FISHER & WILDLIFE ENVIRONMENTAL CHEMISTRY EFFICACY

DATE: IN 2/2/78 OUT 12/78

FILE OR REG. NO. 400-81

PETITION OR EXP. PERMIT NO.

DATE DIV. RECEIVED

DATE OF SUBMISSION

DATE SUBMISSION ACCEPTED

TYPE PRODUCTS(S): I, D, H, F, N, R, S

DATA ACCESSION NO(S).

PRODUCT MGR. NO. 21 (Wilson)

PRODUCT NAME(S) Vitavax technical

COMPANY NAME Uniroyal Chemical

SUBMISSION PURPOSE Data Submission Only

CHEMICAL & FORMULATION 5,6-Dihydro-2-methyl-1,4-Oxathiin-3-carboxanilide. 99% active (The test material was assayed as 99% active in a 1977 analysis-Personal communication with Uniroyal liaison).
100.0 Pesticidal Use
Data submission only

101.0 Chemical and Physical Properties

101.1 Chemical Name
5,6-Dihydro-2-methyl-1,4-oxathiin-3-carboxanilide

101.2 Common Names
Vitavax, Carbokine, D735, DCMO, F735

101.3 Structural Formula

101.5 Physical State
Vitavax is a non-volatile, off-white crystal.

101.6 Solubility (From 7/8/75 review by Scott C. Fredericks)

In Water
170 ppm in distilled water

In Acetone
600,000 ppm

In Ethanol
110,000 ppm
103.1.2 Avian Acute Toxicity

DATA REVIEW NUMBER: ES-VII-C

TEST: Acute oral, LD$_{50}$, with a wild waterfowl

SPECIES: Mallard duck

RESULTS: LD$_{50}$ with (95% confidence limits) = 6094.2
(2012.4 - 18454.9 mg/kg)

CHEMICAL: Vitavax technical (99% a.i.)

TITLE: Acute oral LD$_{50}$ - Mallard duck. Vitavax
technical. Final report.

ACCESSION NO: No accession number

STUDY DATE: June 16, 1977

RESEARCHER: Joann B. Beavers and Robert Fink
Wildlife International

REGISTRANT: Uniroyal Chemical

VALIDATION CATEGORY: The LD$_{50}$ should be accepted as greater than 1000 mg/kg. Wildlife International has
been given permission to use an eight-day post-
dosing observation period and the section has
agreed to accept studies on 14-day old birds
when the resulting LD$_{50}$ is greater than 3000 mg/kg.
The use of extrapolated LD$_{50}$ values is not accept-
able to this section, however, and forty percent
mortality was the highest percentage mortality
achieved in this study.

BEST DOCUMENT AVAILABLE
Subacute Toxicity

DATA REVIEW NUMBER: ES-VII-D

TEST: Eight-day dietary LC$_{50}$ - bobwhite quail

SPECIES: Bobwhite quail

RESULTS: Ten birds were used at each treatment level. No deaths occurred at 4,640 ppm and two occurred at 10,000 ppm. Wildlife International concluded that the LC$_{50}$ was greater than 10,000 ppm.

CHEMICAL: Vitavax technical (99% active ingredient)

TITLE: Eight-day dietary LC$_{50}$ - bobwhite quail.

Vitavax technical. Final report.

ACCESSION NO: No accession number.

STUDY DATE: June 17, 1977

RESEARCHER: Joann B. Beavers and Robert Pink:

Wildlife International, LTD.

REGISTRANT: Uniroyal Chemical

VALIDATION CATEGORY: Core

CATEGORY REPAIRABILITY: The Environmental Safety staff has agreed to accept LC$_{50}$ avian tests in which no deaths occur at exposure levels of 5,000 ppm. There were no deaths in this test at levels of 4,640 ppm. This was judged to be sufficiently close to the 5,000 ppm cut-off point. The data do support the conclusion that the LC$_{50}$ is greater than 10,000 ppm. as is shown below:

When ten bobwhite quail were subjected to a dose of 10,000 ppm, two mortalities occurred. This set of observations lends statistical support to Wildlife International's claim that the LC$_{50}$ is greater than 10,000 ppm. This claim is explored in the following calculations by determining the likelihood of two deaths occurring out of ten animals dosed with the LC$_{50}$ level of a toxicant.
The group of test birds, number one through ten, can respond in 2^{10} or 1024 different ways. Some of the responses are shown below:

<table>
<thead>
<tr>
<th>Bird #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response#1</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>S</td>
<td>D</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1024
$D = \text{Mortality}$
$S = \text{Survivor}$

If we assume that 10,000 ppm was the dietary LC₅₀ level then each bird exposed to this level had an equal chance of surviving or dying. It also follows that each of the 1024 different responses is equally probable.

