astragalus ampullarioides)          |            | Terrestrial | •                                                                                                              |
| Phacelia, Clay                       | Endangered | Dicot       | No                                                                                                             |
| (Phacelia argillacea)                |            | Terrestrial |                                                                                                                |
| Primrose, Maguire                    | Threatened | Dicot       | No                                                                                                             |
| (Primula maguirei)                   |            | Terrestrial |                                                                                                                |
| Reed-mustard, Barneby                | Endangered | Dicot       | No                                                                                                             |
| (Schoenocrambe barnebyi)             |            | Terrestrial |                                                                                                                |
| Reed-mustard, Clay                   | Threatened | Dicot       | No                                                                                                             |
| (Schoenocrambe argillacea)           |            | Terrestrial | , K                                                                                                            |
| Reed-mustard, Shrubby                | Endangered | Dicot       | No                                                                                                             |
| (Schoenocrambe suffrutescens)        |            | Terrestrial | the second second                                                                                              |
| Ridge-cress (=Pepper-cress), Barneby | Endangered | Dicot       | No                                                                                                             |
| (Lepidium barnebyanum)               |            | Terrestrial |                                                                                                                |
| Fownsendia, Last Chance              | Threatened | Dicot       | No                                                                                                             |
| (Townsendia aprica)                  |            | Terrestrial |                                                                                                                |
| Chub, Bonytail                       | Endangered | Fish        | Yes                                                                                                            |
| (Gila elegans)                       |            | Freshwater  |                                                                                                                |
| Chub, Humpback                       | Endangered | Fish        | Yes                                                                                                            |
| (Gila cypha)                         | , –        | Freshwater  |                                                                                                                |
| Chub, Virgin River                   | Endangered | Fish        | Yes                                                                                                            |
| (Gila seminuda (=robusta))           | . –        | Freshwater  |                                                                                                                |
| Squawfish, Colorado                  | Endangered | Fish        | Yes                                                                                                            |
| (Ptychocheilus lucius)               | -          | Freshwater  |                                                                                                                |
| Sucker, June                         | Endangered | Fish        | Yes                                                                                                            |
| (Chasmistes liorus)                  | -          | Freshwater  |                                                                                                                |
| Sucker, Razorback                    | Endangered | Fish        | Yes                                                                                                            |
| (Xyrauchen texanus)                  |            | Freshwater  | e de la construcción de la constru |

