US ERA ARCHIVE DOCUMENT

Whang Phang, Ph.D. Reviewer:

Secondary Reviewer:

Tox. Branch II (7509C)

James Rowe, Ph.D. Jemes N. Place 4131/95

Tox. Branch II (750%)

DATA EVALUATION REPORT

Study Type: One-year oral toxicity study in dogs

(via gelatin capsule)

Chemical: DEET (N, N-diethyl-m-toluamide)

Caswell No. 346 DP Barcode Code: D207136 43320101 PC Code: N080301 MRID No. Submission No.: EPA ID No. N80301-051147 S472821

DEET Joint Venture/Chemical Specialties Manufacturers Sponsor:

Association

International Research and Development Corp. Testing Facility:

500 N. Main

Mattawan, Michigan 49071

Citation: Goldenthal, E.I. (1994) Evaluation of DEET in a one-year chronic oral toxicity study in dogs. International Research and Development Corp.; Study No. 555-021. January 30, 1994. Submitted to EPA by CSMA. EPA MRID No. 43320101

Conclusion: Groups of beagle dogs (4/sex/dose) received DEET in a gelatin capsule at dose levels of 30, 100, or 400 mg/kg/day. The control animals received white mineral oil in gelatin Each daily dose was divided into two equal administrations. One was administered in the morning, and other was given in the afternoon at one hour following the presentation of food.

Under the conditions of this study, DEET, at dosages of 30 and 100 mg/kg/day, did not produce systemic toxicity in beagle dogs. However, at 400 mg/kg/day DEET produced the following effects:

- 1. An increase in the incidence of ptyalism in both male and females. A male and a female dog showed signs of tremor. Most of the clinical signs were observed within 30 minutes after dosing.
- 2. A decrease in food intake and body weights in males and females during the first 5 weeks of the treatment.
- 3. A decrease in cholesterol level was seen in males.

- 4. Gross examination showed an increased incidence of thin males and females.
- 5. An increase in platelet level in female dogs was also seen.
- 6. Hyperplasia of uterine epithelium.

Based on the finding of the decreases in food consumption and body weights, an increase in the incidence of clinical signs, and a decrease in cholesterol levels in 400 mg/kg dogs, the LEL for chronic toxicity in dogs is 400 mg/kg; NOEL, 100 mg/kg.

This study meets the data requirements for a chronic toxicity study in dogs (Guideline No. 83-1b) and is classified as minimum.

The report alluded to seeing clinical signs such as unusual head movement, compulsive biting and scratching, and convulsion in dogs which received DEET in gelatin capsules at dose levels of 125 mg/kg or above in two other dose range-finding studies in dogs. Tox. Branch II requests that these studies be submitted for review.

Methods and Materials

Test article: Technical DEET (98.3%) was "a mixture consisting of equal parts of four representative production runs" supplied by four manufacturers (McLaughlin Gormley King Co, Miles Lab., Virginia Chemical Co., and Morflex Chemical Co.). The test article was a clear liquid (Lot No. A-1-96) and assigned the ID No. IRDC 8812B at the testing laboratory. The test article was found to be stable at room temperature.

Test animals: Twenty male and 20 female purebred beagle dogs (≈5-6 months of age) were obtained from Ridglan Farms, Mt. Horeb, Wisconsin. During the acclimation period, the dogs were given a physical examination. Stool flotation tests were performed on all dogs. Prior to the initiation of the study, an ophthalmology examination and hematology, clinical chemistry, and urinalysis measurements were performed. Only healthy animals were selected for the study.

Study Design

1. <u>Dose selection</u>: The dosage selection for this study was based on the results of six dose-range finding studies. Three dose-range finding studies used dietary administration; in these 3 studies dietary concentrations ranging from 300 to 10,000 ppm were employed. No compound-related systemic

- 4. Gross examination showed an increased incidence of thin males and females.
- 5. An increase in platelet level in female dogs was also seen.
- 6. Hyperplasia of uterine epithelium.

The decreases in food consumption and body weights were transient, and a decrease in cholesterol levels was closely associated with the decreases in food consumption and body weight. All of The six findings in the 400 mg/kg dogs appeared to be of marginal biological significance, and 400 mg/kg could be established as NOEL/LEL.

This study meets the data requirements for a chronic toxicity study in dogs (Guideline No. 83-1b) and is classified as minimum.

The report alluded to seeing clinical signs such as unusual head movement, compulsive biting and scratching, and convulsion in dogs which received DEET in gelatin capsules at dose levels of 125 mg/kg or above in two other dose range-finding studies in dogs. Tox. Branch II requests that these studies be submitted for review.

Methods and Materials

Test article: Technical DEET (98.3%) was "a mixture consisting of equal parts of four representative production runs" supplied by four manufacturers (McLaughlin Gormley King Co, Miles Lab., Virginia Chemical Co., and Morflex Chemical Co.). The test article was a clear liquid (Lot No. A-1-96) and assigned the ID No. IRDC 8812B at the testing laboratory. The test article was found to be stable at room temperature.

Test animals: Twenty male and 20 female purebred beagle dogs (≈5-6 months of age) were obtained from Ridglan Farms, Mt. Horeb, Wisconsin. During the acclimation period, the dogs were given a physical examination. Stool flotation tests were performed on all dogs. Prior to the initiation of the study, an ophthalmology examination and hematology, clinical chemistry, and urinalysis measurements were performed. Only healthy animals were selected for the study.

Study Design

1. <u>Dose selection</u>: The dosage selection for this study was based on the results of six dose-range finding studies. Three dose-range finding studies used dietary administration; in these 3 studies dietary concentrations ranging from 300 to 10,000 ppm were employed. No compound-related systemic

toxicity was seen, but diet rejection occurred at concentrations above 3,000 ppm (MRID No. 43514202). The dietary concentration of 3,000 ppm corresponded to a dosage of approximately 92 mg/kg.

The other 3 dose-range finding studies used gelatin capsule as a means of administering DEET. In the first two studies, DEET was administered as a single bolus daily dose, which ranged from 62.5 to 500 mg/kg/day, via gelatin capsule. reported that at dose levels of 125 mg/kg/day and above, a wide arrayed of severe clinical signs including unusual head movements, compulsive biting and scratching, and convulsions were observed immediately after dosing (p. 13-14 of this report). These two studies have not been submitted to the Agency. Tox. Branch II is interesting in learning more about the effects of DEET in dogs found in these two dose-range finding studies. In the third gelatin capsule study, each daily dose was divided into two equal doses, which were administered once in the morning and once in the afternoon following a one-hour feeding period. This study was submitted to the Agency, and it was reviewed (MRID No. 43514201). dosages employed in this study were 50, 100, 200, and 400 mg/kg. There was no acute effect seen in this dosing regimen. At 400 mg/kg, unusual head movements and decreases in body weight and food consumption were seen.

