DATA EVALUATION RECORD
ALGAE OR DIATOM EC50 TEST
GUIDELINE 123-2 (TIER II)

1. CHEMICAL: Captan
 PC Code No.: 081301

2. TEST MATERIAL: Captan technical
 Purity: 99.8%

3. CITATION:
 Authors: K.R. Drottar and H.O. Krueger
 Title: Captan: A 96-Hour Toxicity Test with the Freshwater Alga (Anabaena flos-aquae)
 Study Completion Date: April 8, 1999
 Laboratory: Wildlife International Ltd., Easton, MD
 Laboratory Report ID: 493A-101A
 DP Barcode: D255807
 MRID No.: 448065-01

4. REVIEWED BY: Mark Mossler, M.S., Environmental Scientist, Golder Associates Inc.
 Signature: Date:

 APPROVED BY: Pim Kosalwat, Ph.D., Senior Scientist, Golder Associates Inc.
 Signature: Date:

5. APPROVED BY: Brian Montague, Fisheries Biologist
 Environmental Fate and Effects Division, 7507C
 Signature: Date: Oct. 29, 1999

6. STUDY PARAMETERS:
 Definitive Test Duration: 96 hours
 Type of Concentrations: Initial measured

7. CONCLUSIONS: This study is scientifically sound and fulfills the guideline requirements for an algal toxicity test using Anabaena flos-aquae. Core classification.
 Results Synopsis
 EC50: 1.2 ppm ai
 95% C.I.: 0.83 - 1.6 ppm ai
 Probit Slope: N/A
 NOEC: < 0.23 ppm ai
8. **ADEQUACY OF THE STUDY:**
 A. **Classification:** Core.
 B. **Rationale:** N/A.
 C. **Repairability:** N/A.

9. **GUIDELINE DEVIATIONS:**
 1. The test length (96 hours) was less than recommended (120 hours).

10. **SUBMISSION PURPOSE:** To support captan use on crops where aquatic habitats and plantlife is expected to be subject to exposure.

11. **MATERIALS AND METHODS:**
 A. **Test Organisms**

<table>
<thead>
<tr>
<th>Guideline Criteria</th>
<th>Reported Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Anabaena flos-aquae</td>
</tr>
<tr>
<td>Initial Number of Cells</td>
<td></td>
</tr>
<tr>
<td>3,000 - 10,000 cells/mL</td>
<td>10,000 cells/mL</td>
</tr>
<tr>
<td>Nutrients</td>
<td></td>
</tr>
<tr>
<td>Standard formula, e.g. 20XAAP</td>
<td>Freshwater algal medium</td>
</tr>
</tbody>
</table>

 B. **Test System**

<table>
<thead>
<tr>
<th>Guideline Criteria</th>
<th>Reported Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent</td>
<td>DMF (100 μL/L)</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Skeletonema: 20°C</td>
<td>24.0-25.8°C</td>
</tr>
<tr>
<td>Others: 24-25°C</td>
<td></td>
</tr>
<tr>
<td>Light Intensity</td>
<td></td>
</tr>
<tr>
<td>Anabaena: 2.0 KLux (±15%)</td>
<td>1.9-2.4 KLux</td>
</tr>
<tr>
<td>Others: 4.0-5.0 KLux (±15%)</td>
<td></td>
</tr>
</tbody>
</table>
Guideline Criteria | Reported Information
---|---
Photoperiod
Skeletonema:
14 h light, 10 h dark or 16 h light, 8 h dark
Others: Continuous | Continuous lighting
pH
Skeletonema: approx. 8.0
Others: approx. 7.5 | Initial: 7.4 - 7.5
| Final: 7.5 - 8.2

C. Test Design

Guideline Criteria	Reported Information
Dose range
2X or 3X progression | 2X
Doses
at least 5 | 0.32, 0.64, 1.3, 2.6, and 5.1 mg ai/L
Controls
negative and/or solvent | Negative and solvent controls
Replicates per dose
3 or more | 3
Duration of test
120 hours | 96 hours
Daily observations were made? | Yes
Method of Observations | Cellular counts
Maximum Labeled Rate | Not reported