Page 61 of 68

-146 of 154-

|                                  | ki henshawi)                | Threatened   | Fish                   | No                |
|----------------------------------|-----------------------------|--------------|------------------------|-------------------|
| Woundfin<br>(Plagopterus argenti | ki henshawi)                |              |                        |                   |
| (Plagopterus argenti             |                             |              | Freshwater             |                   |
|                                  |                             | Endangered   | Fish                   | Yes               |
|                                  | (Plagopterus argentissimus) |              | Freshwater             |                   |
| Ferret, Black-footed             |                             | Endangered   | Mammal                 | No                |
| (Mustela nigripes)               |                             |              | Terrestrial            |                   |
| Prairie Dog, Utah                |                             | Threatened   | Mammal                 | No                |
| (Cynomys parvidens               | <i>;)</i>                   |              | Terrestrial, Subterran | eous              |
| Ladies'-tresses, Ute             |                             | Threatened   | Monocot                | No                |
| (Spiranthes diluvialis           | 5)                          |              | Terrestrial            |                   |
| Sedge, Navajo                    |                             | Threatened   | Monocot                | Yes               |
| (Carex specuicola)               |                             |              | Terrestrial            |                   |
| Tortoise, Desert                 |                             | Threatened   | Reptile                | Yes               |
| (Gopherus agassizii)             | )                           |              | Terrestrial            |                   |
| Vermont                          | (2) openion:                |              | Towo                   | Oritional Linkity |
|                                  | (2) species:                | Endongered   | <u>Taxa</u>            | Critical Habita   |
| Bat, Indiana                     |                             | Endangered   | Mammal                 | Yes               |
| (Myotis sodalis)                 |                             | Endersonal   | Subterraneous, Terre   |                   |
| Bulrush, Northeastern (=Bar      |                             | Endangered   | Monocot                | No                |
| (Scirpus ancistrocha             | tetus)                      |              | Terrestrial, Freshwate | er -              |
| Virginia                         | (59) species:               |              | Taxa                   | Critical Habita   |
| Salamander, Shenandoah           |                             | Endangered   | Amphibian              | No                |
| (Plethodon shenandoah)           |                             |              | Freshwater, Terrestria | al                |
| Plover, Piping                   |                             | Endangered   | Bird                   | Yes               |
| (Charadrius melodus              | s)                          | 1            | Terrestrial            |                   |
| Woodpecker, Red-cockadeo         | ł                           | Endangered   | Bird                   | No                |
| (Picoides borealis)              |                             | - , ,        | Terrestrial            |                   |
| Fanshell                         |                             | Endangered   | Bivalve                | No                |
| (Cyprogenia stegaria             | a)                          | U            | Freshwater             |                   |
| Mucket, Pink (Pearlymussel       |                             | Endangered   | Bivalve                | No                |
| (Lampsilis abrupta)              | ·                           |              | Freshwater             |                   |
| Mussel, Cumberland Combs         | shell                       | Endangered   | Bivalve                | Yes               |
| (Epioblasma brevide              |                             |              | Freshwater             |                   |
| Mussel, Cumberland Elktoe        |                             | Endangered   | Bivalve                | Yes               |
| (Alasmidonta atropu              |                             |              | Freshwater             |                   |
| Mussel, Dwarf Wedge              | ,perocy                     | Endangered   | Bivalve                | No                |
| (Alasmidonta hetero              | idon)                       | Endangerod   | Freshwater             |                   |
| Mussel, Fine-rayed Pigtoe        |                             | Endangered   | Bivalve                | No                |
| (Fusconaia cuneolus              |                             | Lindaligered | Freshwater             | NO                |
| Mussel, Ovster                   | <b>9</b>                    | Endangered   | Bivalve                | Yes               |
|                                  | formial                     | Endangered   |                        | res               |
| (Epioblasma capsae               | sonnis)                     | Endersured   | Freshwater             |                   |
| Mussel, Rough Pigtoe             | -1                          | Endangered   | Bivalve                | No                |
| (Pleurobema plenun               | n)                          |              | Freshwater             |                   |