Based on the results of these dose-range finding studies, dosages of 30, 100, and 400 mg/kg were selected for the chronic toxicity study. The experimenters also decided to apply the divided daily dose regimen because it minimized the potential acute effects, allowed for a higher daily dose, and more closely simulated the exposure patterns under normal use conditions of DEET as an insect repellent.

2. Animal assignments: Sixteen male and 16 female beagle dogs were selected for this study. The body weights of males were in the range of 6.6 to 9.9 kg; females, 5.6 to 8.7 kg. The selected animals were divided into 4 treatment groups and a control group "... with the intent of developing groups with similar body weight means and standard deviation..." as follows:

Dosage Levels	Number of	Animals
mg/kg	Males	<u>Female</u>
(control) 0	4	4
30	4	4
100	4	4
400	4	4

Data excerpted from the report; p. 15 (MRID No.43320101)

1

3. Test article preparation and administration: With a glass syringe, an appropriate amount of DEET was placed into a gelatin capsule, which has a volume of approximately 7 ml. For the control group, an appropriate amount of white mineral oil was placed into the capsule. The volume of DEET or white mineral oil placed into a capsule was based on a test animal's most recent body weight measurement.

The stability of DEET in the capsule was analyzed after storing the prepared capsule for 14 days at room temperature. At the end of the 14 days, aliquots of DEET from the capsule and that from the stock solution were analyzed and compared. The results indicated that DEET was stable in the gelatin capsule for at least 14 days.

Each animal was dosed twice daily in equally divided doses of 30, 100, and 400 mg/kg/day. The animals were dosed one hour following feeding, 7 days/week, throughout the study. Food was normally offered at approximately 8:00 am and 1:00 pm. The control dogs received white mineral oil in similar treatment schedules.

- 4. Physical examinations: Physical examinations were conducted on each dog at pretest, 3, 6, 9, and 12 months of study. The examinations included auscultation of the thoracic cavity and respiratory tract and palpitation of the thoracic cage and abdomen.
- 5. <u>Clinical observations</u>: The test animals were observed for any clinical signs of toxicity, moribundity, and mortality twice daily throughout the study.
- 6. Body weight and food consumption: Individual body weight measurements were determined at pretest and weekly for the first 14 weeks of study and once every two weeks thereafter and at the termination of the study. Individual food consumption measurements were conducted in a similar manner as the body weight determinations.
- 7. Ophthalmological examination: Eye examination was conducted on each dog once during pretest period and during the last week of the study. The examination was conducted following pupillary dilatation with 1% tropicamide solution, and a binocular indirect ophthalmoscope was utilized.
- 8. Hematology and biochemical analyses: Blood samples were collected from the test animals following an overnight fast. Hematology and biochemical analyses were conducted using the blood samples collected prior to the initiation of the study from 20 dogs/sex, at 6 and 12 months of the study from all test dogs (16/sex).

Hematology: The following hematological parameters were
 measured:

erythrocyte count
leukocyte count
hematocrit
reticulocyte count
Mean corpuscular
hemoglobin (MCH)

hemoglobin
differential leukocyte count
platelet
Mean corpuscular volume (MCV)
Mean corpuscular hemoglobin
concentration (MCHC)

<u>Clinical chemistry</u>: The following biochemistry parameters were determined:

sodium
chloride
phosphorus
aspartate aminotransferase (AST) (SGOT)
urea nitrogen
total protein
globulin
alkaline phosphatase
cholesterol

potassium
calcium
total bilirubin
alanine aminotransferase
(ALT) (SGPT)
creatinine
albumin
glucose
creatine phosphokinase (CPK)

9. <u>Urinalysis</u>: Urine samples were collected during the fasting period, and the following parameters were examined:

> color and appearance specific gravity pH glucose bilirubin nitrites leukocytes

volume
microscopic elements
protein
ketones
occult blood
urobilinogen

- 10. Pathology: At the end of one year of treatment, all animals were weighed and sacrificed with pentobarbital over a 3 day period with animals from each group euthanized on each day.
 - a. Necropsy: A thorough postmortem examination was conducted on each animal. The abdominal, thoracic, and cranial cavities were examined for abnormalities.
 - b. Organ weights: The following organs were removed, trimmed free of fat, and weighed:

adrenals brain

liver ovaries

kidneys heart thyroid/parathyroid testis with epididymis pituitary gallbladder

c. <u>Histopathology</u>: The following organs were removed, placed in the phosphate-buffered neutral formalin, and processed for microscopic examination.

adrenal kidney (2) aorta liver bone marrow (femur, rib & bone (femur, rib, & sternum) sternum) lung with bronchi heart bone marrow & smears lymph nodes (tracheobronchial, mesenteric, mandibular) brain eye with optic nerve mammary gland pancreas gallbladder GI tract: pituitary prostate esophagus stomach salivary gland sciatic nerve duodenum jejunum skeletal muscle (thigh) ileum skin spinal cord cecum spleen colon tissue masses rectum thymus testes with epididymis thyroid/parathyroid urinary bladder trachea gross lesions uterus

A grading system for any lesion consisting of trace, mild, moderate, and severe was used to define gradable lesions for comparison purposes.

- 11. Statistics: The details of statistical analysis methods were excerpted from the report and presented in Appendix A (p.16).
- 12. Quality assurance: A statement of no data confidentiality claim, a statement of compliance, a flagging statement, and a quality assurance statement were signed and included in the report.

Results

1. Clinical observation: The data indicated that there was an increase in the incidence of ptyalism in 400 mg/kg males (4/4) and females (3/4) during a major portion of the study; the incidence of ptyalism was not seen in the controls of either male or female dogs. There was a male dog (Animal No. 3597)

in the 400 mg/kg group, which showed signs of tremor on 5 occasions between weeks 29 and 43. Another 400 mg/kg male (Animal No. 3601) also showed a slight tremor at week 37. A 400 mg/kg female showed signs of tremor. Emesis was seen in all dose groups at various times, and that seen in the 400 mg/kg group was more frequent. In general the clinical signs were observed within 30 minutes after dosing.