12. REPORTED RESULTS:

Guideline Criteria	Reported Information
Initial and terminal cell densities were |
<table>
<thead>
<tr>
<th>Guideline Criteria</th>
<th>Reported Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>measured?</td>
<td>Yes</td>
</tr>
<tr>
<td>Control cell count at termination ≥2X initial count?</td>
<td>Yes</td>
</tr>
<tr>
<td>Initial chemical concentrations measured? (Optional)</td>
<td>Yes, samples collected at test initiation were analyzed by GC.</td>
</tr>
<tr>
<td>Raw data included?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Measured Concentrations

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Toxicant Concentration (mg ai/L)</th>
<th>Percent of Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 hour</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td><LOQ</td>
<td>N/A</td>
</tr>
<tr>
<td>Solvent Control</td>
<td><LOQ</td>
<td>N/A</td>
</tr>
<tr>
<td>0.32</td>
<td>0.23</td>
<td>73</td>
</tr>
<tr>
<td>0.64</td>
<td>0.51</td>
<td>80</td>
</tr>
<tr>
<td>1.3</td>
<td>0.88</td>
<td>68</td>
</tr>
<tr>
<td>2.6</td>
<td>2.16</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>4.89</td>
<td>96</td>
</tr>
</tbody>
</table>

Note: Mean method validation recovery = 98% and LOQ = 0.125 ppm ai

Dose Response

<table>
<thead>
<tr>
<th>Initial Measured Concentration (mg ai/L)</th>
<th>96-hr. Average Cell Density (x 10^4 cells/mL)</th>
<th>Inhibition* (%)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>161.7</td>
<td>N/A</td>
<td>8.2</td>
</tr>
<tr>
<td>Solvent Control</td>
<td>148.0</td>
<td>N/A</td>
<td>8.0</td>
</tr>
<tr>
<td>0.23</td>
<td>137.7</td>
<td>11</td>
<td>7.9</td>
</tr>
<tr>
<td>0.51</td>
<td>100.0a</td>
<td>35</td>
<td>7.9</td>
</tr>
<tr>
<td>Initial Measured Concentration (mg ai/L)</td>
<td>96-hr. Average Cell Density (x 10^4 cells/mL)</td>
<td>Inhibition* (%)</td>
<td>Final pH</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>0.88</td>
<td>84.3a</td>
<td>46</td>
<td>7.8</td>
</tr>
<tr>
<td>2.16</td>
<td>51.8a</td>
<td>67</td>
<td>7.5</td>
</tr>
<tr>
<td>4.89</td>
<td>7.4a</td>
<td>95</td>
<td>7.5</td>
</tr>
</tbody>
</table>

*Compared to the pooled control.

aSignificantly reduced when compared to the pooled control (p<0.05).

Other Significant Results: The only sign of test material toxicity was enlarged cells at the 4.89 ppm ai treatment level. Cells from this solution were observed to recover to control levels after three days of reculturing in untreated algal medium, indicating algistatic effects.

Statistical Results for Cell Density

Statistical Method: Linear interpolation was used for EC₅₀ estimation and Bonferroni's test was used for NOEC determination.

EC₅₀: 1.2 ppm ai
Probit Slope: N/A
95% C.I.: 0.91 - 1.7 ppm ai
NOEC: 0.23 ppm ai

13. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method: Nonlinear regression was used for EC₅₀ estimation and Williams' test was used for NOEC determination. Comparison was made to the solvent control.

EC₅₀: 1.2 ppm ai
Probit Slope: N/A
95% C.I.: 0.83 - 1.6 ppm ai
Observed NOEC: <0.23 ppm ai

14. REVIEWER'S COMMENTS: This study is scientifically sound and fulfills the guideline requirements for an algal toxicity test. Based on initial measured concentrations, the 96-hour EC₅₀ was 1.2 ppm ai. The observed NOEC was determined to be < 0.23 ppm ai, based on 11% cell density reductions beginning at this dosage level which appeared dose related and were below both pooled and solvent control cell density levels. This study can be categorized as Core.
Anabaena cell density

File: ana
Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model)
TABLE 1 OF 2