Page 62 of 68

-147 of 154-

| Virginia (59) species:                        |            | Taxa              | Critical Habitat |
|-----------------------------------------------|------------|-------------------|------------------|
| Mussel, Shiny Pigtoe                          | Endangered | Bivalve           | No               |
| (Fusconaia cor)                               |            | Freshwater        |                  |
| Pearlymussel, Appalachian Monkeyface          | Endangered | Bivalve           | No               |
| (Quadrula sparsa)                             |            | Freshwater        |                  |
| Pearlymussel, Birdwing                        | Endangered | Bivalve           | No               |
| (Conradilla caelata)                          |            | Freshwater        |                  |
| Pearlymussel, Cracking                        | Endangered | Bivalve           | No               |
| (Hemistena lata)                              |            | Freshwater        |                  |
| Pearlymussel, Cumberland Bean                 | Endangered | Bivalve           | No               |
| (Villosa trabalis)                            |            | Freshwater        |                  |
| Pearlymussel, Cumberland Monkeyface           | Endangered | Bivalve           | No               |
| (Quadrula intermedia)                         |            | Freshwater        |                  |
| Pearlymussel, Dromedary                       | Endangered | Bivalve           | No               |
| (Dromus dromas)                               |            | Freshwater        |                  |
| Pearlymussel, Green-blossom                   | Endangered | Bivalve           | No               |
| (Epioblasma torulosa gubernaculum)            |            | Freshwater        |                  |
| Pearlymussel, Little-wing                     | Endangered | Bivalve           | No               |
| (Pegias fabula)                               |            | Freshwater        |                  |
| Purple Bean                                   | Endangered | Bivalve           | Yes              |
| (Villosa perpurpurea)                         |            | Freshwater        |                  |
| Rabbitsfoot, Rough                            | Endangered | Bivalve           | Yes              |
| (Quadrula cylindrica strigillata)             |            | Freshwater        |                  |
| Riffleshell, Tan                              | Endangered | Bivalve           | No               |
| (Epioblasma florentina walkeri (=E. walkeri)) |            | Freshwater        |                  |
| Spinymussel, James River                      | Endangered | Bivalve           | No               |
| (Pleurobema collina)                          |            | Freshwater        |                  |
| Isopod, Lee County Cave                       | Endangered | Crustacean        | No               |
| (Lirceus usdagalun)                           |            | Freshwater        |                  |
| Isopod, Madison Cave                          | Threatened | Crustacean        | No               |
| (Antrolana lira)                              |            | Freshwater        |                  |
| Amaranth, Seabeach                            | Threatened | Dicot             | No               |
| (Amaranthus pumilus)                          |            | Coastal (neritic) |                  |
| Birch, Virginia Round-leaf                    | Threatened | Dicot             | No               |
| (Betula uber)                                 |            | Floodplain        |                  |
| Bittercress, Small-anthered                   | Endangered | Dicot             | · No             |
| (Cardamine micranthera)                       |            | Terrestrial       |                  |
| Chaffseed, American                           | Endangered | Dicot             | No               |
| (Schwalbea americana)                         |            | Terrestrial       |                  |
| Coneflower, Smooth                            | Endangered | Dicot             | No               |
| (Echinacea laevigata)                         |            | Terrestrial       |                  |
| Harperella                                    | Endangered | Dicot             | No               |
| (Ptilimnium nodosum)                          |            | Freshwater        |                  |

Page 63 of 68

-148 of 154-

| Virginia (59) species:                            |                                                                                                                 | · · · · · · · · · · · · · · · · · · · | Critical Habitat |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|
| Joint-vetch, Sensitive                            | Threatened                                                                                                      | Dicot                                 | No               |
| (Aeschynomene virginica)                          |                                                                                                                 | Terrestrial, Brackish                 |                  |
| Rock-cress, Shale Barren                          | Endangered                                                                                                      | Dicot                                 | No               |
| (Arabis serotina)                                 |                                                                                                                 | Terrestrial                           |                  |
| Sneezeweed, Virginia                              | Threatened                                                                                                      | Dicot                                 | No               |
| (Helenium virginicum)                             |                                                                                                                 | Vernal pool                           |                  |
| Spiraea, Virginia                                 | Threatened                                                                                                      | Dicot                                 | No               |
| (Spiraea virginiana)                              |                                                                                                                 | Terrestrial                           |                  |
| Sumac, Michaux's                                  | Endangered                                                                                                      | Dicot                                 | No               |
| (Rhus michauxii)                                  |                                                                                                                 | Terrestrial                           |                  |