- 2. Survival rates: No deaths occurred during the study.
- 3. Physical examination: Physical examinations did not reveal a compound-related effect in any group of the treated dogs.
- 4. Body weights: The weekly body weight measurements are presented in Table 1 (p.10). A summary of the mean body weight values at pretest, weeks 13, 26, 40, and 52 are also presented in Table 2 (p.11). The weekly body weight data indicated that at pretest, the body weights of all test groups of both sexes were comparable, but as soon as the treatment began they dropped slightly in the 400 mg/kg males and females. The slight reduction in body weight persisted throughout the study. However, the decrease did not show statistical significance. In addition, the body weight gains as indicated by the percentage difference from pretest was substantially reduced in 400 mg/kg males and females (Table 2). As the study progressed, the body weight gain gradually improved, but it was unable to approach the level of the controls.
- 5. Food consumption: There was a reduction in food consumption during the first 5 weeks of treatment in 400 mg/kg males and females (Table 3, p.12). During the first 3 week in male and second week in females the decrease in food intake was statistically significant ($p \le 0.01$). After the 5 week, the food consumption of the 400 mg/kg animals began to gradually approached that of the controls and the lower dose groups.
- 6. Ophthalmological examination: No treatment-related toxicity was seen in the eye examinations.
- 7. Hematology: In male dogs, compound-related changes in hematological parameters were not seen. In 400 mg/kg female dogs, there were slight decreases in hematocrit at termination and in increases in platelet levels at both 6 month and at terminal sacrifice (Table 4, p.13)
- 8. Clinical chemistry: The biochemical analysis data indicated a statistically significant increase ($P \le 0.01$) in the alkaline phosphatase level in 400 mg/kg males at the 6 month measuring period, but at termination (12 months) the level was comparable to that of the controls (Table 5a, p.14). A statistically significant decrease in cholesterol level was

also observed in 400 mg/kg males at 6 months (p< 0.05) and at termination (p<0.01). A slight increase in potassium level was also seen in 400 mg/kg males at 6 months only (Table 5a). In females, there was a slight decrease in cholesterol level in 400 mg/kg group at the 6 months, but the decrease was not statistically significant (Table 5b, p.15).

- 9. <u>Urinalysis</u>: There were no compound-related changes in any parameters analyzed in any dose groups.
- 10. Macroscopic: The gross examination did not reveal any compound-related effects except that 2/4 males and 3/4 females of the 400 mg/kg appeared to be thin and the uterus in 2/4 females of the 400 mg/kg group were distended with fluid.
- 11. Organ weights: The relevant organ weights were excerpted from the report and presented in Table 6. Statistically significant and compound-related organ weight changes were not found in dose groups.

Table 6 Summary of Selective Organ Weights in Male Dogs Brain (q) Testis with epididymis Left Right (Control) 0 82.42 11.77 11.69 11.36 11.13 87.68 30 10.40 10.23 100 82.31 79.79 10.10 11.57 400

Compound-related histological changes were 12. Histopathology: not found in treated males of any dose groups. An increase in the incidence of mild hyperplasia of epithelia of uterus was seen in 100 and 400 mg/kg females (Controls, 0/4; 30 mg/kg, 0/4; 100 mg/kg, 1/4; 400 mg/kg, 3/4). Uterine hyperplasia can be attributed to many effects, and, by itself, it is not considered as an adverse effect. The registrant reported that hyperplasia of the uterine epithelia seen in this study was due to the hormonal effects; however, no data were submitted to support this argument. The information on the estrous cyle could have been helpful in determining whether or not this finding was due to the hormonal effect. In the absence of any supporting data, the uterine hyperplasia seen in the 400 mg/kg females could be considered as a treatment-related effect, and this was also supported by the results of the gross examination which found 2/4 females in the 400 mg/kg group had distended uterine filled with fluid.

A single incidence of uterine hyperplasia seen in 100 mg/kg females may or may not be considered as a significant

^{+:} Data excerpted from the report; p. 80-83 (MRID No.43320101).

response. Under the conditions of this study, no other effects were seen in the 100 mg/kg dogs; the single incidence of uterine hyperplasia found in 100 mg/kg females would not be considered as a significant effect.

Discussion

Groups of beagle dogs (4/sex/dose) received DEET in a gelatin capsule at dose levels of 30, 100, or 400 mg/kg/day. The control animals received white mineral oil in gelatin capsule. Each daily dose was divided into two equal administrations. One was administered in the morning, and other was given in the afternoon at one hour following the presentation of food.

Under the conditions of this study, DEET, at dosages of 30 and 100 mg/kg/day, did not produce systemic toxicity in beagle dogs. However, at 400 mg/kg/day DEET produced the following effects:

- 1. An increase in the incidence of ptyalism in both male and females. A male and a female dog showed signs of tremor. In general clinical signs were seen within 30 miniutes after dosing.
- 2. A decrease in food intake and body weights in males and females during the first 5 weeks of the treatment.
- 3. A decrease in cholesterol level was seen in males.
- 4. Gross examination showed an increased incidence of thin males and females.
- 5. An increase in platelet level in female dogs was also seen.
- 6. Hyperplasia of uterine epithelium.

Some of the effects (ptyalism, decrease in cholesterol level, and thin appearance) seen in 400 mg/kg male and female dogs in this study were consistent with those seen in the 8-week doserange finding study in dogs which were administered DEET via gelatin capsules (MRID No. 43514201). Ptyalism was not seen in dogs which received DEET in the diet. In the dose-range finding study, a decrease in testis/epididymis weight was also seen, but the testis/epididymis weights in 400 mg/kg males in the current study were comparable to those of the controls. The significance of the decrease in testis weight seen in the dose-range finding study was difficult to determine because there was no histological changes in the testis and the current study did not find a similar effect.

Based on the finding of the decreases in food consumption and body weights, an increase incidence of clinical signs, and a decrease in cholesterol levels in 400 mg/kg dogs, the LEL for chronic toxicity in dogs is 400 mg/kg; NOEL, 100 mg/kg.

This study meets the data requirements for a chronic toxicity in dogs (Guideline No. 83-1b) and is classified as minimum.

The report alluded to seeing clinical signs such as unusual head movement, compulsive biting and scratching, and convulsion in dogs which received DEET at dose level of 125 mg/kg or above in gelatin capsules in two other dose range-finding studies in dogs. Tox. Branch II requests that these studies be submitted for review.

