ξ_{s}孚

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

MEMORANDUM

SUBJECT: DEET: Review of Three Mutagenicity Studies
Caswell No. 346 HED Project No. 0-0836
MRID No. 413448-01
EPA Record No. 260702

$$
\begin{aligned}
& 413444-01 \\
& 413443001
\end{aligned}
$$

TO: Jane Mitchell, PM Team (17) Special Review and Reregistration Division (H7508C)

FRUIT:
Whang Phang, Ph.D. Pharmacologist
lohysing a/N/90 HFAS/TOX. Branch II/ HED (H7509C)

THROUGH: K. Clark Swentzel, Section Head and
 Marcia van Gemert, Ph.D. Branch Chief HFAS/TOX. Branch II/ HED (H7509C)

Toxicology Branch II has been requested to review three mutagenicity studies on Deet. These studies were evaluated Dymamac Corp. and approved by Toxicology Branch. II. The data evaluation report of each study are attached. The conclusion for each study is summarized below:

1) . San, R.H.C. and Schadly, M.B., Salmonella/mamalian-miczosome plate incorporation mutagenicity assay (Ames Test) with a confirmatory assay. Microbiological Associates, Inc.: Study No. T8728.501014; Dec. 28, 1989 (MRID NO. 41344801).

Deft was tested over a concentration range of 28 to 8333 ug/plate with Salmonella typhimuriun strains TA1535, TA1537, TA1538, TA98, or TA100 in the presence or absence of the S9 activation. The results indicated that beet was not mutagenic in this test system. This study satisfies data requirements for a gene mutation assay.
2). Putman, D. L. and Morris, M.J., Chromosome Aberrations in

Chinese hamster ovary (CHO) cells. Microbiological Associates, Inc.: Study No. T8728.337:Dec. 28, 1989 (MRID No. 413444-01).

In an assay using CHO cells, Deet was tested at concentrations ranged from 0.063 to $1.0 \mu \mathrm{l} / \mathrm{ml}$ in the absence of 59 activation and from 0.032 to $0.50 \mu \mathrm{~m} / \mathrm{ml}$ in the presence of s9 activation. Results indicated that Deet was mot clastogenic. The study satisfies the data requirements for a structural chromosomal aberration assay.
3). Curren, R.D., Unscheduled DNA synthesis assay in rat primary hepatocytes with a confirmatory assay. Microbiological Associates, Inc.: Study No. T8728.380009; Dec. 22. 1989 (MRID No. 413443-01).

Deet was tested in two independently conducted unscheduled DNA synthesis assays in primary rat hepatocytes at doses ranged from 0.003 to $0.3 \mu \mathrm{~m} / \mathrm{ml}$. The results showed that Deet was assayed to a cytotoxic level with no evidence of a genotoxic effect. The study fulfills the data requirements for an assay for other genotoxic effects.

DEFT

Mutagenicity－－Unscheduled DNA Synthesis in Primary Rat Hepatocytes

APPROVED BY：

Robert J．Weir．Ph．D． Program Manager Dynamac Corporation

EPA NO.: 68D80056
DYNAMIC NO.: 308-A2
TASK NO.: 3-08A2
September 7, 1990

DATA EVALUATION RECORD

DEFT
Mutagenicity--Unscheduled DNA Synthesis in Primary Rat Hepatocytes

REVIEWED BY:
Nancy E. McCarroll, B.S. Principal Reviewer Dynamac Corporation

Signature $=$ Nay 4 . Th Camel
Date:

I. Cecil Felkner, Ph.D. Independent Reviewer Dynamac Corporation

Date:

APPROVED BY:

Nicolas P. Hajjar, Ph.D. Department Manager Dynamac Corporation

John H. S. Chen, D.V.M. EPA Reviewer, Section II Toxicology Branch II

Date:

Signature:

Date: a-11-90 ($\mathrm{H}-7509 \mathrm{C}$)

Whang Bhang, Ph.D. EPA Reviewer, Section II Toxicology Branch II ($\mathrm{H}-7509 \mathrm{C}$)
K. Clark Swentzel

EPA Section Head, Section II Toxicology Branch II

($\mathrm{H}-7509 \mathrm{C}$)

DATA EVALUATION RECORD

$$
\text { Tox. Chem. No.: } 346
$$

EPA File Symbol:

CHEMICAL: DEET.

STUDY TYPE: Unscheduled DNA synthesis in primary rat hepatocytes.

ACCESSION OR MRID NUMBER: 413443-01.

SYNONYM(S)/CAS NUMBER: N,N-Diethyl-m-toluamide.

SPONSOR: DEET Joint Venture/Chemical Specialties Manufacturers Association, Washington, DC.

TESTING FACILITY: Microbiological Associates, Inc., Rockville, MD.

TITLE OF REFCRT Unscheduled DNA Synthesis Assay En Rat Primary Fepatocytes With a Confirmatory Assay.

AUTHOR: Curren, R. D.

STUDY NUMBER: T8728.380009.

REPORT ISSUED: December 22, 1989.

CONCIUSIONS - Executive Sumary: Under the conditions of two independently performed unscheduled DNA synthesis (UDS) assays in primary rat hepatocytes, DEET did not induce a significant increase in mean net nuclear grain counts over a dose range of 0.003 to $0.3 \mu \mathrm{~L} / \mathrm{mL}$. In the first trial, cells exposed to $0.3 \mu \mathrm{~L} / \mathrm{mL}$ could not be evaluated because of cytotoxicity; however, in the repeat assay, there was sufficient cell survival to score nuclear grains at this level. Doses $21.0 \mu \mathrm{~L} / \mathrm{mL}$ were severely cytotoxic, and test material concentrations $\geq 3.0 \mu \mathrm{~L} / \mathrm{mL}$ were insoluble. It was concluded, therefore, that DEET was assayed to a cytotoxic level with no evidence of a genotoxic effect. The study fulfills Guideline requirements for Category III, other Mutagenic Mechanisms.

Study classification: The study is acceptable.

A. MATERIALS:

1. Test Material:

Name:
DEET.
Description: Laboratory: Clear, colorless liquid (at receipt) : pale yellow liquid (at use).

Sponsor: Yellow liquid (Test Article Characterization Form): clear oily liquid (Material Safety Data Sheet).

Note: The report indicated that the minor differences in test material description were not considered to reflect a change in the test material from receipt to use.
Batch/Lot No.: A-1-96 (mixture of four representative production runs; see Appendix B, Protocol, CBI p. 21).

Purity: 98.301%

Contaminants: Not listed.
Solvent used: Dimethylsulfoxide (DMSO).
Other comments: The test material was stored at room temperature and dilutions were prepared immediately before use. Dosing solutions
were frozen after use and shipped to McLaughlin Gormley King Company for chemical analysis.
2. Indicator Cells: Primary rat hepatocytes were harvested from the livers of adult male Fischer 344 rats obtaimed from Charles River Laboratories, Inc., Raleigh, NC. Animals were quarantined at least 1 week prior to stody initiation.