| Sunflower, Schweinitz's                           | Endangered                                                                                                      | Dicot                                 | No               |
| (Helianthus schweinitzii)                         |                                                                                                                 | Terrestrial                           |                  |
| Chub, Slender                                     | Threatened                                                                                                      | Fish                                  | Yes              |
| (Erimystax cahni)                                 | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | Freshwater                            |                  |
| Chub, Spotfin                                     | Threatened                                                                                                      | Fish                                  | Yes              |
| (Erimonax monachus)                               |                                                                                                                 | Freshwater                            |                  |
| Dace, Blackside                                   | Threatened                                                                                                      | Fish                                  | No               |
| (Phoxinus cumberlandensis)                        |                                                                                                                 | Freshwater                            |                  |
| Darter, Duskytail                                 | Endangered                                                                                                      | Fish                                  | No               |
| (Etheostoma percnurum)                            |                                                                                                                 | Freshwater                            |                  |
| _ogperch, Roanoke                                 | Endangered                                                                                                      | Fish                                  | No               |
| (Percina rex)                                     |                                                                                                                 | Freshwater                            |                  |
| Madtom, Yellowfin                                 | Threatened                                                                                                      | Fish                                  | Yes              |
| (Noturus flavipinnis)                             |                                                                                                                 | Freshwater                            |                  |
| Sturgeon, Shortnose                               | Endangered                                                                                                      | Fish                                  | No               |
| (Acipenser brevirostrum)                          |                                                                                                                 | Saltwater, Freshwater                 |                  |
| Snail, Virginia Fringed Mountain                  | Endangered                                                                                                      | Gastropod                             | No               |
| (Polygyriscus virginianus)                        |                                                                                                                 | Terrestrial                           |                  |
| Beetle, Northeastern Beach Tiger                  | Threatened                                                                                                      | Insect                                | No               |
| (Cicindela dorsalis dorsalis)                     |                                                                                                                 | Terrestrial                           |                  |
| Butterfly, Mitchell's Satyr                       | Endangered                                                                                                      | Insect                                | No               |
| (Neonympha mitchellii mitchellii)                 |                                                                                                                 | Terrestrial                           |                  |
| Butterfly, Saint Francis' Satyr                   | Endangered                                                                                                      | Insect                                | No               |
| (Neonympha mitchellii francisci)                  |                                                                                                                 | Terrestrial                           |                  |
| Bat, Gray                                         | Endangered                                                                                                      | Mammal                                | No               |
| (Myotis grisescens)                               |                                                                                                                 | Subterraneous, Terrestr               | ial              |
| Bat, Indiana                                      | Endangered                                                                                                      | Mammal                                | Yes              |
| (Myotis sodalis)                                  | ·                                                                                                               | Subterraneous, Terrestr               | ial              |
| Bat, Virginia Big-eared                           | Endangered                                                                                                      | Mammal                                | Yes              |
| (Corynorhinus (=Plecotus) townsendii virginianus) | -                                                                                                               | Terrestrial, Subterraneo              |                  |
| Squirrel, Delmarva Peninsula Fox                  | Endangered                                                                                                      | Mammal                                | No               |
| (Sciurus niger cinereus)                          | 0                                                                                                               | Terrestrial                           | 1                |

