

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

-

OPP CEFICIAL RECORD HEALTH EFFECTS DIVISION SCIENTIFIC DATA REVIEWS EPA SERIES 361 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

MEMORANDUM Date: September 9, 2010

SUBJECT: Acephate and Methamidophos: Benchmark Dose Analysis of Acute Oral Studies and derivation of a Point of Departure and Relative Potency Factor.

PC Code: 103	301	DP Barcode: D383706
Decision No.: -	440319	Registration No.: NA
Petition No.: N	JA	Regulatory Action: NA
Risk Assessme	ent Type: NA	Case No.: NA
TXR No.: 005:	5521	CAS No.: NA
MRID No.: NA	4	40 CFR: NA
FROM: FHROUGH:	John Liccione Toxicologist/Risk Assessor RABV Health Effects Division (7905P) Jack Arthur Branch Chief RABV Health Effects Division (7905P)	

TO: Michael Metzger Branch Chief RABVII Health Effects Division (7905P)

the the all

I. CONCLUSIONS

RAB5 performed benchmark dose (BMD) analyses of several acute oral studies on acephate and methamidophos in order to establish a point of departure (POD) for acephate (single-chemical assessment) and an acephate-based relative potency factor (RPF) to convert methamidophos residues formed from the application of acephate to acephate-equivalent concentrations.

Based on the analyses, it is concluded that the use of acephate (POD of 0.304) as the index chemical will provide the most health-protective and most scientifically supportable approach for the acephate single-chemical assessment and that an RPF of 2.76 should be used to convert methamidophos residues to acephate-equivalent concentrations.

This memo summarizes the approach and presents the results of BMD analyses and POD and RPF derivation.

II. BACKGROUND

BMD analyses were performed with EPA's Benchmark Dose Software (Version 2.1.1) using an exponential model for continuous data. The data selected for evaluation consisted of decreased brain and red blood cell (RBC) cholinesterase (ChE) activities, the most relevant effects. The analyses focused on both pup and adult data from the comparative cholinesterase (CCA) studies that entailed single dose exposures. The CCA studies allow for the evaluation of pup vs. adult sensitivity and allow for removal of the FQPA factor since the most sensitive group (i.e., the pup) is considered. OPP has previously used the exponential model for modeling ChE activity. Model runs for ChE activity were conducted with an appropriate benchmark response level (10%), and statistical (e.g., goodness of fit values) and graphical results were used in model evaluation.

III. RESULTS

The results of the BMD analyses are summarized in Table 1 below. Details are included in the appendix.

			BMD Results		
Chemical/Study	Sex/age	Endpoint	BMD10	BMDL10	
Acephate MRID 44203302	Male	Hippocampus ChE	2.29167	1.30024	
Acute Study	Female	Hippocampus ChE	1.80914	1.17087	
	Male	RBC ChE	(No adequate fit)	(No adequate fit)	
	Female	RBC ChE	3.72746	2.52384	
Acephate MRID 46151801	Adult Male	Brain ChE	1.65457	1.38198	
CCA Study	Adult Female	Brain ChE	(no adequate fit)	(no adequate fit)	
	Adult Male	RBC ChE	(no adequate fit)	(no adequate fit)	
	Adult Female	RBC ChE	(no adequate fit)	(no adequate fit)	
Acephate MRID 46151801	Pup Male	Brain ChE	0.513127	0.303985	
CCA Study	Pup Female	Brain ChE	2.47396	1.01307	
	Pup Male	RBC ChE	(no adequate fit)	(no adequate fit)	
	Pup Female	RBC ChE	(no adequate fit)	(no adequate fit)	
Methamidophos MRID 43025001	Male	Brain ChE	0.226159	0.208557	
Acute Study	Female	Brain ChE	(no adequate fit)	(no adequate fit)	
Methamidophos	Male	Brain ChE	(no adequate fit)	(no adequate fit)	
MRID 43345801 ACN Study	Female	Brain ChE	(no adequate fit)	(no adequate fit)	
Methamidophos 46594003Ad	Adult Male	Brain ChE	0.293899	0.204274	
	Adult Female	Brain ChE	(no adequate fit)	(no adequate fit)	
Methamidophos 46594003Pup	Pup Male	Brain ChE	0.185773	0.136508	
· · F	Pup Female	Brain ChE	0.196438	0.144398	
	Pup Male	RBC ChE	0.0629786	0.0345784	
	Pup Female	RBC ChE	0.262528	0.125689	

TABLE 1: Results of BMD Exponential Modeling for Brain and RBC ChE Data on Acephate and Methamidophos

Table 2 below summarizes the oral RPFs for acephate and methamidophos based on the brain ChE data for pup. The RBC ChE data for pup was not amenable to BMD modeling and therefore oral RPFs are not presented for the RBC compartment.

Pesticide	Oral RPF (acephate-based)	Oral RPF (methamidophos-based)	BMD ₁₀	BMDL ₁₀
Acephate	1.0	0.363	0.51	0.304
Methamidophos	2.76	1.0	0.186	0.137

Table 2. Acephate and Methamidophos ORAL RPFs for Pup Brain ChE Data

Based on the results in Table 2, it is recommended that a BMDL10 of 0.304 mg/kg from the PND11 male brain ChE inhibition be used¹ as the POD for the combined acephate and methamidophos assessment. It is further recommended that a RPF of 2.76 be used to convert residues of methamidophos to acephate-equivalent concentrations.

¹ The methamidophos-based POD of 0.137 would be equivalent to 0.378 (2.76 x 0.137) POD for acephate.

Acephate; MRID 44203302

APPENDIX

Male RBC ChE Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp test Setting.(d) Gnuplot Plotting File: Tue May 25 08:57:51 2010 BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp{sign * b * dose}$ Model 3: $Y[dose] = a * exp{sign * (b * dose)^d}$ Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) rho is set to 0. A constant variance model is fit. Total number of dose groups = 5Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Exact Initial Parameter Values Model 3 Model 4 Model 5 Model 2 -----Variable -----------_ _ _ _ _ _ _ _ lnalpha 9.77394 9.77394 9.77394 9.77394 rho(S) 0 0 0 0 a 1451.32 1451.32 2725.8 2725.8 0.00116256 b 0.00116256 0.00740575 0.00740575

0 410000	с	 	0.412286
0.412286	d	 1	
1			

(S) = Specified

Parameter Estimates by Model

·					
Varia	able	Model 2	Model 3	Model 4	Model 5
lna	lpha	11.7481	11.7481	10.6389	
10.6389					
	rho	0	0	0	
0					
	a	2056.26	2056.26	2424.92	
2424.92					
	b	0.00147775	0.00147775	0.0426332	
0.0426332					
	С			0.517415	
0.517415					
	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	2	2596	193
5	2	1937	183.8
25	2	1778	207.2
125	2	1307	244.7
500	2	1180	43.1

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	2056	355.7	2.146
	5	2041	355.7	-0.414
	25	1982	355.7	-0.8098
	125	1709	355.7	-1.6
	500	982.2	355.7	0.7865
3	0	2056	355.7	2.146
	5	2041	355.7	-0.414
	25	1982	355.7	-0.8098
	125	1709	355.7	-1.6
	500	982.2	355.7	0.7865
4	0	2425	204.3	1.184
	5	2200	204.3	-1.823
	25	1658	204.3	0.8324
	125	1260	204.3	0.3229
	500	1255	204.3	-0.5171
5	0	2425	204.3	1.184
	5	2200	204.3	-1.823
	25	1658	204.3	0.8324
	125	1260	204.3	0.3229
	500	1255	204.3	-0.5171

Other models for which likelihoods are calculated:

Model A	1:	Yij Var{e(ij)}		Mu(i) + e(ij) Sigma^2
Model A:	2:	Yij Var{e(ij)}		Mu(i) + e(ij) Sigma(i)^2
Model A:	3:			Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model 1	R:	Yij Var{e(ij)}	H	Mu + e(i) Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	-53.86971	6	119.7394
A2	-51.68182	10	123.3636
A3	-53.86971	6	119.7394
R	-67.56781	2	139.1356
2	-63.74074	3	133.4815
3	-63.74074	3	133.4815
4	-58.1945	4	124.389
5	-58.1945	4	124.389

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs 3)

Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	31.77	8	0.0001023
Test 2	4.376	4	0.3575
Test 3	4.376	4	0.3575
Test 4	19.74	3	0.000192
Test 5a	19.74	3	0.000192
Test 5b	-3.268e-013	0	N/A

Test	6a	8.65	2	0.01324
Test	6b	11.09	1	0.0008668
Test	7a	8.65	2	0.01324
Test	7b	11.09	1	0.0008668
Test	7c	-5.684e-014	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

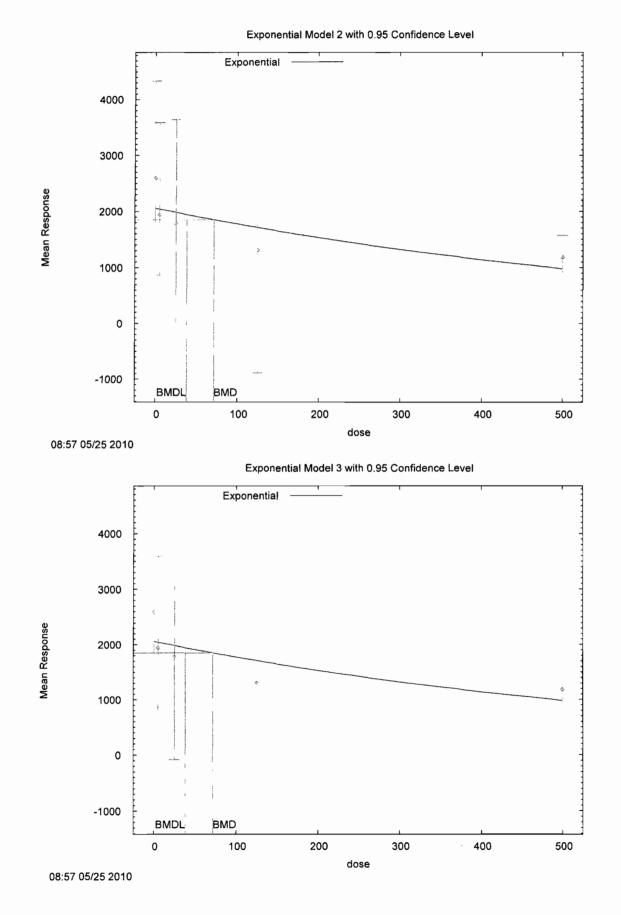
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

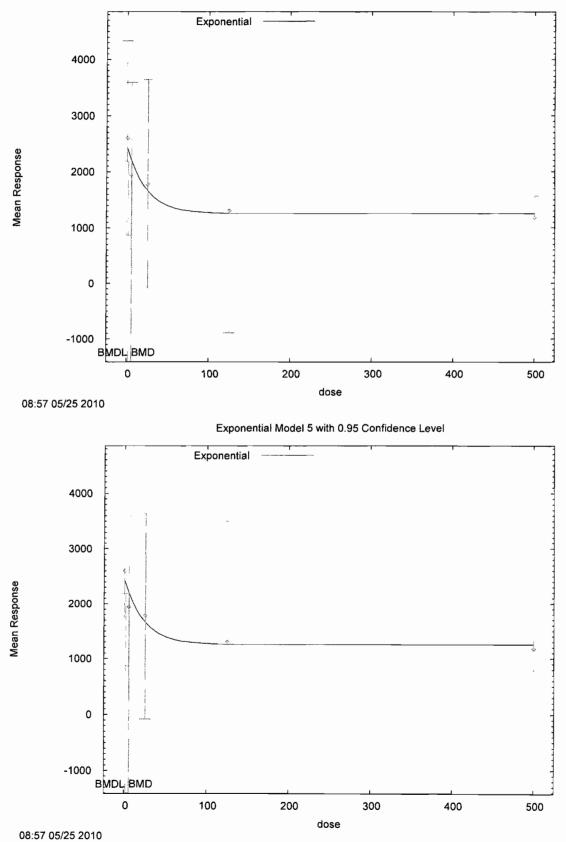
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:


Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	71.2978	38.0257
3	71.2978	38.0257
4	5.44661	1.47329
5	5.44661	1.47329

Exponential Model 4 with 0.95 Confidence Level

Acephate; MRID 44203302 Male RBC ChE Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Tue May 25 09:14:22 2010 BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp{sign * b * dose}$ $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008

MLE solution provided: Exact

Parameter Convergence has been set to: 1e-008

Initial Parameter Values

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-7.58216	-7.58216	-7.58216	
7.58216 rho	2.36954	2.36954	2.36954	
2.36954 a	1451.32	1451.32	2725.8	
2725.8 b	0.00116256	0.00116256	0.00740575	
0.00740575 c			0.4122	86
0.412286 d		1		
1				

Parameter Estimates by Model

Vari	lable	Model 2	Model 3	Model 4	Model 5
lna 7.7277	alpha	-83.282	-83.282	-7.72769	-
2.44638	rho	12.769	12.769	2.44638	
2361.42	a	1823.92	1823.92	2361.42	
0.0310877	b	0.000873882	0.000873882	0.0310877	
0.52042	С			0.52042	
0.52042	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	2	2596	193
5	2	1937	183.8
25	2	1778	207.2
125	2	1307	244.7
500	2	1180	43.1

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	1824	543.8	2.008
	5	1816	528.8	0.3237
	25	1785	473	-0.01945
	125	1635	270.7	-1.714
	500	1178	33.41	0.07319
3	0	1824	543.8	2.008
	5	1816	528.8	0.3237
	25	1785	473	-0.01945
	125	1635	270.7	-1.714
	500	1178	33.41	0.07319
4	0	2361	280.5	1.183
	5	2198	257	-1.438
	25	1750	194.4	0.2071
	125	1252	129.1	0.6004
	500	1229	126.2	-0.5484
5	0	2361	280.5	1.183
	5	2198	257	-1.438
	25	1750	194.4	0.2071
	125	1252	129.1	0.6004
	500	1229	126.2	-0.5484

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$ Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)
Model R: Yij = Mu + e(i)
Var{e(ij)} = Sigma^2
```

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
Al	-53.86971	6	119.7394
A2	-51.68182	10	123.3636
A3	-53.8118	7	121.6236
R	-67.56781	2	139.1356
2	-60.677	4	129.354
3	-60.677	4	129.354
4	~57.30858	5	124.6172
5	-57.30858	5	124.6172

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	31.77	8	0.0001023
Test 2	4.376	4	0.3575
Test 3	4.26	3	0.2347
Test 4	13.73	3	0.003296
Test 5a	13.73	3	0.003296
Test 5b	0	0	N/A
Test 6a	6.994	2	0.03029
Test 6b	6.737	1	0.009444
Test 7a	6.994	2	0.03029
Test 7b	6.737	1	0.009444
Test 7c	-8.811e-013	0	N/A

The p-value for Test 1 is less than .05. There appears to be a

difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. Consider running a homogeneous model.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

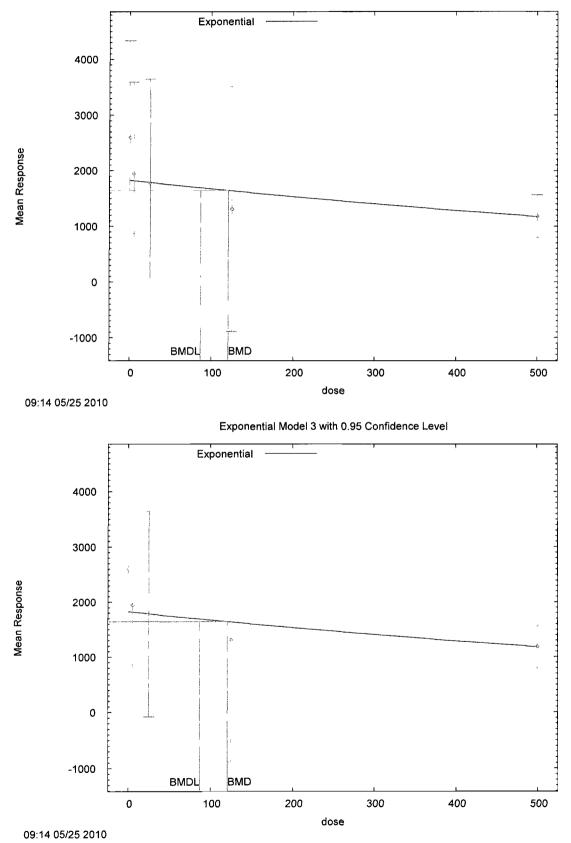
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

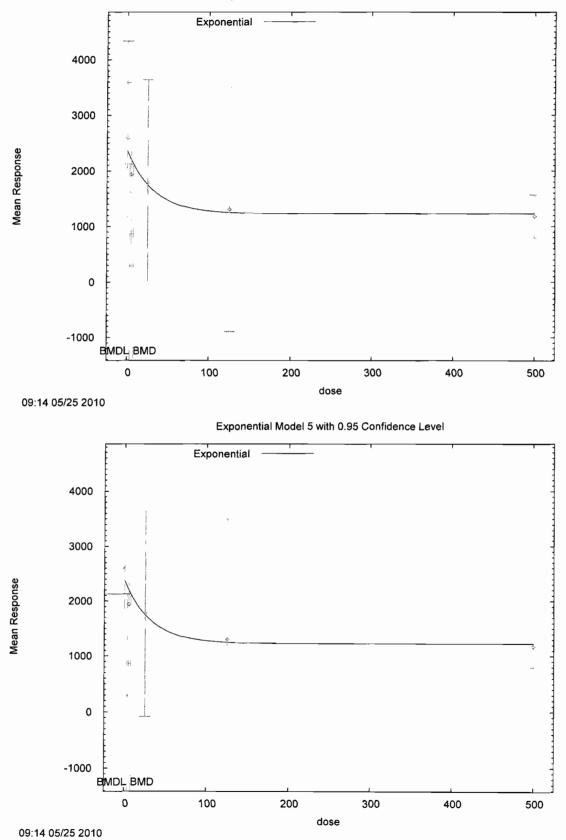
The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:


Specified Effect = 0.100000

Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model

BMD	BMDL
120.566	86.8319
120.566	86.8319
7.52211	3.25401
7.52211	3.25401
	120.566 120.566 7.52211

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 4 with 0.95 Confidence Level