A . Males: Suggary of Body Weight Values*

	Veek										400 # - / 4			
	of _		day (Control			/kg/day		100 (ng/kg/day		400 :	ng/kg/day	•	
Parameters Heasured	Study	MEAN	\$.0.	N	HEAN	\$.0.	N	HEAN	\$.0.	М	HEAM	S.D.		
Body Weight	Pretest	8.3	1.36	4	8.5	0.95	4	8.5	0.65	4	8.5	0.66	,	
Kilograms	1	8.5	1.35	4	8.7	1.04	.4	8.6	0.91	4	7.9	0.62		
	2	8.8	1.37	4	9.0	1.04	4	8.8	1.00	4	8.0	0.83		
	.3	8.9	1.37	4	8.9	0.97	4	8.8	0.94	4	7.7	0.81		
	4	9.1	1.24	4	9.4	0.93	4	9.2	0.97	4	8.3	0.95		
	5	9.6	1.34	4	9.5	0.86	4	9.4	1.04	4	8.3	0.68		
4	:6	9.8	1.44	4	9.8	0.88	.4	9.6	1.14	Á	8.7	0.93		
	7	9.9	1.55	4	9.9	0.83	4	9.8	0.96	4	8.6	1.08		
	8	10.1	1.46	4	10.1	0.88	4	9.9	1.18	4	8.7	0.97		
	9	10.3	1.50	.4	10.3	0.90	4	10.2	1.04	4 .	8.7	0.95		
	10	10.3	1.54	4	10.5	0.83	4	10.3	1.32	À	9.3	0.81		
	11	10.4	1.55	4	10.6	0.90	4	10.3	1.31	i	9.4	0.76		
•	12	10.4	1.56	4	10.5	0.93	4	10.2	1.26	4	9.2	0.97		
	13	10.4	1.45	4	10.5	1.02	4 .	10.2	1.31	i i	9.2	0.77		
	14	10.6	1.53	4	10.8	0.95	4	10.6	1.35	à	9.6	0.84		
	16	10.7	1.68	4	10.8	0.93	À	10.6	1.39	- 1	9.7	1.02		
	18	11.1	1.58	4	11.1	1.02	Ä	11.1	1.34	Ä	10.1	1.03		
	20	10.8	1.64	4	11.1	1.15	4	10.7	1.37	- 7	9.7	1.06		
	22	11.1	1.70	4	11.0	1.02	À	11.0	1.32	1	9.9	0.85		
	24	11.2	1.75	Ã	11.2	1.05	À	11.0	1.25	7	10.1	0.79		
	26	10.9	1.73	À	11.0	1.14	4	10.7	1.26	À	9.7	0.83		
	28	11.4	1.78	Á	11.4	1.25	À	11.1	1.29	Ā	10.4	0.86		
	30	11.4	1.68	Ä	11.6	1.22	- i	11.3	1.17	7	10.4	0.89		
	32	11.4	1.99	À	11.7	1.22	À	11.4	1.31	7	10.6	0.96		
	34	11.3	1.65	À	11.6	1.14	7 -	11.3	1.30	7	10.7	1.15		
	36	11.3	1.86	Ä	11.7	1.16	100	11.3	1.30	7	10.7	1.13		
	38	11.2	1.77	À.	11.5	1.28	Ä	11.1	1.24	7	10.7	1.08		
	40	11.4	1.85	Ä	11.7	1.28	Ä	11.2	1.15	7	10.7	0.97		
	42	11.4	1.75	. i	11.8	1.26	Ä	11.2	1.32	7	10.5	0.97		
	44	11.6	1.96	4	11.9	1.40	I	11.4	1.25	7	10.9	1.25		
	46	11.6	1.74	7	12.0	1.29	7	11.4	1.13		11.0	1.16		
				• •	• •		•	4	1.13	•	11.0	1.10		
	48	11.4	1.68	-4	11.7	1.25	4	11.2	1.10	4	10.9	1.06		
•	50	11.4	1.73	4	11.7	1.21	4	11.2	1.16	4	10.9	0.91		
	52	11.4	1.81	4	11.6	1.26	4	11.1	1.39	4	10.9	1.19		

55	5-	02	1

	Vesk		<u>B.</u>		Femeles: Summary of Body Weight Values*									
9	of	0 mg/kg/d	ley (Control)		30 .	g/kg/day		100 .	m/ka/dav		400 -	g/kg/day		
Parameters Measured	Study	HEAM	\$.0.	N	HEAM	\$.0.	1	HEAM	9/kg/day 5.D.	1	KEAN	S.D.	N	
Body Weight	Pretest	7.2	0.75	4	6.9	1.07		6.8	0.72	A	7.0	1.28		
(ilograms	1	7.2	0.90	Ä	7.1	1.07	Ä	7.1	0.49	7	6.5	1.31	- 7	
	2	7.6	1.04	Ä	7.2	1.10	7	7.3	0.50	7	6.6	1.06	-7	
	3	7.5	0.99	Ã	7.3	1.23	7	7.2	0.49	1	6.5		:	
	4	7.8	1.01	4	7.6	1.35	7	7.6	0.48	7		1.17	•	
	Š	7.9	1.07	1	7.8	1.44	7	7.7		•	6.7	1.18	• •	
	ă	8.0	1.07	7	7.9	1.48	- 1	7.8	0.46	•	6.8	1.29	•	
	7	8.0	0.93.	7	8.1		7		0.56	. •	7.0	1.25	- 4	
• •	<u> </u>	8.2	0.99	- 7		1.52	- •	7.9	0.50	4	7.0	1.07	4	
		8.4	0.99	7	8.1	1.66	4	8.0	0.49	4	7.1	1.23	- 4	
	10	8.4	1.09	7	8.2	1.61		8.0	0.36	- 4	7.4	1.47	4	
	11	8.4		1	8.3	1.71	•	6.3	0.50	4	7.4	1.51	- 4	
	12		1.17	•	8.3	1.72	4	8.3	0.41	4	7.3	1.26	4	
	13	8.3	1.27	•	8.3	1.74	4	8.3	0.47	4	7.2	1.23	- 4	
	- 14 - 14	8.4	1.26	•	8.2	1.74	4	8.2	0.38		7.3	1.44	-4	
•	16	8.6	1.26	•	8.5	1.78	4	8.4	0.39	4	7.5	1.33	4	
		8.6	1.48	4	8.4	1.90	4	8.5	0.37	4	7.4	1.36	4	
	18	9.1	1.35	4	8.7	1.79	4	8.8	0.39	4	7.7	1.28	4	
	20	8.9	1.54	4	8.5	1.80	4	8.6	0.24	· 4	7.5	1.29	-4	
	22	9.0	1.43	4	8.5	1.86	4	8.7	0.40	4	7.7	1.19	4	
	24	9.1	1.42	4	8.7	i . 85	4	8.9	0.30	A	7.8	1.40	4	
	26	8.7	1.30	4	8.5	1.78	4	8.8	0.53	4	7.7	1.47	4	
8	28	9.1	1.06	4	8.9	1.97	4	8.8	0.44	4	7.7	1.46	4	
	30	9.2	1.08	4	8.9	1.81	4	9.1	0.47	4	8.0	1.42	4	
	32	9.2	1.12	4	8.8	1.77	4	9.0	0.74	4	8.2	1.51	.4	
	34 36	9.2	1.38	4	8.5	1.72	4	8.8	0.44	4	8.1	1.49	. 4	
	36	9.1	1.26	4	8.7	1.87	4	8.7	0.68	4	8.1	1.50	4	
	38	9.0	1.18	4 ".	8.6	2.07	4	8.6	0.72	À	8.1	1.53	À	
	40	9.1	1.24	4	8.9	2.02	4	8.8	0.67	4	8.3	1.66	Ä	
•	42	9.4	1.41	Á	8.9	1.94	Á	8.8	0.51	Ā	8.4	1.66	À	
	44	9.5	1.56	4	9.0	1.07	Ā	8.5	0.47	7	8.7	1.54	7	
4	46	9.5	1.44	Ă	9.0	1.92	Ā	9.6	0.61	7	8.9	1.46	- ;	
	48			*			7			7			•	
		9.3	1.49	•	8.9	1.95	4	8.9	0.46	4	8.7	1.44	4	
	58	9.4	1.36	•	9.0	2.43	4	9.6	0.45	•	8.7	1.45	4	
	52	9.3	1.29	.4	8.7	1.98	4	8.9	0.50	4	8.7	1.58	- 4	

555-02

S.O. - Standard Deviation H - Humber of Animals

[&]quot;No statistical significance observed

^{+:}Data excerpted from the report; p. 51-54(MRID No. 43320101).