Page 64 of 68

## -149 of 154-

|                                    | $\mathbf{X}_{i}$ , $\mathbf{y}_{i}$ |                        |                         |                                                                                                                 |
|------------------------------------|-------------------------------------|------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| Virginia                           | ( 59) species:                      |                        | <u>Taxa</u>             | Critical Habitat                                                                                                |
| Squirrel, Virginia Northern Flying |                                     | Endangered             | Mammal                  | No                                                                                                              |
| (Glaucomys sabrin                  | us fuscus)                          | a                      | Terrestrial             |                                                                                                                 |
| Bulrush, Northeastern (=B          | arbed Bristle)                      | Endangered             | Monocot                 | No                                                                                                              |
| (Scirpus ancistroch                | naetus)                             |                        | Terrestrial, Freshwater | •                                                                                                               |
| Orchid, Eastern Prairie Fri        | nged                                | Threatened             | Monocot                 | No                                                                                                              |
| (Platanthera leuco                 | ohaea)                              |                        | Terrestrial             |                                                                                                                 |
| Pink, Swamp                        |                                     | Threatened             | Monocot                 | No                                                                                                              |
| (Helonias bullata)                 |                                     |                        | Terrestrial, Freshwater | •                                                                                                               |
| Pogonia, Small Whorled             | •                                   | Threatened             | Monocot                 | No                                                                                                              |
| (Isotria medeoloide                | <i>)s)</i>                          |                        | Terrestrial             |                                                                                                                 |
| Sea turtle, loggerhead             | · · · · ·                           | Threatened             | Reptile                 | No                                                                                                              |
| (Caretta caretta)                  |                                     |                        | Saltwater               |                                                                                                                 |
| Washington                         | (30) species:                       |                        | Taxa                    | Critical Habitat                                                                                                |
| Murrelet, Marbled                  |                                     | Threatened             | Bird                    | Yes                                                                                                             |
| (Brachyramphus m                   | narmoratus marmoratus)              |                        | Freshwater, Terrestria  | l, Saltwater                                                                                                    |
| Owl, Northern Spotted              |                                     | Threatened             | Bird                    | Yes                                                                                                             |
| (Strix occidentalis                | caurina)                            |                        | Terrestrial             |                                                                                                                 |
| Catchfly, Spalding's               |                                     | Threatened             | Dicot                   | No                                                                                                              |
| (Silene spaldingii)                |                                     |                        | Terrestrial             |                                                                                                                 |
| Checker-mallow, Wenatch            | ee Mountains                        | Endangered             | Dicot                   | Yes                                                                                                             |
| (Sidalcea oregana                  | var. calva)                         |                        | Terrestrial             |                                                                                                                 |
| Howellia, Water                    |                                     | Threatened             | Dicot                   | No                                                                                                              |
| (Howellia aquatilis)               | )                                   |                        | Freshwater              |                                                                                                                 |
| Lupine, Kincaid's                  |                                     | Threatened             | Dicot                   | No                                                                                                              |
| (Lupinus sulphureu                 | us (=oreganus) ssp. kincaidii (=va  | ar. <i>kincaidii))</i> | Terrestrial             |                                                                                                                 |
| Paintbrush, Golden                 |                                     | Threatened             | Dicot                   | No                                                                                                              |
| (Castilleja levisecta              | a)                                  |                        | Terrestrial             | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| Stickseed, Showy                   |                                     | Endangered             | Dicot                   | No                                                                                                              |
| (Hackelia venusta)                 | 1                                   |                        | Terrestrial             |                                                                                                                 |
| Salmon, Chinook (Lower C           | Columbia River)                     | Threatened             | Fish                    | Yes                                                                                                             |
| (Oncorhynchus (=                   | Salmo) tshawytscha)                 |                        | Freshwater, Brackish,   | Saltwater                                                                                                       |
| Salmon, Chinook (Puget S           | iound)                              | Threatened             | Fish                    | Yes                                                                                                             |
| (Oncorhynchus (=                   | Salmo) tshawytscha)                 |                        | Freshwater, Brackish,   | Saltwater                                                                                                       |
| Salmon, Chinook (Snake I           | River Fall Run)                     | Threatened             | Fish                    | No                                                                                                              |
| (Oncorhynchus (=                   | Salmo) tshawytscha)                 |                        | Freshwater, Saltwater,  | Brackish                                                                                                        |
| Salmon, Chinook (Snake I           | River spring/summer)                | Threatened             | Fish                    | Yes                                                                                                             |
|                                    | Salmo) tshawytscha)                 |                        | Brackish, Saltwater, F  | reshwater                                                                                                       |
| Salmon, Chinook (Upper C           |                                     | Endangered             | Fish                    | Yes                                                                                                             |
|                                    | Salmo) tshawytscha)                 | -                      | Freshwater, Saltwater,  | Brackish                                                                                                        |
| Salmon, Chinook (Upper V           |                                     | Threatened             | Fish                    | Yes                                                                                                             |
|                                    | Salmo) tshawytscha)                 |                        | Saltwater, Brackish, F  | reshwater                                                                                                       |
| Salmon, Chum (Columbia             |                                     | Threatened             | Fish                    | Yes                                                                                                             |
| (Oncorhynchus (=                   |                                     |                        | Brackish, Freshwater,   |                                                                                                                 |
| 9/26/2007 2:54:14 PM Ver. 2        | .10.3                               |                        |                         | Page 65 of                                                                                                      |