```
Acephate; MRID 44203302
Male Hippocampus ChE
Warning: optimum may not have been found form model 1 (BMDL). Bad process completion
in Optimization routine.
 Exponential Model. (Version: 1.61; Date: 7/24/2009)
        Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d)
        Gnuplot Plotting File:
                                         Mon May 24 09:40:23 2010
 BMDS Model Run
The form of the response function by Model:
     Model 2: Y[dose] = a * exp\{sign * b * dose\}
     Model 2:T[dose] = a + exp{sign + (b + dose)^d}Model 3:Y[dose] = a + exp{sign + (b + dose)^d}Model 4:Y[dose] = a + [c - (c - 1) + exp{-b + dose}]Model 5:Y[dose] = a + [c - (c - 1) + exp{-(b + dose)^d}]
   Note: Y[dose] is the median response for exposure = dose;
         sign = +1 for increasing trend in data;
         sign = -1 for decreasing trend.
     Model 2 is nested within Models 3 and 4.
     Model 3 is nested within Model 5.
     Model 4 is nested within Model 5.
  Dependent variable = Mean
  Independent variable = Dose
  Data are assumed to be distributed: normally
  Variance Model: exp(lnalpha +rho *ln(Y[dose]))
  The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
  Total number of dose groups = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
  MLE solution provided: Exact
                             Initial Parameter Values
                                                 Model 4 Model 5
                                   Model 3
    Variable
                Model 2
    ------
                                                    ----
                    -----
                                    -----
                                   -2.58609
    lnalpha
                   -2.58609
                                                      -2.58609
                                                                     -
2.58609
        rho 0.977311
                                 0.977311
                                                     0.977311
0.977311
         a 1.98017
                                   1.98017
                                                        6.6675
6.6675
          b 0.0024492 0.0024492 0.00993515
0.00993515
                                          - -
                                                         0.185691
          С
                         - -
0.185691
```

d -- 1 --

Parameter Estimates by Model

Variab	ole	Model 2	Model 3	Model 4	Model 5
lnalp 2.62861	ha	-0.301276	-0.301276	-2.62861	-
r 1.08434	ho	-0.0942359	-0.094236	1.08434	
5.93956	а	5.79844	5.79843	5.93956	
0.0521014	b	0.0287506	0.0287506	0.0521014	
0.237421	С			0.237421	
0.10/111	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	2	6.35	0.792
5	2	4.37	0.382
25	2	2.78	0.714
125	2	1.51	0.148
500	2	1.3	0.566

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2		5.798	0.7918	0.9851
2	5	5.022	0.7972	-1.157
	25	2.826	0.8191	-0.07923
	125	0.1594	0.9379	2.036
	500	3.313e-006	1.559	1.179
3	0	5.798	0.7918	0.9851
	5	5.022	0.7972	-1.157
	25	2.826	0.8191	-0.07923
	125	0.1594	0.9379	2.036
	500	3.313e-006	1.559	1.179
4	0	5.94	0.7058	0.8224
	5	4.901	0.636	-1.18
	25	2.641	0.4549	0.4307
	125	1.417	0.3245	0.4057
	500	1.41	0.3237	-0.4814
5	0	5.94	0.7058	0.8224
	5	4.901	0.636	-1.18
	25	2.641	0.4549	0.4307
	125	1.417	0.3245	0.4057
	500	1.41	0.3237	-0.4814

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij)

```
Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)

Model R: Yij = Mu + e(i)
Var{e(ij)} = Sigma^2
```

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	4.084636	6	3.830729
A2	6.489946	10	7.020108
A3	4.415234	7	5.169531
R	-11.60272	2	27.20545
2	-4.440097	4	16.88019
3	-4.440097	4	16.88019
4	2.683894	5	4.632213
5	2.683894	5	4.632213

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
Test 6a: Does Model 4 fit the data? (A3 vs 4)

Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	36.19	8	< 0.0001
Test 2	4.811	4	0.3073
Test 3	4.149	3	0.2458
Test 4	17.71	3	0.0005046
Test 5a	17.71	3	0.0005046
Test 5b	-7.319e-013	0	N/A
Test 6a	3.463	2	0.177
Test 6b	14.25	1	0.0001602
Test 7a	3.463	2	0.177
Test 7b	14.25	1	0.0001602

Test 7c

-2.629e-013 0

N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. Consider running a homogeneous model.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

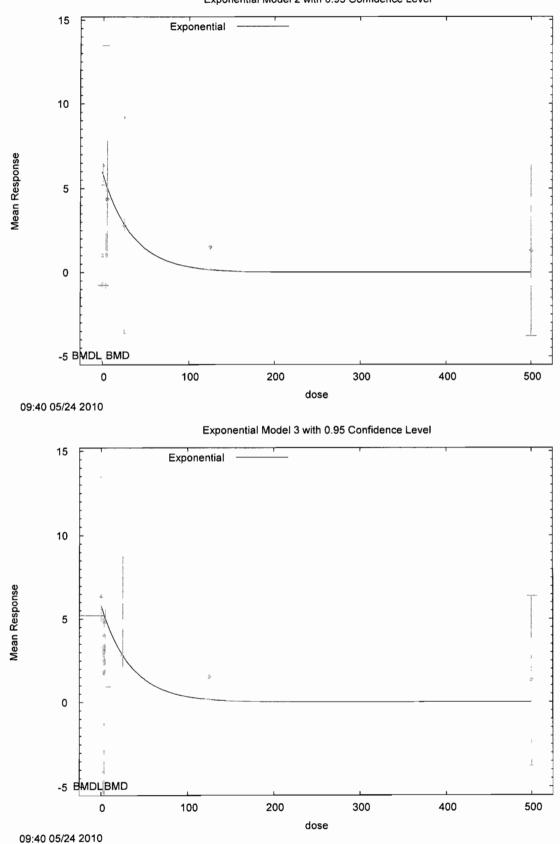
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is greater than .1. Model 5 seems to adequately describe the data.

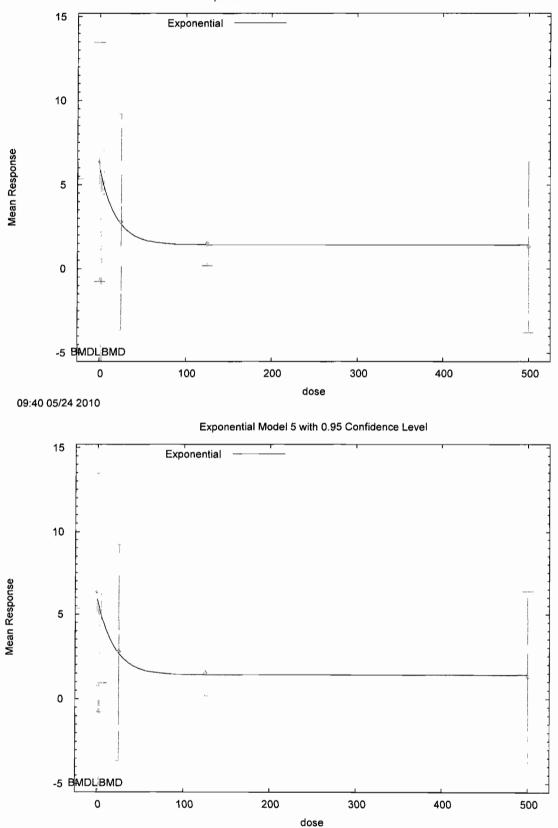
The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:


Specified Effect = 0.100000

Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	3.66464	Bad completion
3	3.66464	2.16271
4	2.69794	1.64328
5	2.69794	1.64328

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 4 with 0.95 Confidence Level

Page 22 of 132

09:40 05/24 2010

Acephate; MRID 44203302 Male Hippocampus ChE Warning: optimum may not have been found form model 1 (BMDL). Bad process completion in Optimization routine. Warning: optimum may not have been found form model 2 (BMDL). Bad process completion in Optimization routine. Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp test Setting.(d) Gnuplot Plotting File: Mon May 24 09:33:31 2010 BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ Model 3: $Y[dose] = a * exp{sign * (b * dose)^d}$ Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) rho is set to 0. A constant variance model is fit. Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Exact Initial Parameter Values Variable Model 3 Model 4 Model 2 Model 5 ------------------1.81693 lnalpha -1.81693 -1.81693 1.81693 0 rho(S) 0 0 0

6.6675	a	1.98017	1.98017	6.6675
	b	0.0024492	0.0024492	0.00993515
0.00993515	С			0.185691
0.185691	d		1	
1				

(S) = Specified

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
lna 1.38055	lpha	0.00263274	0.0026326	-1.38055	-
0	rho	0	0	0	
6.06937	a	5.6065	5.6065	6.06937	
0.0617463	b	0.0224156	0.0224156	0.0617464	
0.242118	С			0.242118	
	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	2	6.35	0.792
5	2	4.37	0.382
25	2	2.78	0.714
125	2	1.51	0.148
500	2	1.3	0.566

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	5.606	1.001	1.05
	5	5.012	1.001	-0.9068
	25	3.201	1.001	-0.5949
	125	0.3403	1.001	1.652
	500	7.607e-005	1.001	1.836
3	0	5.607	1.001	1.05
	5	5.012	1.001	-0.9068
	25	3.201	1.001	~0.5949
	125	0.3403	1.001	1.652
	500	7.607e-005	1.001	1.836
4	0	6.069	0.5014	0.7915
	5	4.848	0.5014	-1.347
	25	2.452	0.5014	0.925
	125	1.472	0.5014	0.1084
	500	1.47	0.5014	-0.4781
5	0	6.069	0.5014	0.7915
	5	4.848	0.5014	-1.347
	25	2.452	0.5014	0.925

125	1.472	0.5014	0.1084
500	1.47	0.5014	-0.4781

Other models for which likelihoods are calculated:

Model	A1:	Yij Var{e(ij)}	Mu(i) + e(ij) Sigma ²
Model	A2:	Yij Var{e(ij)}	Mu(i) + e(ij) Sigma(i)^2
Model	A3 :		Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model	R:	Yij Var{e(ij)}	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
*			
A1	4.084636	6	3.830729
A2	6.489946	10	7.020108
A3	4.084636	6	3.830729
R	~11.60272	2	27.20545
2	~5.013164	3	16.02633
3	-5.013164	3	16.02633
4	1.902758	4	4.194484
5	1.902758	4	4.194484

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	36.19	8	< 0.0001
Test 2	4.811	4	0.3073

Test 3	4.811	4	0.3073
Test 4	18.2	3	0.0004008
Test 5a	18.2	3	0.0004008
Test 5b	-3.57e-013	0	N/A
Test 6a	4.364	2	0.1128
Test 6b	13.83	1	0.0001999
Test 7a	4.364	2	0.1128
Test 7b	13.83	1	0.0001999
Test 7c	-6.759e-013	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

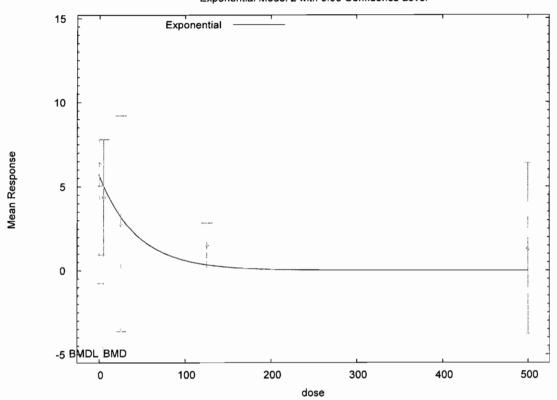
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is greater than .1. Model 5 seems to adequately describe the data.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

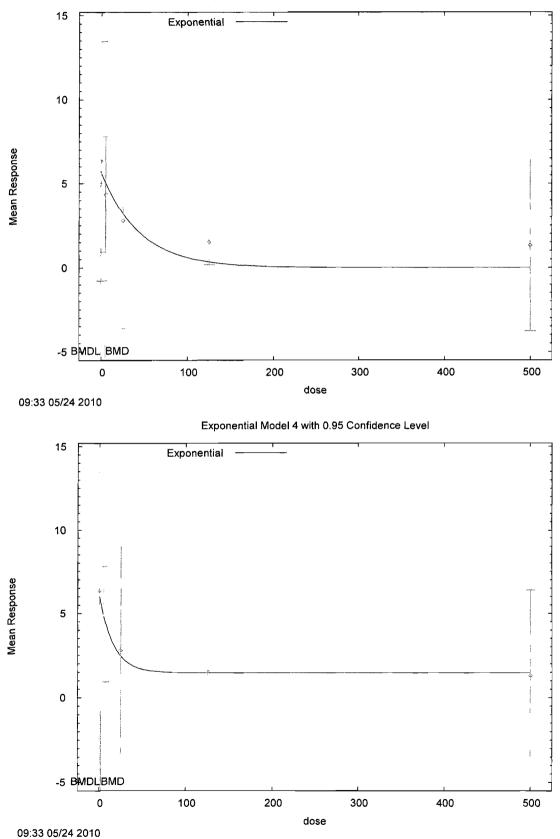
Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

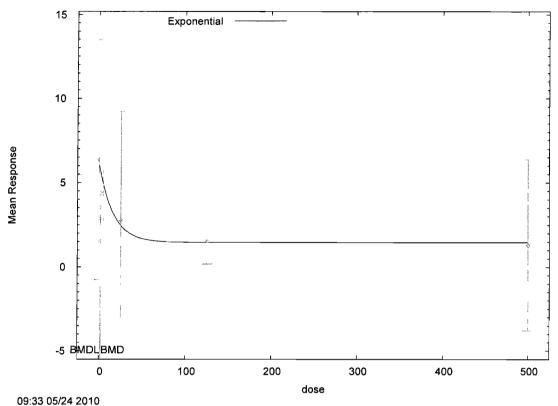

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000


BMD and BMDL by Model

BMD	BMDL
4.70032	Bad completion
4.70032	Bad completion
2.29167	1.30024
2.29167	1.30024
	4.70032 4.70032 2.29167



Exponential Model 2 with 0.95 Confidence Level

09:33 05/24 2010

Exponential Model 3 with 0.95 Confidence Level

Exponential Model 5 with 0.95 Confidence Level

```
Acephate; MRID 44203302
Female RBC ChE
```

!!! Warning: optimum may not have been found for Model 3 111 !!! Bad completion code in maximum likelihood optimization routine !!! !!! Try choosing different initial values 111 Warning: optimum may not have been found form model 2 (BMDL). Bad process completion in Optimization routine. Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Tue May 25 09:42:00 2010 _____ _____ BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp{sign * b * dose}$ $Y[dose] = a * exp{sign * (b * dose)^d}$ Model 3: Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Model 5:

Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5.

```
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
```

```
Total number of dose groups = 5
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

Model 4 is nested within Model 5.

Initial Parameter Values

Variable	9	Model 2	Model 3	Model 4	Model 5
lnalpha 15.1994	- a	-15.1994	-15.1994	-15.1994	-
rhc 3.35564	C	3.35564	3.35564	3.35564	
2797.2	a	1407.04	1407.04	2797.2	
0.00767472	C	0.0013541	0.0013541	0.00767472	
0.376567	2			0.376567	
1	f		1		

Parameter Estimates by Model

Varia	able	Model 2	Model 3	Model 4	Model 5
lna 0.517925	lpha	-46.3595	-15.1994	-0.517925	
1.40019	rho	7.81719	3.35564	1.40019	
2648.03	a	1921.62	1407.04	2648.03	
0.0535526	b	0.00111594	0.0013541	0.0535526	
0.447374	С			0.447374	
	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	2	2664	281.4
5	2	2288	173.2
25	2	1565	263.8
125	2	1269	31.1
500	2	1106	89.8

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	1922	585.7	1.792
	5	1911	573.1	0.9305
	25	1869	525.2	-0.8179
	125	1671	339.5	-1.676
	500	1100	66.15	0.1309
3	0	0	0	1.#IO
	5	0	0	1.#IO
	25	0	0	1.#IO
	125	0	0	1.#IO
	500	0	0	1.#IO
4	0	2648	192.3	0.1175
	5	2304	174.4	-0.1319
	25	1568	133.2	-0.0349
	125	1186	109.6	1.065
	500	1185	109.5	-1.016
5	0	2648	192.3	0.1175
	5	2304	174.4	-0.1319
	25	1568	133.2	-0.0349
	125	1186	109.6	1.065
	500	1185	109.5	-1.016

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	Mu(i) + e(ij) Sigma^2
Model A2:	Yij = Var{e(ij)} =	Mu(i) + e(ij) Sigma(i)^2
Model A3:		Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	-54.2029	6	120.4058
A2	~50.14268	10	120.2854
A3	-52.93776	7	119.8755
R	-69.22654	2	142.4531
2	-63.01435	4	134.0287
3	-484.9148	4	977.8296
4	-54.41036	5	118.8207
5	-54.41036	5	118.8207

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	38.17	8	< 0.0001
Test 2	8.12	4	0.08726
Test 3	5.59	3	0.1333
Test 4	20.15	3	0.0001578
Test 5a	864	3	< 0.0001
Test 5b	-843.8	0	N/A
Test 6a	2.945	2	0.2293
Test 6b	17.21	1	< 0.0001
Test 7a	2.945	2	0.2293
Test 7b	861	1	< 0.0001
Test 7c	-2.842e-014	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

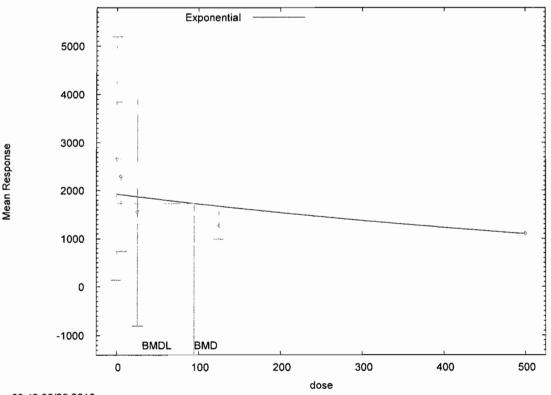
Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

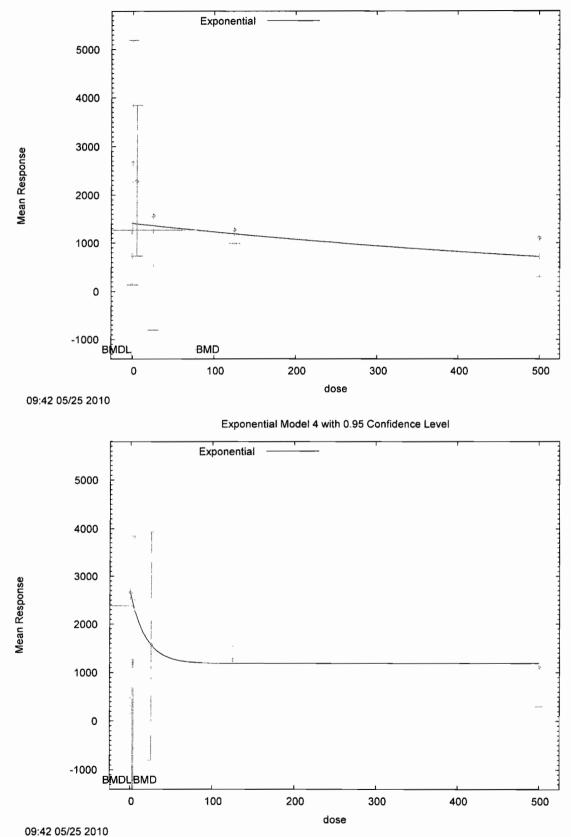
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2. The p-value for Test 7a is greater than .1. Model 5 seems to adequately describe the data. The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3. Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

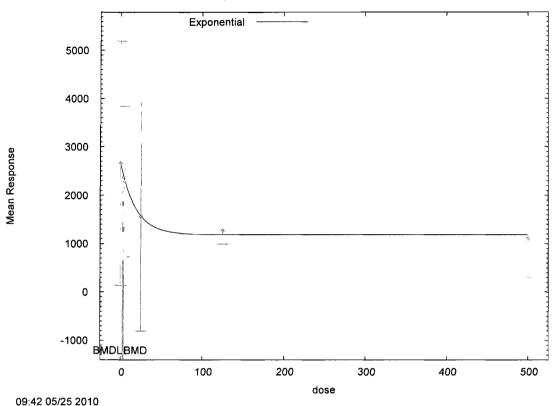
Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000


