September 26, 1978

Lasso Technical, Lasso EC, Lasso II, and Lasso + Atrazine 15G-Addition of
Data to File EPA Registration=524-314-285-296-304, Caswell Shae 09050

Larry Anderson
Toxicology Branch/NIEH (TS-763)

TO
Robert Taylor
Product Manager=25

Recommendations:

The acceptability of studies reviewed herein to support registration of the
above Lasso formulations is outlined as follows:

<table>
<thead>
<tr>
<th>Type of Study*</th>
<th>Results (Acceptability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutagenicity (Dominant Lethal) in Mice</td>
<td>NEL = 30 mg/kg (Provisional)</td>
</tr>
<tr>
<td>Teratogenicity in Rabbits</td>
<td>NEL < 10 mg/kg/day (No)</td>
</tr>
<tr>
<td>Three-Generation Reproduction in Rats</td>
<td>NEL = 300 ppm (No)</td>
</tr>
<tr>
<td>Eighteen-Month Carcinogenicity in Mice</td>
<td>Undetermined NEL (No)</td>
</tr>
<tr>
<td>Two-Year Chronic Feeding in Dogs</td>
<td>NEL = 1000 ppm (Yes)</td>
</tr>
<tr>
<td>Intraperitoneal LD50 in Mice</td>
<td>LD50 = 870 mg/kg (No)</td>
</tr>
<tr>
<td>Subcutaneous LD50 in Mice</td>
<td>LD50 = 1200 mg/kg (No)</td>
</tr>
<tr>
<td>Oral LD50 in Mice</td>
<td>LD50 = 2100 mg/kg (No)</td>
</tr>
<tr>
<td>Subcutaneous LD50 in Rats</td>
<td>LD50 = 3600 mg/kg (No)</td>
</tr>
<tr>
<td>Inhalation LC50 in Rats</td>
<td>LC50 = 3.2 mg/L, 6hrs. (No)</td>
</tr>
<tr>
<td>Thirty-Day Inhalation in Rats</td>
<td>NEL = 1.55 mg/L, 6hrs/day, 30 days (No)</td>
</tr>
<tr>
<td>Intraperitoneal LD50 in Rats</td>
<td>LD50 = 600 mg/kg (No)</td>
</tr>
<tr>
<td>Inhalation LC50 in Rats</td>
<td>LC50 = 32 mg/L, 1 hr (No)</td>
</tr>
<tr>
<td>Mutagenicity (Recombination Assay) in Bacteria</td>
<td>NEL = 1000 µg (Provisional)</td>
</tr>
<tr>
<td>Mutagenicity (Reverse Mutation) in Bacteria and Yeast</td>
<td>NEL = 10 µl (nonactivated)</td>
</tr>
<tr>
<td>Mutagenicity (Host-Mediated) in Mice</td>
<td>and 100 µl (activated)</td>
</tr>
<tr>
<td>Mutagenicity (Host-Mediated) in Rats</td>
<td>NEL = 1000 mg/kg (Provisional)</td>
</tr>
<tr>
<td>Four-Week Subacute Feeding in Mice</td>
<td>NEL = 500 mg/kg (Provisional)</td>
</tr>
<tr>
<td>Two-Year Chronic Feeding in Rats</td>
<td>NEL = 3000 ppm (No)</td>
</tr>
<tr>
<td>Repeated Insult Patch Test in Humans</td>
<td>NEL = 1000 ppm (Yes)</td>
</tr>
<tr>
<td>Repeated Insult Patch Test in Humans</td>
<td>Undetermined Effect (No)</td>
</tr>
<tr>
<td>Skin Sensitization Found (Yes)</td>
<td></td>
</tr>
</tbody>
</table>

Reasons for or against acceptability of the aforementioned studies are
presented in the review.

*Lasso Technical (90-94%) was the test material used in all studies described
in the outline except those indicated by an (a).

**No RPAR criteria have been exceeded.

***Studies conducted at Industrial Bio-Test Laboratories, Inc., have been
submitted and must be validated by the registrant.
Review:

1. Procedure:

Forty eight male Charles River mice, 60-70 days old, were divided into 4 groups of 12 animals each which were given 0, 15, or 30 mg/kg of test material or 50 mg/kg of methyl methanesulfonate (MMS; positive controls) intraperitoneally. Controls were given corn oil, the vehicle used in the study, alone. Each mouse was caged with a different group of 3 untreated virgin females each week over a period of 6 weeks. All males were sacrificed at the conclusion of the 6 week mating period. Females were sacrificed at 1 week following mating, and numbers of implantation sites, resorption sites, and embryos were determined. The criterion for pregnancy was the presence of corpora lutea in the ovaries. Mutagenicity was determined by comparing both the proportions of implantations as deciduomata and the numbers of viable embryos between dosage groups.

2. Results:

a) Range-Finding Study: The selection of doses for the mutagenicity study was based on the following results of a range-finding study:

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>No. of Deaths & Mice</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>4/4</td>
<td>Tremors, ataxia, hypoactivity</td>
</tr>
<tr>
<td>300</td>
<td>0/4</td>
<td>Tremors, ataxia, hypoactivity</td>
</tr>
<tr>
<td>100</td>
<td>0/4</td>
<td>Hypoactivity</td>
</tr>
<tr>
<td>30</td>
<td>0/4</td>
<td>Hypoactivity</td>
</tr>
</tbody>
</table>

b) Mortality: Two males in the 30 mg/kg group.

c) Toxic Signs: Hypoactivity in males in the 30 mg/kg group.

d) Mating Performance: Unremarkable

e) Sacrifice Data (Implantations, Resorptions, Embryos): Unremarkable differences between control and test groups. Enhancement and reduction in the numbers of early resorption sites and viable embryos, respectively, were noteworthy in the positive control group.

f) Mutagenicity Data:

i) Pre-implantation Losses: Unremarkable

ii) Mutation Rates: Unremarkable according to proportions of implantation sites as deciduomata and number of viable embryos.