=. Cell Preparation:

a. Hepatocyte Isolation: Each rat was anesthetized by inhalation of metofane and the livers were perfused with 0.5 mM EGTA in Hanis' buffered salt solution, pH 7.3 , and serum-free Williams' Medium E (WME) containing L-glutamine (2 mM), collagenase (80 to 100 units/mL, type I), and antibiotics, buffered to pH 7.3 . Livers were excised, cleaned of extraneous tissue, shaken in the collagenase perfusion solution, and either combed to release the hepatocytes or passed through a stainless-steel sieve.
b. Hepatocyte Harvest/Culture Preparation: Recovered cells were, collected, counced, and seeded at a density of 5×10^{5} cells, either into preconditioned $35-\mathrm{mm}$ tissue culture dishes for the cytotoxicity assay or onto coverslips in $35-\mathrm{mm}$ tissue culture plates for the UDS assay. Cultures were placed in a humidified, 5\% CO_{2} incubator for 90 to 180 minutes, washed, and refed prior to use.
4. Positive Control: 7,12-Dimethylbenz(a)anthracene (DMBA) was dissolved in DMSO and assayed at 3 and $5 \mu \mathrm{~g} / \mathrm{mL}$ in the preliminary cytotoxicity study and the initial uDS assay and at 3 and $10 \mu \mathrm{~g} / \mathrm{mL}$ in the confirmation UDS assay.
B. STUDY DESIGN:

1. Preliminary Cytotoxity Assay: Duplicate cultures of cells, initiated from primary cultures, were exposed to 10 doses of the test material ranging from 0.0003 to $10 \mu \mathrm{~L} / \mathrm{mL}$, the negative control (WME), or the solvent control (DMSO) for 18 to 20 hours. Following exposure, aliguots of the treatment medium were removed, centrifuged, and measured for lactic acid dehydrogenase (LDH) activity. Relative cytotoxicity was assessed by subtracting the IDH activity of the media control from the LDH activity in the treated cultures and comparing the values to the amount of IDH released by exposure of high-dose cultures or solvent control cells to i\% Triton.
a. Treatment/Slide Preparation: Five to six prepared hepatocyte cultures (two or three cultures seeded into tissue dishes and three cultures seeded onto coverslips) were exposed for 18 to 20 hours to seven selected doses of the test material, the negative control (WME), the solvent control (DMSO), or the positive control (DMBA). Treatment medium contained $10 \mu \mathrm{Ci} / \mathrm{mL}$ [$\left.{ }^{3} \mathrm{H}\right]$ thymidine. Monolayers grown directly on dishes were used to assess LDH activity as described for the cytotoxicity assay. Treated hepatocytes attached to coverslips were washed, swollen with 1% sodium citrate, fixed (ethanol-acetic acid). dried, and mounted.
b. Preparation of Autoradiographs/Grain Development: slides were dipped into Kodak NTB emulsion, dried for 1.5 hours, and stored at $0-4^{\circ} \mathrm{C}$ in desiccated slide boxes for 8 to 9 days. Slides were developed in Kodak D-19, fixed, stained with hematoxylin-sodium acetateeosin, coded, and counted.
c. Grain counting: The nuclear grains of 150 randomly selected cells with appropriate bacigground counts (50/slide) from each test, negative, and positive control group were scored for incorparation of tritiated thymidine into DNA. Net nuclear grain counts were determined by subtracting the average cytoplasmic grain count of three "nuclear-sized" areas adjacent to each nucleus from the nuclear grain count of each cell. Means and standard deviations were calculated for each treatment group.

3. Evaluation Criteria:

a. Assay Validity: For the assay to be considered valid, the following criteria must be satisfied: (1) the proportion of cells in repair in the negative control must be $<15 \%$ and the net nuclear grain count of the solvent control must be <1; and (2) the positive control compound must induce a significant increase in the net nuclear grain count (25 grains/nucleus over the negative control).
b. Positive Response: The assay was considered positive if the test material induced a dose-related increase in mean net nuclear grains and one or more of the doses had an increase in the mean net nuclear grain count that was ≥ 5 grains/nucleus over the negative control.

In the absence of a dose-related effect, a compound that showed nuclear grain counts that were ≥ 5 grain/nucleus over two successive doses was also considered positive.

C. REPORTED RESULTS:

1. Preliminary cytotoxicity Assay: Ten doses (0.0003 to $10 \mu L / m L$) of the test material were examined in the cytotoxicity assay. The study author stated that the two highest doses (3.0 and $10.0 \mu \mathrm{~L} / \mathrm{mL}$) were not miscible in culture medium. As shown in Table 1, cytotoxicity, as indicated by increased LDH activity, was observed at levels $\geq 0.3 \mu \mathrm{~L} / \mathrm{mL}$; microscopic evaluation of the cultures also revealed cytotoxic effects at these levels. Belor $0.3 \mu \mathrm{~L} / \mathrm{mL}$, DEET was not cytotoxic. Based on the findings, $0.3 \mu \mathrm{~L} / \mathrm{mL}$ was selected as the highest concentration for the UDS assay.
2. UDS Assay: Two independent UDS assays with accompanying cytotoxicity tests were conducted with seven doses (0.0001 to $0.3 \mu \mathrm{~L} / \mathrm{mL}$) of the test material. In the first assay, cells exposed to $0.3 \mu \mathrm{~L} / \mathrm{mL}$ were not scored for UDS because of severe cytotoxicity. Results from the analysis of the five groups treated with 0.003 to $0.2 \mu \mathrm{~L} / \mathrm{mL}$ indicated no significant increase in net nuclear grain counts (Table 2). Data presented from the second trial showed that with the exception of a lessening of cytotoxicity at $0.3 \mu \mathrm{~L} / \mathrm{mL}$. which allowed the scoring of nuclear grains at this level, the results agreed with the earlier finding that DEET was not genotoxic in this test system.

In both assays, the positive control, DMBA, at 3 and $5 \mu \mathrm{~g} / \mathrm{mL}$ (first trial) and at 3 and $10 \mu \mathrm{~g} / \mathrm{mL}$ (second trial). induced increased levels of enzymatic and UDS activity. Based on the overall results, the study author concluded that DEET was negative in this test system.
3. Analytical Delineations: Data presented from the analytical determinations of dosing solutions used in the UDS assays indicated that target concentrations of DEET prenared for the first trial ranged from a low of 72% (20$\mu \mathrm{L} / \mathrm{mL}$ sample) to a high of $143 \%(3.0-\mu \mathrm{L} / \mathrm{mL}$ sample) of the actual concentration. For the repeat test, all dosing solution target concentrations were within 5\% of the actual concentration.