BMD and BMDL by Model

Model	BMD	BMDL
2	94.414	66.7705
3	77.8088	Bad completion
4	3.72746	2.52378
5	3.72746	2.52384



Exponential Model 3 with 0.95 Confidence Level

Exponential Model 5 with 0.95 Confidence Level

```
Acephate; MRID 44203302
Female RBC ChE
```

Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Tue May 25 09:35:54 2010 _____ ------BMDS Model Run The form of the response function by Model: $Y[dose] = a * exp{sign * b * dose}$ Model 2: Model 3: $Y[dose] = a * exp{sign * (b * dose)^d}$ Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Model 5: Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5.

```
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
rho is set to 0.
A constant variance model is fit.
```

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Vari	iable	Model 2	Model 3	Model 4	Model 5
lna	alpha	9.84058	9.84058	9.84058	
9.84058					
	rho(S)	0	0	0	
0					
	a	1407.04	1407.04	2797.2	
2797.2					
	b	0.0013541	0.0013541	0.00767472	
0.0076747	72				
	С			0.376567	
0.376567					
	d		1		
1					

(S) = Specified

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
lna	lpha	12.0733	12.0733	9.97363	
9.97363					
	rho	0	0	0	
0					
	a	2141.72	2141.72	2655.15	
2655.15	-		0111.70	2030.13	
2000.10	b	0.00187867	0.00187867	0.0550475	
0.0550475		0.0018/88/	0.0010/00/	0.0550475	
	с			0.447269	
0.447269					
	d		1		1

Dose	N	Obs Mean	Obs Std Dev

0	2	2664	281.4
5	2	2288	173.2
25	2	1565	263.8
125	2	1269	31.1
500	2	1106	89.8

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	2142	418.5	1.765
	5	2122	418.5	0.562
	25	2043	418.5	-1.617
	125	1693	418.5	-1.434
	500	837.2	418.5	0.9085
3	0	2142	418.5	1,765
	5	2122	418.5	0.562
	25	2043	418.5	-1.617
	125	1693	418.5	-1.434
	500	837.2	418.5	0.9085
4	0	2655	146.5	0.08549
	5	2302	146.5	-0.1355
	25	1558	146.5	0.06579
	125	1189	146.5	0.7717
	500	1188	146.5	-0.7875
5	0	2655	146.5	0.08549
	5	2302	146.5	-0.1355
	25	1558	146.5	0.06579
	125	1189	146.5	0.7717
	500	1188	146.5	-0.7875

Other models for which likelihoods are calculated:

Model A1	· Yij Var{e(ij)}	= Mu(i) + e(ij) = Sigma^2
Model A2		= Mu(i) + e(ij) = Sigma(i)^2
Model A3		= Mu(i) + e(ij) = exp(lalpha + log(mean(i)) * rho)
Model R	Yij Var{e(ij)}	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	-54.2029	б	120.4058
A2	-50.14268	10	120.2854
A3	-54.2029	6	120.4058
R	-69.22654	2	142.4531
2	-65,36667	3	136.7333
3	-65.36667	3	136.7333
4	-54.86814	4	117.7363
5	-54.86814	4	117.7363

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	38.17	8	< 0.0001
Test 2	8.12	4	0.08726
Test 3	8.12	4	0.08726
Test 4	22.33	3	< 0.0001
Test 5a	22.33	3	< 0.0001
Test 5b	-2.302e-012	0	N/A
Test 6a	1.33	2	0.5141
Test 6b	21	1	< 0.0001
Test 7a	1.33	2	0.5141
Test 7b	21	1	< 0.0001
Test 7c	0	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

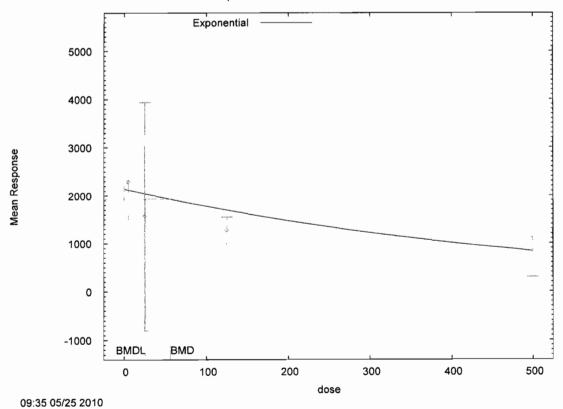
The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

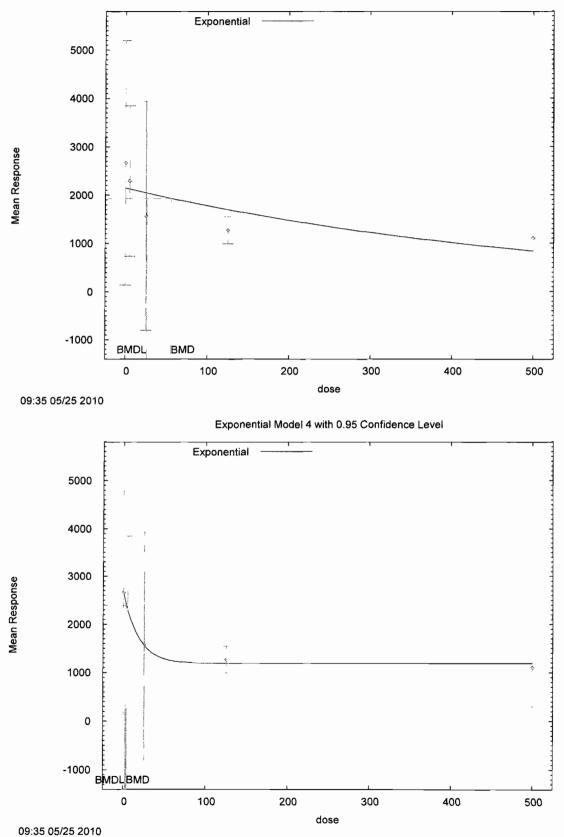
The p-value for Test 6b is less than .05. Model 4 appears

to fit the data better than Model 2.
The p-value for Test 7a is greater than .1. Model 5 seems
to adequately describe the data.
The p-value for Test 7b is less than .05. Model 5 appears
to fit the data better than Model 3.
Degrees of freedom for Test 7c are less than or equal to 0.
The Chi-Square test for fit is not valid.

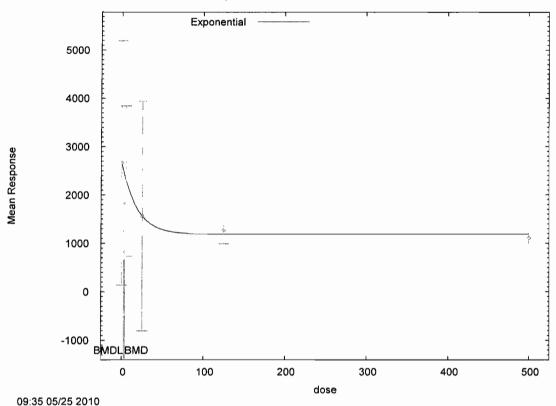
Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model


Model	BMD	BMDL
2	56.0824	26.0497
3	56.0825	26.0497
4	3.62547	2,42415
5	3.62547	2.42415

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 3 with 0.95 Confidence Level

Exponential Model 5 with 0.95 Confidence Level

Acephate; MRID 44203302 Female Hippocampus ChE

Warning: optimum may not have been found form model 1 (BMDL). Bad process completion in Optimization routine.

```
Exponential Model. (Version: 1.61; Date: 7/24/2009)
      Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d)
      Gnuplot Plotting File:
                                     Mon May 24 14:46:48 2010
______
BMDS Model Run
The form of the response function by Model:
              Y[dose] = a * exp{sign * b * dose}
    Model 2:
    Model 3:
              Y[dose] = a * exp\{sign * (b * dose)^d\}
    Model 4:
              Y[dose] = a * [c-(c-1) * exp{-b * dose}]
              Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]
    Model 5:
  Note: Y[dose] is the median response for exposure = dose;
       sign = +1 for increasing trend in data;
       sign = -1 for decreasing trend.
    Model 2 is nested within Models 3 and 4.
    Model 3 is nested within Model 5.
```

Model 4 is nested within Model 5.

Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha 6.71031	~6.71031	-6.71031	-6.71031	-
rho	3.62984	3.62984	3.62984	
3.62984				
a	1.61695	1.51496	6.72	
6.72				
b	0.00302024	2.49752e-006	0.0104996	
0.0104996				
с			0.131803	
0.131803				
d		2		
1				

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
 lna	lpha	-0.41653	-6.19457		
6.80547	ipila	0.41055	0.19407	0.0004/	
	rho	-0.031723	7.14528	5.37127	
5.37127					
4.38937	a	6.07609	3.0169	4.38937	
4.50557	b	0.0425953	0.00235576	0.0172136	
0.0172136					
0 010161	С			0.212161	
0.212161	d		1		1

Dose	Ν	Obs Mean	Obs Std Dev
0	2	6.4	1.216
5	2	4.44	0.332
25	2	2.24	0.354
125	2	1.35	0.021
500	2	0.93	0.049

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	6.076	0.7891	0.5805
	5	4.911	0.7918	-0.8405
	25	2.095	0.8025	0.2558
	125	0.0296	0.8586	2.175
	500	3.421e-009	1.106	1.189
3	0	3.017	2.334	2.05
	5	2.982	2.238	0.9215
	25	2.844	1.891	-0.4519
	125	2.247	0.8152	-1.557
	500	0.929	0.03472	0.04091
4	0	4.389	1.768	1.608
	5	4.104	1.476	0.3217
	25	3.18	0.744	-1.787
	125	1.333	0.07208	0.326
	500	0.9319	0.02754	-0.09692
5	0	4.389	1.768	1.608
	5	4.104	1.476	0.3217
	25	3.18	0.744	-1.787
	125	1.333	0.07208	0.326
	500	0.9319	0.02754	-0.09692

Other models for which likelihoods are calculated:

Model	A1:	Yij Var{e(ij)}	Mu(i) + e(ij) Sigma ²
Model	A2:	Yij Var{e(ij)}	Mu(i) + e(ij) Sigma(i)^2
Model	A3:		Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model	R:	Yij Var{e(ij)}	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
Al	3.809922	6	4.380156
A2	16.1151	10	-12.23019
A3	12.78946	7	-11.57893
R	-12.41965	2	28.83929
2	-3.516221	4	15.03244
3	-2.451957	4	12.90391
4	6.117484	5	-2.234969
5	6.117484	5	-2.234969

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	57.07	8	< 0.0001
Test 2	24.61	4	< 0.0001
Test 3	6.651	3	0.08388
Test 4	32.61	3	< 0.0001
Test 5a	30.48	3	< 0.0001
Test 5b	2.129	0	N/A
Test 6a	13.34	2	0.001266
Test 6b	19.27	1	< 0.0001
Test 7a	13.34	2	0.001266
Test 7b	17.14	1	< 0.0001
Test 7c	-1.599e-014	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

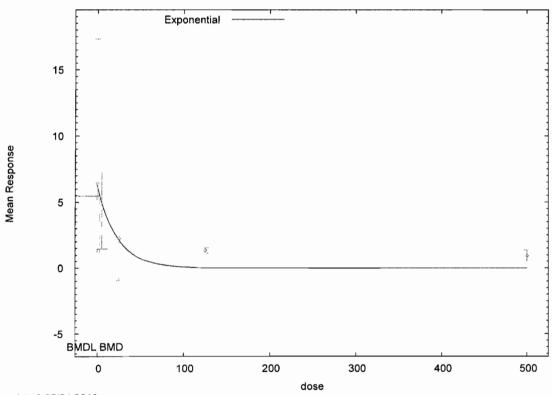
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

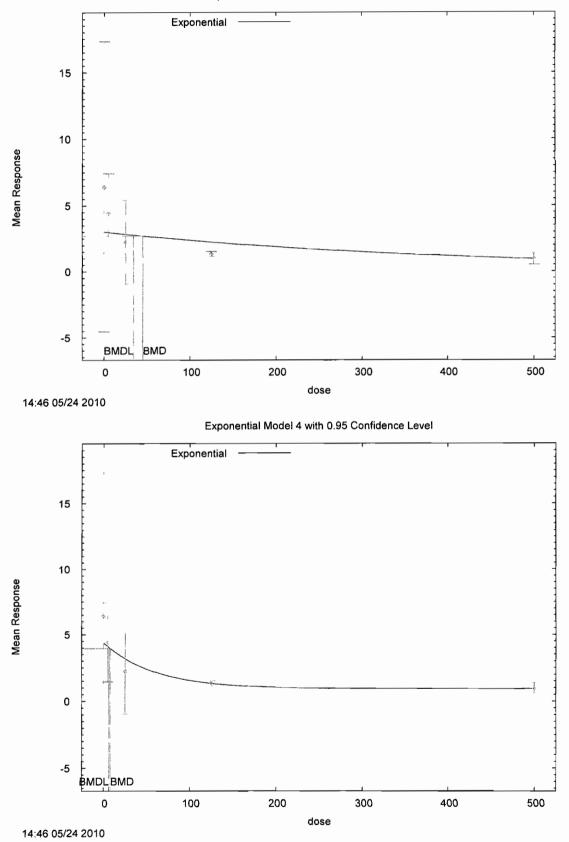
Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

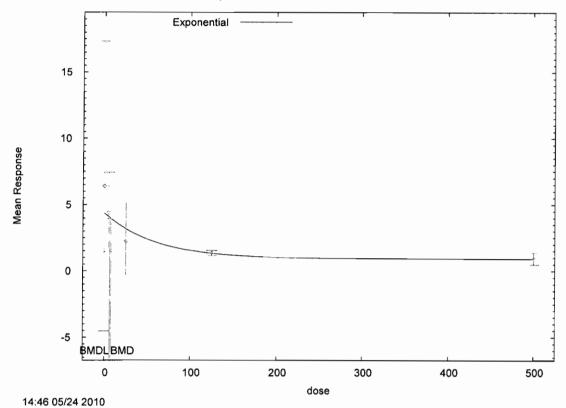
Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000


BMD and BMDL by Model

Model	BMD		BMDL
2	2.47352	Bad	completion
3	44.7247		34.1588
4	7.88558		6.42746
5	7.88558		6.42746


Exponential Model 2 with 0.95 Confidence Level

14:46 05/24 2010

Exponential Model 3 with 0.95 Confidence Level

Exponential Model 5 with 0.95 Confidence Level

```
Acephate; MRID 44203302
Female Hippocampus ChE
```

Warning: optimum may not have been found form model 1 (BMDL). Bad process completion in Optimization routine.

Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Mon May 24 09:49:43 2010 BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ $Y[dose] = a * exp{sign * (b * dose)^d}$ Model 3: Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data;

sign = -1 for decreasing trend.
Model 2 is nested within Models 3 and 4.
Model 3 is nested within Model 5.
Model 4 is nested within Model 5.

Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) rho is set to 0. A constant variance model is fit.

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Vari	able	Model 2	Model 3	Model 4	Model 5
 lna 1.76198	lpha	-1.76198	-1.76198	-1.76198	-
0	rho(S)	0	0	0	
6.72	a	1.61695	1.61695	6.72	
0.0104996	d	0.00302024	0.00302024	0.0104996	
0.131803	C			0.131803	
1	d		1		

(S) = Specified

Parameter Estimates by Model

Varia	able	Model 2	Model 3	Model 4	Model 5
lna: 1.51614	lpha	-0.270811	-0.270811	-1.51614	-
0	rho	0	0	0	
6.25191	a	6.0652	6.0652	6.25191	
0.0729433	d	0.0420851	0.0420851	0.0729433	
0.191122	С			0.191122	
	d	~ -	1		1

Dose	N	Obs Mean	Obs Std Dev
			
0	2	6.4	1.216
5	2	4.44	0.332
25	2	2.24	0.354
125	2	1.35	0.021
500	2	0.93	0.049

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	6.065	0.8734	0.5421
	5	4.914	0.8734	-0.768
	25	2.118	0.8734	0.1977
	125	0.03149	0.8734	2.135
	500	4.407e-009	0.8734	1.506
3	0	6.065	0.8734	0.5421
	5	4.914	0.8734	-0.768
	25	2.118	0.8734	0.1977
	125	0.03149	0.8734	2.135
	500	4.407e-009	0.8734	1.506
4	0	6.252	0.4686	0.4469
	5	4.706	0.4686	-0.8042
	25	2.011	0.4686	0.6902
	125	1.195	0.4686	0.4665
	500	1.195	0.4686	-0.7994
5	0	6.252	0.4686	0.4469
	5	4,706	0.4686	-0.8042
	25	2.011	0.4686	0.6902
	125	1.195	0.4686	0.4665
	500	1.195	0.4686	-0.7994

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma^2
Model A2:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma(i)^2
Model A3:		= Mu(i) + e(ij) = exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	3.809922	6	4.380156
A2	16.1151	10	-12.23019
A3	3.809922	6	4.380156
R	-12.41965	2	28.83929
2	-3.645947	3	13.29189
3	-3.645947	3	13.29189
4	2.580688	4	2.838625
5	2.580688	4	2.838625

Additive constant for all log-likelihoods = -9.189. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs. 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
Test 6a: Does Model 4 fit the data? (A3 vs 4)
Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
Test 7a: Does Model 5 fit the data? (A3 vs 5)
Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	57.07	8	< 0.0001
Test 2	24.61	4	< 0.0001
Test 3	24.61	4	< 0.0001
Test 4	14.91	3	0.001894
Test 5a	14.91	3	0.001894
Test 5b	3.109e-014	0	N/A
Test 6a	2.458	2	0.2925
Test 6b	12.45	1	0.0004173
Test 7a	2.458	2	0.2925
Test 7b	12.45	1	0.0004173
Test 7c	-1.457e-012	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

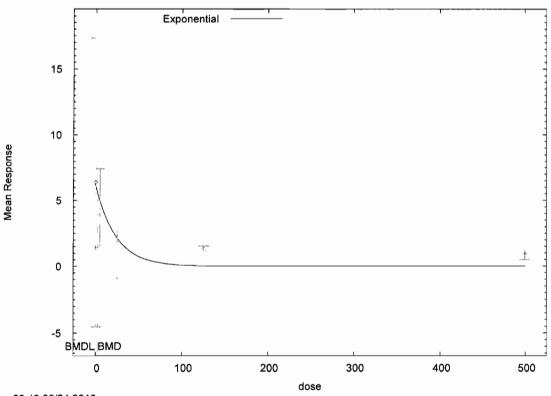
Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

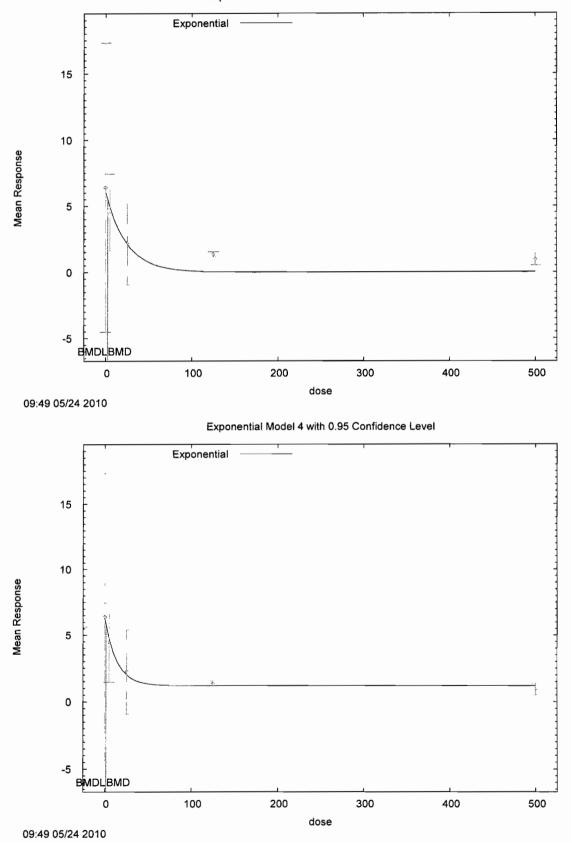
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2. The p-value for Test 7a is greater than .1. Model 5 seems to adequately describe the data. The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3. Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

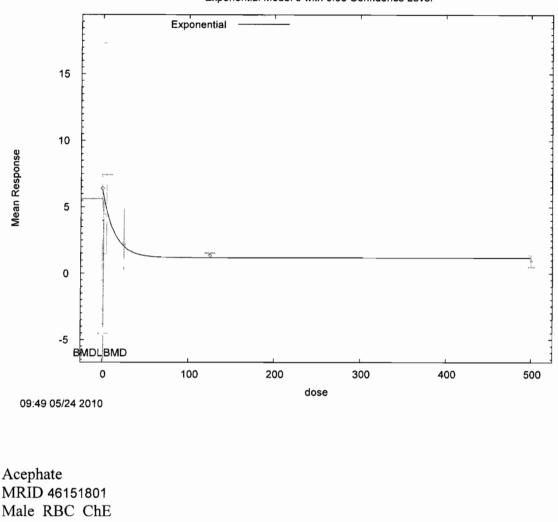
Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000


BMD and BMDL by Model

Model	BMD	BMDL
2	2.50351	Bad completion
3	2.50351	2.14639
4	1.80914	1.17087
5	1.80914	1.17087



Exponential Model 3 with 0.95 Confidence Level


```
Exponential Model 5 with 0.95 Confidence Level
```

Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Mon May 17 10:42:49 2010 _____ BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp{sign * b * dose}$ $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Model 5: Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend.

Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Model 2 is nested within Models 3 and 4.

MLE solution provided: Exact

Initial Parameter Values

Var	iable	Model 2	Model 3	Model 4	Model 5
lna 3.96558	alpha	-3.96558	-3.96558	-3.96558	-
2.24783	rho	2.24783	2.24783	2.24783	
	a	2.22082	2.22082	2.688	
2.688	b	0.00804937	0.00804937	0.136697	
0.136697					
	С			0.690901	
0.690901	d		1		
1	u		T		

Parameter Estimates by Model

Varia	able	Model 2	Model 3	Model 4	Model 5
lnal	lpha	-1.71988	-2.73738	-1.71988	-
2.73738					
	rho	0.0466741	1.23293	0.0466745	
1.23293					
	a	2.33515	2.3375	2.33515	
2.3375					
	b	0.00805998	0.0858792	0.00805998	
0.0869045	-				
0.0000015	С			0	
0.231851	C			0	
0.231851	,				
	d		13.8448		12.9977

Dose	Ν	Obs Mean	Obs Std Dev
0	10	1.95	0.28
0.5	10	2.49	0.42
1	10	2.35	0.19

2.5	10	2.56	0.53
10	10	2.07	0.42

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	2.335	0.4316	-2.822
	0.5	2.326	0.4316	1.203
	1	2.316	0.4316	0.2462
	2.5	2.289	0.4314	1.99
	10	2.154	0.4308	-0.6189
3	0	2.337	0.4294	-2.853
	0.5	2.337	0.4294	1.123
	1	2.337	0.4294	0.09205
	2.5	2.337	0.4294	1.638
	10	2.07	0.3984	-1.109e-007
4	0	2.335	0.4316	-2.822
	0.5	2.326	0.4316	1.203
	1	2.316	0.4316	0.2462
	2.5	2.289	0.4314	1.99
	10	2.154	0.4308	-0.6189
5	0	2.338	0.4294	-2.853
	0.5	2.338	0.4294	1.123
	1	2.338	0.4294	0.09205
	2.5	2.337	0.4294	1.638
	10	2.07		-3.331e-008

Other models for which likelihoods are calculated:

Model	A1:	Yij Var{e(ij)}	Mu(i) + e(ij) Sigma^2
Model	A2:		Mu(i) + e(ij) Sigma(i)^2
Model	A3 :		Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model	R:	Yij Var{e(ij)}	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	25.12208	6	-38.24417
A2	30.66978	10	-41.33955
A3	26.3927	7	-38.7854
R	16.4211	2	-28.8422
2	17.03384	4	-26.06767
3	18.01219	5	-26.02438
4	17.03384	4	-26.06767
5	18.01219	6	-24.02438

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs. 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
Test 6a: Does Model 4 fit the data? (A3 vs 4)
Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
Test 7a: Does Model 5 fit the data? (A3 vs 5)
Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value

Test 1	28.5	8	0.0003884
Test 2	11.1	4	0.02551
Test 3	8.554	3	0.03585
Test 4	18.72	3	0.0003127
Test 5a	16.76	2	0.0002293
Test 5b	1.957	1	0.1619
Test 6a	18.72	3	0.0003127
Test 6b	-2.132e-014	0	N/A
Test 7a	16.76	1	< 0.0001
Test 7b	-8.299e-008	1	N/A
Test 7c	1.957	2	0.3759

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5b is greater than .05. Model 3 does not seem to fit the data better than Model 2.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 7a is less than .1. Model 5 may not adequately

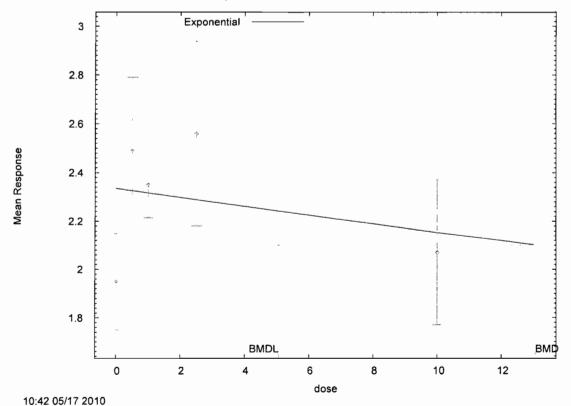
describe the data; you may want to consider another model.

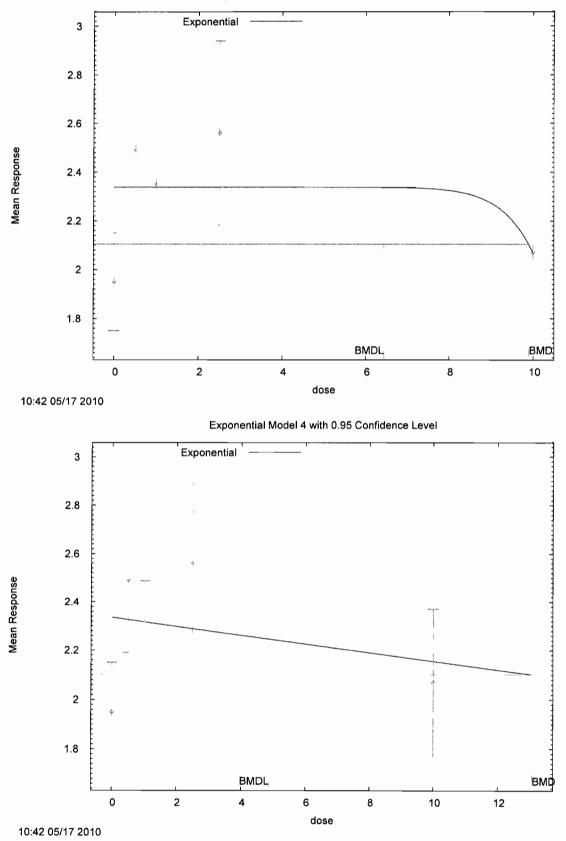
The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

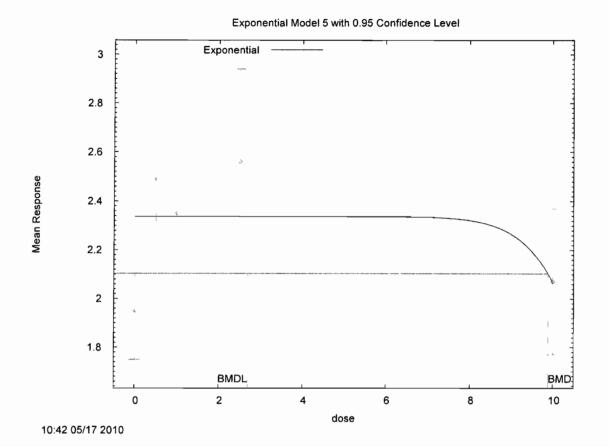
Benchmark Dose Computations:

```
Specified Effect = 0.100000
```


Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model


Model	BMD	BMDL
2	13.0721	5.0665
3	9.89739	6.44146
4	13.0721	4.87449
5	9.88867	2.6943

Exponential Model 3 with 0.95 Confidence Level

Acephate 4615180 pup female brain che

Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Fri May 28 13:04:09 2010 BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ Model 3: $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4.

Model 3 is nested within Model 5. Model 4 is nested within Model 5.

Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) rho is set to 0. A constant variance model is fit.

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Vari	iable	Model 2	Model 3	Model 4	Model 5
	alpha	0.344074	0.344074	0.344074	
0.344074	rho(S)	0	0	0	
0	a	3.89058	3.89058	5.65562	
5.65562	b	0.0438513	0.0438513	0.282882	
0.282882	с			0.533747	
0.533747	d		1		
1					

(S) = Specified

Parameter Estimates by Model

Var	iable	Model 2	Model 3	Model 4	Model 5
lna 0.413324	alpha	0.432266	0.419565	0.432266	
0	rho	0	0	0	
4.8707	a	4.97422	4.84179	4.97422	
0.367017	b	0.0425878	0.0623952	0.0425878	
0.650748	с			0	
0.030/40	d		1.81214		18

Dose	N	Obs Mean	Obs Std Dev
0	10	4.844	0.8156

0.5	10	4.382	1.412
1	10	5.386	1.392
2.5	10	4.545	1.516
10	10	3.17	0.9698

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	4.974	1.241	-0.3312
	0.5	4.869	1.241	-1.243
	1	4.767	1.241	1.578
	2.5	4.472	1.241	0.1867
	10	3.249	1.241	-0.2026
3	0	4.842	1.233	0.006185
	0.5	4.833	1.233	-1.157
	1	4.81	1.233	1.477
	2.5	4.678	1.233	-0.3397
	10	3.164	1.233	0.01387
4	0	4.974	1.241	-0.3312
	0.5	4.869	1.241	-1.243
	1	4.767	1.241	1.578
	2.5	4.472	1.241	0.1867
	10	3.249	1.241	-0.2026
5	0	4.871	1.23	-0.06815
	0.5	4.871	1.23	-1.258
	1	4.871	1.23	1.326
	2.5	4.545	1.23	-1.117e-007
	10	3.17	1.23	1.828e-009
		••••	2.20	

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma^2
Model A2:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma(i)^2
Model A3:		= Mu(i) + e(ij) = exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	-33.60184	6	79.20368
A2	-30.94339	10	81.88679
A3	-33.60184	6	79.20368
R	-41.66348	2	87.32697
2	-35.80666	3	77.61331
3	-35.48913	4	78.97826
4	-35.80666	3	77.61331
5	-35.33311	5	80.66622

Additive constant for all log-likelihoods = -45.95. This constant added to the

above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	21.44	8	0.006066
Test 2	5.317	4	0.2563
Test 3	5.317	4	0.2563
Test 4	4.41	3	0.2205
Test 5a	3.775	2	0.1515
Test 5b	0.6351	1	0.4255
Test 6a	4.41	3	0.2205
Test 6b	-1.421e-014	0	N/A
Test 7a	3.463	1	0.06277
Test 7b	0.312	1	0.5764
Test 7c	0.9471	2	0.6228

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is greater than .1. Model 2 seems to adequately describe the data.

The p-value for Test 5a is greater than .1. Model 3 seems to adequately describe the data.

The p-value for Test 5b is greater than .05. Model 3 does not seem to fit the data better than Model 2.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

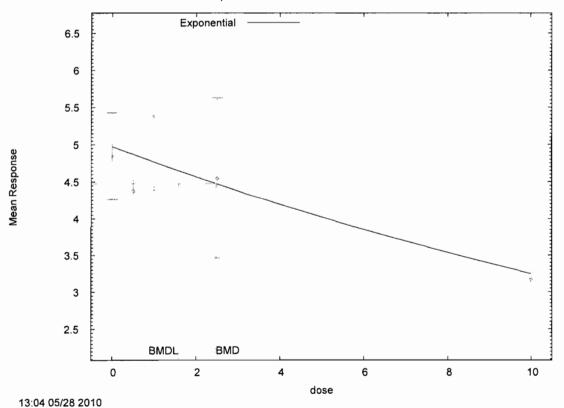
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

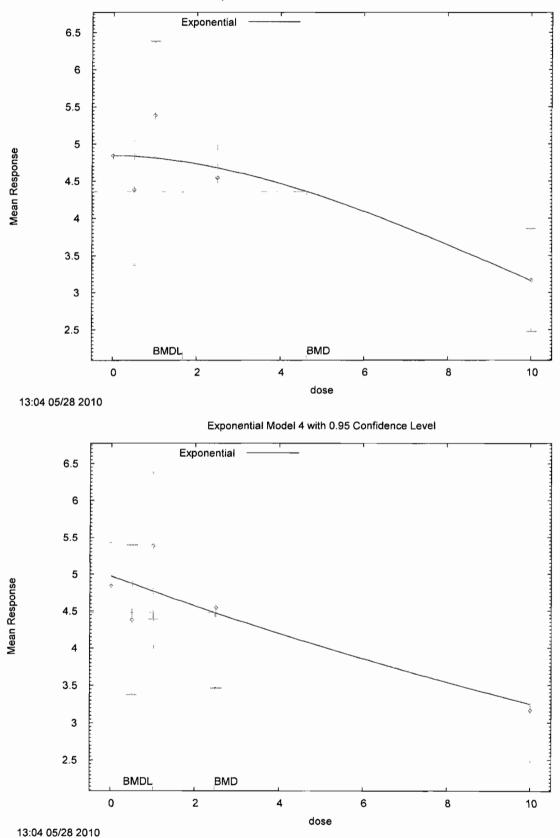
The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

Benchmark Dose Computations:

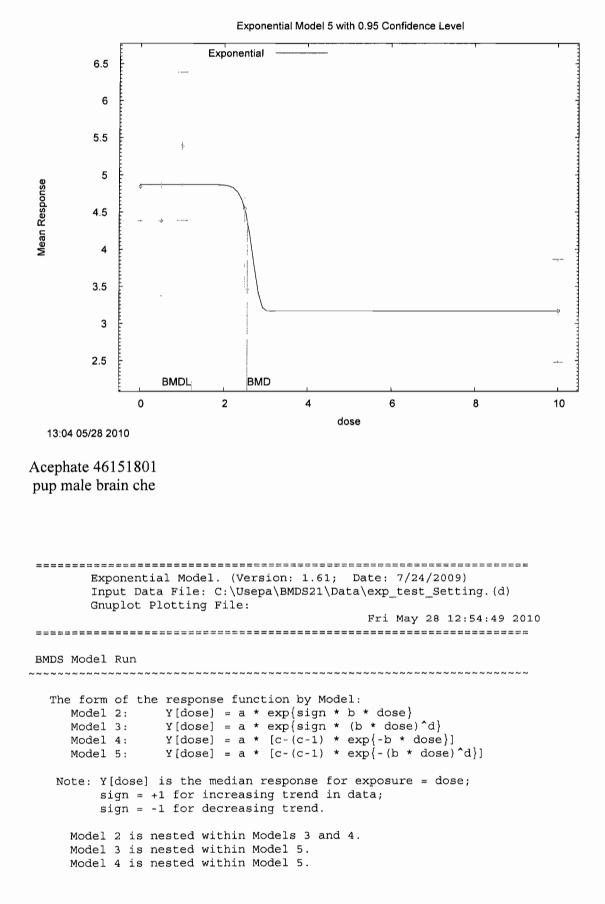
Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000


BMD and BMDL by Model

Model	BMD	BMDL
2	2.47396	1.5852
3	4.62946	1.66739
4	2.47396	1.01307
5	2.56504	1.23841



Page 63 of 132

Exponential Model 3 with 0.95 Confidence Level

Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) rho is set to 0. A constant variance model is fit.

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Var	iable	Model 2	Model 3	Model 4	Model 5
ln	alpha	-1.16404	-1.16404	-1.16404	-
1.16404	-				
	rho(S)	0	0	0	
0					
	a	3.45536	3.45536	5.21314	
5.21314					
	b	0.043809	0.043809	0.299202	
0.299202					
	с			0.535734	
0.535734					
	d		1		
1	~		Ĩ		

(S) = Specified

Parameter Estimates by Model

Varia lna	able lpha	Model 2 -0.8543	Model 3 -0.8543	Model 4 -1.10039	Model 5
1.10039	rho	0	0	0	
4.91021	a	4.47623	4.47623	4.91021	
0.574275	b	0.0484152	0.0484152	0.574275	
0.608192	c d			0.608192	1

Dose	N	Obs Mean	Obs Std Dev
0	10	4.965	0.7511
0.5	10	4.47	0.7346
1	10	3.836	0.3535

2.5	10	3.644	0.5343
10	10	2.933	0.4694

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	4.476	0.6524	2.369
	0.5	4.369	0.6524	0.4863
	1	4.265	0.6524	-2.078
	2.5	3.966	0.6524	-1.562
	10	2.758	0.6524	0.8442
3	0	4.476	0.6524	2.369
	0.5	4.369	0.6524	0.4863
	1	4.265	0.6524	-2.078
	2.5	3.966	0.6524	-1.562
	10	2.758	0.6524	0.8442
4	0	4.91	0.5768	0.2998
	0.5	4.43	0.5768	0.2164
	1	4.07	0.5768	-1.281
	2.5	3.444	0.5768	1.094
	10	2.993	0.5768	-0.329
5	0	4.91	0.5768	0.2998
	0.5	4.43	0.5768	0.2164
	1	4.07	0.5768	-1.281
	2.5	3.444	0.5768	1.094
	10	2.993	0.5768	-0.329

Other models for which likelihoods are calculated:

Model	A1:	Yij Var{e(ij)}	Mu(i) + e(ij) Sigma^2
Model	A2:		Mu(i) + e(ij) Sigma(i)^2
Model	A3:		Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model	R:	Yij Var{e(ij)}	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	4.101066	6	3.797868
A2	7.810165	10	4.37967
A3	4.101066	6	3.797868
R	-19.42932	2	42.85863
2	-3.642492	3	13.28498
3	-3.642492	3	13.28498
4	2.509849	4	2.980302
5	2.509849	4	2.980302

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	54.48	8	< 0.0001
Test 2	7.418	4	0.1154
Test 3	7.418	4	0.1154
Test 4	15.49	3	0.001444
Test 5a	15.49	3	0.001444
Test 5b	-6.395e-014	0	N/A
Test 6a	3.182	2	0.2037
Test 6b	12.3	1	0.0004518
Test 7a	3.182	2	0.2037
Test 7b	12.3	1	0.0004518
Test 7c	-7.105e-015	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

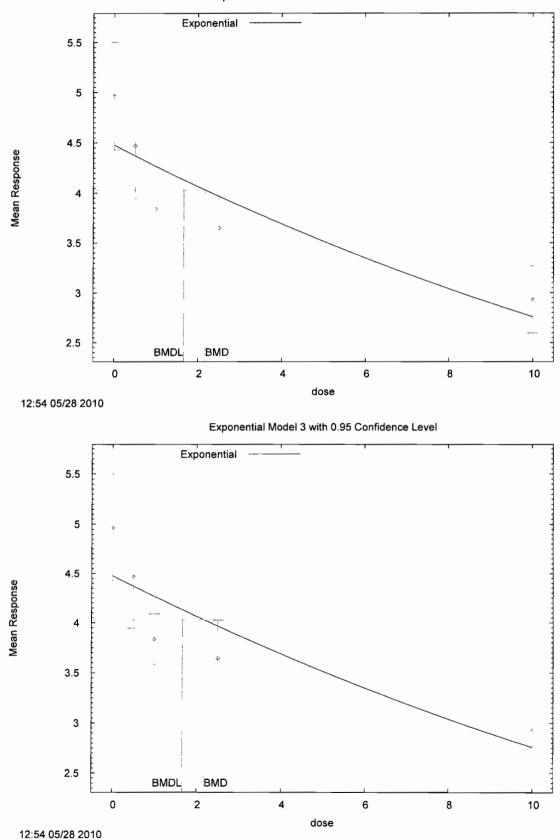
The p-value for Test 7a is greater than .1. Model 5 seems

to adequately describe the data.