-150 of 154-

|              | <u>Taxa</u>                                                                                                                                                                                      | Critical Habitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Threatened   | Fish                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Freshwater, Brackish, S                                                                                                                                                                          | altwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Endangered   | Fish                                                                                                                                                                                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Brackish, Saltwater, Fre                                                                                                                                                                         | shwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Threatened   | Fish                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Brackish, Freshwater, S                                                                                                                                                                          | altwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Threatened   | Fish                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Freshwater, Saltwater, E                                                                                                                                                                         | Brackish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Threatened   | Fish                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Freshwater, Brackish, S                                                                                                                                                                          | altwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Threatened   | Fish                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Brackish, Saltwater, Fre                                                                                                                                                                         | shwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Threatened   | Fish                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Brackish, Saltwater, Fre                                                                                                                                                                         | shwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Threatened   | Fish                                                                                                                                                                                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Threatened   | Fish                                                                                                                                                                                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Threatened   |                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Freshwater                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Threatened   |                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| moutonou     |                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Threatened   |                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| moutonou     |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Endangered   |                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Endangered   |                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Endangered   |                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lindarigered |                                                                                                                                                                                                  | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Endengered   |                                                                                                                                                                                                  | Van                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Endangered   |                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | renestnal                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | <u>Taxa</u>                                                                                                                                                                                      | Critical Habitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Threatened   | Amphibian                                                                                                                                                                                        | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Freshwater, Terrestrial                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Endangered   | Bivalve                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Freshwater                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Endangered   | Bivalve                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Freshwater                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Endangered   | Bivalve                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Freshwater                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Endangered   | Dicot                                                                                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            | Terrestrial                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Endangered   | Dicot                                                                                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            | Freshwater                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Endangered<br>Threatened<br>Threatened<br>Threatened<br>Threatened<br>Threatened<br>Threatened<br>Threatened<br>Threatened<br>Endangered<br>Endangered<br>Endangered<br>Endangered<br>Endangered | ThreatenedFish<br>Freshwater, Brackish, SEndangeredFish<br>Brackish, Saltwater, Fre<br>Fish<br>Brackish, Sreshwater, SThreatenedFish<br>Freshwater, Saltwater, Fre<br>Fish<br>Freshwater, Brackish, SThreatenedFish<br>Freshwater, Brackish, SThreatenedFish<br>Freshwater, Brackish, SThreatenedFish<br>Freshwater, Brackish, SThreatenedFish<br>Freshwater, Brackish, SThreatenedFish<br>Freshwater, Brackish, Saltwater, Fre<br>Fish<br>Brackish, Saltwater, Fre<br>Fish<br>ThreatenedThreatenedFish<br>FreshwaterThreatenedFish<br>FreshwaterThreatenedFish<br>FreshwaterThreatenedFish<br>FreshwaterThreatenedMammal<br>TerrestrialEndangeredMammal<br>TerrestrialEndangeredMammal<br>Bivalve<br>FreshwaterThreatenedBivalve<br>BivalveFineatenedBivalve<br>FreshwaterFineatenedBivalve<br>BivalveEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredBivalve<br>FreshwaterEndangeredDicot<br>TerrestrialEndangeredDicot<br>TerrestrialEndangeredBivalve<br>FreshwaterEndangeredBivalve<br> |