TABLE 1. Representative Results of the Preliminary Cytotoxicity Assay with DEET: Lactate Dehydrogenase (LDH) Activity

Treatment

	Average
	LDH
Dose	Activity
$(\mu \mathrm{L} / \mathrm{mL})$	(Units/L)

Corrected	
LDH	Relative
Activity	Percent
(Units/L)	Cytotoxicity

Negative Control

Culture medium
68.0
$-53 \quad 5$
-13

Solvent Control

Cimethylsulfoxide	10	121.5	0.0	0
Dimethylsulfoxide	10	523.5	402.0	100
$+1 \%$ Triton				

Test Material Control

```
DEET
    +1% Triton
```

 10
 477.0
 355.5
 88

Test Material

DEET

0.3^{d}	378.5	257.0	64^{e}
1.0	536.0	414.5	103^{e}
3.0^{f}	517.0	395.5	98^{e}
10.0^{f}	462.0	340.5	85^{8}

'Average of two samples.
=Corrected LDH $=$ Average LDH of Test Groups - Solvent Control LDH.
=Relative Percent Cytocoxicity $=\frac{\text { Corrected LDH of Test Groups }}{\text { Corrected LDH of } 10 \mu \mathrm{~L} / \mathrm{mL} \text { DMSO }+13 \text { TriEon }} \times 100$.
Tower doses $0.1,0.03,0.01,0.003,0.001$, and $0.0003 \mu \mathrm{~L} / \mathrm{mL}$) were not cytotoxic.
evtotoxic effects observed on the monolayer cultures at these levels.
EReported to je immiscible in tissue culture medium.

$$
r_{1} \ldots i j
$$

table 2. Representative Resuits of the Urischeduleci DNA Synthesis Rat Heparocyte Assays with DEEI

[^0]D. REVIENERS' DISCUSSION AND INTERPRETATION OF STUDY RESULTS: We assess that the study was well conducted and that the author correctly interpreted the data. The lack of agreement for the high-dose ($0.3 \mu \mathrm{~L} / \mathrm{mL}$) cytotoxicity data between the first and repeat trials was probably related to minor procedural differences rather than a dosing error, since analytical determinations indicated that the actual concentration of DEET in the high dose from the first assay was $\approx 20 \%$ less than in the high-dose solution usta in the subsequent trial. We do not, however, consider that this concentration difference compromised the outcome of the study.

Although the study author gave no reason for increasing the concentration of DMBA in the repeat assay, the findings at all assayed concentrations (3, 5, or $10 \mu \mathrm{~g} / \mathrm{mL}$) clearly demonstrated the sensitivity of the test system to detect a genotoxic response. We conclude, therefore, that DEET was assayed over an appropriate range of test material doses with no indication of a genotoxic effect.
E. QUALITY ASSURANCE MEASURES: A quality assurance statement was signed and dated December 28 1989.
F. CBI APDENDIX: Appendix A, Materials and Methods. CBI pp. 9-12; Appendix B, Protocol, CBI pp. 21-30.

$$
\because \ldots i+i
$$

APPENDIX A
Materials and Methods
(CBI pp. 9-12)

Page \qquad is not included in this copy.

Pages 14-24 are not included.

The material not included contains the following type of information:
___ Identity of product inert ingredients.
___ Identity of product impurities.
__ Description of the product manufacturing process.

- Description of quality control procedures. ___ Identity of the source of product ingredients. __ Sales or other commercial/financial information. __ A draft product label. __ The product confidential statement of formula. ___ Information about a pending registration action. \checkmark FIFRA registration data.

The document is a duplicate of page (s) \qquad -
\qquad
The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

EPA NO.: 68D80056
DYNAMAC NO.: 308-A1 TASK NO.: 3-08A1 September 7, 1990

DATA EVALUATION RECORD

DEET
Mutagenicity--Salmonella typhimurium/liammalian Microsome Mutagenicity Assay

APPROVED BY:
Robert J. Weir, Ph.D. Program Manager Dynamac Corporation

EPA NO.: 68D80056
DYMAMAC NO.: 308-A1
TASK NO. = 3-OBAI
September 7, 1090

DATA EVALUATION RECORD

DEFT
Mutagenicity--Salmonella tyohimurium/Mamalian Microsome Mutagenicity Assay

REVIEWED BY:

Nancy E. McCarroll, B.S. Principal Reviewer Dynamac Corporation
I. Cecil Felkner, Ph.D. Independent Reviewer Dynamac Corporation

APPROVED BY:

Nicolas P. Hajji, Pr. D. Department Manager Dynamac Corporation

John H. S. Chen, D.V.M. EPA Reviewer, Section II Toxicology Branch II ($\mathrm{H}-7509 \mathrm{C}$)

Whang Phang, Ph.D.
EPA Reviewer, Section iI Toxicology Branch II ($\mathrm{H}-7509 \mathrm{C}$)
K. Clark Swentzel EPA Section Head, Section =: Toxicology Branch II ($\mathrm{H}-7509 \mathrm{C}$)

Date:

Signature:

Date:

Date:

Signature: - 2oholitr chum
Date:
$9-11-90$

DATA EVALUATION RECORD

Tox. Chem. No.:

EPA File Symbol:

CHEMICAL: DEET.

STUDY TYPE: Salmonella/mammalian activation gene mutation assay.

ACCESSION OR MRID NUMBER: 413448-01.

SYNONYM/CAS NUMBER: N,N-Diethyl-m-toluamide.

SPONSOR: DEET Joint Venture/Chemical Specialties Manufacturers Association, Washington, DC.

TESTING FACILITY: Microbiological Associates, Inc., Rockville, MD.

```
TITLE OF REPORT: Salmonella/Mammalian-Microsome Plate Incorporation Mutagenicity Assay (Ames Test) With a Confirmatory Assay.
```

AUTHORS: San, R. H. C. and Schadly, M. B.

STUDY NUMBER: T3728.501014.

REPORT ISSUED: December $28,1989$.

CONCLUSIONS - Executive Summary: DEET, over a concentration range of 28 to $8333 \mu \mathrm{~g} / \mathrm{plate}-59$, was not mutagenic in Salmonella typhimurium strains TA1535, TA1537, TA1538, TA98, or TAl00. The highest nonactivated dose was cytotoxic in all strains. Under 59 activation, the same dose range was not mutagenic. However, DEET at concentrations $\geq 833 \mu \mathrm{~g} / \mathrm{plate}$ induced a cytotoxic effect in strain TAl538, which prompted the evaluation of lower doses (2.8 to $833 \mu \mathrm{~g} / \mathrm{plate}+\mathrm{S} 9$) with this strain. These results also showed that DEET was not mutagenic. The overall findings were confirmed in an independently performed assay. We assess that an appropriate range of test material doses were evaluated and that DEET was not mutagenic in this test system. Therefore, we conclude that the study fulfills the Guideline requirements for Category I, Gene Mutations.