3. Conclusions:
a) Classification: Supplementary Data.

i) A final conclusion on the validity of the study towards satisfying regulatory requirements is deferred until mutagenicity guidelines are finalized.

ii) A mutagenic effect of the test material was not demonstrated in the present study; however, the dominant-lethal test may not in itself be entirely indicative of mutagenic effects in mammalian cells in vivo.

b) The mutagenic N.E.L. according to the present study is 30 mg/kg.

B. Teratogenic Study of Lasso Technical in Albino Rabbits (Industrial Bio-Test Laboratories, Inc., IBT#J1183, 8/14/72, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630).

1. Procedure:

New Zealand albino rats, 3.22-4.25 kg, were used. The study was designed as follows:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dosage Level (mg/kg/day)</th>
<th>No. of Females Inseminated</th>
<th>No. of Pregnant Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (Controls)</td>
<td>0</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Thalidomide (Positive Controls)</td>
<td>37.5</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Lasso Technical</td>
<td>10.0</td>
<td>17</td>
<td>11*</td>
</tr>
<tr>
<td>Lasso Technical</td>
<td>30.0</td>
<td>17</td>
<td>15*</td>
</tr>
</tbody>
</table>

*One animal in each group aborted on day 20 of gestation.

The rabbits received the compounds in gelatin capsules from day 6 through day 18 of gestation, inclusively. Controls were given empty gelatin capsules concurrently. The time of insemination was designated day 0 of gestation. Does were weighed regularly and were observed for toxic signs until sacrifice at day 29 of gestation.

After the rabbits were sacrificed, fetuses were removed by cesarian section, examined externally, and weighed. Fetal viability was determined by respiratory and paw movements observed during a 24-hour period of incubation at 37°C. All young were examined for internal and skeletal abnormalities. Skeletal examinations were done according to the method of Hurley (1965).

2. Results:

a) Maternal Effects

i) Body Weight Changes: Gain which was similarly reduced in all treatment groups compared to controls during treatment was normal in all groups post-treatment.

ii) Mortality: None
iii) Toxic Signs: Unremarkable

iv) Reproductive Effects (Number of Implantation Sites, Resorption, Live Young, Abortions): The number of resorptions and live young were markedly increased and decreased, respectively, in the positive control and 30 mg/kg groups.

b) Fetal Effects

i) External Development: Unremarkable. Either bilateral ectrodactyly or open fontanel were found in 2 positive control fetuses.

ii) Body Weights: Unremarkable

iii) Viability: Unremarkable

iv) Internal Development: Unremarkable

v) Skeletal Development: Outstanding findings were as follows:

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>No. of Incidences/No. of Fetuses</th>
<th>10 mg/kg</th>
<th>30 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-ossified sternum</td>
<td>1/52</td>
<td>5/66</td>
<td>10/72</td>
</tr>
<tr>
<td>Thickened ribs</td>
<td>2/52</td>
<td>3/66</td>
<td>5/72</td>
</tr>
</tbody>
</table>

3. Conclusions:

a) Classification: Invalid Data (Provisional)

i) The signature of Dale Fletcher was entered into the report in lieu of that of Robert Ladd, the designated group leader. This discrepancy must be resolved to verify the scientific conduct of the study.

ii) At least 3 dosage levels should have been used.

iii) Individual data of internal examinations were not submitted.

b) Based on higher incidences of skeletal abnormalities in the treatment groups, a teratogenic N.E.L. cannot be determined (<10 mg/kg/day, lowest dosage level tested).

1. Procedure:

The basic experimental design is outlined as follows:
Fo Parental Animals

Fla Progeny Flb Progeny
Mean Select the F1 Parental Animals
Sacrifice

F2a Progeny F2b Progeny
Mean Select the F2 Parental Animals
Sacrifice

F3a Progeny F3b Progeny
Mean Histopathology
Sacrifice

*a: First litter, b: Second litter

Ninety six weanling Charles River albino rats (Fo generation), 47-50g, were divided into 4 groups of 8 males and 16 females each which were fed 0, 30, 100, or 300 ppm of test material in the diet until sacrifice following weaning of the second litters. Fresh diets were prepared weekly. Parental animals were allowed to mature, mate, and produce 2 litters. Eight males and sixteen females from each second litter were parental animals for each succeeding generation until the study was ended following weaning of the F3 litters.

Mating commenced when parental animals were 100 days old. Two females and one male of each dosage group were caged together. Examinations for copulation were made daily. Males were rotated within their dosage groups at 10-day intervals until either conception was confirmed or each female had been paired with a maximum of 3 males. First litters were weaned at 21 days post-partum. After a 10-day rest female parents were bred to obtain the second litters.

Animals were weighed weekly until mating and at sacrifice. Observations of mortality and toxic signs were made daily. Parental animals were observed also for fertility, gestation period, and lactation performance. Pups were examined for external abnormalities and viability. It should be noted that the number of animals in each litter was reduced to 10 or 4 of lactation.

Necropsies were done on all surviving males and 8 females from each parental group after the second litters were weaned. Histopathological examinations were done on 5 males and 5 females from each control and 300 ppm parental group. (continued on next page)
Ten male and ten female pups of the F_2 generation (second litters) were subjected to necropsy at weaning; histopathological evaluation of the F_3 progeny was restricted to weanlings of the control and 300 ppm dosage groups.

Organ, organ/body, and organs/brain weight data for necropsied parental animals include the following organs: liver, kidneys, spleen, gonads, heart, and brain.

The following tissues and organs were examined microscopically:

Heart (right and left ventricles)
Trachea
Lung
Liver
Pancreas
Stomach (cardiac, fundic, and pyloric regions)
Small Intestine (duodenum, jejunum, and ileum)
Caecum
Colon
Spleen
Lymph Node (cervical and mesenteric)
Kidney
Urinary Bladder
Testis

Ovary
Prostate
Pituitary Gland
Adrenal Gland
Salivary Gland (submaxillary)
Thyroid Gland
Parathyroid Gland
Skeletal Marrow (sternum and femur)
Bone Marrow (sterum and femur)
Peripheral Nerve (sciatic)

Brain (cerebrum, cerebellum, and pons)
Seminal Vesicles
Esophagus
Spinal Cord

2. Results:
a) Parental Observations
i) Body Weight Changes: Unremarkable
ii) Mortality: Unremarkable except that all of the 3 F_1 parental males died. Histopathological examination of tissues from three F_1 males attributed the cause of death to acute respiratory infection.
iii) Toxic Signs: Unremarkable
iv) Necropsy: Unremarkable
v) Organ, Organ/Body, Organ/Brain Weights: Unremarkable
vi) Histopathology: Unremarkable; however, respiratory lesions attributed to chronic murine pneumonia were slightly more severe in some test animals and were found in all but 3 female parental animals examined.

vii) Reproduction Data (Mating, Fecundity, Fertility, Paturation Indices): Unremarkable. Significant differences were sporadic and were not dose-related.

b) Progeny Observations
(7)

i) Findings concerning viability, location, survival, body weights, toxic signs, necropsies, and histopathology were all unremarkable. Significant differences were sporadic and were not dose-related.

3. Conclusions:

a) Classification: Supplementary Data

i) Data on histopathological examinations of tissues and organs from all animals in the parental and F₂ (second litters) groups should have been submitted.

ii) At least 20 females and 10 males should have been included with each dosage group.

iii) Gross- and histo-pathological results for F₂b animals were summarized as negative in a sentence; all such findings should be presented individually in tables as was done for parental animals.

iv) The marked incidence of respiratory disease found in all parental animals examined histopathologically suggests the use of unthrifty animals in the present study.

b) A reproductive N.E.L. of 300 ppm of test material has been demonstrated in the present study (Provisional).

1. Procedure:

Four hundred eighty Charles River albino mice, weights unreported, were separated into 4 groups of 120 animals each (60 males and 60 females) which received 0, 100, 300 or 1000 ppm of test material in the diet over 18 months. Animals were caged in groups. Fresh diets were prepared weekly. Observations for toxic signs and mortality were made daily, and animals were checked for tumors weekly. Necropsies were performed, and histopathological examinations were conducted as follows on tissues and organs from (10 males and 10 females)/dosage group at final sacrifice as well as on suspected tumors.

Heart
Liver
Lung
Pancreas
Stomach
Small Intestine
Caecum
Colon
Spleen
Lymph node
Kidney

Urinary Bladder
Testis
Ovary
Prostate
Uterus
Pituitary
Adrenal
Salivary Gland
Thyroid
Parathyroid
Brain (cerebrum, cerebellum, pons).

Skeletal muscle
Bone marrow
Peripheral nerve
Trachea
Spinal cord
Eye
Optic nerve
2. Results:

a) Mortality at 18 Months:

<table>
<thead>
<tr>
<th>Total Dead</th>
<th>Control</th>
<th>100 ppm</th>
<th>300 ppm</th>
<th>1000 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>F</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>No. Tested</td>
<td>52/60</td>
<td>21/60</td>
<td>45/60</td>
<td>10/60</td>
</tr>
</tbody>
</table>

b) Toxic Signs: Unremarkable

c) Necropsy: Unremarkable

d) Histopathology: Unremarkable including tumor findings. However, bilateral focal lymphoid infiltration of the kidney was an outstanding finding in all dosage groups. Amyloidosis was noted for several organs.

3. Conclusions:

a) Classification: Invalid Data

i) Histopathological results for all animals on study should be provided.

ii) Results for 10 surviving control males are indicated in the histopathology tables; but the mortality table shows that only 6 control males survived.

b) An cannot be determined from the present study.

E. Two-Year Chronic Oral Toxicity Study of Lasso Technical in Beagle Dogs

(Industrial Bio-Test Laboratories, Inc., IBT#C1181, 6/10/74, submitted by Monsanto Agricultural Products Co., 8/16/76, Acc.#234630).

1. Procedure:

Thirty two purebred beagle dogs, 5.4-11.3 kg, were divided into 4 groups of 8 animals each (4 males and 4 females), which received 0, 100, 300, or 1000 ppm of test substance in the diet for 2 years. Before treatment the dogs had been immunized against parasitic infestations. Four dogs/sex/dosage level were housed in each kennel. Preparation of fresh diets and estimation of food consumption were done weekly. Observations of toxic signs were made daily. Hematologic, clinical chemistry, and urine analysis, done initially and at 1.5, 3, 6, 12, 18, and 24 months, included the subsequent parameters:

Hematology: Total leukocyte count, erythrocyte count, hemoglobin, hematocrit, differential leukocyte count.

Clinical Chemistry: Blood urea nitrogen, glucose, alkaline phosphatase, SGOT, SGPT, bilirubin, protein, protein electrophoresis.

Urine Analysis: Albumin, glucose, pH, specific gravity, microscopic elements.
Complete necropsies were done on each dog. The following organs were weighed:
Liver, kidneys, heart, brain, spleen, gonad, adrenals, thyroid, pituitary.
Microscopic evaluation of the following tissues and organs was reported:

Adrenal Glands
Aorta (thoracic)
Bone Marrow (sternum)
Brain (cerebrum, cerebellum, pons)
Caecum
Esophagus
Gall Bladder
Gonads
Heart
Kidneys
Liver
Lungs
Lymph Nodes (cervical, mesenteric)
Muscle (skeletal)

Pancreas
Peripheral Nerve (sciatic)
Pituitary Gland
Prostate Gland
Salivary Gland (submaxillary)
Small Intestine (duodenum, jejunum, ileum)
Spinal Cord
Spleen
Stomach (cardia, fundus, pylorus)
Trachea
Thyroid Gland
Uterus
Urinary Bladder

in addition, bone marrow differential smears were taken.

2. Results:
a) Mortality: None
b) Toxic Signs: Unremarkable
c) Body Weight Changes: Unremarkable (Gain of 2.0-4.1 kg)
d) Food Consumption: Unremarkable
e) Hematology: Clinical Chemistry, Urine Analysis: Unremarkable
f) Necropsy: Unremarkable
g) Organ, Organ/Body, Organ/Brain Weights: Unremarkable
h) Histopathology: Unremarkable

3. Conclusions:
a) Classification: Core Minimum Data
i) At least 8 dogs/sex/dosage level should have been used.
ii) The highest dosage level did not reveal significant toxicological effects.
iii) Periodic chemical analysis of diets, if done, was not reported.
b) The systemic two-year chronic oral N.E.L. in dogs is 000 ppm.
1. Procedure:

In one study 35 Swiss-Webster albino mice, 23-35g, were separated into 7
groups of 5 animals each (2 or 3 males and 2 or 3 females) which were given
398, 501, 631, 794, 1000, 1260, or 1580 mg/kg of test material intraperitoneally.
In another study 35 Swiss-Webster albino mice, 24-34g, were divided into 7
groups of 5 animals each (2 or 3 females and 2 or 3 males) which were
administered 631, 794, 1000, 1260, 1580, 2000, or 3510 mg/kg of test compound
subcutaneously. In a third study 20 Swiss-Webster albino mice, 22-33g, were
separated into 4 groups of 5 animals each (2 or 3 females and 2 or 3 males)
which were given 1260, 1580, 2000, or 2510 mg/kg of test material orally.
In a fourth study 25 Sprague-Dawley albino rats, 205-215g, were divided into
5 groups of 5 animals each (2 or 3 males and 2 or 3 females) which received
2000, 2510, 3160, 5010, or 6310 mg/kg of test substance subcutaneously.
Observations of mortality and toxic signs were continued for 14 days post-
treatment in each study. Necropsies were done in all 4 studies.

2. Results:

a) Intraperitoneal Study in Mice

i) Mortality: LD50 = 870 (750-1000) mg/kg.
ii) Toxic Signs: Reduction of activity and appetite, weakness, collapse.
iii) Necropsy: Decedents - Lung hyperemia, liver discoloration, gastrointestinal inflammation; Survivors - Normal.

b) Subcutaneous Study in Mice

i) Mortality: LD50 = 1200 (1010-1410) mg/kg
ii) Toxic Signs: Reduction of activity and appetite, weakness, collapse.
iii) Necropsy: Decedents - Lung hyperemia, liver discoloration, gastrointestinal inflammation; Survivors - Normal.

d) Subcutaneous Study in Rats

i) Mortality: LD50 = 3600 (3060-4180) mg/kg
ii) Toxic Signs: Reduction of activity and appetite, weakness, tremors, collapse.
iii) Necropsy: Decedents - Hemorrhages in lungs and liver, gastrointestinal inflammation; Survivors-Normal.

3. Conclusions:

a) Classification: The four studies in part F are considered to be Supplementary Data

i) The numbers of males and females in the dosage groups were not consistent.
ii) Body weight changes were not reported.
iii) At least 4 mice/sex/dosage level should have been used in the acute oral LD₅₀ study.

iv) Acute intraperitoneal and subcutaneous LD₅₀ studies are not applicable for regulatory data requirements.

✓ G. Acute Inhalation LC₅₀ Study of Lasso Dust (Lasso 15G) in Rats (Industrial Bio-Test Laboratories, Inc., IBT#663-06288, 5/15/75, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630)

1. Procedure:

Twenty Charles River rats, weights unspecified, were divided into 2 groups of 10 animals each (5 males and 5 females) which were placed into an 80L inhalation chamber and were exposed to 0.93 mg/L or 3.2 mg/L (analytical concentrations) of test material as a dust for 6 hours. The size of 86% of the particles was ≤10 µ. Observations of mortality, toxic signs, and body weight changes were continued over 14 days post-exposure. Necropsies were done.

2. Results:

a) Mortality: None, LC₅₀ > 3.2 mg/L, 6 hours

b) Toxic Signs: Hypoactivity, ptosis, endophthalmitis, lacrimation, nasal discharge.

c) Body Weight Changes: Reduction of gain in 3.2 mg/L males, no effect in females.

d) Necropsy: Unremarkable

3. Conclusions:

a) Classification: Supplementary Data

i) The nominal concentrations of test material were not reported.

ii) Body weights in conjunction with food intake were not determined daily.

b) TOX Cat: III (Provisional, determined from analytical concentration).

H. Thirty-Day Pilot Dust Inhalation Toxicity Study with Lasso Granular Dust (Lasso 15G) in Rats (Industrial Bio-Test Laboratories, Inc., IBT#663-06288, 7/24/75, submitted by Monsanto Agricultural Products Co., 2/16/78, Acc.#234630).

1. Procedure:

Ten Charles River C57BL/6J rats (5 males and 5 females), 151-249g, were placed into an 80L inhalation chamber and were exposed to 1.55 mg/L (analytical concentration) of test material for 6 hours/day, 5 days/week, 30 days. The size of 5 17-69.0% of the particles was ≤10 µ (determined weekly). Observations of mortality and toxic signs were made daily. Body weights were recorded weekly. Necropsies were done.
2. Results:
 a) Mortality: None
 b) Toxic Signs: Salivation, diuresis
 c) Body Weight Changes: Unremarkable
 d) Necropsy: Pink discoloration and emphysema of lungs, hydronephrosis of kidney.

3. Conclusions:
 a) Classification: Supplementary Data
 i) The nominal concentration of test material was not reported.
 ii) At least 10 rats/sex should have been used.
 iii) At least 3 dosage groups and a control group should have been used.
 b) The subacute inhalation N.E.L. is 1.55 mg/L, 6 hours/day, 5 days/week, 30 days (Provisional).

 I. Acute Intraperitoneal LD₅₀ Study of CP50144 in Rats (Industrial Bio-Test Laboratories, Inc., IBT#6265, 6/18/68, submitted by Monsanto Agricultural Products Co., 5/16/78, Acc.#234630).

1. Procedure:

 Twelve Sprague-Dawley albino rats, 152-198g, were divided into 3 groups of 4 animals each (2 males and 2 females) which were administered 400, 600, or 900 mg/kg of test material as a corn oil solution intraperitoneally. Observations of mortality, toxic signs, and body weight changes were done over 2 weeks post-treatment. Necropsies were done.

2. Results
 a) Mortality: LD₅₀ = 600 = 70.4 mg/kg
 b) Body Weight Changes: Unremarkable
 c) Toxic Signs: Hypoactivity, weakness, ptosis, tremors, convulsions, ruffled fur, prostration.
 d) Necropsy: Unremarkable

3. Conclusions:
 a) Classification: Supplementary Data
 i) Test material was administered intraperitoneally.
ii) Body weights in conjunction with food intake were not determined daily.

b. TOX Cat.: III (Provisional)

J. Acute Vapor Inhalation LC₅₀ Study of Lasso Emulsifiable Concentrate in Rats (Industrial Bio-Test Laboratories, Inc., ICB#6011, 4/5/68, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630).

1. Procedure:

Ten Sprague-Dawley rats (5 males and 5 females), 230g av. wt., were placed into a 70L inhalation chamber and were exposed to 32 mg/L of vaporized test material for 1 hour. Observations of mortality, toxic signs, and body weight changes were made during 14 days post-treatment. Necropsies were performed.

2. Results:

a) Mortality: None LC₅₀ > 32 mg/L (1 hour)
b) Toxic Signs: Unremarkable
c) Body Weight Changes: Unremarkable
d) Necropsy: Unremarkable

3. Conclusions:

a) Classification: Supplementary Data

i) The test material emulsion must be more completely identified to show whether Lasso Technical or a Lasso formulation was being used and the amount of test material in the emulsion.

ii) Body weights in conjunction with food intake were not determined daily.

b) TOX Cat.: IV

K. Recombination Assay of CP-50144 (Lasso Technical, 92.6%) in Two Genotypes of Bacillus subtilis (Marburg Strain) Confirmed by the Reversion Plate Method Using Two Strains of Escherichia coli (Industrial Bio-Test Laboratories, Inc., ICB#8336-08950, 4/20/78, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630)

1. Procedure:

Culture media consisted of the following ingredients:

a) Based Synthetic (BS) Medium: MgSO₄·7H₂O, citric acid·H₂O, KH₂PO₄ anhydrous, Na₂HPO₄·4H₂O, distilled water. For minimal agar plates 1.5% Bacto Difco agar and glucose were added to BS medium.
b) Overnight Culture Medium for **B. subtilis** (TF): Casa amino acids, yeast extract, and each amino acid (l-tryptophan, l-arginine) required by each genotype were added to BS medium.

c) Media for Screening Mutagen (M) and for Determining the Number of Viable Cells (V): Difco nutrient broth and Difco Bacto agar. To avoid contamination streptomycin was added to the agar medium.

d) Storage Culture (TF Potato Agar): Potato and Difco agar in TF medium.

Overnight cultures of **B. subtilis** were added to TF medium diluted with BS medium to yield new cultures which were streaked onto plates containing medium M. The bacterial streaks were challenged by placing filter paper soaked with the following appropriate chemical solution onto the end of each streak: 500, 100, or 5000 μg of test material or 100 μg of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG; positive control) or 6000 μg of ethylmethanesulfonate (EMS; positive control) or dimethylsulfoxide (DMSO; solvent control). Chemicals were dissolved in either 0.067 MKH₂PO₄ (pH7) or DMSO. Plates were prepared in triplicate and were incubated for 24 hours at 37 °C. Assays showing greater 3 zones of inhibition in M-45 (Rec⁺) than H-17 (Rec⁻) plates were repeated.

Escherichia coli strains (B/r WP₂ and 3/r WP₂ hcr⁻) cultured in medium m were treated as follows: 0, 500, or 1000 μg/ml of test material, 50 or 100 μg/ml of MNNG, or DMSO. Assays were done in triplicate and included estimates of the numbers of revertants and viable cells.

2. Results:

a) **B. subtilis** Assays: A 3 mm zone of inhibition was found for H-17 streaks exposed to MNNG; inhibition zones of 1 mm, 4-6 mm, and 1 mm were found for M-45 streaks exposed to 5000 μg of test material, MNNG, and EMS, respectively. No inhibition was evident in the remaining assays.

b) **E. coli** Assays: Considerable reversion was evident for both strains exposed to MNNG. No mutagenic effect was apparent for either strain in the remaining assays.

3. Conclusions:

a) Classification: Supplementary Data

i) A definite concern regarding the validity of the present study towards satisfying regulatory requirements is deferred until mutagenic guidelines are finalized.

ii) Although mutagenicity of the test material was indicated in the **B. subtilis** (H-17) assay, the effect found in the prokaryotic cells may not in itself be predictive of mutagenic effects in mammalian cells in vivo.

b) The mutagenic M.E.L. in the bacterial strains under study is 1000 μg, based on results of the **B. subtilis** (M-45) assay.
Reverse Mutation Studies of CP50144 (Lasso Technical, 92.6%) in Five Salmonella Strains and One Saccharomyces Strain (Industrial Bio-Test Laboratories, Inc., IBT#8536-08852, 6/10/76, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630).

The D4 strain of Saccharomyces cerevisiae and TA-1535, TA-1537, TA-1538, TA-98, and TA-100 strains of Salmonella typhimurium were used. Enzymic preparations were obtained from the 9000 Xg supernatant fraction of liver homogenate obtained from adult male Sprague-Dawley rats pretreated for 5 consecutive days with 500 mg/kg of Aroclor. The reaction mixture for activation tests included TPN (sodium salt), isocitric acid, Tris buffer (pH 7.4), MgCl₂, and 9000 Xg supernatant.

Approximately 10⁹ cells of each microbial strain were cultured in molten agar supplemented with biotin and histidine. Activation and nonactivation tests were done concurrently in the presence or absence of reaction mixture, respectively. Concentrations of 10⁻³, 10⁻², 10⁻¹, 10⁰, 10¹, and 10² µl of test material were added to cultures as appropriate. Positive control chemicals included the direct activating methylnitroso-guanidine, 2-nitrofluorene, and quinacrine mustard and the metabolically activated compounds 2-anthramine, 2-acetylaminofluorene, 8-amino-quinoline, and dimethylnitrosamine. Cultures were poured onto agar plates and were incubated for 48-72 hours at 37°C. Mutagenic effects were based on the number of revertants/plate.

2. Results:

The number of revertants/plate was enhanced markedly in all bacterial strains exposed to positive control chemicals. A noteworthy decrease in the number of revertants/plate was recorded for TA-98 and TA-100 bacterial strains and the D4 yeast strain exposed to 100 µl of test material in the nonactivation test, but the test material was not remarkably effective in the activation test.

3. Conclusions:

a) Classification: Supplementary Data

i) A definite conclusion on the validity of the present study towards satisfying regulatory requirements is deferred until mutagenic guidelines are finalized.

ii) A mutagenic effect of the test material is indicated in both the bacterial and yeast assays which demonstrates a positive response in both procaryotic and eukaryotic cells; however, reverse mutation studies in microtial strains may not in themselves be predictive of mutagenic effects in mammalian cells in vivo.

b) The mutagenic N.E.L. is 10 µl in the nonactivation system and 100 µl in the activated system based on effects in both bacterial and yeast strains.
M. Host-Mediated Assay for the Detection of Mutations Induced by CP50144 (Lasso Technical) in Albino Mice (Industrial Bio-Test Laboratories, Inc., IBT#8533-08849, 8/16/76, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630).

1. Procedure

Sixteen Charles River albino mice were divided into 4 groups of 4 animals each which received doses of 0, 300, or 1000 mg/kg of test material or 30 mg/kg of N-methyl-N-nitro-N-nitrosoguanidine (positive controls) as solutions in corn oil. Test material was administered for 5 consecutive days before inoculation of mice. Positive control animals were treated with a single dose of compound on the day of inoculation. Each animal was inoculated with 2 ml of *Salmonella typhimurium* G46 culture immediately after final dosings.

Animals were killed at 3 hours post-inoculation and were immediately given 1 ml of saline intraperitoneally. Each peritoneal cavity was opened, and as much fluid as possible was removed. Peritoneal fluids were serially diluted, and diluted and undiluted samples were added to molten agar in the presence or absence of histidine, respectively. The preparations in agar were incubated in duplicate in petri plates at 37 °C for 48 hours. Colony counting data for 3 animals/group were reported.

2. Result:

a) Mutation Rates: Significantly increased in samples from positive control animals; otherwise unremarkable.

b) Chemical Effects On Mice: Unremarkable

3. Conclusions:

a) Classification: Supplementary Data

i) A definite conclusion on the validity of the present study towards satisfying regulatory requirements is deferred until mutagenic guidelines are finalized.

ii) A mutagenic effect of the test substance was not demonstrated in the present study; however, the host-mediated assay may not in itself be indicative of mutagenic effects in mammalian cells in vivo.

b) A mutagenic NEL of 1000 mg/kg is evident in the host-mediated assay in mice.

N. Host-Mediated Assay for the Detection of Mutations Induced by CP50144 (Lasso Technical) in Albino Rats (Industrial Bio-Test Laboratories, Inc., IBT#8533-08885, 8/16/76, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630).

1. Procedure
Sixteen Charles River albino rats were divided into 4 groups of 4 animals each which were given doses of 0, 150, or 500 mg/kg of test material or 100 mg/kg of dimethylnitrosamine (positive controls) by gavage. Test material was administered for 5 consecutive days prior to inoculation of the rats. Positive control animals received a single dose of chemical on the day of inoculation. Chemicals were administered as corn oil solutions.

Immediately following final dosings, animals were inoculated with 5 ml of Salmonella typhimurium G46 intraperitoneally. Rats were killed at 3 hours post-inoculation and were administered 1 ml of saline intraperitoneally. Peritoneal cavities were opened, and fluid was removed. Serial dilutions of peritoneal fluid were made, and diluted and undiluted sample were cultured in molten agar in the presence or absence of histidine, respectively. The cultures were incubated in duplicate in petri plates at 37 °C for 48 hours. Colony counting data for 3 rats/dosage group were reported.

2. Results
a) Mutation Rates: Significantly increased in samples from positive control animals; otherwise unremarkable.

b) Chemical Effects on Rats: Unremarkable.

3. Conclusions:

a) Classification: Supplementary Data

i) A definite conclusion on the validity of the present study towards satisfying regulatory requirements is deferred until mutagenic guidelines are finalized.

ii) A mutagenic effect of the test substance was not demonstrated in the present study; however, the host-mediated assay may not itself be indicative of mutagenic effects in mammalian cells in vivo.

b) A mutagenic NEL of 500 mg/kg is evident in the host-mediated assay in rats.

0. Four-Week Subacute Oral Toxicity Study of Lasso Technical in Albino Mice (Industrial Bio-Test Laboratories, Inc., IBT#81182, 10/3/72, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234630).

1. Procedure:

One hundred Charles River albino mice, 16.8-21.9g, were divided into 5 groups of 20 animals each (10 males and 10 females) which received 0, 300, 1000, 3500, or 10,000 ppm of test material in the diet for 4 months. Observations of mortality and toxic signs were made daily. Body weights and food consumption were estimated weekly. Fresh diets were prepared each week.

2. Results

a) Mortality: All males fed 10000 ppm of test material died during the first week.
b) Toxic Signs: Unremarkable

c) Body Weight Changes: Loss in females fed 10000 ppm test compound; otherwise unremarkable.

d) Food consumption: Unremarkable.

3. Conclusions:

a) Classification: Supplementary Data

i) Necropsies were not done.

ii) Histopathological examinations were not done.

iii) Only 10 mice/sex/dosage level were used.

iv) The study was done in mice.

v) Periodic chemical analysis of diets was not indicated.

b) The subacute NEL in mice is 3000 ppm (P. vermiculata).

P. Two-Year Chronic Oral Toxicity Study of Lasso Technical in Albino Rats
(Industrial Bio-Test Laboratories, Inc., IBT#621-01180, 9/16/77, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234629).

1. Procedure:

Four hundred eighty Charles River albino rats, 139-165g, were divided into 4 groups of 120 animals each (60 males and 60 females) which received 0, 100, 300, or 1000 ppm of test material in the diet for 2 years. Two hundred eighty rats were housed individually, and 200 rats were group-housed (3 rats/cage). Body weights were recorded weekly during the first 3 months and monthly thereafter. Food consumption was estimated weekly during the first 11 months and 1 week/month thereafter. Animals were observed for mortality and toxic signs daily. Blood and urine from 10 rats/sex in the control and 1000 ppm groups were analysed at 3, 6, 12, 18, and 24 months. Blood from 10 rats/sex in the 100 and 300 ppm group and urine from 10 males in the 100 and 300 ppm groups were evaluated at 24 months. Hematologic, clinical chemistry, and urine analyses were based on the following parameters:

Hematology: Total leukocyte count, erythrocyte count, hemoglobin concentration, hematocrit value, differential leukocyte count.

Clinical Chemistry: Glucose, blood urea nitrogen, SAP, SGPT, protein, bilirubin, A/G ratio.

Urine Analysis: Glucose, albumin, pH, specific gravity, microscopic elements, bilirubin.
All survivors and all decedents not extensively autolysed were subjected to necropsy. Weights of brains, gonads, hearts, kidneys, livers, and spleen were estimated. Histopathological examination of the following tissues and organs from all survivors in the control and 1000 ppm groups as well as animals found dead or killed while moribund was done:

- Heart
- Lungs
- Trachea
- Liver
- Spleen
- Lymph nodes
- Pancreas
- Stomach
- Skeletal muscle
- Small and large intestine
- Kidneys
- Urinary bladder
- Pituitary
- Thyroid
- Parathyroid
- Adrenals
- Gonads
- Bone marrow
- Prostate
- Uterine horns
- Brain
- Spinal cord
- Peripheral nerve
- Eye
- Optic nerve
- Salivary glands

Additionally, neoplasms found during necropsy were examined microscopically.

2. Results:

a) Mortality at 2 Years:

<table>
<thead>
<tr>
<th>No. Dead</th>
<th>Control</th>
<th>100 ppm</th>
<th>300 ppm</th>
<th>1000 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Tested</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>33/60</td>
<td>32/60</td>
<td>26/60</td>
<td>32/60</td>
<td>38/60</td>
</tr>
</tbody>
</table>

b) Toxic Signs: Unremarkable

c) Body Weight Changes: Unremarkable

d) Food Consumption: Unremarkable

e) Hematology, Clinical Chemistry, Urine Analysis: Unremarkable

f) Necropsy: Unremarkable

g) Organ, Organ/Body, Organ/Brain Weights: Unremarkable

Significant differences appear to be marginal and not dose-related.

h) Histopathology: Unremarkable, including tumor findings.

3. Conclusions:

a) Classification: Core Minimum Data

i) The rationale for housing some animals singly and others in groups is unclear. Nonetheless, it is concluded that, considering the range of observations and the results obtained therefrom, the study is adequate to estimate the chronic oral toxicity of the test material in rats.
b) The two-year chronic oral MED in rats is 1000 ppm.

Q. Repeated Insult Patch Test of CP-50144 (Lasso Technical) in Humans
 (Industrial Biology Laboratories, Inc., No. SH-67-9, 1/31/68, submitted by Monsanto Agricultural Products Co., 8/16/78, Acc.#234629).

1. Procedure:

 Test material was applied onto the skin of 50 humans at a dose of 0.2 ml/0.25 sq. in. of skin under occlusive dressing. Dressing was removed at 24 hours post-application. Contact sites were graded for irritation and sensitization during 24 hours following removal of dressing. Test material was again applied to the same site, if no irritation was evident, or to a different site, if irritation was observed at the end of the 24-hour rest period. The weekly routine was to apply test material for 24-hour exposures on Monday, Wednesday, and Friday and to allow 24-hour rest periods on Tuesday and Thursday and a 48-hour rest period on Saturday and Sunday. Initial contact sites were challenged with test material for 24 hours at 14 days following the first treatment. Challenge areas were reexamined at 24 and 48 hours post-treatment.

2. Results:

 Treatment was discontinued after 4 applications because of the severe skin reaction (erythema and edema at and extending beyond the test sites) elicited by concentrated test material. Testing with a 1/40 aqueous emulsion was not attempted since the preparation was heterogeneous.

3. Conclusions

 a) Classification: Supplementary Data

 i) The marked irritancy of the test material precluded an adequate evaluation of skin sensitization.

 ii) The human subjects should have been more fully described to include, for example, sex, age, and race.

 b) Skin sensitization potential of the test substance cannot be determined.

1. Procedure:

 The method described in part Q.1. was used. Aliquots of 0.1 ml of a 1:40 emulsion of test material/sq. cm. of skin were applied to 28 male and 28 female humans. Subjects received 8 applications of test substance.

2. Results:

 No reactions to test material were found in 24 subjects. Extreme irritation, including erythema, edema, vesiculation, and ulceration, at and extending beyond the contact sites was observed in 19 subjects after the second application.
In 18 of 19 responsive subjects, new contact sites selected for subsequent applications showed delayed reactions of similar severity. During the post-treatment observation period, 5 additional subjects exhibited similar delayed reactions. Irritation was reduced in severity with medication.

3. Conclusions:

a) Classification: Core Guidelines

i) The results clearly define the irritant and sensitization potential of the test material on human skin.

b) The test material is a skin sensitizer.

S. Acute studies of Lasso Technical and various Lasso formulations are presented by reference only and previously have been submitted to support registration of these products; therefore, these studies are not reviewed herein.

T. Toxicity studies of Lasso formulations in fish and wildlife have been submitted but are not reviewed within; however, the results are briefly summarized as follows:

a) 96-hour TL50 of Lasso Tech. in bluegill > 0.75 mg/L

b) 96-hour LC50 of Lasso Tech. in bluegill sunfish = 2.8 mg/L

c) 96-hour LC50 of Lasso Tech. in rainbow trout = 1.8 mg/L

d) 4-day TL50 of Lasso Tech. in rainbow trout = 1.0 ppm, in bluegill = 5.6 ppm

e) 4-day LC50 of Lasso EC in catfish = 6.5 ppm, in crayfish = 19.5 ppm

f) 4-day TL50 of Lasso/atrazine in rainbow trout = 14.7 ppm, in bluegill = 59 ppm

g) Biodistribution study of 14C Lasso in bluegill showed that 14C was more quickly taken up into and more quickly released from nonedible compared to edible tissue.

h) 11-week LC50 of Lasso 15G in bobwhite quail > 5620 ppm

i) Oral toxicity of Lasso 10G in bobwhite quail = 10 g/kg

TOX/HED/th:G.Whitmore:9/21/78