US ERA ARCHIVE DOCUMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES, AND TOXIC SUBSTANCES

PC Code 080808

DP Barcode: D242425

MEMORANDUM

SUBJECT: Tier I Estimated Environmental Concentrations for Propazine on Grain Sorghum

Rudy A. Pisigan, Jr., Chemist Prisigan Jr. 2/27/98
Environmental Risk Branch IV FROM:

Environmental Risk Branch IV

Environmental Fate and Effects Division

MAShamm 2/27/98 THROUGH: Mah T. Shamim, Ph.D., Chief

Environmental Risk Branch IV

Environmental Fate and Effects Division

TO: Andrew R. Rathman, Chemist Stephen Schaible

> PM Team Reviewer Registration Division Minor Use, and

> Edward Zager, Chief Inerts and Emergency Response

Registration Action Branch I Branch

Health Effects Division

This memo presents the Tier I Estimated Environmental Concentrations (EECs) for propazine calculated using GENEEC (surface water) and SCIGROW (groundwater) for use in the human health risk assessment. For surface water, the acute (peak) value is 54.2 ppb and the chronic (average 56-day) value is 53.0 ppb. The groundwater screening concentration is 3.5 ppb. These values represent upper-bound estimates of the concentrations that might be found in surface water and groundwater due to the use of propazine on grain sorghum.

Should the results of this assessment indicate a need for further refinement, please contact us as soon as possible so that we may schedule a Tier II assessment.

Background Information on GENEEC:

GENEEC is a screening model designed to estimate the pesticide concentrations found in water for use in ecological risk assessments. As such, it provides high-end values on the concentrations that might be found in ecologically sensitive environments due to the use of a pesticide. GENEEC is a single-event model (one runoff event), but can account for spray drift from multiple applications. GENEEC is hardwired to represent a 10-ha field immediately adjacent to a 1-ha pond, 2 meters deep with no outlet. The pond receives a spray drift event from each application plus one runoff event. The runoff event moves a maximum of 10% of the applied pesticide into the pond. This amount can be reduced due to degradation on field and the effects of binding to soil. Spray drift is equal to 1% of the applied concentration from the ground spray application and 5% for aerial application.

Though GENEEC was not originally designed for use in drinking water risk assessments, it does provide a reasonable upper-bound estimate for screening purposes. Surface-water-source drinking water tends to come from bodies of water that are substantially larger than a 1-ha pond. Furthermore, GENEEC assumes that essentially the entire basin receives an application of the chemical. In virtually all cases, basins large enough to support a drinking water utility will contain a substantial fraction of area that does not receive the chemical. Additionally, there is always some flow (in a river) or turnover (in a lake or reservoir) of the water so that the persistence of the chemicals near the drinking water utility intakes will be overestimated. Given all these factors, GENEEC does provide an upper-bound estimate of the concentration of a pesticide that could be found at the drinking water utility and therefore can be appropriately used in screening calculations. If a risk assessment performed using GENEEC output does not exceed the level of concern, then one can be reasonably confident that the actual risk will not be exceeded. However, because GENEEC can substantially overestimate true drinking water concentrations, it will be necessary to refine the GENEEC estimates if the level of concern is exceeded.

Background Information on SCIGROW:

SCIGROW provides a groundwater screening exposure value to be used in determining the potential risk to human health from drinking water contaminated with the pesticide. Since the SCIGROW concentrations are likely to be approached in only a very small percentage of drinking water sources, i.e., highly vulnerable aquifers, it is not appropriate to use SCIGROW concentrations for national or regional exposure estimates.

SCIGROW estimates likely groundwater concentrations if the pesticide is used at the maximum allowable rate in areas where groundwater is exceptionally vulnerable to contamination. In most cases, a large majority of the use area will have groundwater that is less vulnerable to contamination that the areas used to derive the SCIGROW estimate.

Modeling Inputs and Results:

Table 1 and Table 2 summarize the input values used in the model runs for GENEEC and SCIGROW, respectively. The lowest Koc out of the 8 reported values was used in GENEEC. The average of the two median Koc vaues was used in SCIGROW. For the aerobic soil metabolism half-life, the higher value of the two reported half-lives was used in GENEEC. The average of the two half-lives was employed in SCIGROW modeling. The modeling results associated with maximum allowable rate per year (1.2 lbs ai/acre) are presented in Table 3. Attached to this memo are copies of the original printouts generated from the GENEEC and SCIGROW runs.

Table 1. Environmental Fate Input Parameters for GENEEC.. •

Chemical	PROPAZINE		
PC Code	080808		
Water Solubility (20 °C)	8.6 mg/L		
Hydrolysis Half Life (pH 7)	stable		
Aerobic Soil Metabolism Half Life	289days		
Aerobic Aquatic Metabolism Half Life	not available		
Photolysis Half Life	stable		
Organic Carbon Adsorption Coefficient (Koc)	65 ml/g		
Date	February 11, 1998		

Table 2. Environmental Fate Input Parameters for SCIGROW.

Chemical	PROPAZINE		
Organic Carbon Partition Coefficient (Koc)	110 ml/g		
Aerobic Soil Metabolism Half-Life	197 days		
Date	February 11, 1998		

Table 3. Modeling Results for Use on Grain Sorghum

Chemical	PROPAZINE		
Application Method	Ground Spray		
Application Rate	1.2 lb a.i/acre		
Application Frequency	1		
Application Interval (days)	n/a		
GENEEC Peak EEC	54.2 ppb		
GENEEC 56-Day EEC (ppb)	53.0 ppb		
SCIGROW Groundwater Concentration (ppb)	3.5 ppb		

GENEEC PRINTOUT:

RUN No. 1 FOR propazine INPUT VALUES	
RATE (#/AC) APPLICATIONS SOIL SOLUBILITY % SPRAY ONE (MULT) NOINTERVAL KOC (PPM) DRIFT	INCORP DEPTH(IN)
1.200(1.200) 1 1 65.0 8.6 1.0 FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)	.0
METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC (FIELD) RAIN/RUNOFF (POND) (POND-EFF) * (POND)	COMBINED (POND)
289.00 2 N/A .0000 .00 GENERIC EECs (IN PPB)	*****
PEAK AVERAGE 4 AVERAGE 21 AVERAGE 56 GEEC DAY GEEC DAY GEEC	
54.23 54.15 53.73 53.04	

SCIGROW PRINTOUT:

APPL (#/AC) APP NO	L. URATE . (#/AC/YR			L AEROB DLISM (DA			 ''
1.20	0 1 WATER SCRE	1.200						
		3.461532						
= 192. =	.000 B= .460 G=	115.000 2.885	C= URATE=	2.283 r 1.20)= 2. 00 GWSC=	 .061 RII	.P= 4. 3.461532	. 42