TABLE 2

Dosage Level mg/kg/day	<u>.</u>	sean Body Weig	hts, kg (% Dif	ference from P	retest)
	8.3 8.5 8.5 8.5	_	<u>Week 26</u> 10.9 (+31.3) 11.0 (+29.4) 10.7 (+25.9) 9.7 (+14.1)	Week 40 11.4 (+37.3) 11.7 (+37.6) 11.2 (+31.8) 10.7 (+25.9)	Week 52 11.4 (+37.3) 11.6 (+36.5) 11.1 (+30.6) 10.9 (+28.2)
0 (Control) 30 100 400	7.2 6.9 6.8 7.0	Week 13 8.4 (+16.7) 8.2 (+18.8) 8.2 (+20.6) 7.3 (+4.3)	Female Week 26 8.7 (+20.8) 8.5 (+23.2) 8.8 (+29.4) 7.7 (+10.0)	Week 40 9.1 (+26.4) 8.9 (+29.0) 8.8 (+29.4) 8.3 (+18.6)	Week 52 9.3 (+29.2) 8.7 (+26.1) 8.9 (+30.9) 8.7 (+24.3)

+:Data excerpted from the report; p. 22. (MRID No. 43320101).

TABLE 3+

	Veek	· · · · · · · · · · · · · · · · · · ·			es: Summery	or road Can	sumpt i a	n Values					
Perameters Heasured	of Study	0 mg/kg/	day (Contro	1)	30 m	g/kg/day		100	eg/kg/day		400 .	ig/kg/day	
ALCHERTA MASSALAN	acuty	R.AR	S.D.	#	HEAN	\$.D.	N	HEAM	\$.0.	H	MEAM	S.D.	-
Fead Consumption	1	280	62.0		201		_						
g/antmal/day	ž	320	46.5	- 7	301	38.0	- 4	298	54.7	4	161,2	17.1	4
	3	290	38.2	7	305	38.1	4	295	31.7	4	227	38.8	- 2
	Ā	337		•	310	50.6	4	304	32.6	4	2171	13.5	- 2
€	è	332	43.1	-4	339	21.6	4	301	52.7	.4	275	49.9	- 7
	,		58.7	4	328	43.5	4	331	62.5	á	260	33.6	- 3
	· 0-	327	57.9	4	341	35.3	4	323	39.3	À	301	64.8	- 7
	- 1	318	76.6	4	330	52.4	4	317	58.6	Ä	294		:
		327	53.9	4	361	43.8	Á	340	53.2	7		35.7	3
•	9	360	65.5	4	343	31.1	Ä	334	28.8	7	288	20.7	4
	10	330	40.6	-4	354	41.5	Ä	306		•	323	64.2	- 4
	11	327	66.7	4	318	56.7	7	305	41.9	4	351	35.2	4
	12	329	70.7	à	344	47.0	7		36.2	4	314	29.8	4
•	13	306	57.0	Ä	308	70.Z	7	312	33.1	4	297	69.0	4
	14	317	57.3	7	344		. •	295	59.5	4	302	46.7	4
	16	327	65.6	7	318	79.8	. 4	321	49.7	4	350	39.5	4
•	18	349	68.4	7		24.8	4	312	32.1	4	318	45.6	7
	20	334		?	362	50.7	4	342	71.0	4	330	68.9	7
	22	322	71.7	*4	330	65.6	4	317	72.7	À	320	41.3	- 7
			47.1	4	331	53.3	4	320	70.2	À	319	27.9	:
	24	312	66.6	4	287	35.0	4	335	89.0	7	. 307		•
	26	304	72.0	.4	309	64.0	Å.	289	46.7	7	344	78.0	- 4
	28	313	53.8	4	313	71.6	Á	284	40.5	7		65.1	4
	30	295	35.6	4	326	37.7	À	310		•	339	32.6	4
	32	321	83.1	4	339	51.7	7	296	36.2	•	328	56.5	4
	34	341	70.6	Å.	332	52.6	7		14.4	4	361	65.3	4
	36	318	46.8	ă ·	318	45.4	7	325	42.6	4	348	43.9	4
100	36	319	57.8	Ä	324	41.0	7	314	24.1	4	299	38.1	4
	40	313	60.8	7	337		•	299	32.2	4	331	15.1	4
*	42	331	69.7	7		62.9	4	278	15.0	4	296	32.9	4
	44	309	64.5	. 7	346	60.2	4.1	320	21.5	4	332	43.0	ã
	AR	334		. 🕇	308	46.8	4	314	29.8	.4	317	25.6	4
	48		68.8	4	353	45.7	4	309	23.3	4	311	24.9	7
		306	59.1	4	330	36.2	4	311	31.4	À	287	22.9	7
	50	349	62.4	4 .	341	57.2	A .	327		:			4
	52	320	60.3	Á	315	66.8	7	271	9.2	•	.351	20.7	4
5-691							•	2/1	27.0	4	316	37.3	4