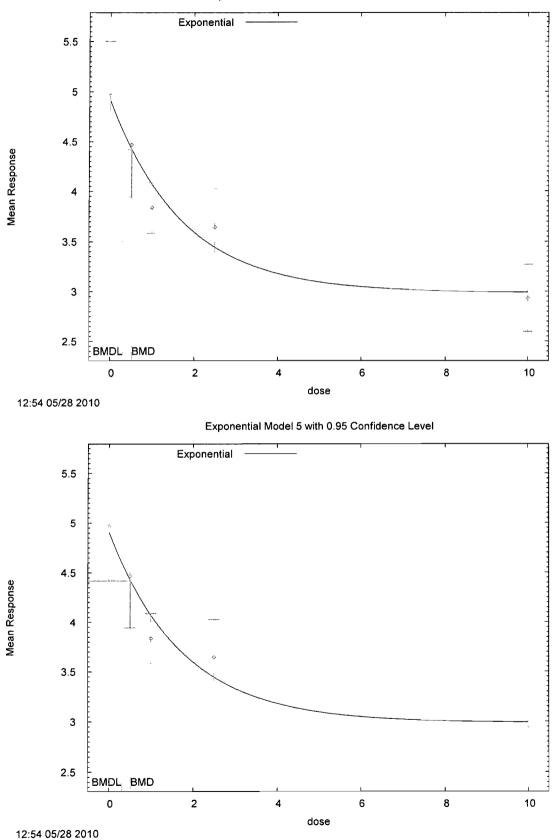
The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:


Specified Effect = 0.100000

Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model

BMD	BMDL
2.17618	1.66388
2.17618	1.66388
0.513127	0.303985
0.513127	0.303985
	2.17618 2.17618 0.513127

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 4 with 0.95 Confidence Level

```
Acephate
MRID 46151801
Female Brain
 Exponential Model. (Version: 1.61; Date: 7/24/2009)
        Input Data File: C:\Usepa\BMDS21\Data\exp test Setting.(d)
        Gnuplot Plotting File:
                                             Wed May 05 09:09:48 2010
BMDS Model Run
The form of the response function by Model:
     Model 2: Y[dose] = a * exp\{sign * b * dose\}
                 Y[dose] = a * exp{sign * (b * dose)^d}
     Model 3:

      Model 3:
      r[dose] = a + exp[sign (x - dose, -)]

      Model 4:
      Y[dose] = a * [c - (c - 1) * exp[-b * dose]]

      Model 5:
      Y[dose] = a * [c - (c - 1) * exp[-(b * dose)^d]]

   Note: Y[dose] is the median response for exposure = dose;
         sign = +1 for increasing trend in data;
         sign = -1 for decreasing trend.
     Model 2 is nested within Models 3 and 4.
     Model 3 is nested within Model 5.
     Model 4 is nested within Model 5.
  Dependent variable = Mean
  Independent variable = Dose
  Data are assumed to be distributed: normally
  Variance Model: exp(lnalpha +rho *ln(Y[dose]))
  rho is set to 0.
  A constant variance model is fit.
  Total number of dose groups = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 250
```

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Var	iable	Model 2	Model 3	Model 4	Model 5
lna 0.48874	alpha	0.48874	0.48874	0.48874	
0	rho(S)	0	0	0	
8.9565	a	5.87086	5.87086	8.9565	
0,298427	b	0.0486709	0.0486709	0.298427	
0.497643	с			0.497643	
1	d		1		

(S) = Specified

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
 lna 0.854454	lpha	0.854454	0.854454	0.854454	
0	rho	0	0	0	
7.76399	a	7.76399	7.76399	7.76399	
0.0483929	b	0.0483929	0.0483929	0.0483929	
082	С			0	5.24625e-
	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	8.53	0.21
0.5	10	7.4	1.44
1	10	5.96	1.9
2.5	10	7.83	1.73
10	10	4.68	0.58

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	7.764	1.533	1.58
	0.5	7.578	1.533	-0.368
	1	7.397	1.533	-2.965
	2.5	6.879	1.533	1.961
	10	4.785	1.533	-0.2174
3	0	7.764	1.533	1.58
	0.5	7.578	1.533	-0.368
	1	7.397	1.533	-2.965
	2.5	6.879	1.533	1.961
	10	4.785	1.533	-0.2174
4	0	7.764	1.533	1.58
	0.5	7.578	1.533	-0.368
	1	7.397	1.533	-2.965
	2.5	6.879	1.533	1.961
	10	4.785	1.533	-0.2174
5	0	7.764	1.533	1.58
	0.5	7.578	1.533	-0.368
	1	7.397	1.533	-2.965
	2.5	6.879	1.533	1.961
	10	4.785	1.533	-0.2174

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

```
Model A2: Yij = Mu(i) + e(ij)

Var\{e(ij)\} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)

Var\{e(ij)\} = exp(lalpha + log(mean(i)) * rho)

Model R: Yij = Mu + e(i)

Var\{e(ij)\} = Sigma^2
```

Model	Log(likelihood)	DF	AIC
A1	-37.21849	6	86.43698
A2	~16.85842	10	53.71684
A3	-37.21849	6	86.43698
R	-56.64988	2	117.2998
2	-46.36134	3	98.72268
3	-46.36134	3	98.72268
4	-46.36134	3	98.72268
5	-46.36134	4	100.7227

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	79.58	8	< 0.0001
Test 2	40.72	4	< 0.0001
Test 3	40.72	4	< 0.0001
Test 4	18.29	3	0.000384
Test 5a	18.29	3	0.000384
Test 5b	0	0	N/A
Test 6a	18.29	3	0.000384
Test 6b	0	0	N/A
Test 7a	18.29	2	0.000107
Test 7b	0	1	1
Test 7c	0	1	1

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

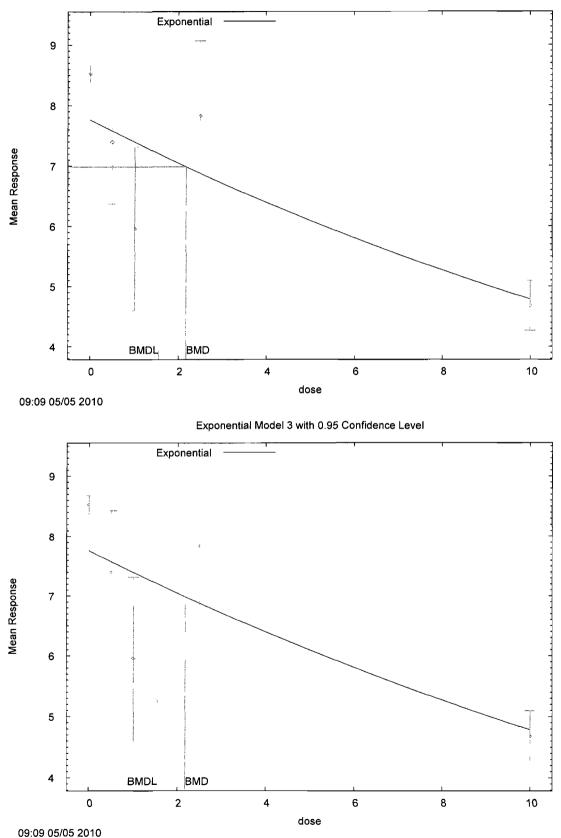
The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

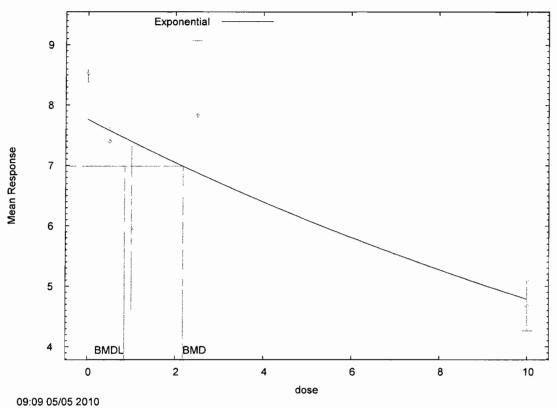
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

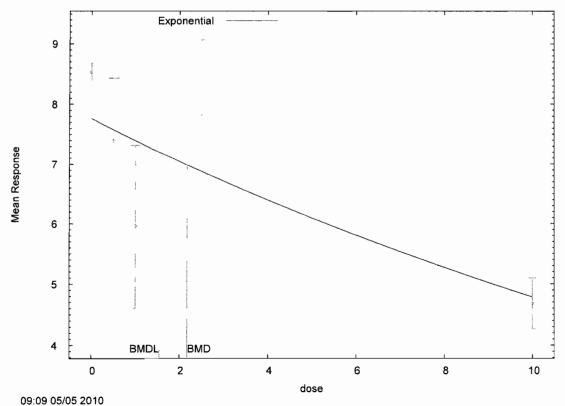

Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

Model	BMD	BMDL
2	2.17719	1.54662
3	2.17719	1.54662
4	2.17719	0.847525
5	2.17719	1.54662



Exponential Model 2 with 0.95 Confidence Level

Exponential Model 4 with 0.95 Confidence Level

Acephate MRID 46151801 Female Brain Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Thu May 06 08:30:20 2010 BMDS Model Run The form of the response function by Model: Model 2: Y[dose] = a * exp{sign * b * dose}
Model 3: Y[dose] = a * exp{sign * (b * dose)^d}

 Model 4:
 $Y[dose] = a * [c - (c - 1) * exp{-b * dose}]$

 Model 5:
 $Y[dose] = a * [c - (c - 1) * exp{-(b * dose)^d}]$
Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) The variance is to be modeled as Var(i) = exp(lalpha + loq(mean(i)) * rho)Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250

MLE solution provided: Exact

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Initial Parameter Values

Vari	lable	Model 2	Model 3	Model 4	Model 5
lna 1.93206	alpha	1.93206	1.93206	1.93206	
1.12909	rho	-1.12909	-1.12909	-1.12909	-
8.9565	a	5.87086	5.87086	8.9565	
0.298427	b	0.0486709	0.0486709	0.298427	
0.497643	С			0.497643	
1	đ		1		

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
lna	lpha	-7.78191	-8.67515	-7.78191	-
8.67515					
	rho	4.42293	4.84698	4.42293	
4.84698					
	а	7.81678	7.43	7.81678	
7.43					
	b	0.0506332	0.0958034	0.0506332	
0.0957042	2				
	с			0	
0					
	d		18		17.5751
	a		18		17,5751

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	8.53	0.21
0.5	10	7.4	1.44
1	10	5.96	1.9
2.5	10	7.83	1.73
10	10	4.68	0.58

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	7.817	1.928	1.17
	0.5	7.621	1.823	-0.384
	1	7.431	1.724	-2.698
	2.5	6.887	1.457	2.046
	10	4.711	0.6292	-0.1567
3	0	7.43	1.687	2.062
	0.5	7.43	1.687	-0.05624
	1	7.43	1.687	-2.756
	2.5	7.43	1.687	0.7499
	10	4.68	0.5502	-8.39e-010
4	0	7.817	1.928	1.17
	0.5	7.621	1.823	-0.384
	1	7.431	1.724	-2.698
	2.5	6.887	1.457	2.046
	10	4.711	0.6292	-0.1567
5	0	7.43	1.687	2.062
	0.5	7.43	1.687	-0.05624
	1	7.43	1.687	-2.756
	2.5	7.43	1.687	0.7499
	10	4.68	0.5502	1.138e-009

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$ Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)
Model R: Yij = Mu + e(i)
Var{e(ij)} = Sigma<sup>2</sup>
```

Model	Log(likelihood)	DF	AIC
A1	-37.21849	6	86.43698
A2	-16.85842	10	53.71684
A3	-37.04427	7	88.08855
R	-56.64988	2	117.2998
2	-42.14443	4	92.28886
3	-39.93778	5	89.87557
4	-42.14443	4	92.28886
5	-39.93778	5	89.87557

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3)

Tests of Interest

Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	79.58	8	< 0.0001
Test 2	40.72	4	< 0.0001
Test 3	40.37	3	< 0.0001
Test 4	10.2	3	0.01694
Test 5a	5.787	2	0.05538
Test 5b	4.413	1	0.03566
Test 6a	10.2	3	0.01694
Test 6b	-2.132e-013	0	N/A
Test 7a	5.787	2	0.05538
Test 7b	-1.135e-010	0	N/A
Test 7c	4.413	1	0.03566

The p-value for Test 1 is less than .05. There appears to be a

difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5b is less than .05. Model 3 appears to fit the data better than Model 2.

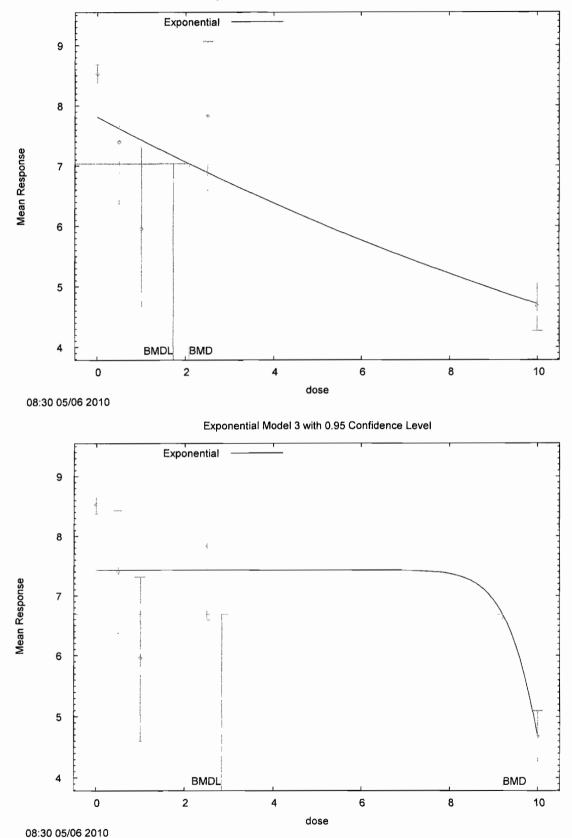
The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

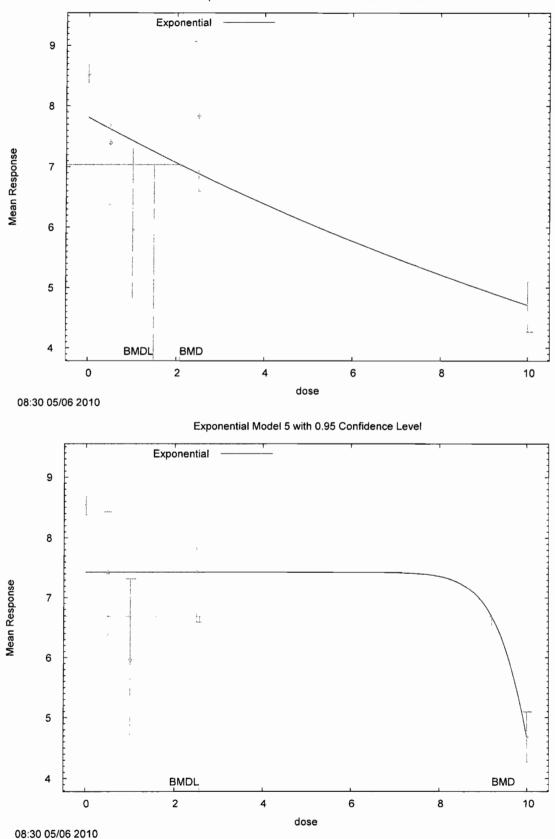
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 7b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.


Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

Model	BMD	BMDL
2	2.08086	1.72587
3	9.21135	2.83442
4	2.08086	1.48553
5	9.19308	2.56793

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 4 with 0.95 Confidence Level

Page 83 of 132

```
Acephate
MRID 46151801
Female RBC ChE
 Exponential Model. (Version: 1.61; Date: 7/24/2009)
        Input Data File: C:\Usepa\BMDS21\Data\exp test Setting.(d)
        Gnuplot Plotting File:
                                           Mon May 17 11:19:43 2010
 BMDS Model Run
The form of the response function by Model:
     Model 2: Y[dose] = a * exp{sign * b * dose}
     Model 3:
                Y[dose] = a * exp\{sign * (b * dose)^d\}

      Model 5:
      I[uose] = a + exp[sign - (b + dose), a]

      Model 4:
      Y[dose] = a + [c - (c - 1) + exp{-b + dose]

      Model 5:
      Y[dose] = a + [c - (c - 1) + exp{-(b + dose)^d]

   Note: Y[dose] is the median response for exposure = dose;
         sign = +1 for increasing trend in data;
         sign = -1 for decreasing trend.
     Model 2 is nested within Models 3 and 4.
     Model 3 is nested within Model 5.
     Model 4 is nested within Model 5.
   Dependent variable = Mean
   Independent variable = Dose
   Data are assumed to be distributed: normally
  Variance Model: exp(lnalpha +rho *ln(Y[dose]))
  rho is set to 0.
  A constant variance model is fit.
  Total number of dose groups = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
  MLE solution provided: Exact
                              Initial Parameter Values
    Variable
                                     Model 3
                                                    Model 4 Model 5
                Model 2
                     ----
     _____
                                      _ _ _ _ _ _ _
                                                      -----
    lnalpha
                     -1.4068
                                      -1.4068
                                                         -1.4068
1.4068
        rho(S)
                            0
                                            0
                                                               0
0
          a
                    2.30416 2.30416
                                                         3.1185
3.1185
                   0.027023 0.027023 0.253552
         b
0.253552
          С
                           - -
                                            - -
                                                         0.613848
```

