MEMORANDUM
JUN 30 1982

TO: Hoyt Jamerson
Product Manager, No. 43
Registration Division (TS-767)

THRU: Christine F. Chaisson, Ph.D. C.F.Chaisson
Toxicology Branch
Hazard Evaluation Division (TS-769)

SUBJECT: Ametryn on Tanier and Yams (PP. No. 1E2576, Caswell No. 431).

Petitioner:
The Interregional Research Project No. 4
Rutgers University
New Brunswick, N. J. 08903

Action Requested:
Change of a previously approved tolerance for Ametryn residues from 0.1 ppm to 0.25 ppm on the raw agricultural commodities Tanier and Yams.

Recommendations:
Toxicology Branch recommends the establishment of the proposed tolerance at 0.25 ppm on the raw agricultural commodities Tanier and Yams.

Detailed Considerations:
1. Ametryne is listed on the memo of Dr. M. Rogoff, October 6, 1977 (See also D. Campt memo October 20, 1977) as a product containing nitrosamines.

2. The ADI was based on a NOEL of 50 ppm from a rat reproduction study with a safety factor of 100 fold and considered to be 0.025 mg/kg/day. This study was conducted by IBT and not yet validated, therefore, a Provisional Acceptable Daily Intake (PADI) was established on the basis of a NOEL of 1000 ppm from a subchronic 90-day feeding study in dog with a safety factor of 2000 fold and considered to be 0.0125 mg/kg/day.
3. The theoretical maximum residue contribution to the human diet from tolerances established under 40 CFR 180.258 up to this date is 0.0543 mg/day (1.5 kg of diet) or 7.24% of the PADI.

4. Establishment of the proposed tolerance for each of the raw agricultural commodities tanier and yams will result in an increase of 0.00017 mg/day in the TMRC or 0.012% of the ADI. This is considered a miniscule increase and toxicologically supportable.

5. Ametryn contains less than 1 ppm of nitrosamine i.e. below validated sensitivity of the analytical method (1 ppm, R. Loranger, RCB). Toxicology Branch concluded that a cancer risk assessment is not essential in this case since the establishment of the current tolerances as proposed will not appreciably increase the percent of the ADI utilized, and the increase in cancer risk in this case will be inconsequential.

6. No further tolerances should be granted until all major data requirements are fulfilled and the IBT studies are validated since the outcome of this validation may indicate more data gaps.

Toxicology Profile:

(R. Coberly, memo 8/31/72, S. Sterling memo 11/19/79)

A. Technical Ametryne:

1. Acute oral toxicity
 Rat LD₅₀ 1405 mg/kg
 Mouse LD₅₀ 945 mg/kg

2. Acute dermal toxicity
 Rabbit LD₅₀ > 10,200 mg/kg, IBT, validation is not available

3. Acute inhalation
 Rat LC₅₀ > 27 mg/L

4. Primary eye irritation
 mildly irritating

5. Subacute oral toxicity
 90-day dog feeding, NOEL 1000 ppm
 90-day rat feeding, NOEL 1000 ppm
 90-day rat intubation, NOEL 100 ppm

6. Chronic feeding
 2-year rat feeding, NOEL 1000 ppm, IBT, validation is not available

 2-year dog feeding, NOEL 1000 ppm, IBT, validation is not available
7. Oncogenicity
 Not available.

8. Teratogenicity
 Rat, NOEL for Fla-100 ppm

9. Reproduction
 3-generation reproduction in rat, NOEL 50 ppm, LEL 100 ppm (IBT study, questionable effect), validation is not available.

10. Mutagenicity
 Supplementary data were available to indicate that Ametryn was negative for mutagenic potential using microbial reverse mutation and rec-assay techniques. In vivo mammalian tests were deemed required as stated on page 26833 CFR Sec. 162.81, hazard to humans and domestic animals.

B. Ametryne Formulation Evik 80 W.
 (J. Doherty, memo 2/15/78)

1. Acute oral toxicity
 Rat, LD$_{50}$ 1766 (1350-2390) mg/kg,
 Tox Category III, Core-minimum.

2. Acute dermal toxicity
 Rabbits LD$_{50}$ 10.2 gm/kg

3. Acute inhalation toxicity
 Rat 4 hours LC$_{50}$ > 1.35 mg/L, Tox Category II,
 Rat not acceptable 4-hours LC$_{50}$ > 6.76 mg/L, Tox Category III, Core Minimum. Rat 4 hours LD$_{50}$
 2.22 mg/L, Tox category III, Core-minimal.

4. Primary eye irritation
 Rabbit, reversible corneal opacity, iridial and conjunctivae irritation, discharge, conjunctival hemorrhage, Tox category II, Core-minimum.

5. Primary dermal irritation
 Rabbits, mildly irritating, erythema, and edema, Tox category III, Core-minimum.
C. Major Data Gaps:

1. Two oncogenicity studies
2. A second teratology study
3. Acceptable evaluation of mutagenic potential
4. All IBT studies are considered data gaps until validation is completed.

George Ghali, Ph.D.
Toxicology Branch
Hazard Evaluation Division (TS-769)
ACCEPTABLE DAILY INTAKE DATA

<table>
<thead>
<tr>
<th>Crop</th>
<th>Tolerance</th>
<th>Food Factor</th>
<th>mg/day (1.5 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bananas (7)</td>
<td>0.250</td>
<td>1.42</td>
<td>0.00533</td>
</tr>
<tr>
<td>Corn, sweet (40)</td>
<td>0.250</td>
<td>1.43</td>
<td>0.00533</td>
</tr>
<tr>
<td>Corn, grain (58)</td>
<td>0.250</td>
<td>1.00</td>
<td>0.00375</td>
</tr>
<tr>
<td>Grapefruit (65)</td>
<td>0.100</td>
<td>0.99</td>
<td>0.00149</td>
</tr>
<tr>
<td>Oranges (106)</td>
<td>0.100</td>
<td>2.17</td>
<td>0.00325</td>
</tr>
<tr>
<td>Pineapple (123)</td>
<td>0.250</td>
<td>0.30</td>
<td>0.00111</td>
</tr>
<tr>
<td>Potatoes (127)</td>
<td>0.250</td>
<td>5.43</td>
<td>0.02035</td>
</tr>
<tr>
<td>Sugar, cane & beet (154)</td>
<td>0.250</td>
<td>3.64</td>
<td>0.01364</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NPl</th>
<th>Tmrc</th>
<th>% ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7500 mg/day (60 kg)</td>
<td>0.0543 mg/day (1.5 kg)</td>
<td>7.24</td>
</tr>
</tbody>
</table>

CURRENT ACTION

<table>
<thead>
<tr>
<th>Crop</th>
<th>Tolerance</th>
<th>Food Factor</th>
<th>mg/day (1.5 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yams (Yautia) (199)</td>
<td>0.250</td>
<td>0.03</td>
<td>0.00011</td>
</tr>
<tr>
<td>Tannin (214)</td>
<td>0.250</td>
<td>0.03</td>
<td>0.00011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NPl</th>
<th>Tmrc</th>
<th>% ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7500 mg/day (60 kg)</td>
<td>0.0545 mg/day (1.5 kg)</td>
<td>7.27</td>
</tr>
</tbody>
</table>