<table>
<thead>
<tr>
<th>GROUP</th>
<th>ORIGINAL</th>
<th>TRANSFORMED</th>
<th>ISOTONIZED</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFICATION</td>
<td>N</td>
<td>MEAN</td>
<td>MEAN</td>
</tr>
<tr>
<td>Sol. Con.</td>
<td>3</td>
<td>1480000.000</td>
<td>1480000.000</td>
</tr>
<tr>
<td>0.23 ppm ai</td>
<td>3</td>
<td>1376666.667</td>
<td>1376666.667</td>
</tr>
<tr>
<td>0.51 ppm ai</td>
<td>3</td>
<td>1000000.000</td>
<td>1000000.000</td>
</tr>
<tr>
<td>0.88 ppm ai</td>
<td>3</td>
<td>843333.333</td>
<td>843333.333</td>
</tr>
<tr>
<td>2.16 ppm ai</td>
<td>3</td>
<td>518333.333</td>
<td>518333.333</td>
</tr>
<tr>
<td>4.89 ppm ai</td>
<td>3</td>
<td>74333.333</td>
<td>74333.333</td>
</tr>
</tbody>
</table>

WILLIAMS TEST (Isotonic regression model)
TABLE 2 OF 2

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>MEAN</th>
<th>WILLIAMS</th>
<th>DEGREES OF FREEDOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. Con.</td>
<td>1480000.000</td>
<td>1.78</td>
<td>k= 1, v=12</td>
</tr>
<tr>
<td>0.23 ppm ai</td>
<td>1376666.667</td>
<td>*1.87</td>
<td>k= 2, v=12</td>
</tr>
<tr>
<td>0.51 ppm ai</td>
<td>1000000.000</td>
<td>*1.90</td>
<td>k= 3, v=12</td>
</tr>
<tr>
<td>0.88 ppm ai</td>
<td>843333.333</td>
<td>*1.92</td>
<td>k= 4, v=12</td>
</tr>
<tr>
<td>2.16 ppm ai</td>
<td>518333.333</td>
<td>*1.93</td>
<td>k= 5, v=12</td>
</tr>
<tr>
<td>4.89 ppm ai</td>
<td>74333.333</td>
<td>*1.98</td>
<td>k= 6, v=12</td>
</tr>
</tbody>
</table>

$s = 105235.714$

Note: df used for table values are approximate when $v > 20.$

anabaena cell density

3

16:53 Wednesday, September 15, 1999

<table>
<thead>
<tr>
<th>OBS</th>
<th>CONC</th>
<th>LOG_CONC</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
<th>Y6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>1630000</td>
<td>1400000</td>
<td>1410000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.23</td>
<td>-0.63827</td>
<td>1340000</td>
<td>1420000</td>
<td>1370000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.51</td>
<td>-0.29243</td>
<td>1120000</td>
<td>1030000</td>
<td>850000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.88</td>
<td>-0.05552</td>
<td>845000</td>
<td>825000</td>
<td>860000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.16</td>
<td>0.33445</td>
<td>695000</td>
<td>365000</td>
<td>495000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.89</td>
<td>0.68931</td>
<td>111000</td>
<td>48000</td>
<td>64000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

anabaena cell density

4

16:53 Wednesday, September 15, 1999

MODEL:
COUNT = C0 * PROBNORM ((LOG_EC50 - LOG_CONC) / SIGMA)

WEIGHTED REGRESSION

16:53 Wednesday, September 15, 1999

Non-Linear Least Squares Iterative Phase
NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Weighted SS</th>
<th>Weighted MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>15878000.00</td>
<td>5292666.67</td>
</tr>
<tr>
<td>Residual</td>
<td>15</td>
<td>432753.75</td>
<td>28850.25</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>18</td>
<td>16310753.75</td>
<td></td>
</tr>
<tr>
<td>(Corrected Total)</td>
<td>17</td>
<td>9119342.76</td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimate Asymptotic Asymptotic 95 %