```
Page 84 of 132
```

1

- -

0.613848

1

d

- -

(S) = Specified

Parameter Estimates by Model

	iable	Model 2	Model 3	Model 4	Model 5
lna 1.25595	alpha	-1.22814	-1.25595	-1.22814	-
0	rho	0	0	0	
2.63	a	2.6859	2.63	2.6859	
0.0892311	b L	0.0263442	0.0871575	0.0263442	
0.046679	С			0	
	d		9.55671		11.0456

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	2.36	0.49
0.5	10	2.97	0.49
1	10	2.53	0.68
2.5	10	2.66	0.55
10	10	2.01	0.34

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	2.686	0.5411	-1.904
2				
	0.5	2.651	0.5411	1.866
	1	2.616	0.5411	-0.5029
	2.5	2.515	0.5411	0.8491
	10	2.064	0.5411	-0.3147
3	0	2.63	0.5337	-1.6
	0.5	2.63	0.5337	2.015
	1	2.63	0.5337	-0.5926
	2.5	2.63	0.5337	0.1778
	10	2.01	0.5337	-3.519e-007
4	0	2.686	0.5411	-1.904
	0.5	2.651	0.5411	1.866
	1	2.616	0.5411	-0,5029
	2.5	2.515	0.5411	0.8491
	10	2.064	0.5411	-0.3147
5	0	2.63	0.5337	-1.6
	0.5	2.63	0.5337	2.015
	1	2.63	0.5337	-0.5926
	2.5	2.63	0.5337	0.1778
	10	2.01	0.5337	-6.192e-008

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij)

```
Var\{e(ij)\} = Sigma^{2}
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^{2}
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)

Model R: Yij = Mu + e(i)
Var{e(ij)} = Sigma^{2}
```

Model	Log(likelihood)	DF	AIC
A1	10.16998	6	-8.339958
A2	12.5241	10	-5.048204
A3	10.16998	6	-8.339958
R	1.510524	2	0.9789524
2	5.703607	3	-5.407213
3	6.398674	4	-4.797349
4	5.703607	3	-5.407213
5	6.398676	5	-2.797351

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs 3)

Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	22.03	8	0.004866
Test 2	4.708	4	0.3186
Test 3	4.708	4	0.3186
Test 4	8.933	3	0.0302
Test 5a	7.543	2	0.02302
Test 5b	1.39	1	0.2384
Test 6a	8.933	3	0.0302
Test 6b	1.901e-013	0	N/A
Test 7a	7.543	1	0.006026
Test 7b	2.289e-006	1	0.9988

Test 7c

1.39 2

0.499

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5b is greater than .05. Model 3 does not seem to fit the data better than Model 2.

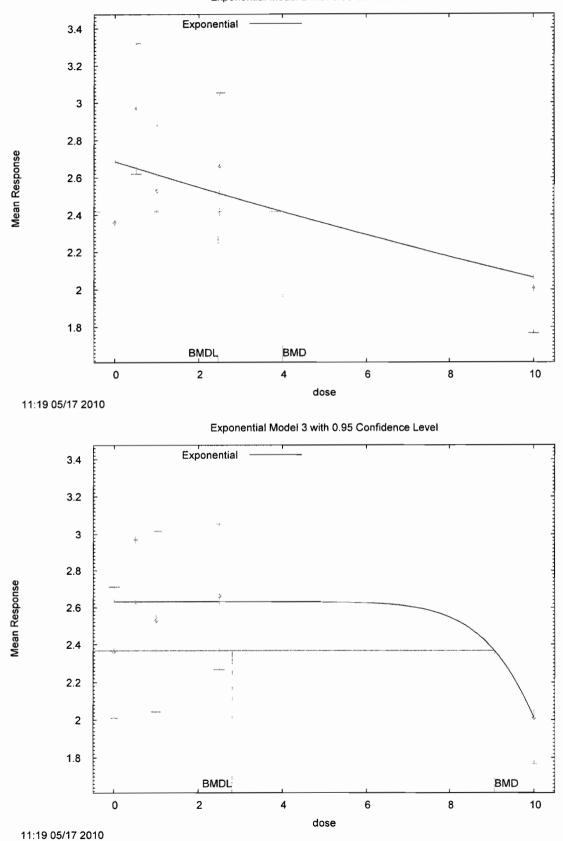
The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

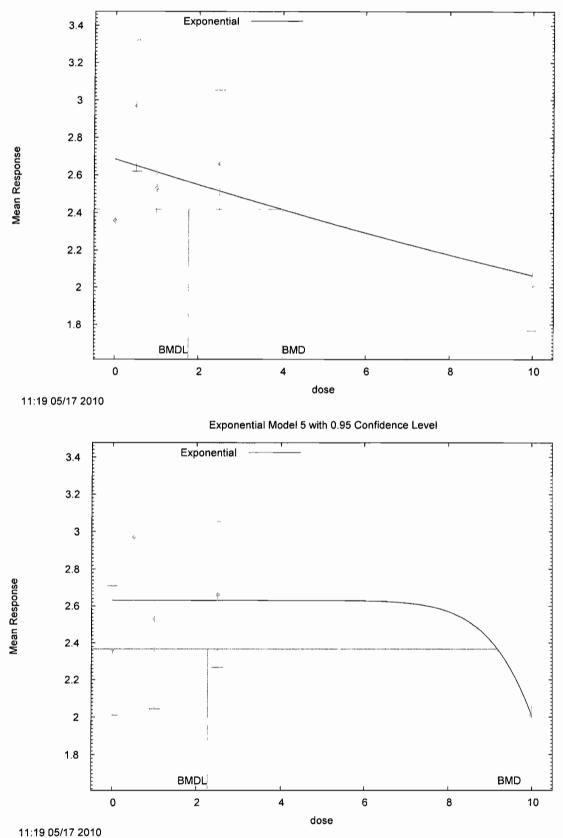
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.


Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD	BMDL
3.99939	2.46447
9.06629	2.80769
3.99939	1.76794
9.18307	2.27305
	3.99939 9.06629 3.99939

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 4 with 0.95 Confidence Level

```
Acephate
MRID 46151801
Male Brain ChE
Exponential Model. (Version: 1.61; Date: 7/24/2009)
       Input Data File: C:\Usepa\BMDS21\Data\exp test Setting.(d)
       Gnuplot Plotting File:
                                        Wed May 05 08:45:16 2010
BMDS Model Run
The form of the response function by Model:
    Model 2: Y[dose] = a * exp{sign * b * dose}
    Model 3:Y[dose] = a * exp{sign * (b * dose)^d}Model 4:Y[dose] = a * [c-(c-1) * exp{-b * dose}]Model 5:Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]
   Note: Y[dose] is the median response for exposure = dose;
        sign = +1 for increasing trend in data;
        sign = -1 for decreasing trend.
    Model 2 is nested within Models 3 and 4.
    Model 3 is nested within Model 5.
    Model 4 is nested within Model 5.
  Dependent variable = Mean
  Independent variable = Dose
  Data are assumed to be distributed: normally
  Variance Model: exp(lnalpha +rho *ln(Y[dose]))
```

```
Total number of dose groups = 5
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

A constant variance model is fit.

rho is set to 0.

Initial Parameter Values

Var	iable	Model 2	Model 3	Model 4	Model 5
 lna	alpha	0.922736	0.922736	0.922736	
0.922736	-				
0	rho(S)	0	0	0	
-	a	5.65468	5.65468	9.6495	
9.6495 0.330841	b	0.0632749	0.0632749	0.330841	
0.424399	С			0.424399	

d -- 1 --

1

(S) = Specified

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
- -					
lna	lpha	1.19495	1.19495	1.17663	
1.17663					
	rho	0	0	0	
0					
	a	8.1811	8.1811	8.53035	
8.53035					
	b	0.0668131	0.0668131	0.257991	
0.257991					
	С			0.478782	
0.478782					
	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	9.19	1.04
0.5	10	8.01	1.89
1	10	6.01	2.85
2.5	10	7.37	0.8
10	10	4.3	0.75

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2		8.181	1.818	1.755
-	0.5	7,912	1.818	0.17
	1	7.652	1.818	-2.858
	2.5	6.923	1.818	0.7784
	10	4.194	1.818	0.1841
3	0	8.181	1.818	1.755
	0.5	7.912	1.818	0.17
	1	7.652	1.818	-2.858
	2.5	6.923	1.818	0.7784
	10	4.194	1.818	0.1841
4	0	8.53	1.801	1.158
	0.5	7.992	1.801	0.03114
	1	7.519	1.801	-2.65
	2.5	6.417	1.801	1.673
	10	4.421	1.801	-0.2127
5	0	8.53	1.801	1.158
	0.5	7.992	1.801	0.03114
	1	7.519	1.801	-2.65
	2.5	6.417	1.801	1.673
	10	4.421	1.801	-0.2127

Other models for which likelihoods are calculated:

```
Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)
Model R: Yij = Mu + e(i)
Var{e(ij)} = Sigma^2
```

Model	Log(likelihood)	DF	AIC
Al	-48.06841	6	108.1368
A2	-34.4889	10	88.97779
A3	-48.06841	6	108.1368
R	-66.97517	2	137.9503
2	-54.87371	3	115.7474
3	-54.87371	3	115.7474
4	-54.41587	4	116.8317
5	~54.41587	4	116.8317

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	64.97	8	< 0.0001
Test 2	27.16	4	< 0.0001
Test 3	27.16	4	< 0.0001
Test 4	13.61	3	0.003486
Test 5a	13.61	3	0.003486
Test 5b	-2.842e-014	0	N/A
Test 6a	12.69	2	0.001751
Test 6b	0.9157	1	0.3386

Test 7a	12.69	2	0.001751
Test 7b	0.9157	1	0.3386
Test 7c	-3.283e-012	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

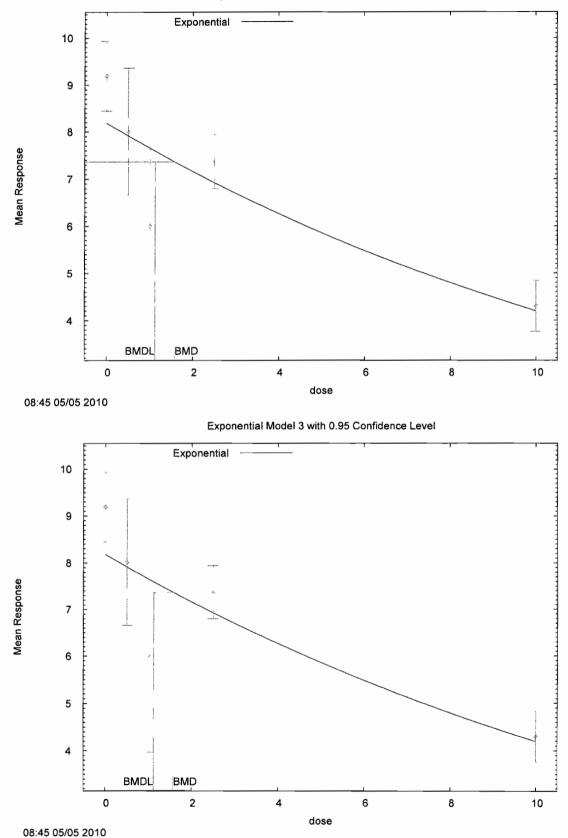
The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is greater than .05. Model 4 does not seem to fit the data better than Model 2.

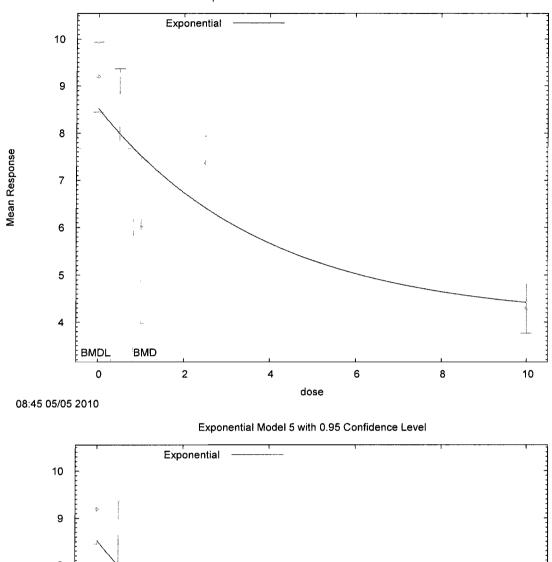
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

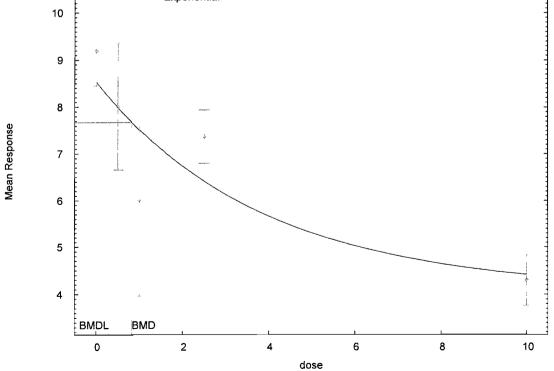
Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.


Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000


Model	BMD	BMDL
2	1.57695	1.12009
3	1.57695	1.12009
4	0.82568	0.303293
5	0.825679	0.303293

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 4 with 0.95 Confidence Level

08:45 05/05 2010

Page 95 of 132

```
Acephate
MRID 46151801
Male Brain
Exponential Model. (Version: 1.61; Date: 7/24/2009)
       Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d)
       Gnuplot Plotting File:
                                    Wed May 05 08:56:40 2010
BMDS Model Run
The form of the response function by Model:
    Model 2: Y[dose] = a * exp\{sign * b * dose\}
              Y[dose] = a * exp\{sign * (b * dose)^d\}
    Model 3:
    Note: Y[dose] is the median response for exposure = dose;
        sign = +1 for increasing trend in data;
        sign = -1 for decreasing trend.
    Model 2 is nested within Models 3 and 4.
    Model 3 is nested within Model 5.
    Model 4 is nested within Model 5.
  Dependent variable = Mean
  Independent variable = Dose
  Data are assumed to be distributed: normally
  Variance Model: exp(lnalpha +rho *ln(Y[dose]))
  The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
  Total number of dose groups = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
  MLE solution provided: Exact
                          Initial Parameter Values
                                             Model 4 Model 5
                Model 2
                                Model 3
   Variable
                 -----
                                -----
    -------
                                              -----
    lnalpha
                               -0.712361
                 -0.712361
                                               -0.712361
0.712361
       rho
                 0.626961
                                0.626961
                                               0.626961
0.626961
                  5.65468
                                5.65468
                                                  9.6495
         а
9.6495
         b 0.0632749
                         0.0632749 0.330841
0.330841
```

1

0.424399

С

d

- -

- -

- -

1

_

0.424399

_ _

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
lna 5.99878	lpha	-6.03898	-6.03898	-5.99878	-
3.62486	rho	3.64713	3.64713	3.62486	
8.21573	a	8.12352	8.12352	8.21573	
0.107549	b	0.0636783	0.0636784	0.107549	
0.277846	С			0.277846	
	d		1		1

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	9.19	1.04
0.5	10	8.01	1.89
1	10	6.01	2.85
2.5	10	7.37	0.8
10	10	4.3	0.75

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2		8.124	2.227	1.515
-	0.5	7.869	2.101	0.2123
	1	7.622	1.982	-2.572
	2.5	6.928	1.666	0.8393
	10	4.297	0.6971	0.01239
3	0	8.124	2.227	1.515
	0.5	7.869	2.101	0.2123
	1	7.622	1.982	-2.572
	2.5	6.928	1.666	0.8393
	10	4.297	0.6971	0.01239
4	0	8.216	2.265	1.36
	0.5	7.905	2.112	0.157
	1	7.611	1.972	-2.567
	2.5	6.817	1.615	1.083
	10	4.307	0.7026	-0.02994
5	0	8.216	2.265	1.36
	0.5	7.905	2.112	0.157
	1	7.611	1.972	-2.567
	2.5	6.817	1.615	1.083
	10	4.307	0.7026	-0.02994

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$ Model A2: Yij = Mu(i) + e(ij)

```
Var\{e(ij)\} = Sigma(i)^{2}
Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)

Model R: Yij = Mu + e(i)

Var{e(ij)} = Sigma^{2}
```

Model	Log(likelihood)	DF	AIC
Al	-48.06841	6	108.1368
A2	-34.4889	10	88.97779
A3	-47.19034	7	108.3807
R	-66.97517	2	137.9503
2	-48.7652	4	105.5304
3	-48.7652	4	105.5304
4	-48.71019	5	107.4204
5	-48.71019	5	107.4204

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	64.97	8	< 0.0001
Test 2	27.16	4	< 0.0001
Test 3	25.4	3	< 0.0001
Test 4	3.15	3	0.3691
Test 5a	3.15	3	0.3691
Test 5b	-5.684e-013	0	N/A
Test 6a	3.04	2	0.2187
Test 6b	0.11	1	0.7401
Test 7a	3.04	2	0.2187
Test 7b	0.11	1	0.7401
Test 7c	0	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is greater than .1. Model 2 seems to adequately describe the data.

The p-value for Test 5a is greater than .1. Model 3 seems to adequately describe the data.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

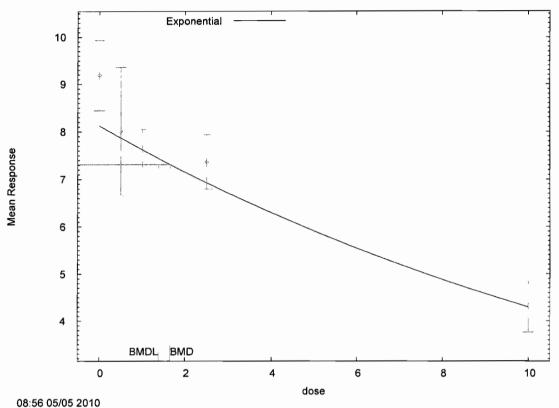
The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

The p-value for Test 6b is greater than .05. Model 4 does not seem to fit the data better than Model 2.