Study Classification: The study is acceptable.

3. MATERIALS:

1. Test Material:

Name:
Description:

DEET
Laboratory: Clear, colorless liquid (at receipt): pale yellow liquid (at use).

Sponsor: Yellow liquid (Test Article Characterization Form): clear oily liquid (Material Safety Data Sheet)

Note: The report indicated that the minor differences in test material description were not considered to reflect a change in the test material from receipt to use.

Batch/Lot No.: A-1-96 (Mixture of four representative production runs. See Appendix A, Protocol, CBI p. 54.)

Purity:
198.301\%

Contaminants: Not listed.
Solvent used: Dimethylsulfoxide (DMSO).
other comments: The test material was storéd at room temperature and dilutions were prepared immediately before use. Dosing solutions were frozen after use and shipped to McLaughlin King co. for analytical determinations.
2. Control Materials:

Negative: DMSO.
Solvent/final concentration: $50 \mu \mathrm{~L} /$ plate
Positive: Nonactivation:

Sodium azide 2-Nitrofluorene ICR-191 Other:
\qquad

1.0 $\mu \mathrm{g} / \mathrm{plate}$ TA100, TA1535
2.0 $\mu \mathrm{g} / \mathrm{plate}$ TA98, TA1538 $\mu g / p l a t e ~ T A 1537$

Activation: 2-Aminoanthracene (2-anthramine) $0.5 \mu \mathrm{~g} / \mathrm{plate}$ all strains.
mañfacturing process information is not included

If other, describe below. Describe 59 composition (if purchased, give details!.

S9 mix composition:
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} .00 \mathrm{M} \mathrm{NaH} \mathrm{MO}_{4} / \mathrm{K}_{2} \mathrm{HPO}_{4}$ (pH 7.4)
0.05 M Glucose-6-phosphate 0.04 M NADP
$0.20 \mathrm{M} \mathrm{MgCl}_{2} / 0.825 \mathrm{M} \mathrm{KCl}$ S9
0.56 mL
0.10 mL
0.10 mL
0.10 mL
0.04 mL
$\frac{0.10 \mathrm{~mL}}{1.00 \mathrm{~mL}}$
TOTAL 1.00 mL
4. Test Organism Used: S. typhimurium strains

Test organisms were properly maintained: YES.
Checked for appropriate genetic markers (rfa mutation, R factor): YES.

5. Test Compound Concentrations Used:

a. Preliminary cytotoxicity assay: Ten doses (8.3, 28, 55, $83,278,555,833,2778,5555$, and $8333 \mu \mathrm{~g} / \mathrm{plate}$ were evaluated with or without 59 activation in \underline{s}. tyohimurium strain TAl00. Single plates were used per dose per condition.
b. Initial mutation assays: Six nonactivated doses (28, 84, 278, 833, 2778, and $8333 \mu \mathrm{~g} / \mathrm{piate}$) and six s9activated doses $(278,555,833,2778,5555$, and 8333 $\mu \mathrm{g} / \mathrm{plate}$) were assayed in all tester strains. A repeat S9-activated assay was performed with strain TAl538; the doses used in the repeat assay were $2.8,8.3,28,84$, 278 , and $833 \mu \mathrm{~g} / \mathrm{plate}$.

c. Confirmatory mutation assays: Six doses with and without 59 activation (28 to $8333 \mu \mathrm{~g} / \mathrm{plate}$) were assayed in all tester strains except TA1538. The s9-activated dose range for this strain was 2.8 to $833 \mu \mathrm{~g} / \mathrm{plate}$.

B. TEST PERFORMANCE:

$\begin{aligned} & \text { 1. Type of Salmonella Assay: } \frac{x}{} \text { Standard plate test } \\ & \text { Pre-incuhation (} \quad \text {) minutes } \\ & \square \text { Prival"modification }\end{aligned}$
a. Protocol:

1) Plating procedures: In general, similar procedures were used for the preliminary cytotoxicity and the mutation assays.

To tubes containing $2.5-\mathrm{mL}$ volumes of molten top agar containing 0.5 mM biotin ard 0.5 mm histidine, $100 \mu \mathrm{~L}$ of an overnight broth culture of the appropriate tester strain and 50 nL of the appropriate test material dose, solvent, or positive controls were added. For the s9activated test, 0.5 mL of the S 9 cofactor mix was added to tubes containing 2.0 mL of top agar: tester strains and test and control solutions were added as described. The contents of the tubes were mixed, poured over Vogel-Bonner minimai medium E , and incubated at $37^{\circ} \mathrm{C}$ for 48 hours. At the end of incubation, plates either were immediately scored for revertant colonies or were refrigerated and subsequently counted with an automatic colony counter. Means and standard deviations were determined for the mutation assay.
2) Sterility controls:

A sterility test was performed on the highest dose of the test material, and 0.5 mL of the S 9 mix as described for the mutation assay.
3) Evaluation criteria:
a) Assay validity: The assay was considered valid if the following criteria were met: (1) the presence of the appropriate genetic markers was verified for each strain: (2) the spontaneous revertants of each strain fell within the reporting laboratory's acceptable ranges; (3) cell densities were $\geq 0.6 \times 10^{\circ}$ eells/mL; and (4) all positive controls caused at least a 3-fold increase in revertants per plate compared with the respective solvent control.
b) Positive response: The test material was considered positive if it caused ≥ 2-fold increase in mean revertant colonies of at least one tester strain and the increase was accompanied by a dose-response to increasing concentrations of the test material.
2. Preliminary Assay: Ten doses ranging from 8.3 to 8333 $\mu \mathrm{g} / \mathrm{pl}$ ate $+/-59$ were assayed for cytotoxic effects on strain TA100. The study authors stated: wue to the change in volume upon mixing, the resulting stock was $166.7 \mathrm{mg} / \mathrm{mL}$, rather than the target concentration $200 \mathrm{mg} / \mathrm{mL} . "$

Results of the cytotoxicity assay indicated that in the absence of 59 activation, reduced revertant colonies and a slightly reduced background lawn of growth were observed at 5555 and $8333 \mu \mathrm{~g} /$ plate; the highest s9-activated dose caused a slight reduction in TA100 revertants. Therefore, the dose ranges selected for the mutation assay were 28 to $8333 \mu \mathrm{~g} / \mathrm{plate}-59$ and 278 to $8333 \mu \mathrm{~g} /$ plate +59.
3. Mutation Assays: The study author stated that the first mutation assay with DEET was not completed because test material dilutions were not saved for analytical determinations. The nonactivated phase of the second assay was not evaluated because of excessive cytotoxicity in the solvent control and test groups. The presented results are, therefore, from the successfully completed assays.