-151 of 154-

| West Virginia (14) species:                       |                    | <u>Taxa</u>             | Critical Habita |
|---------------------------------------------------|--------------------|-------------------------|-----------------|
| Rock-cress, Shale Barren                          | Endangered         | Dicot                   | No              |
| (Arabis serotina)                                 |                    | Terrestrial             |                 |
| Spiraea, Virginia                                 | Threatened         | Dicot                   | No              |
| (Spiraea virginiana)                              |                    | Terrestrial             |                 |
| Snail, Flat-spired Three-toothed                  | Threatened         | Gastropod               | No              |
| (Triodopsis platysayoides)                        |                    | Terrestrial             |                 |
| Bat, Gray                                         | Endangered         | Mammal                  | No              |
| (Myotis grisescens)                               |                    | Subterraneous, Terres   | trial           |
| Bat, Indiana                                      | Endangered         | Mammai                  | Yes             |
| (Myotis sodalis)                                  |                    | Subterraneous, Terres   | trial           |
| Bat, Virginia Big-eared                           | Endangered         | Mammal                  | Yes             |
| (Corynorhinus (=Plecotus) townsendii virginianus) | · ·                | Terrestrial, Subterrane | ous             |
| Squirrel, Virginia Northern Flying                | Endangered         | Mammal                  | No              |
| (Glaucomys sabrinus fuscus)                       |                    | Terrestrial             |                 |
| Bulrush, Northeastern (=Barbed Bristle)           | Endangered         | Monocot                 | No              |
| (Scirpus ancistrochaetus)                         |                    | Terrestrial, Freshwater |                 |
| Wisconsin (15) species:                           |                    | Taxa                    | Critical Habita |
| Crane, Whooping                                   | Endangered         | Bird                    | Yes             |
| (Grus americana)                                  | -,                 | Terrestrial, Freshwater | •               |
| Plover, Piping                                    | Endangered         | Bird                    | Yes             |
| (Charadrius melodus)                              |                    | Terrestrial             |                 |
| Varbler (=Wood), Kirtland's                       | Endangered         | Bird                    | No              |
| (Dendroica kirtlandii)                            | Ū                  | Terrestrial             |                 |
| lussel, Winged Mapleleaf                          | Endangered         | Bivalve                 | No              |
| (Quadrula fragosa)                                | 0                  | Freshwater              |                 |
| Pearlymussel, Higgins' Eye                        | Endangered         | Bivalve                 | No              |
| (Lampsilis higginsii)                             |                    | Freshwater              |                 |
| Clover, Prairie Bush                              | Threatened         | Dicot                   | No              |
| (Lespedeza leptostachya)                          |                    | Terrestrial             |                 |
| ocoweed, Fassett's                                | Threatened         | Dicot                   | No              |
| (Oxytropis campestris var. chartacea)             | , moatoriou        | Terrestrial             |                 |
| Ankshood, Northern Wild                           | Threatened         | Dicot                   | No              |
| (Aconitum noveboracense)                          |                    | Terrestrial             |                 |
| histle, Pitcher's                                 | Threatened         | Dicot                   | No              |
| (Cirsium pitcheri)                                | riteaterieu        | Terrestrial             | 110             |
| Butterfly, Karner Blue                            | Endangered         |                         | No              |
| (Lycaeides melissa samuelis)                      | Endangered         | Insect<br>Terrestrial   | No              |
|                                                   | Endangered         |                         | Vaa             |
| Dragonfly, Hine's Emerald                         | Endangered         | Insect                  | Yes             |
| (Somatochlora hineana)                            | There are a second | Freshwater, Terrestria  |                 |
| ynx, Canada                                       | Threatened         | Mammal                  | No              |
| (Lynx canadensis)                                 | <b>_</b>           | Terrestrial             |                 |
| Volf, Gray                                        | Endangered         | Mammal                  | Yes             |
| (Canis lupus)                                     |                    | Terrestrial             |                 |

-152 of 154-

| Wisconsin (15) species:               |             | Taxa    | Critical Habitat |  |
|---------------------------------------|-------------|---------|------------------|--|
| Iris, Dwarf Lake                      | Threatened  | Monocot | No               |  |
| (Iris lacustris)                      | Terrestrial |         |                  |  |
| Orchid, Eastern Prairie Fringed       | Threatened  | Monocot | No               |  |
| (Platanthera leucophaea)              | Terrestrial |         |                  |  |
| Wyoming (3) species:                  |             | Taxa    | Critical Habitat |  |
| Butterfly Plant, Colorado             | Threatened  | Dicot   | Yes              |  |
| (Gaura neomexicana var. coloradensis) | Terrestrial |         |                  |  |
| Ferret, Black-footed                  | Endangered  | Mammal  | No               |  |
| (Mustela nigripes)                    | Terrestrial |         |                  |  |
| Mouse, Preble's Meadow Jumping        | Threatened  | Mammal  | Yes              |  |
| (Zapus hudsonius preblei)             | Terrestrial |         |                  |  |

No species were selected for exclusion.

## Dispersed species included in report.

9/26/2007 2:54:14 PM Ver. 2.10.3

Page 68 of 68

-153 of 154-