Parameters Heasured	of Sauda	0 mg/kg/	day (Contr	ol)	30 a	g/kg/day		100	mg/kg/day				
	acuty	HEAR	5.0.	H	MEAN	5.D.	N	HEAM	\$.D.	-	HEAM	mg/kg/day	
ood Consumption	1	255							J.V.		TEAN	5.0.	!
/anime]/day	•	256	22.2	, 4	257	49.7	4	244	32.6	4	100		
,, aa.,	٤	274	32.6	4	241	47.1	Ä	246		•	186,	38.5	4
* 5	3	276	43.5	4	266	53.3	7	234	13.7	4	1971	24.2	4
	4	261	37.2	4	262	49.0	7		27.1	-4	224	44.7	4
	5	285	29.5	À	280	59.5	•	257	18.6	4	267	71.1	. 4
	6	286	47.3	À	262		•	250	19.1	. 4	259	71.2	4
	7	259	38.5	7	255	51.9	•	309	63.1	4	. 258	54.2	À
	8	207	24.5	7		46.0	- 4	236	7.6	4 .	216	39.9	7
	9	291	33.9	7	277	67.6	4	261	9.8	4	274	37.1	
	10	301		• •	293	61.4	4 .	265	22.3	á	285	58.8	3
	îĭ	279	27.6	•	271	71.7	4	267	19.5	À	290	96.5	
	12	286	43.2	. 4	243	43.1	4	250	36.6	i	247		•
•	13	269	24.8	. 4	256	49.7	4	246-	17.7	7	242	25.0	4
	14		55.6	4	206	42.3	4	229	27.5	7		31.1	4
•		295	65.9	4	205	100.4	À	255	25.2	•	263	45.1	4
•	16	298	38.7	- 4	254	72.5	Ä	275	25.2 58.6	1	274	43.2	4
	18	313	60.0	- 4	286	81.7	7	286		4	263	53.9	4
	20	276	51.9	4	236	61.6	7	238	48.3	4	282	39.1	- 4
•	22	290	52.5	4	238	38.9	7		32.1	4	287	49.8	4
	24	292	49.2	4	212	48.1	7	229	15.0	.4	241	49.3	4
	26 .	251	90.8	Ä	255		•	286	153.2	4	306	144.0	4
	28	250	53.1	7	235	54.3	. 4	223	71.6	4 .	291	113.9	Ã
	30	297	62.2	7		46.8	4	267	49.8	4 -	315	133.4	Ä
	32	315	73.3	7.	263	39.8	4	245	69.3	4	289	37.8	7
	34	267		•	224	35.6	.4	226	74.4	-4	327	108.3	- 7
	36	302	42.6	7 .	221	58.5	4	234	58.0	4	282	52.3	7
.4	38	273	37.1	4	227	77. 1	4	230	52.1	Ā	267		7
	40		31.9	4	243	75.8	4	209	52.5	1		26.5	4
	42	286	61.5	45	249	46.6	4	228	39.7	4	283	43.0	4
		303	41.6	4	272	36.7	á	232	52.5	:	263	46.9	4
	.44	298	43.7	4	267	40.9	À	242 .		.5	295	46.7	4
	46	271	28.6	4	267	28.8	7		12.8	4	278	30.6	4
	48	286	53.5	4	259	43.4	7	247	25.5	4	298	58.4	4
	50	316					4	248	17.7	4	283	58.8	4
	52		57.4	4	278	42.6	4	267	20.4		295		
	95	245	96.4	4	220	41.0	À	213	32.2	7	25 0	35.0 51.1	4

S.D. - Standard Deviation

[&]quot;No statistical significance observed

¹ Significantly different from the control group; pc0.05 Significantly different from the control group; pc0.01

^{+:} Data excerpted from the report; p. 55-58 (MRID No. 43320101).

Malan.	SUMMERY	-6	Manage -	1	M-1

Parameter	Measurement_	0 mg/kg/d	lay (Control)	30 m	g/kg/day		100	ng/kg/day		400 =	eg/kg/day	
Measured	Interval	HEAM	S.D.	H	MEAN	\$.0.	N	HEAN	S.D.	H	HEAN	\$.0.	н
eukocytes	Pretest	11.2	2.41		,, ,			== .					
×10 ³ /cumm	6 Month	9.9		•	11.5	3.51	- 4	12.0	1.85	4	11.8	2.93	4
AZU / CUBINA			1.27	4	8.8	1.06	4	10.1	1.71	4	11.4	0.56	- 4
	Terminal	9.0	1.89	4	8.8	0.81	4, 5,	10.0	1.64	4 '	11.2	1.23	4
Erythrocytes	Pretest	6.04	0.444	4	6.20	0.366	4	5.98	0.743	4	6.00	A 20¢	
k10°/cumma	6 Month	6.97	1.028	4	6.56	0.444	À	6.74	0.473	7	6.17	0.396	•
	[ermina]	7.05	0.681	4	6.90	0.937	ì	6.53	0.473	- ;	6.03	0.671	•
									0.507	•	6.03	0.462	•
lemoglobin	Pretest	13.9	0.94	4	13.9	0.53	4	13.9	1.30	4 :	13.9	0.98	
g/dl	6 Month	16.1	1.86	4	15.1	0.74	4	15.8	0.72	1	14.5	1.34	- 3.
	Terminal	16.5	1.15	4	15.9	1.79	4	15.6	0.92	7	14.6	1.15	- 1
						7	•		V. 32	•	14.0	1.15	4
lema tocrit	Pretest	40.3	3.14	4	40.6	2.09	A .	40.2	4.08		40.6		_
.	6 Honth	48.1	6.65	4	45.0	2.01	À	46.7	1:90			2.47	4
	Terminal	47.1	3.97	À	45.7	6.08	- 1	44.0	2.53		42.9	4.51	- 4
				•		0.00	•	34.0	2.33	- 4	40.8	3.98	4
icv ,	Pretest	66.7	0.52	14	65.5	0.71	4	67.3°	2.14	4	67.7	1.47	4
ni crons	6 Month	69.1	1.18	-4	68.7	1.64	4	69.4	3.38	4	69.5	1.22	- 4
	Terminal	66.9	1.06	4	66.3	1.35	4 .	67.6	3.45	4	67.5	1.75	4
									7.77		50.0		•
CH	Pretest	22.9	0.35	4	22.4	0.53	4	23.4	0.97	4	23.2	0.43	4
icograms	6 Month	23.2	0.78	4	23.1	0.60	4	23.4	1.10	4	23.5	0.72 ~	À
	Terminal	23.5	0.67	4	23.0	0.64	4	24.0	0.95	4	24.2	0.90	7
										.•		0.50	- 3
CHC	Pretest	34.4	0.58	4	34.2	0.59	4	34.7	0.63	4	34.3	0.37	٠.
	6 Month	33.6	0.92	4	33.6	0.40	4	33.8	0.42	4	33.7	0.59	- 7
	Terminal	35.1	0.65	4	34.8	0.76	á	35.6	0.49	Ä	35.8	1.20	7
							•			•	45.0	1.40	. *
lațelets	Pretest	387	62.7	4	445	82.1	4	398	85.1	4	361	67.2	4
10 /cmm	6 Month	283	49.4	4	286	37.8	4	302	41.0	4	355	45.9	ž
	Terminal	300	40.2	4	284	32.2	4	313	42.4	i	330	54.7	- 7

		•						
rameters	Measurement 0 mg/kg/day (Control) 30 mg/kg/day Interval MEAN S.D. N MEAN S.D. N MEAN MEAN							
sured	Interval	HEAM	S.O.	<u> </u>	MEAN	S.D.	N	HEAM
	5.7							

Measured Leukocytes	Interval	HEAM	S.D.		BAN A BA				ig/kg/day			g/kg/day	
	77.4				MEAN	/kg/day S.D.	N	HEAM	\$.0.		HEAN	S.O.	N
	Pretest	11.4	1.47	4	11.1	3.76	4	10.2	1.76	4	11.0	2.77	4
k10°/cumm	6 Month	9.8	1.10	4	11.7	2.41	À	9.5	1.37	Ã	8.7	0.85	- 1
• * * * *	Terminal	10.9	1.14	4 -	8.8	1.51	4	8.4	0.90	Â,	10.8	2.44	i
Erythrocytes	Pretest	6.23	0.193	4 1	6.50	0.414	4.	6.30	0.305	4	6.28	0.526	4
k10°/cumm	6 Honth	6.38	0.404	4	6.53.	0.435	4	6.81	0.855	4	5.96	0.239	4
*	Terminal	6.45	0.175	4	6.71	0.614	4 .	7.00	1.117	4,	5.40	0.546	4.
iemoglobin	Pretest	14.4_	0.30	4.	14.6	0.69	4	13.8	0.79	4	13.7	1.25	4
g/dl -	6 Month	15.6	0.57	4	15.2	0.64	4	15.8	1.77	4	13.7 13.7 ²	0.17	4
•	Terminal	15.8	0.79	4	15.7	1.12	4	16.2	2.30	4	13.1	1.33	4
Hematocrit	Pretest	41,8	1.80	4 1	43.3	1.79	4	41.4	1.44	4	40.6	3.99	4
4	6 Honth	44.8	1.56	4	45.4	2.60	4	46.5	5.55	4	39.7,	1.11	4
1	Terminal	43.9	2.20	4	44.4	3.13	4	46.5	7,47	4	39.7 34.7	3.77	4
HCV 3	Pretest	67.1	1.69	4	66.7	1.78	4	65.7	1.32	4	64.5	1.80	٠,
microns"	6 Month	70.3	2.47	4	69.5	2.26	4	68.4	1.23	á	66.7	0.93	À
	Terminal	68.1	2.62	.4	66.3	2.27	4	66.4	0.80	i i	64.2	1.28	4
ICH ·	Pretest	23.1	0.66	4	22.8	0.48	4	22.0 ¹	0.60	4	21.8	0.48	4
ricograms	6 Month	24.4	0.91	4	23.3	1.01	4	23.3	0.57	Ä	23.0	0.75	7
	Terminal	24.4	1.21	4	23.4	0.71	4	23.2	0.44	4	24.2	0.68	4
ICHC	Pretest	34.5	0.93	4	34.2	0.32	4	33.4	0.86	4	33.9	0.31	
£	6 Month	34.7	0.41	4	33.6	0.91	4.	34.1	1.14	4	34.5	0.68	Ä
	Terminal	35.9.	0.77	.4	35.3	0.37	4 - 4	34.9	0.74	4	37.8	1.09	4
lațelets	Pretest	351	63.0	.4 .	369	122.5	4.	453	45.9	4":	431.	101.7	4
kl0°/cmm	6 Month	297	60.1	4	301	74.0	4	315	24.2	4		71.3	Ä
*	Terminal	263	58.9	4	286	67.2	4	322	29.3	Ä	446 ² 449 ²	56.2	4

S.O. - Standard Deviation N - Humber of Animals

Significantly different from the control group; pc0.05 2Significantly different from the control group; pc0.01

TABLE SAT

Males: Summary of Biochemical Values

Parameters	Heasurement_	0 mg/kg/c	day (Contro)	30 mg	/kg/dav		100 =	g/kg/day		400 -	g/kg/day	
Heasured	Interval	HEAN	S.D.	N	HEAM	\$.0.	N	HEAN	S.D.	N	HEAN	S.D.	N
Sodi 🖦	Pretest	144	0.6	4									
£q/1	6 Month	149	3.7	4	144 149	0, 6	4.	143	0.5	4	143	1.0	4
Ly, i	Terminal					1.3	4	148	3.1	4	147	2.0	4
	(ermina)	152	1.9	3	153	3.8	4	150	1.4	4	154	3.0	4 -
otassium	Pretest	4.9	0.15	4	4.6	0.21	4	4.8	0.17	4	4.8	0 17	4
Æq/1	6 Month	4.7	0.32	4	4.5	0.25	4	4.6	0.26	Ã	4.8 ₁ 5.8	0.98	7
	Terminal	4.5	0.18	3	4.5	0.19	4	4.6	0.50	ā	4.3	0 15	4
hloride	Pretest	113	1.3	4	110	1.9			4.1				, •
Eq/1	6 Month	118	2.7	4	118		4	110	1.0	4	113	2.2	4
-4/ •	Terminal	122		3		0.6	4	117	1.7	4.	118	3.1	4
	ICIBINEI	122	2.0	3	122	2.8	4	120	1.7	4	121	3.4	.4
Calcium	Pretest	11.4	0.28	4	11.7	0.34	4	11.3	0.30	4	11.5	0.24	4
g/dl	6 Month	11.2	0.43	4	11.1	0.19	.4	10.9.	0.28	Ä	10.9	0.24	4
	Terminal	10.5	0.15	4	10.6	0.39	4	10.01	0.15	4	10.1	0.21	4
hosphorus	Pretest	7.1	0.51	4	7.0	0.50	4	7.5	0.75	4			
g/dì	6 Honth	4.4	0.81	4	4.7	0.31	•	7.5 4.5	0.75 0.79	7	7.0 4.7	0.64	. 4
3, 0.	Terminal	3.7	0.17	4	4.0	0.16	- 7	4.6		. •		0.61	•
	(CIMINA)	3.7	0.17		4.0	0.10	•	4.0	0.41	4 :	4.1	0.95	4
lkaline	Pretest	140	39.3	4	129	10.5	4 .	. 114	24.1	4	141 116 ¹	24.9	4
hosphatase	6 Month	78	27.0	4	54	14.5	4	64	16.8	4	1161	12.0	4
/L	Terminal	131	82.1	4	55	14.6	4	64	15.5	4	129	9.6	_4_
reatinine	Pretest	0.7	0.08	4	0.7	0.00	4	0.7	. 0.05		0.3		
g/dl	6 Month	0.9	0.10	À	1.0	0.06	4	1.0	0.16	1	0.7	0.05	•
	Terminal	1.0	0.05	4	1.0	0.05	4	1.0	0.10 0.08	4	0.9 1.0	0.14 0.17	4
otal Protein	B			_									•
	Pretest	, 7.7	0.51	4	8.0	0.68	4	7.3	1.85	4	6.1	1.07	4
/dl	6 Month	6.2	0.45	4	6.0	0.15	4	6.0	0.17	4	6.0	0.37	A
	Terminel	6.6	0.21	.4	6.3	0.60	4	6.2	0.22	4	6.0	0.51	4
bumi n	Pretest	2.8	0.10	4	2.8	0.10	4	2.8	0.13	4	2.9	0.24	4
'dl	6 Month	3.0	0.25	4	2.9	0.05	Ä	2.8	0.13	i	3.0		
	Terminal	3.1	0.10	4	3.1	0.10	4	2.9	0.15		3.0 3.1	0 21 0.17	4
obulin	Pretest	5.0	A 51										•
(d)	6 Nonth	- / -	0.51	•	5.3	0.78	4	4.5	1.83	4	3.2	0.97	4
· ·	o month Terminel	3.2	0.22	4	3.1	0.19	4	3.2	0.18	4 `	3.1	0.31	4
*	1411011001	3.4	0.15	. 4	3.2	0.60	. 4	3.3	0.26	. 4	3.0	0.47	4
olesterol	Pretest	211	47.3	· 4	218	17.2	4	186	24.9	4	203.	32.5	4
]/d]	6 Month	176	26.3	4	166	13.0	4	138	24.5	À	203 ₂ 118,	15.4	4
•	Terminal	172	31.9	4	149	22.2	4	125	29.2	4	115,	22.0	_
ucose	Pretest	. 112	3.4	4	114	8.7	4	111					
g/dl	6 Month	104	12.4	4	109				6.6	4	117	9.0	4
	Terminal	94	6.8	1		6.8	. 4	111	7.9	4	104	9.1	4
		, 7	9.5	•	96	9.9	4	93	10.6	4	96	16.4	4