As shown in Table 1 , colony counts for all strains were reduced at $3333 \mu \mathrm{~g} / \mathrm{plate}-59$. For the remaining nonactivated concentrations, there was no clear indication of cytotoxiciEy and the test material did not induce a

TABLE 1. Representarive Results of the Salmonella typhimurium Mutagenicity Assay with DEET

Substance	$\begin{gathered} 59 \\ \text { Activation } \end{gathered}$	Dose (ug/plate)	Revertants per Plate of Becterial Tester Strain ${ }^{3}$				
			TA1535	TA1537	TA1538	7498	7a100
Solvent Control							
Dimethylsul foxide	\bullet	--	$8=2$	$8=2$	$6=3$	27 ± 3	119 ± 6
	+	-	$8=:$	$7=4$	$10=3^{b}$	15 ± 2	$108: 4$
Posirive Contrul	-						
Sodium azide	-	1.0	$353=12$	--	--	-	$-25=31$
2-Nitrofluorene	-	1.0	--	--	$393=38$	246 ± 15	--
:CR-191	-	2.0	--	$115=6$	--	.-	
2-Anthramine	+	0.5	$55=3$	$45=5$	$577=96^{\text {b }}$	551 ± 8	907 ± 55
Iest Material							
QeEt	-	$833^{\text {c }}$	$12=$:	$z=2$	$3=4$	24 ± 2	$133=7$
	*	2778	$8=4$	$\leq=2$	2 ± 3	17 ± 2	108 $=2$
	-	8333	$5=3$	$6 .-{ }^{\text {a }}$	$2=2$	$5=5$	$\Delta S=8^{i}$
	+	833°	$10=5$	$\square \pm 1$	$8=3^{b}$	13 ± 5	104 $=13$
	*	2778	$\theta=2$	$5=1$	vo	$14 \div 2$	-
	*	5000	$8=3$	$2=2$	\%	10 ± 1	$3 \cdot=18$
	+	8333	$i=3$	3 ± 2	\$0	8 ± 2	$\overline{7}=7$

[^1]mutagenic response. Under 59 activation, there was no definitive evidence of cytotoxicity in strain TA1535, TA1537, TA98, or TA100. Similarly, there was no increase in reversion to histidine prototrophy of these strains. However, reduced colony counts and/or adverse effects on the background lawn of growth were apparent for strain TA1538 at doses $\geq 833 \mu \mathrm{~g} / \mathrm{plate}$. Accordingly, a repeat s9-activated trial was conducted with this strain; results show that DEET, over a dose range of 2.8 to $833 \mu \mathrm{~g} / \mathrm{plate}$, was neither cytotoxic nor mutagenic in TA1538.

Findings from the confirmation assay (Table 2) were in general agreement with the earlier results indicating that the highest nonactivated dose was cytotoxic in all strains, and that the test material was not mutagenic either with or without 59 activation. Although the test material results were negative, the sensitivity of the test system to detect mutagenesis was adequately demonstrated by the response of each tester strain to the appropriate nonactivated or $\mathrm{S9}-$ activated positive control in both assays. Based on the overall results, the study authors concluded that DEET was not mutagenic in this test system.
4. Analytical Determinations of Dosing Solutions: Chemical analyses were performed on the six test material dilutions used in the Sg-activated portion of the first completed assay, the eight solutions used in the nonactivated and repeated S9-activated test with TA1538, and the eight solutions used in the confirmation assay. The data indicated that DEET concentrations in all dosing solutions were within 10% of the respective theoretical concentration.
5. Reviewer's Discussion/Conclusions: We assess that the study authors' interpretation of the data was correct. The test material was assayed to a nonactivated level that was cytotaxic in all strains. Although the Sg-activated test material was cytotoxic only in strain TA1538, the high dose ($8333 \mu \mathrm{~g} /$ plate) was considered adequate for evaluation of noncytotoxic compounds in this test system. We conclude, therefore, that DEET was tested over an appropriate dose range with no indication of a mutagenic effect.
5. Was the test performed under GLP? YES. (A quaility assurance statement was signed and dated January 3, 1990.)
7. CBI Appendix: Appendix A, Protocol, CBI pp. 54-64; CBI Appendix B, Materials and Methods, CBI pp. :10-17.

TABLE 2. Representative Results of the Confirmatory Salmorel la typhimurium Mutagenicity Assays with DEET

			Revertants per Plate of Bacterial Tester Strain ${ }^{\text {a }}$				
Substance	$\stackrel{59}{\text { Activation }}$	Dose ($\mu \mathrm{g} / \mathrm{plate}$)	TA1535	TA1537	\$41538	TA98	TA100

Soivent Contral

Pesitive control

Sodium azice	-	1.0	574 ± 19	--	--	--	740 ± 25
2-Nitrofluerene	-	1.0	--	--	437 ± 37	289 ± 22	--
ifR-191	-	2.0	--	$21=4$.-	--	--
2-Anthramine	+	0.5	36 ± 7	$40=6$	432 ± 20	383 ± 20	560 ± 5

Sest Material

ZEET

833°	8 ± 2	3 ± 3	4 ± 3	9 ± 3	$92=2$
2778	10 ± 2	4 ± 1	2 ± 1	10 ± 2	$92=-5$
8333	4 ± 1	2 ± 1	1 ± 1	7 ± 1	58 ± 9
833°	12 ± 2	5 ± 3	7 ± 2	19 ± 2	111 ± 3
2778	8 ± 1	3 ± 2	ND	15 ± 6	109 ± 3
8333	5 ± 2	2 ± 1	ND	7 ± 2	83 ± 5

[^2]APPENDIX A
Protocol
(CBI pp. 54-64)
\qquad is not included in this copy. Pages 41-60 are not included.

The material not included contains the following type of information:
\qquad Identity of product inert ingredients.
\qquad Identity of product impurities.
\qquad Description of the product manufacturing process.
\qquad Description of quality control procedures.
\qquad Identity of the source of product ingredients.
\qquad Sales or other commercial/financial information.
\qquad A draft product label.
\qquad The product confidential statement of formula.
\qquad Information about a pending registration action.
\qquad FIFRA registration data.
\qquad The document is a duplicate of page (s) \qquad -
__ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

CONADEATITAL BUSINESS INFORMATION DOES NOT CONTAIN
MATIONAL SECURIX INFORMATION EEO 12065!
EPA NO.: 68D80056 DYNAMIC NO.: 308-A3
TASK NO.: 3-08A3
September 7. 1990

DATA EVALUATION RECORD

 DEFTMutagenicity--Mammalian Cells in Culture Cytogenetic Assay in Chinese Hamster Ovary (CHO) Cells

APPROVED BY:

Robert J. Weir, Ph.D. Program Manager Dynamac Corporation
Signature:

Date: $\frac{\text { sift }}{\hat{y}}$

EPA No.: 68080056
DYNAMIC NO.: 308-A3
TASK NO.: 3-08A3
September 7. 1990

DATA EVALUATION RECORD

DEFT

```
Mutagenicity--Mammalian Cells in Culture Cytogenetic Assay
    in Chinese Hamster Ovary (CHO) Cells
```


REVIEWED BY:

Nancy E. McCarroll. B.S. Principal Reviewer Dynamac Corporation
I. Cecil Falkner, Ph.D. Independent Reviewer Dynamac Corporation
signature: Nary 2 th. Cana
Date:

Signature:

Date:

$?$

signature $6 i=-t_{s}$,
Date: Sgt 6, 1;3.
signature: \rightarrow eroliHChen
Date:

$$
9-11-90
$$ EPA Reviewer, Section II Toxicology Branch II (H-7509C)

K. Clark Siwentzel EPA Section Head, Section II Toxicology Branch II
John H. S. Chen, D.V.M., EPA Reviewer, Section II Toxicology Branch II ($\mathrm{H}-7509 \mathrm{C}$)

Whang Bhang, Ph.D. ($\mathrm{H}-7509 \mathrm{C}$)

Signature:

Date: \qquad

dAta evaluation record

Tox. chem. No.: 346
EPA File Symbol:

CHEMICAL: DEET.

STUDY TYPE: Mammalian cells in culture cytogenetic assay in Chinese hamster ovary (CHO) cells.

ACCESSION OR MRID NUMBER: 413444-01.

SXNONYM(S)/CAS NUMBER: N,N-Diethyl-m-toluamide.

SPONSOR: DEET Joint Venture/Chemical Specialties Manufacturers Association, Washington, DC.

TESTING FACILITY: Microbiological Associates, Inc., Rockville, MD.

IITLE OF REPORT: Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells.

AUTHORS: Putman, D. L. and Morris, M. J.

STUDY NUMBER: T8728.337.

REPORT ISSUED: December 28, 1989.

CONCLUSIONS - EXecutive Summary: Four nonactivated (0.125, 0.25, 0.50 , and $1.0 \mu \mathrm{~L} / \mathrm{mL}$) and four 59 -activated ($0.063,0.125,0.25$, and $0.50 \mu \mathrm{~L} / \mathrm{mL}$) doses of DEET were evaluated for cytotoxic effects in Chinese hamster ovary (CHO) cells. Doses $\geq 1.5 \mu \mathrm{~L} / \mathrm{mL}+/-59$ were cytotoxic. Because of cell cycle delay at $0.5 \mu \mathrm{~L} / \mathrm{mL}-\mathrm{S9}$, an 18 hour cell harvest was performed for the nonactivated phase of testing; a normal 10-hour cell harvest was used for the s9activated assay. Results indicated that DEET was not clastogenic at any assayed level, either with or without 59 activation in a well-controlled study. We conclude, therefore, that the study satisfies Guideline requirements for Category II, Structural Chromosome Aberrations.

Study classification: The study is acceptable.

A. MATERTALS:

1. Test Material:

Name:
Description: Laboratory: clear colorless liquid (at receipt: pale yellow liquid andor ligat. yellow liquid (at use).

Sponsor: Yellow liquid (Test Articze Characterization Form).
clear. oily liquid Material Safety Daea Sheet).

Note: The report indicated that the minor differences in test material description were not considered to reflect a change in the test material from receipt to use.

Batch/Lot NO.: A-1-96 (mixture of four representative production runs: see Appendix $A_{\text {. Protocol. }}$ CBI p. 22).

Purity: 98.301%

Contaminants: Not listed.
Solvent used: Dimethylsulfoxide (DMSO).
Other comments: The test material was stored at rocm temperature, protected from light. Dosizg solutions were frozen after use and shigred to Mclaughlin Gormley King Co. Eor analytical determinations.
2. Control Materials:

Négative: MCCoy's 5A medium supplemented with zos fe=zl bovine serum, glutamine, and antibiotics.

Solvent,final concentration: DMSO/1\%.
Pesitive: Nonactivation (concentrations, solven=): Triethylenemelamine (TEM) was prepared in distilled water at a final concentration $c=a$ $5 \mu \mathrm{~g} / \mathrm{mL}$ 。
Activation (concentrations. scivens; : Cyclophosphamide (CP) was prepared in distizied water at a final concentration of $50 \mu \mathrm{~g} / \mathrm{mL}$.

If other, describe below. Describe S9 composition (if purchased, give details). Prior to use, each batch of $S 9$ was assayed for its ability to metabolize 2 -anthramine and 7,12-dimethylbenz(a)anthracene to mutagenic forms using Salmonella typhimukium TA100.

The composition of the 59 mix per mL of growth medium was as follows:

NADP	1.4 mg
Isocitric acid	2.7 mg
$\mathrm{S}-9$	$15 \mu \mathrm{~L}$

4. Test Compound Concentrations Used:
a. Preliminary cytotoxicity assay: Nine doses (0.0005, $0.0015,0.005,0.015,0.05,0.15,0.5,1.5$, and $5 \mu \mathrm{~L} / \mathrm{mL}$) were evaluated with and without $S 9$ activation.
b. Nonactivated conditions: Five doses (0.063. 0.125, $0.25,0.5$, and $1 \mu \mathrm{~L} / \mathrm{mL}$) were assayed with a delayed 18hour harvest time.
c. S9-activated conditions: Five doses (0.032, 0.063, $0.125,0.25$, and $0.5 \mu \mathrm{~L} / \mathrm{mL}$) were assayed with a normal 10-hour harvest time.
5. Test Cells: CHO-K, cells were obtained from the American Type Culture Collection, Rockville, MD. Prior to use, the cHO cells were grown for 16 to 24 hours in MCCoy's 5 a medium.

Properly maintained: Yes.
Cell line or strain periodically checked for Mycoplasma contamination? Not reported.

Cell line or strain periodically check for karyotype stability? Not reported.

B. TEST PERFORMANCE:

1. Cell Treatments:
a. Cells exposed to test compound for: 16 hours (nonactivated) 2 hours (activated)
b. Cells exposed to positive controls for: 16 hours (nonactivated) 2 hours (activated)
c. Cells exposed to negative and/or solvent controls for: 16 hours (nonactivated) 2 hours (activated)
2. Protocol:
a. Preliminary assay: Prepared cultures, seeded at $5 x$ 10^{5} cells/flask, were exposed with or without S 9 activation to nine half-log dilutions of the test material (0.0005 to $5 \mu 1 / \mathrm{mL}$) and the solvent contral (DMSO).