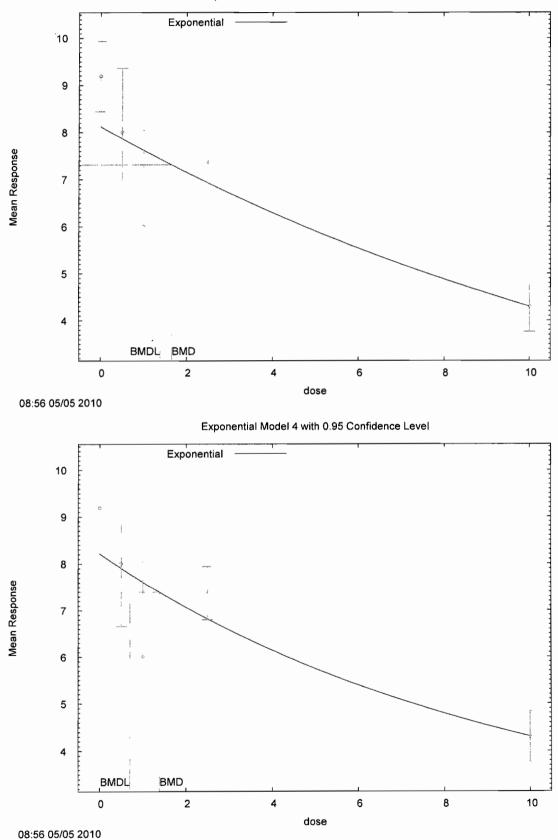
The p-value for Test 7a is greater than .1. Model 5 seems to adequately describe the data.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

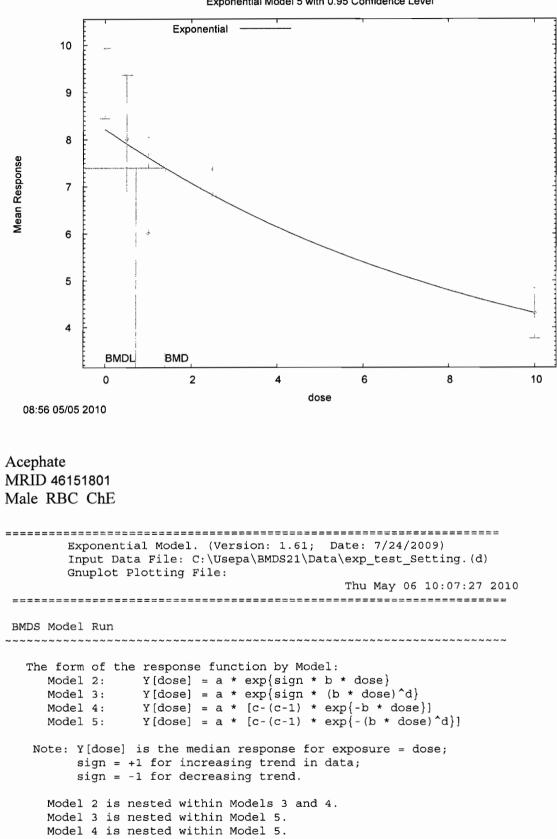
Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.


Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000


Model	BMD	BMDL
2	1.65457	1.38198
3	1.65457	1.38198
4	1.38589	0.703295
5	1.38589	0.703295

Exponential Model 2 with 0.95 Confidence Level

Exponential Model 3 with 0.95 Confidence Level

Exponential Model 5 with 0.95 Confidence Level

Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) rho is set to 0. A constant variance model is fit.

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Var	iable	Model 2	Model 3	Model 4	Model 5
 ln 2.00488	alpha	-2.00488	-2.00488	-2.00488	-
0	rho(S)	0	0	0	
2.688	a	2.22082	2.22082	2.688	
0.136697	b	0.00804937	0.00804937	0.136697	
0.690901	C			0.690901	
1	d		1		

(S) = Specified

Parameter Estimates by Model

Vari	iable	Model 2	Model 3	Model 4	Model 5
	alpha	-1.68135	-1.71875	-1.68135	-
1.71875	rho	0	0	0	
02.3375	a	2.33505	2.3375	2.33505	
0.0952119	b	0.00804446	0.0851304	0.00804446	
0.714461	c			0	
0.114401	d		13.0916		13.6387

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	1.95	0.28
0.5	10	2.49	0.42
1	10	2.35	0.19

2.5	10	2.56	0.53
10	10	2.07	0.42

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	
2	0	2.335	0.4314	-2.822
	0.5	2.326	0.4314	1.204
	1	2.316	0.4314	0.2467
	2.5	2.289	0.4314	1.99
	10	2.155	0.4314	-0.6199
3	0	2.337	0.4234	-2.894
	0.5	2.337	0.4234	1.139
	1	2.337	0.4234	0.09335
	2.5	2.337	0.4234	1.662
	10	2.07	0.4234	-2.504e-008
4	0	2.335	0.4314	-2.822
	0.5	2.326	0.4314	1.204
	1	2.316	0.4314	0.2467
	2.5	2.289	0.4314	1.99
	10	2.155	0.4314	-0.6199
5	0	2.337	0.4234	-2.894
	0.5	2.337	0.4234	1.139
	1	2.337	0.4234	0.09335
	2.5	2.337	0.4234	1.662
	10	2.07		-2.137e-008

Other models for which likelihoods are calculated:

Model A:	L: Yij Var{e(ij)}		Mu(i) + e(ij) Sigma^2
Model A2	<pre>%: Yij Var{e(ij)}</pre>	=	Mu(i) + e(ij) Sigma(i)^2
Model A3			Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model F	R: Yij Var{e(ij)}		

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	25.12208	6	-38.24417
A2	30.66978	10	-41.33955
A3	25.12208	6	-38.24417
R	16.4211	2	~28.8422
2	17.03382	3	-28.06763
3	17.96863	4	-27.93725
4	17.03382	3	-28.06763
5	17.96863	5	-25.93725

Additive constant for all log-likelihoods = -45.95. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs. 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
Test 6a: Does Model 4 fit the data? (A3 vs 4)
Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
Test 7a: Does Model 5 fit the data? (A3 vs 5)
Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
		~	
Test 1	28.5	8	0.0003884
Test 2	11.1	4	0.02551
Test 3	11.1	4	0.02551
Test 4	16.18	3	0.001043
Test 5a	14.31	2	0.0007822
Test 5b	1.87	1	0.1715
Test 6a	16.18	3	0.001043
Test 6b	-3.553e-014	0	N/A
Test 7a	14.31	1	0.0001553
Test 7b	4.039e-008	1	0.9998
Test 7c	1.87	2	0.3927

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5b is greater than .05. Model 3 does not seem to fit the data better than Model 2.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

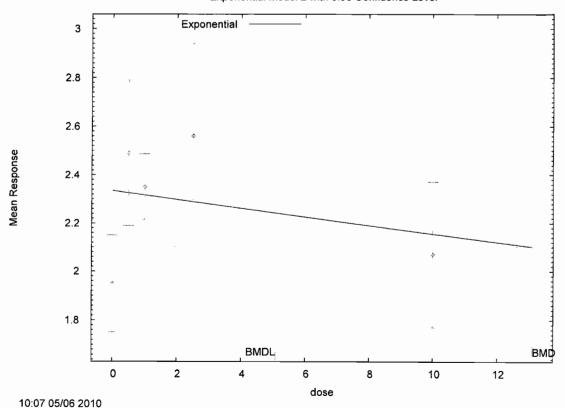
Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 7a is less than .1. Model 5 may not adequately

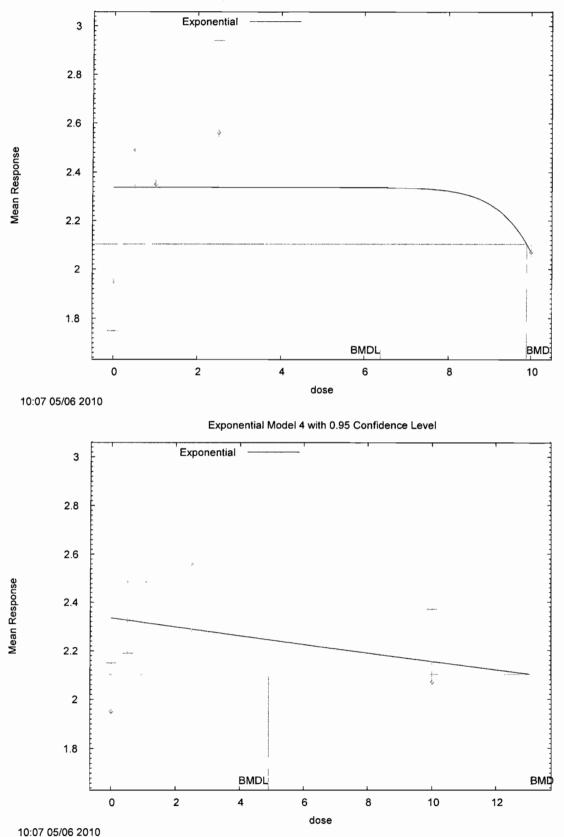
describe the data; you may want to consider another model.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

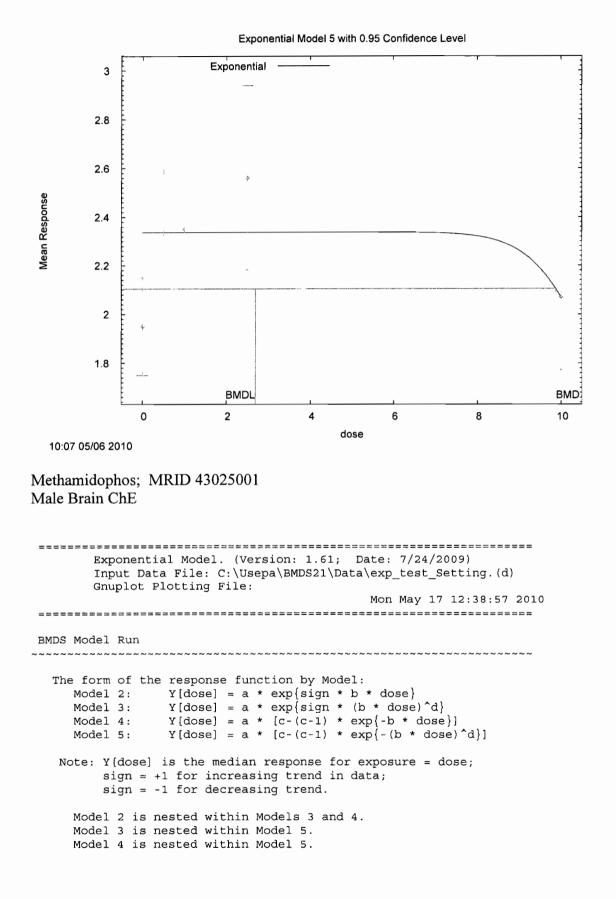

Benchmark Dose Computations:

```
Specified Effect = 0.100000
```


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD	BMDL
13.0973	5.07802
9.89151	6.38326
13.0973	4.90191
9.87453	2.68962
	13.0973 9.89151 13.0973



Exponential Model 2 with 0.95 Confidence Level

Exponential Model 3 with 0.95 Confidence Level

Page 107 of 132


```
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
Total number of dose groups = 4
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

Initial Parameter Values

Vari	able	Model 2	Model 3	Model 4	Model 5
lna	lpha	-3.94478	-3.94478	-3.94478	-
3.94478					
	rho	1.28991	1.28991	1.28991	
1.28991					
	a	3.62196	3.62196	15.855	
15.855					
	b	0.180037	0.180037	0.524481	
0.524481					
	С			0.162184	
0.162184					
	d		1		
1					

Parameter Estimates by Model

Vari	lable	Model 2	Model 3	Model 4	Model 5
	lpha	0.897785	-7.56854	-3.9526	
3.95213	rho	-0.713709	4.48401	1.27891	
1.27839	a	14.9343	10.3159	15.1009	
15.0866	b	0.392077	0.150242	0.570022	
0.569054	с			0.173225	
0.173797	d		1		1.00762

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	6	15.1	0.6
0.9	6	10.1	0.8
3.3	6	4.5	0.5
9	6	2.7	0.2

Estimated Values of Interest

Mode1	Dose	Est Mean	Est Std	Scaled Residual
2	0	14.93	0.597	0.6799
	0.9	10.49	0.6771	-1.425
	3.3	4.095	0.9472	1.047
	9	0.4382	2.103	2.635
3	0	10.32	4.254	2.755
	0.9	9.011	3.142	0.849
	3.3	6.283	1.4	-3.121
	9	2.668	0.2052	0.3763
4	0	15.1	0.7864	-0.002733
	0.9	10.09	0.6077	0.0385
	3.3	4.519	0.3636	-0.1274
	9	2.69	0.2609	0.09664
5	0	15.09	0.7855	0.04186
	0.9	10.11	0.6082	-0.04164
	3.3	4.511	0.3631	-0.07325
	9	2.692	0.261	0.0774

Other models for which likelihoods are calculated:

Model	A1:	Yij Var{e(ij)}		Mu(i) + e(ij) Sigma ²
Model	A2:	Yij Var{e(ij)}		Mu(i) + e(ij) Sigma(i)^2
Model	A3:			Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model	R:	Yij Var{e(ij)}	=	Mu + e(i) Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	3.767684	5	2.464631
A2	8.407184	8	-0.8143686
A3	6.569476	6	-1.138953
R	-50.161	2	104.322
2	-10.69912	4	29.39824
3	-20.07085	4	48.14171
4	6.563596	5	-3.127191
5	6.569476	6	-1.138953

Additive constant for all log-likelihoods = -22.05. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs 3)

Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	117.1	6	< 0.0001
Test 2	9.279	3	0.0258
Test 3	3.675	2	0.1592
Test 4	34.54	2	< 0.0001
Test 5a	53.28	2	< 0.0001
Test 5b	-18.74	0	N/A
Test 6a	0.01176	1	0.9136
Test 6b	34.53	1	< 0.0001
Test 7a	-3.446e-011	0	N/A
Test 7b	53.28	2	< 0.0001
Test 7c	0.01176	1	0.9136

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

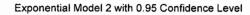
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

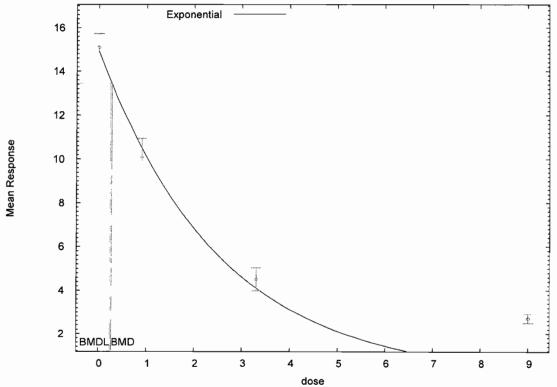
Degrees of freedom for Test 7a are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

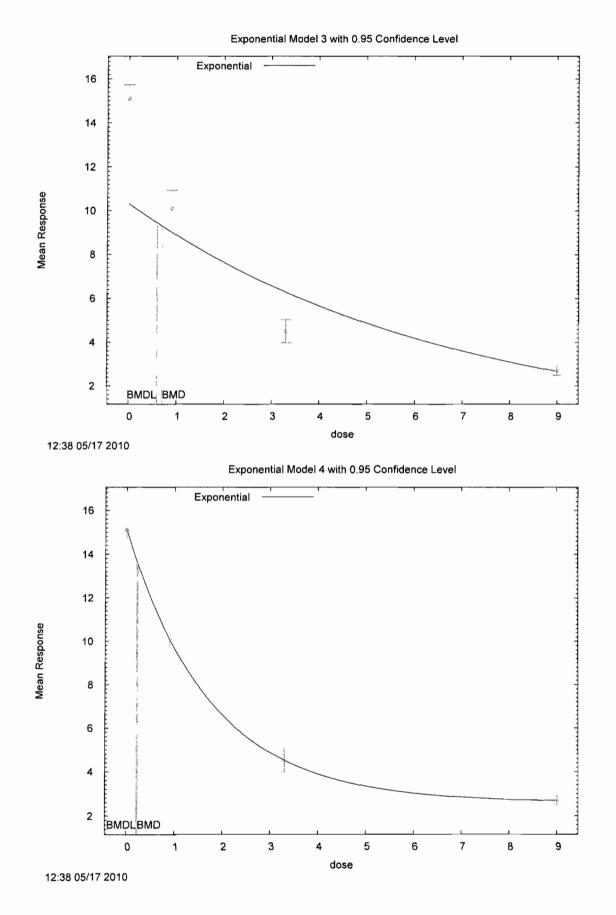
The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

Benchmark Dose Computations:

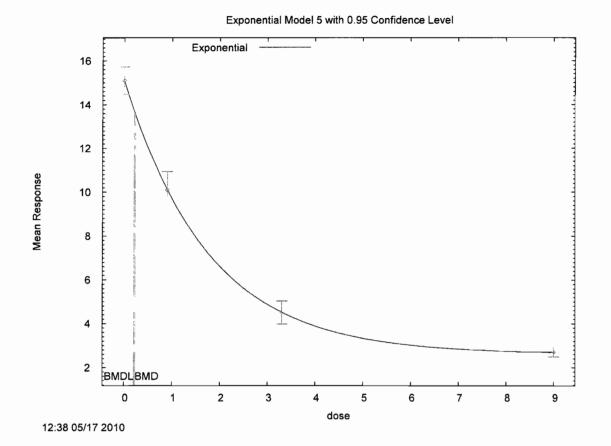

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000


BMD and BMDL by Model

Model	BMD	BMDL
2	0.268724	0.241661
3	0.701273	0.592691
4	0.226159	0.208557
5	0.23025	0.208596



12:38 05/17 2010

Page 113 of 132

Methamidophos; MRID 46594003 Adult Male Brain ChE

Exponential Model. (Version: 1.61; Date: 7/24/2009) Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d) Gnuplot Plotting File: Mon May 10 11:45:51 2010 _____ BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ Model 3: $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose;

sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5.

```
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
```

```
Total number of dose groups = 4
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-1.82989	-1.82989	-1.82989	-
1.82989				
rho	0.470024	0.470024	0.470024	
0.470024				
a	8.00203	8.00203	12.159	
12.159				
b	0.359864	0.359864	0.665422	
0.665422				
с			0.312114	
0.312114				
d		1		
1				

Initial Parameter Values

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
lna 0.686277	lpha	-0.659936	-0.42347	-0.659937	-
0.011815	rho	0.0129101	-0.0935775	0.0129103	
11,5801	a	11.6699	11.6153	11.6699	
1.37083	b	0.358493	0.380847	0.358493	
0.616891	С			0	
0.020091	d		1.07208		1.67

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev

0	6	11.58	0.92
0.3	6	10.68	0.81
0.6	6	9.3	0.31
1.2	6	7.59	0.94

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	11.67	0.7304	-0.3015
	0.3	10.48	0.7299	0.6713
	0.6	9.411	0.7294	-0.3739
	1.2	7.59	0.7284	0.0002693
3	0	11.62	0.7215	-0.1198
	0.3	10.53	0.7248	0.4935
	0.6	9.458	0.7284	-0.5319
	1.2	7.541	0.7362	0.1623
4	0	11.67	0.7304	-0.3015
	0.3	10.48	0.7299	0.6713
	0.6	9.411	0.7294	-0.3739
	1.2	7.59	0.7284	0.0002692
5	0	11.58	0.7199	-0.0003249
	0.3	10.68	0.7195	-5.47e-005
	0.6	9.3	0.7189	0.0009453
	1.2	7.59	0.7181	-0.0005859

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	Mu(i) + e(ij) Sigma^2
Model A2:	Yij = Var{e(ij)} =	: Mu(i) + e(ij) : Sigma(i)^2
Model A3:		Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	-4.086352	5	18.1727
A2	-0.6491752	8	17.29835
A3	-4.086324	6	20.17265
R	-24.29612	2	52.59223
2	-4.43225	4	16.8645
3	-4.370936	5	18.74187
4	-4.43225	4	16.8645
5	-4.086324	6	20.17265

Additive constant for all log-likelihoods = -22.05. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs. 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs. 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3)

Tests of Interest

Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	47.29	6	< 0.0001
Test 2	6.874	3	0.07601
Test 3	6.874	2	0.03216
Test 4	0.6919	2	0.7076
Test 5a	0.5692	1	0.4506
Test 5b	0.1226	1	0.7262
Test 6a	0.6919	2	0.7076
Test 6b	3.73e-014	0	N/A
Test 7a	-2.508e-012	0	N/A
Test 7b	0.5692	1	0.4506
Test 7c	0.6919	2	0.7076

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is greater than .1. Model 2 seems to adequately describe the data.

The p-value for Test 5a is greater than .1. Model 3 seems to adequately describe the data.

The p-value for Test 5b is greater than .05. Model 3 does not seem to fit the data better than Model 2.

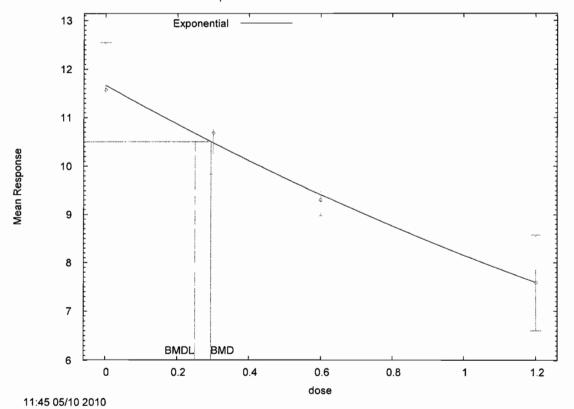
The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

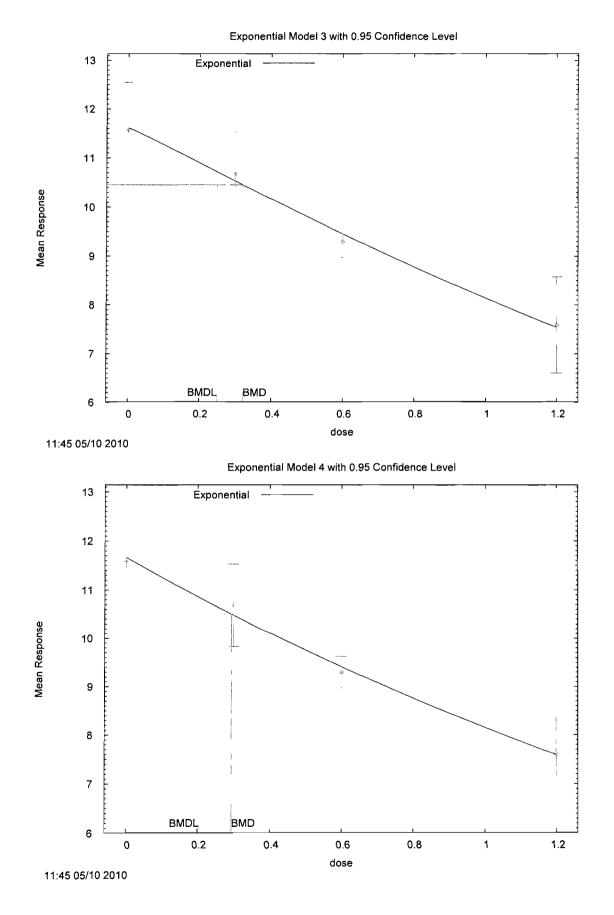
Degrees of freedom for Test 7a are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3. The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

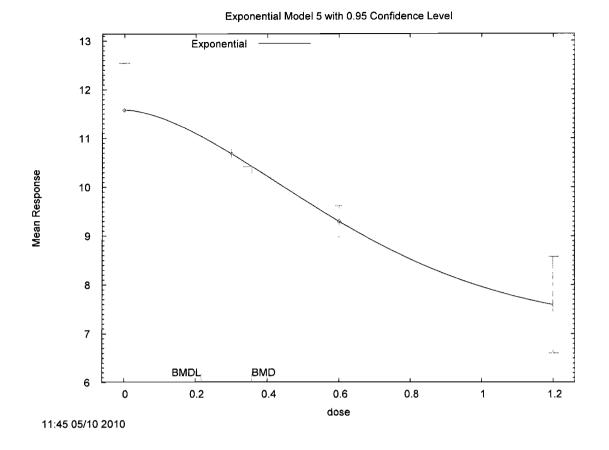
Benchmark Dose Computations:


Specified Effect = 0.100000

Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model


BMD	BMDL
0.293899	0.249326
0.321838	0.250261
0.293899	0.204274
0.356502	0.216039
	0.293899 0.321838 0.293899

Page 119 of 132


```
Methamidophos; MRID 46594003
Pup Male Brain ChE
```

```
Exponential Model. (Version: 1.61; Date: 7/24/2009)
      Input Data File: C:\Usepa\BMDS21\Data\exp_test_Setting.(d)
      Gnuplot Plotting File:
                                      Tue May 11 12:34:02 2010
_____
BMDS Model Run
 ~~~~~~~~~~~
 The form of the response function by Model:
    Model 2:
               Y[dose] = a * exp\{sign * b * dose\}
               Y[dose] = a * exp\{sign * (b * dose)^d\}
    Model 3:
    Model 4:
               Y[dose] = a * [c-(c-1) * exp{-b * dose}]
               Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]
    Model 5:
  Note: Y[dose] is the median response for exposure = dose;
       sign = +1 for increasing trend in data;
       sign = -1 for decreasing trend.
    Model 2 is nested within Models 3 and 4.
    Model 3 is nested within Model 5.
    Model 4 is nested within Model 5.
```

```
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
Total number of dose groups = 4
```

```
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

Initial Parameter Values

Varia	ble	Model 2	Model 3	Model 4	Model 5
lnal] 9.58899	pha	-9.58899	-9.58899	-9.58899	-
4.0595	rho	4.0595	4.0595	4.0595	
6.111	a	4.56642	4.56642	6.111	
0.883176	b	0.748572	0.748572	0.883176	
0.0357552	С			0.0357552	
1	d		1		

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
 lna 9.36951	lpha	-10.2992	-10.7815	-10.2992	-
4.03617	rho	4.65271	4.90347	4.65271	
5.81087	a	5.95389	5.82961	5.95389	
3.77943	b	0.764802	0.98288	0.764802	
0.727142	С			0	
	d		1.32336		2.16856

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	5.82	0.293
0.1	10	5.65	0.196
0.2	10	5.11	0.409
0.4	10	4.37	0.131

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	5.954	0.3681	-1.15
	0.1	5.516	0.3081	1.38
	0.2	5.109	0.2579	0.007219
	0.4	4.385	0.1807	-0.2575
3	0	5.83	0.3435	-0.08847
	0.1	5.565	0.3066	0.8749
	0.2	5.19	0.2584	-0.9821
	0.4	4.359	0.1684	0.2066
4	0	5.954	0.3681	-1.15
	0.1	5.516	0.3081	1.38
	0.2	5.109	0.2579	0.007219
	0.4	4.385	0.1807	~0.2575
5	0	5.811	0.3219	0.08966
	0.1	5.63	0.302	0.211
	0.2	5.145	0.2518	-0.4353
	0.4	4.362	0.1805	0.1383

Estimated Values of Interest

Other models for which likelihoods are calculated:

Model A1:	Yij Var{e(ij)}	= Mu(i) + e(ij) = Sigma^2
Model A2:	2	= Mu(i) + e(ij) = Sigma(i)^2
Model A3:		= Mu(i) + e(ij) = exp(lalpha + log(mean(i)) * rho)
Model R:	Yij Var{e(ij)}	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	33.34035	5	-56.6807
A2	39.94542	8	-63.89085
A3	34.22224	6	-56.44449
R	-1.117912	2	6.235824
2	32.42609	4	-56.85217
3	33.85266	5	-57.70533
4	32.42609	4	-56.85217
5	34.22224	6	-56.44449

Additive constant for all log-likelihoods = -36.76. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	82.13	б	< 0.0001
Test 2	13.21	3	0.004204
Test 3	11.45	2	0.003269
Test 4	3.592	2	0.1659
Test 5a	0.7392	1	0.3899
Test 5b	2.853	1	0.09119
Test 6a	3.592	2	0.1659
Test 6b	0	0	N/A
Test 7a	0	0	N/A
Test 7b	0.7392	1	0.3899
Test 7c	3.592	2	0.1659

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is greater than .1. Model 2 seems to adequately describe the data.

The p-value for Test 5a is greater than .1. Model 3 seems to adequately describe the data.

The p-value for Test 5b is greater than .05. Model 3 does not seem to fit the data better than Model 2.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

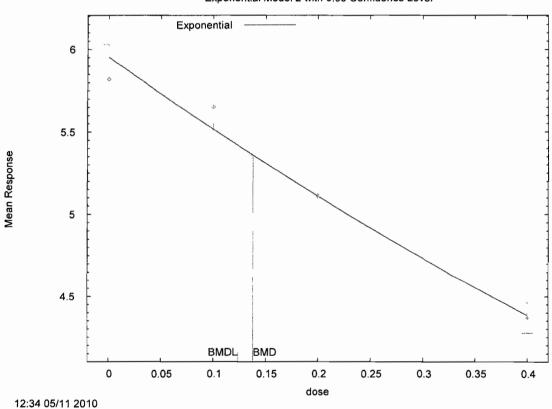
Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

Degrees of freedom for Test 7a are less than or equal to 0. The Chi-Square test for fit is not valid.

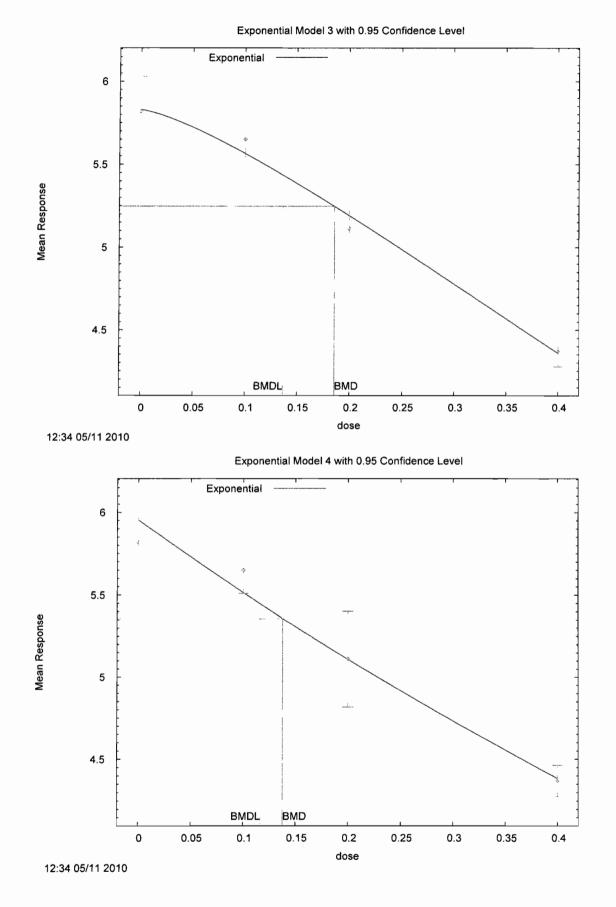
The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

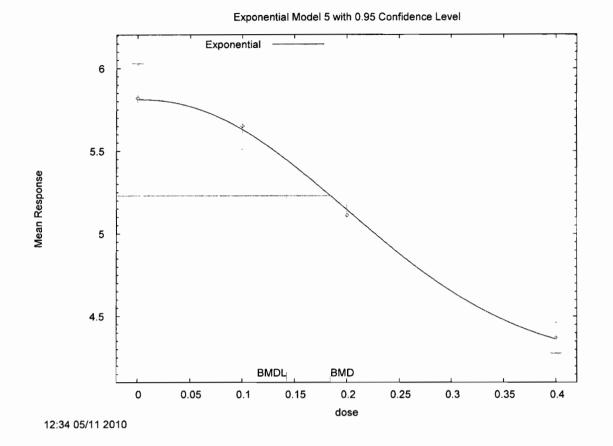
```
Benchmark Dose Computations:
```


Specified Effect = 0.100000

Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model


Model	BMD	BMDL
2	0.137762	0.123473
3	0.185773	0.136508
4	0.137762	0.116722
5	0.184299	0.142706

Exponential Model 2 with 0.95 Confidence Level

Page 125 of 132

Methamidophos; MRID 46594003 Pup Female Brain ChE

```
Model 5:
                Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]
 Note: Y[dose] is the median response for exposure = dose;
       sign = +1 for increasing trend in data;
       sign = -1 for decreasing trend.
   Model 2 is nested within Models 3 and 4.
   Model 3 is nested within Model 5.
   Model 4 is nested within Model 5.
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
Total number of dose groups = 4
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha 5.16111	-5.16111	-5.16111	-5.16111	-
rho	1.82977	1.82977	1.82977	
1.82977				
a	4.49747	4.49747	6.174	
6.174				
d	0.864179	0.864179	0.912821	
0.912821				
с			0.000683511	
0.000683511				
d		1		
1				

Parameter Estimates by Model

Vari	able	Model 2	Model 3	Model 4	Model 5
lna 6.2369	lpha	-6.311	-5.96168	-6.311	-
2.48497	rho	2.63667	2.32678	2.63667	
5.86351	a	6.10263	5.89787	6.10263	
3.78443	b	0.877212	1.2799	0.877212	
0.709514	с			0	
0.709514	d		1.62996		2.89803

Table of Stats From Input Data

Dose	N	Obs Mean	Obs Std Dev
0	10	5.88	0.299
0.1	10	5.74	0.543
0.2	10	5.26	0.299
0.4	10	4.22	0.289

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	0	6.103	0.4625	-1.522
	0.1	5.59	0.412	1.15
	0.2	5.121	0.367	1.201
	0.4	4.297	0.2912	-0.8322
3	0	5.898	0.4	-0.1413
	0.1	5.695	0.384	0.3729
	0.2	5.291	0.3526	-0.2824
	0.4	4.216	0.2706	0.05086
4	0	6.103	0.4625	-1.522
	0.1	5.59	0.412	1.15
	0.2	5.121	0.367	1.201
	0.4	4.297	0.2912	-0.8322
5	0	5.864	0.3982	0.131
	0.1	5.765	0.3899	-0.1993
	0.2	5.251	0.3471	0.08614
	0.4	4.221	0.2647	-0.01789

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma^2
Model A2:		= Mu(i) + e(ij) = Sigma(i)^2
Model A3:		= Mu(i) + e(ij) = exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	21.53072	5	-33.06145
A2	24.77319	8	-33.54638
A3	22.49798	6	-32.99597
R	-8.015557	2	20.03111
2	18.93527	4	-29.87055
3	22.22825	5	-34.4565
4	18.93527	4	-29.87055
5	22.49798	6	-32.99597

Additive constant for all log-likelihoods = -36.76. This constant added to the above values gives the log-likelihood including the term that does not

depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does Model 2 fit the data? (A3 vs. 2) Test 5a: Does Model 3 fit the data? (A3 vs. 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2) Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	65.58	6	< 0.0001
Test 2	6.485	3	0.09026
Test 3	4.55	2	0.1028
Test 4	7.125	2	0.02836
Test 5a	0.5395	1	0.4627
Test 5b	6.586	1	0.01028
Test 6a	7.125	2	0.02836
Test 6b	1.421e-014	0	N/A
Test 7a	-7.105e-015	0	N/A
Test 7b	0.5395	1	0.4627
Test 7c	7.125	2	0.02836

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is greater than .1. Model 3 seems to adequately describe the data.

The p-value for Test 5b is less than .05. Model 3 appears to fit the data better than Model 2.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 6b are less than or equal to 0. The Chi-Square test for fit is not valid.

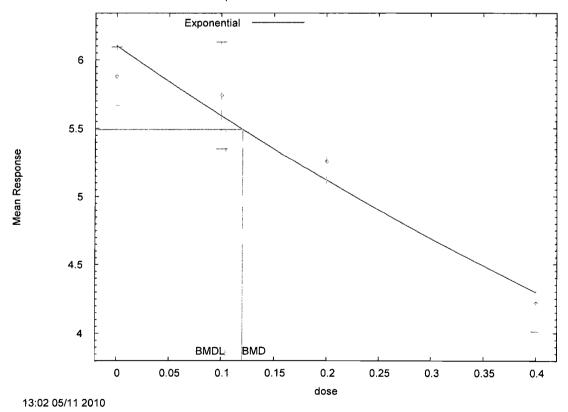
Degrees of freedom for Test 7a are less than or equal to 0. The Chi-Square test for fit is not valid.

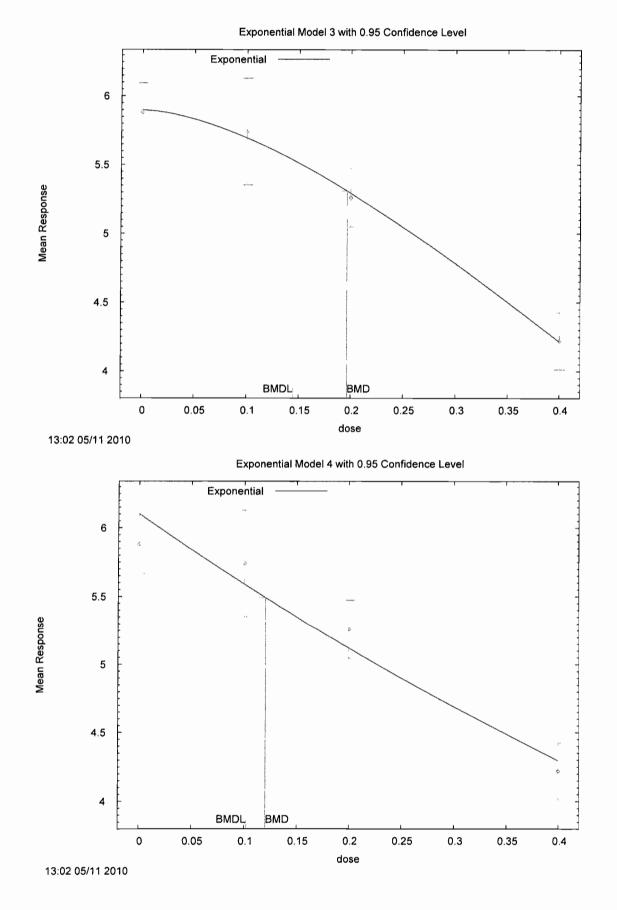
The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

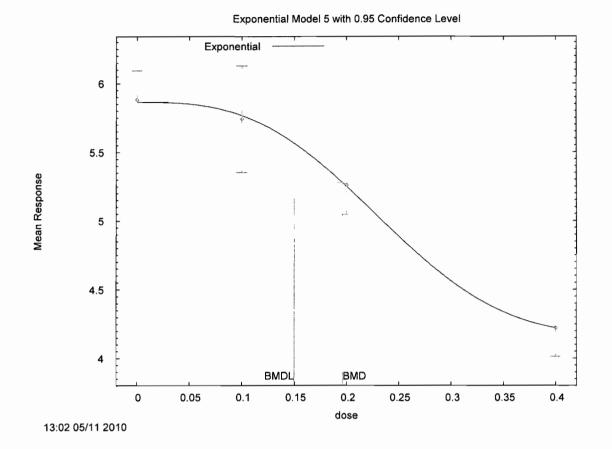
Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation


Confidence Level = 0.950000

BMD and BMDL by Model


Model	BMD	BMDL
2	0.120108	0.104143
3	0.196438	0.144398
4	0.120108	0.101836
5	0.196201	0.149676

Exponential Model 2 with 0.95 Confidence Level

Page 131 of 132

EPA's Records Disposition Schedule PEST 361 Scientific Data Reviews HED Records Center - File R189123 - Page 133 of 133

R189123

Chemical Name: Acephate

PC Code: 103301 HED File Code: 13000 Tox Reviews Memo Date: 9/9/2010 File ID: 0000000 Accession #: 000-00-0137

HED Records Reference Center 12/30/2010