555-021

S.O. - Standard Deviation Significantly different from the control group; p<0.05 H - Humber of Animals

 $^{^2}Significantly different from the control group; <math display="inline">p{\le}0.01$

^{+:} Data excerpted from the report; p. 47-69(MRID No. 43320101).

TABLE 56"

Parameters Measured	Heasurement_	0 mg/kg/day (Control)			30 mg/kg/day			100 mg/kg/day			400 mg/kg/day		
	Interval	HEAM	S.D.	N	HEAN	\$.D.	N	HEAN	S.D.	H	HEAM	S.O.	N
odium.	Pretest	148	1.0	4.	149	2.6	4	147	. 1.3	4	148		
Eq/1	6 Month	149	2.3	4	149	1.6	7	148	1.2	1	148	2.4 1.3	4
	Terminal	152	1.5	3	154	2.5	4	152	1.7	4	153	2.1	4
otassium	Pretest	4.9	0.17	4	4.7	0.22	4	4.9	0.29	4 .7	4.6	0.15	
€q/1	6 Month	4.4	0.37	4	4.5	0.25	4	4.7	0.38	4	4.8	0.19	4
	Terminal	4.4	0.32	3	4.3	0.43	4	4.5	0.28	4	4.5	0.19	4
hloride	Pretest	114	0.5	4	116	2.4	. 4	114	2.5	Á	116	0.8	4
Eq/1	6 Month	119	4.0	.4	117	1.7	-4	116	3.1	4	118	0.6	4
	Terminal	121	2.9	3	123	3.0	Á	120	2.8	4	122	1.7	4
alcium	Pretest	11.3	0.28	4	11.1	0.19	4 .	1078	0.10	4	11.0	0 31	4
g/dl	6 Month	11.3	0.26	4	11.0	0.44	4,	11.1	0.53	4	10.8	0.33	4
	Terminal	10.4	0.41	4	10.4	0.46	4	10.2	0.40	4 ,	10.2	0.13	Ā
hosphorus	Pretest	6,.9	0.56	' A' :	6.6	0.60	4	7.0	0.42	4	6.6	0.52	
g/dl	6 Month	4.3	0.18	.4	4.5	0.87	, 4	4.4	0.23	4	4.4	0.78	ě
	Terminal	4.1	0.20	4	4.1	0.43	4	4.1	0.28	4	4.3	0.44	4
lkaline -	Pretest	140	28.0	4	123	19.2	4 .	143	26.3	4	115	17.1	4
hosphatase	6 Honth	103	43.7	. 4	61	7.2	4 -	. 89	17.4	4	90	24.8	-
/L	Terminal	117	55.0	.5	75	16.8	.4	105	29.0	4	133	45.2	4
reatinine.	Pretest	0.8	0.06	4	0.7	0.00	4	0.7	0.15	4	0.8	0.05	ı
/dl	6 Month	0.9	4.14	4	0.8	0.05	4	1.0	0.14	. 4	0.9	0.10	4
•	Terminal	1.0	0.15	4	0.9	0.05	4	1,0	0.10	4	1.Q	0.08	
stal Protein	Pretest	7.1	0.35	4	7.0	0.13	.4	6.8	0.32	4	6.8	0.44	
dl	6 Month	6.1	0.17	4	5.9	0.23	4	5.8	0.17	4	6.0	0.54	
	Terminal	6.0	0.30	4	6.2	0.29	4	5.8	0.28	4	6.2	0.42	- 1
bum n -	Pretest	2.9	9.06	4	3.0	.0.14	4	2.8	0.24	4	2.8	0.21	
/dì	6 Month	3.1	0.13	4	3.1	0.17	4, ,	3.0	0.24	4	3.0	0, 19	Ä
	Terminal	3.1	0.10	4	3.3	0.22	4	3.1	9.19	4	3.0	0.26	•
obulin	Pretest	4.2	0.33	4	4.0	0.19	4	4.0	0.13	4	4.0	0.46	
/dì	6 Honth	3.0	0.17	4	2.8	0.13	4	2.9	0.21	- 4	3.0	0.39	
	Terminal	2.9	0.37	.4	2.9	0.17	, 4	2.8	0.25	4	3.3	0.24	
olesterol	Pretest	205	51.1	4	189-	25.1	.4	172	28.6	4	191	23 1	
/dl	6 Nonth	188	46.9	4	157	15.5	4	160	23.6	4	123	19 6	
•	Terminal	170	52.3.	4	132	, 7.0	4	154	25.6	4	169	36.1	
ucose	Pretest	116	9.0	4	114	5.0	4	115	7.1	4	118	7.5	
/dl	6 Month	107	3.4	4	106	9.3	4	109	7.8	4	100	5.4	
	Terminal	93	10.0	4	98	9.4	4	93	7.5	4	. 94	8.1	

555-021

S.D. - Standard Deviation M - Number of Animals *No statistical significance observed

^{+:} Data excerpted from the report; p. 70 -72 (MRID No. 43320101).

Page	s through are not included.
	material not included contains the following type of rmation:
	Identity of product inert ingredients.
	Identity of product impurities.
••	Description of the product manufacturing process.
	Description of quality control procedures.
	Identity of the source of product ingredients.
	Sales or other commercial/financial information.
	A draft product label.
	The product confidential statement of formula.
_/	Information about a pending registration action.
$\sqrt{\cdot}$	FIFRA registration data.
	The document is a duplicate of page(s)
	The document is not responsive to the request.
<u> </u>	
The	information not included is generally considered confidentia