In the nonactivated system, cells were exposed for 6 hours to the test material; $50 \mu \mathrm{~L}$ of 1 mM Brdu were added to the cultures 2 hours after initiation. At the conclusion of the 6 -hour treatment, cells were washed, refed fresh medium containing 0.01 mM Brdu and incubated for a total of 24 hours. In the s9-activated system, cultures were treated for 2 hours. After exposure, cells were washed, refed with complete medium containing BrdU (0.01 mM), and reincubated for 24 hours.

Two hours prior to the end of incubation, a final concentration of $0.1 \mu \mathrm{~g} / \mathrm{mL}$ colcemid was added to each culture. Metaphases were harvested, fixed, and stained with the modified, fluorescent-plus-Giemsa technique of Perry and Wolff. One hundred cells from each dose group were examined for the percentage of first division $\left(M_{1}\right)$, second division $\left(M_{2}\right)$, and third division $\left(M_{3}\right)$ metaphases. Mitotic indices were determined by counting the number of mitotic cells in a population of 500 scored cells. Based on these results, dose selection and harvest times for the cytogenetic assay were established.

[^3]b. Cytogenetic assay:

1) Treatment: Prepared cultures (in duplicate), seeded at 5×10^{5} cells, were exposed to the selected test material doses, the negative control (culture medium), the solvent control (DMSO), or the positive controls (TEM -S9 or CP +S9).

In the nonactivated assay, cells were dosed for 16 hours. Cultures were washed, refed medinum containing $0.1 \mu \mathrm{~g} / \mathrm{mL}$ colcemid, and reincubated for 2 hours. Under s9-activated conditions, cells were exposed for 2 hours, washed, refed culture mediun, and incubated for an additional 8 hours. Colcemid was added 2 hours before the cultures were harvested.

Metaphase cells were collected and fixed. Sliees were stained with $5 \frac{3}{3}$ Giemsa and coded.
2) Metaphase analysis: One hundred metaphase cells per group (50/culture) were scored for chromosome aberrations. Chromatid and chromosome gaps were counted, but not included, in the final analys\#s. Mitotic indices were calculated.
3) Statistical methods: The data were evaluated For statistical significance at p values of 0.05 and 0.01 by the Fisher's Exact test.
4) Evaluation criteria:
a) Assay validity: The assay was considered vaiid if the percent of cells with aberrations in the untreated and solvent controls did not exceed 6% and the number of cells with aberrations in the positive control was significantly higier ($p \leq 0.05$) than in the solvent control.
b) Positive response: The test material was considered positive if it caused a significent and dose-related increase in the percentage of cells with aberrations relative to the solvent control.

IN VITRO MAHMALIAN CYTOGENETICS

C. REPORTED RESULTS:

1. Preliminary Cytotoxicity Assay: The report indicated that the highest dose ($5 \mu \mathrm{~g} / \mathrm{mL}$) was only partially soluble: all other concentrations of test material were soluble. The high concentration had no adverse effects on the osmotic pressure of the tissue culture medium. The study authors further indicated that no mitotic cells were recovered from cultures exposed to 1.5 or $5 \mu \mathrm{~L} / \mathrm{mL}+/-$ S9.

As shown in Table 1, reduced mitotic indices (MIs) were seen following exposure to nonactivated 0.15 and $0.5 \mu \mathrm{~L} / \mathrm{mL}$ DEET. Cell cycle delay was apparent at $0.5 \mu \mathrm{~L} / \mathrm{mL}$, and although slight effects on cell cycle kinetics were observed at doses $\geq 0.005 \mu \mathrm{~L} / \mathrm{mL}$, the data did not clearly suggest adverse effects on cell cycling. In the presence of S9 activation, reduced MIs were reported at the 0.15and $0.5-\mu L / m L$ dose levels; however, there was no evidence of cell cycle delay. Based on the results, five levels (0.063 to $1 \mu \mathrm{~L} / \mathrm{mL}$) were assayed without $\mathrm{S9}$ activation using an 18-hour cell harvest, and five doses (0.032 to $0.5 \mu \mathrm{~L} / \mathrm{mL}$) were tested with S 9 activation using a 10 -hour cell harvest.
2. Cytogenetic Assay: Representative results of the cytogenetic assay performed with DEET are presented in Table 2. A dose-related decrease in the MI was observed in the nonactivated phase of testing; MIs ranged from 0.6 at $1.0 \mu \mathrm{~L} / \mathrm{mL}$ to 4.9 at $0.125 \mu \mathrm{~L} / \mathrm{mL}$. The study authors also stated that $1.0 \mu \mathrm{~L} / \mathrm{mL}-59$ had slight cytotoxic effects on the monolayer. In the presence of 59 activation, the MI for the high dose ($0.5 \mu \mathrm{~L} / \mathrm{mL}$) was slightly reduced compared to the negative and solvent control value. For the remaining S9-activated dose groups, MIs were generally comparable to the solvent control group. The nonactivated or the s9-activated test levels did not cause an appreciable increase in the percentage of cells with aberrations or the number of aberrations per cell (Table 2). By contrast, both the nonactivated and S9activated positive controls (TEM and CP) induced significant ($p \leq 0.01$) increases in the percentage of cells with aberrations.

Based on the results, the study authors concluded that DEET was negative in the cHO cell cytogenetic assay.
3. Analytical Determinations: Data presented from the analytical determinations of test material dilutions prepared for the cyrogenetic assay indicated that target concentrations were within 10% of the actual concentration.

TABLE 1. Representative Results from the Preliminary Cytotoxicity Assay with DEET

Substance	$\begin{gathered} \text { Dose } \\ (\mu \mathrm{L} / \mathrm{M}) \end{gathered}$	59 Activation	x Cells ${ }^{\text {a }}$			Mitotic ${ }^{\text {b }}$ Inclex
			H_{1}	m_{2}	H_{3}	
Solvent Contral						
Dimethylsul foxide	--	-	2	98	0	3.2
	--	+	4	96	0	5.2
Iest Material						
DEET	$0.005^{\text {e }}$	-	13	87	0	4.0
	0.015	-	15	85	0	3.4
	0.05	-	14	86	0	3.4
	0.15	-	17	82	1	2.8
	$0.5^{\text {a }}$	-	39	61	0	2.0
	0.05°	+	12	88	0	5.0
	0.15	+	0	100	0	3.0
	$0.5^{\text {d }}$	+	2	98	0	1.8

apercent celts in first $\left(\mu_{1}\right)$, second $\left(\mu_{2}\right)$, or third (M_{3}) division.
${ }^{b}$ Number of metaphase cells per 500 cells scored.
$c_{\text {Lower doses }}(0.0015$ and $0.0005 \mu \mathrm{~L} / \mathrm{mL}-59$ and $0.015,0.005,0.0015$, and $0.0005 \mu \mathrm{~L} / \mathrm{mL}+59$) had no appreciable cytotoxic effects.
${ }^{\mathrm{d}}$ No mizotic cells were recovered from oultures exposed to 1.5 or $5.0 \mu \mathrm{~L} / \mathrm{mL}(+/-59)$.
Aault 2. Kepfesentative Result: of the CHO Cell in vityo Cytogenetic Assay with Deti folluwing
an 18 -Hour Nonactivated and a 10 Hour 59 -Activated Cell Harvest