Of the 1024 equally probable responses there are 45 that include only two mortalities. This can be determined by the equation shown below (Adapted from Mosteller, et al., 1961).

\[
\frac{N!}{r!(N-r)!} = \frac{101}{81(2)!} = \frac{3628800}{(40320)(2)} = 45
\]

Where:
$N = \text{Total number of birds}$
$r = \text{Number of survivors}$
$N-r = \text{Number of survivors}$

The probability of two mortalities and eight survivors occurring after an exposure to the LC₅₀ concentration is, therefore 45 or 0.044. This is a very low probability and indicates that Wildlife International is probably correct in stating that 10,000 ppm was less than the LC₅₀.

Probability with statistical applications.
Addison - Wesley Publishing Company.
103.1.3 Fish - Acute Toxicity

DATA REVIEW NUMBER: ES-VII-G

TEST: 96-hr. LC$_{50}$ with a coldwater fish

SPECIES: Rainbow trout

RESULTS: 96-hr. LC$_{50}$ with confidence limits (95%) = 2.0 (1.6 - 2.5) ppm.

CHEMICAL: Carboxin (99% active ingredient)

TITLE: Acute toxicity of vitavax technical, Lot BL 8108 to the bluegill sunfish, Lepomis macrochirus Rafinesque and rainbow trout, Salmo gairdneri Richardson.

ACCESSION NO: No accession number

STUDY DATE: May 25, 1977

RESEARCHER: W. J. Kuc and George A. Cary; Union Carbide

REGISTRANT: Uniroyal

VALIDATION CATEGORY: Core

CATEGORY REPAIRABILITY: The fish used in this test were too small (average weight 0.28 grams), but the LC$_{50}$ is corroborated by previous, valid, Uniroyal, rainbow trout submissions.
DATA REVIEW NUMBER: ES-VII-F

TEST: 96-hr. L_C_{50} with a warmwater fish

SPECIES: *Lepomis macrochirus*

RESULTS: 96-hr. L_C_{50} and (95% C.I.)=1.2(1.0-1.4)ppm

Test water characteristics:

pH 7.47
Total hardness 44 mg/l (CaCO$_3$)
Temperature $\pm 22.0 \pm 1^\circ$C.

CHEMICAL: Vitavax technical (99% active)

ACCESSION NO. None given

STUDY DATE: May 25, 1977

RESEARCHER: William J. Kuc: Union Carbide Environmental Services

REGISTRANT: Uniroyal Chemical

VALIDATION CATEGORY: Core

ABSTRACT: Five concentrations, a control and a solvent control were used in the determinations.
DATA REVIEW NUMBER: ES-VII-H

TEST: 48-hr. LC$_{50}$ with an aquatic invertebrate

SPECIES: Daphnia magna

RESULTS: 48-hr. LC$_{50}$ = 84.4 mg/l (95% C.I.=73.1-97.6)

Test water quality characteristics:
- Temperature 17 ±1°C
- Hardness 42 mg/l (CaCO$_3$)
- pH 7.45

CHEMICAL: Vitavax

TITLE: Acute toxicity of vitavax technical to the water flea Daphnia magna Straus

ACCESSION NO: No accession number

STUDY DATE: April 20, 1977

RESEARCHER: Algirdas G. Viikas; Union Carbide Corporation

REGISTRANT: Uniroyal Chemical

VALIDATION CATEGORY: Core

ABSTRACT: Five concentrations of Vitavax, a control, and a solvent control were used in this test.
Conclusions

The following fish and wildlife toxicity tests are the minimum data necessary to make an environmental safety evaluation of a pesticide with an outdoor use pattern:

A. Subacute dietary LC$_{50}$ for a wild waterfowl.
B. Subacute dietary LC$_{50}$ for an upland game bird.
C. Acute oral LD$_{50}$ for either a wild waterfowl or an upland game bird.
D. Acute LC$_{50}$ for a coldwater fish (96 hr.).
E. Acute LC$_{50}$ for a warmwater fish (96 hr.).
F. Acute LC$_{50}$ for an aquatic invertebrate.

Univaroy's recent data submissions related to these minimum data requirements in the following manner:

1. The June 17, 1977 bobwhite quail study by Wildlife International can be used to fill data requirement (B).
2. The June 16, 1977 mallard duck study by Wildlife International is inadequate to fill data requirement (C), because derivation of LD$_{50}$ by extrapolation is unacceptable. In no test (other than greater than 40 percent was observed in this test)
3. The May 25, 1977 rainbow trout study by Union Carbide fills data requirement (D).
5. The April 20, 1977 Daphnia magna study by Union Carbide fills data requirement (F).

Robert K. Hitch Date: June 12, 1978
Environmental Safety Section
EEEB-RD WH 567

[Signature]