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std. Error</td>
<td>Confidence Interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOG_EC50</td>
<td>0.065</td>
<td>0.067591</td>
<td>-0.0790</td>
<td>0.2091</td>
</tr>
<tr>
<td>SIGMA</td>
<td>0.456</td>
<td>0.059148</td>
<td>0.3297</td>
<td>0.5818</td>
</tr>
<tr>
<td>C0</td>
<td>1434651.17</td>
<td>99410.618726</td>
<td>1222763.2605</td>
<td>1646539.0856</td>
</tr>
</tbody>
</table>

Asymptotic Correlation Matrix

<table>
<thead>
<tr>
<th>Corr</th>
<th>LOG_EC50</th>
<th>SIGMA</th>
<th>C0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG_EC50</td>
<td>1</td>
<td>-0.707185222</td>
<td>-0.787459251</td>
</tr>
<tr>
<td>SIGMA</td>
<td>-0.707185222</td>
<td>1</td>
<td>0.5840980055</td>
</tr>
<tr>
<td>C0</td>
<td>-0.787459251</td>
<td>0.5840980055</td>
<td>1</td>
</tr>
</tbody>
</table>

anabaena cell density 5

MODEL: COUNT = C0 * PROBNORM ((LOG_EC50 - LOG_CONC) / SIGMA)
16:53 Wednesday, September 15, 1999

Plot of COUNT*LOG_CONC. Symbol used is 'o'.
Plot of PRED*LOG_CONC. Symbol used is '.'.

NOTE: 1355 obs had missing values. 1284 obs hidden.
Comparision of Means for NOEL Determination
Test if Treatment is Less Than Control

Wednesday, September 15, 1999

General Linear Models Procedure
Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSE</td>
<td>6</td>
<td>0 0.23 0.51 0.88 2.16 4.89</td>
</tr>
</tbody>
</table>

Number of observations in data set = 36

NOTE: Due to missing values, only 18 observations can be used in this analysis.

General Linear Models Procedure
Dependent Variable: RESPONSE

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>4.20689E+12</td>
<td>8.41378E+11</td>
<td>75.97</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>1.32895E+11</td>
<td>1.10746E+10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>17</td>
<td>4.33979E+12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square C.V. Root MSE RESPONSE Mean
0.969378 11.92998 105235.7 882111.1

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSE</td>
<td>5</td>
<td>4.20689E+12</td>
<td>8.41378E+11</td>
<td>75.97</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSE</td>
<td>5</td>
<td>4.20689E+12</td>
<td>8.41378E+11</td>
<td>75.97</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
16:53 Wednesday, September 15, 1999

General Linear Models Procedure

<table>
<thead>
<tr>
<th>DOSE</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1480000.00</td>
<td>130000.000</td>
</tr>
<tr>
<td>0.23</td>
<td>3</td>
<td>1376666.67</td>
<td>40414.519</td>
</tr>
<tr>
<td>0.51</td>
<td>3</td>
<td>1000000.00</td>
<td>137477.271</td>
</tr>
<tr>
<td>0.88</td>
<td>3</td>
<td>843333.33</td>
<td>17559.423</td>
</tr>
<tr>
<td>2.16</td>
<td>3</td>
<td>518333.33</td>
<td>166232.769</td>
</tr>
<tr>
<td>4.89</td>
<td>3</td>
<td>743333.33</td>
<td>32746.501</td>
</tr>
</tbody>
</table>

anabaena cell density

COMPARISON OF MEANS FOR NOEL DETERMINATION
TEST IF TREATMENT IS LESS THAN CONTROL

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: RESPONSE

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 12 MSE= 1.107E10
Critical Value of Dunnett's T= 2.502
Minimum Significant Difference= 214997

Comparisons significant at the 0.05 level are indicated by '***'.

<table>
<thead>
<tr>
<th>Simultaneous</th>
<th>Simultaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Difference</td>
<td>Upper Difference</td>
</tr>
<tr>
<td>DOSE</td>
<td>Confidence Limit</td>
</tr>
<tr>
<td>Comparison</td>
<td>Limit</td>
</tr>
</tbody>
</table>

0.23 - 0	-318330	-103333	111663
0.51 - 0	-694997	-480000	-265003 ***
0.88 - 0	-851663	-636667	-421670 ***
2.16 - 0	-1176663	-961667	-746670 ***
4.89 - 0	-1620663	-1405667	-1190670 ***