Substance	Dose	Harvest VInke hours	S9 Act:vation	No. of Colls scored	Mitotic Index (x)	Cells with Aberrations (x)	Aberrations per Cell standard Deviations	Biologically Significant aberrations ${ }^{\text {a }}$ (No./Iype)
Hegarive Contiol								
Untreated cells	\cdots	18	-	100	5.5	2	0.05:0.411	118; 4SB
	..	10	*	100	7.6	1	0.02: 0.200	2s8
Solvent Control								
Dimethylsul foxide	1x	18	.	100	5.0	2	0.02 ± 0.141	11E; 10
	1x	10	+	100	9.9	2	0.02:0.141	20
Positive control								
Iriethylenenel amine	$0.5 \mu \mathrm{~g}$	18	.	100	2.9	29*	$0.39: 0.695$	2218; 121E; 588
Cyclophosphamide	$50.0 \mu \mathrm{~g}$	10	+	100	2.0	10*	0.19 : 1.032	
Iest Material								
DEEI	$0.5 \mu{ }^{\text {b }}$	18	-	100	2.3	0	0.00 ± 0.000	\cdots
	1,0 μ	18	.	100	0.6	1	$0.01: 0.100$	178
	$0.25 \mu \mathrm{~L}^{\text {b }}$	10	-	100	9.4	4	0.040:0.197	1SB; 2D; 1R
	$0.50 \mu \mathrm{l}$	10	1	100	0,4	1	$0.010 \div 0.100$	118

[^4]$\begin{array}{lrl}\text { 18. Chromatid break } & \text { SB - Chromosome break } & \text { R - Ring } \\ \text { IE - Chromatid exchange } & \text { - Dicentric chromosome } & \text { SO - Severely damaged (e.g., pulverized chrompsome or celt with } \geq 10 \text { aberrations). }\end{array}$
$b_{\text {Lower dose groupa }}(0.25$ and $0.125 \mu \mathrm{~L} / \mathrm{mL} .59$ and 0.125 and $0.063 \mathrm{\mu L}+59$) were not f (gnificantiy higher than the appiopriate solvent control group. *Significantly ($\mathrm{P} \leq 0.01$) higher than the solvent contral by Fisher's Exact test.
4. Reviewer's Discussion/Conclusions: We assess that the study was properly conducted and that the study authors" interpretation of the data was correct. In both the nonactivated and s9-activated cytogenetic assays, DEET was assayed to cytotoxic levels but failed to induce a clastogenic effect. Although several chromosome-type aberrations (1 chromosome break, 2 dicentrics, and 1 ring) were scored at $0.25 \mu \mathrm{~L} / \mathrm{mL}+S 9$, in the absence of chromatid-type aberrations, this result is insufficient as an indicator of a clastogenic effect.

The sensitivity of the test system to detect clastogenesis was adequately demonstrated by the significant ($p \leq 0.01$) increase in the percentage of cells with aberrations in the positive control groups. We conclude, therefore, that DEET was assayed over an appropriate concentration range both in the presence and absence of 59 activation with no evidence of a clastogenic effect in a well-controlled study.
5. Was test performed under GLPs? YES. (A quality assurance statement was signed and dated, December 28, 1989.)
5. CBI Appendix: Appendix A, Materials and Methods, CBI pp- 9-13: Appendix B, study Protocol, CBI pp. 22-29.

APPENDIX A
Materials and Methods (CBI pp. 9-13)

80301
 DEFT
 RIN 8220-92

Page \qquad is not included in this copy. pages 74 through 87 are not included.

The material not included contains the following type of information:
\qquad Identity of product inert ingredients.
\qquad Identity of product impurities.
\qquad Description of the product manufacturing process.
_ Description of quality control procedures.
\qquad Identity of the source of product ingredients.
\qquad Sales or other commercial/financial information.
\qquad A draft product label.
\qquad The product confidential statement of formula.
\qquad Information about a pending registration action.
\qquad FIFRA registration data.

The document is a. duplicate of page (s) \qquad -
\qquad The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

[^0]: ${ }^{3}$ iverage of two samples in the first trial and three samples in the repeat trial.
 $\approx=$-rrected $L O H=$ Average LDH of rest Group - Solvent control LDH.
 $=$ eercent Cytotaxicity $=\frac{\text { Corrected } \operatorname{LnH} \text { of Test Groups }}{\text { Corrected LDH of Solvent Control Cultures Exposed to ix Triton }} \times 100$.
 Eiesults for the first erial. $^{\text {fin }}$
 Feesults for the repeat trial.

 - o tevels were assayed in each triat; the lowest level was selected as representarive.
 ${ }^{3}$ Results for lower doses ($0.1,0.03$, and $0.01 \mu \mathrm{~g} / \mathrm{mL}$ in both trials and $0.003 \mu \mathrm{~g} / \mathrm{mL}$ in the first trial) die not indicate 3 zenotoxic effect.
 $\therefore-\infty$ eytctoxic to evaluate UDS activity.
 *-こnforms to the reporting laboratory's eriteria for a positive response.

[^1]: ${ }^{4}$ Means and standard deviations of counts from triplicate plates except for strain tais37 at 8333 ug/plate -57: because of contaninarion only one plate was counted.

 Repeat 59 -activated assay with strain TA1538 because of cytotexicity as levels $\geq 833 \mu g / \mathrm{plate}$.
 "Results for lower doses (23, 84, and $278 \mu \mathrm{~g} / \mathrm{plate}$) did not reicate a mitagenic resconse.
 thecuction in the backgrounc lawn of growth.
 eresults for lower doses (278 and 555 mg/plate in strains TAi 535 , TA1537, TA98, and TA100 and 2.8, 8.3, 28, 84, and $278 \mu \mathrm{~g} / \mathrm{p}$ late in s5ain (A1538) did not indicate a muzagenic response.

[^2]:
 Fresults for. vider doses (28,84 , and $278 \mu \mathrm{~g} / \mathrm{plate}$) did not indicate a mutagenic effect.
 "zesul:s for ower doses (28, 84, and 278 , 9 /plate with strains TA1535, TA1537, TA98, and TA100 and 2.3, 8.3, 29. 34, anc 373 wg/plate with strain TA1538) did not indicate a mutagenic effee:.

[^3]: 'Perry, P., and Wolff, S. New Giemsa method for the differential staining of sister chromatids. Nature (1974) 251: 156-158.

[^4]: Abbreviations Used:

