TO: Edwards/Johnson
 Product Manager #12
 Registration Division (H7505C)

FROM: Emil Regelman, Supervisory Chemist
 Environmental Chemistry Review #2
 Environmental Fate and Groundwater Branch/EFED (H7507C)

THRU: Hank Jacoby, Chief
 Environmental Fate and Groundwater Branch
 Environmental Fate and Effects Division (H7507C)

Attached, please find the EFGWB review of:

Reg./File # (s): 538-EEI

Common Name: Chlorpyrifos

Chemical Name: O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate

Type of Product: Insecticide

Product Name: Dursban, Lorsban

Company Name: Dow Chemical

Purpose: Review (for EEB) of aquatic bioaccumulation and aquatic dissipation data

Date Received: 1/11/90 Action Code: 160

EFGWB # (s): 90-0281

Total Reviewing Time: 1.5

Deferrals to: ______ Ecological Effects Branch/EFED
 ______ Science Integration & Policy/EFED
 ______ Non-Dietary Exposure Branch/HED
 ______ Dietary Exposure Branch/HED
 ______ Toxicology Branch I/HED
 ______ Toxicology Branch II/HED
1. **CHEMICAL:**
 Common Name: Chlorpyrifos
 Chemical Name: O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate
 Type of Product: Insecticide
 Trade Name: Lorsban 4E

 Chemical Structure:

 ![Chemical Structure Image]

 Physical/Chemical Properties
 - Molecular weight: 350.6
 - Physical state: White solid
 - Aqueous solubility: 0.5–2 ppm
 - Vapor pressure: 1.9×10^{-3} mm of Hg.

2. **TEST MATERIAL:**
 See attached study.

3. **STUDY/ACTION TYPE:**
 Review (for EEB) of aquatic bioaccumulation and aquatic dissipation data.

4. **STUDY IDENTIFICATION:**

 Memorandum dated 12/21/89 from J. Ackerman of EEB/OPP to D. Edwards of RD/OPP requesting that EFGWB review the following 3 studies on the aquatic bioaccumulation and/or aquatic dissipation of chlorpyrifos:

 (a) **MRID #41205404**

 (b) **MRID #41228801**

 (c) **MRID #41205409**
5. REVIEWED BY:
Henry Nelson, Ph.D., Acting Section Head
Environmental Chemistry Review Section #3
Environmental Fate and Groundwater Branch/EFED

6. APPROVED BY:
Emil Regelman, Supervisory Chemist
Environmental Chemistry Review Section #2
Environmental Fate and Groundwater Branch/EFED

7. CONCLUSIONS:

Hedlund RT, 1972 (Study attached)

(1) The study in which the bioaccumulation of 3,5,6-trichloro-2-pyridinol in mosquito fish was determined is acceptable for supplemental information. The study may have possibly satisfied the laboratory accumulation in fish (163-1) data requirement for the test chemical if it had been imposed to support the registration of chlorpyrifos. However, the data requirement was not imposed because the test chemical is a polar degrade of chlorpyrifos (formed from the hydrolysis of one of the phosphorothioate ester linkages).

(2) Whole body BCFs were determined for the accumulation of \(^{14}C\)-3,5,6-trichloro-2-pyridinol in mosquito fish exposed to a steady state water concentration of 1.06-1.13 ppb in a flow-through system for 6 days (Figures 1 and 2, Table 1). BCFs and whole body concentrations of 3,5,6-trichloro-2-pyridinol increased from 2.1 (2.4 ppb) after 12 hours exposure to plateaus of 3.2 (3.4 ppb), 2.8 (2.9 ppb), and 3.1 (3.4 ppb) after 3, 5, and 6 days exposure, respectively. After 12 hours to 6 days exposure, whole body concentrations of an unidentified polar degrade fluctuated ranging from 1.2 to 2.1 ppb. After 2 days depuration, no radioactivity could be detected in fish tissues (Table 2).

(3) BCFs were not calculated specifically for edible tissues and viscera, but the whole body BCFs are sufficiently low to indicate that 3,5,6-trichloro-2-pyridinol does not significantly bioaccumulate in the test fish. The major polar degrade was not identified, but it was not significantly bioaccumulated by the test fish.

Geyer H et al., 1982 (Journal article attached)

(1) The logarithms of BCF values reported in the literature for the accumulation of 16 chemicals (not including chlorpyrifos) in the mussel *Mytilus edulis* were linearly regressed against the logarithms of their reported aqueous solubilities and then
against the logarithms of their reported octanol/water partition coefficients. The following 2 linear equations relating the logarithm of the BCF to first the logarithm of the aqueous solubility (WS in ug/L) and then to the logarithm of the octanol/water partition coefficient (K_{ow}) were derived from the regressions and can be used to estimate BCFs for the mussel:

\[\log \text{BCF} = -0.682 \log(\text{WS}) + 4.94 \quad (N = 16, r = -0.943, s_{yx} = \pm 0.345) \]

\[\log \text{BCF} = 0.858 \log(K_{ow}) - 0.808 \quad (N = 16, r = 0.955, s_{yx} = \pm 0.308) \]

(2) The 16 chemicals used to derive the relationships are chemically diverse and exhibit a wide range of aqueous solubilities (5.5 to 9.2 \times 10^3 \text{ ug/L}) and octanol/water partition coefficients (55 to 1.5 \times 10^6). Nevertheless, there was a reasonably good linear fit for both regressions as indicated by the correlation coefficients. The equations appear to be adequate for screening purposes in estimating the BCFs of various chemicals including chlorpyrifos in the mussel.

(3) EFGWB substituted the aqueous solubility of chlorpyrifos (200 ug/L) into the first equation and the octanol/water partition coefficient (5.0 \times 10^6) into the second equation to give estimated whole body BCFs of 2.3 \times 10^5 and 1.7 \times 10^5, respectively for the bioaccumulation of chlorpyrifos in the mussel.

(4) Note that comparable BCFs for chlorpyrifos in rainbow trout (to those estimated for chlorpyrifos in mussels) have been reported in a study (MRID #40056401) EFGWB accepted as satisfying the laboratory accumulation in fish (165-4) data requirement (see EAB #70259 dated 8/4/87 and/or study 13 of the EFGWB Science Chapter for the 1988 Chlorpyrifos Registration Standard).

Schimmel S et al., 1983 (Journal article attached)

(1) The study would not satisfy either the aerobic (162-4) or anaerobic (162-3) aquatic metabolism data requirements for several reasons including the lack of material balances, the use of fluorescent lighting which includes irradiation < 290 nm, inadequate characterization of sediment and overlaying saltwater, inadequate description of test chambers/test conditions, inadequate data reporting, failure to determine redox potentials, and failure to analyze media samples for degradates.

(2) The persistence portion of the study was carried out in three parts using (a) aerated seawater alone incubated indoors at 25°C and exposed to 12 hr light/dark cycles under fluorescent lights; (b) a combination of sediment/seawater incubated indoors under the same conditions as the seawater alone, except possibly
aeration for which no information was provided; (c) stoppered seawater placed outdoors and either exposed to or shielded from sunlight.

(3) EFGWB does not believe that indoor combination sediment/saltwater nor outdoor non-aerated seawater parts of the study are acceptable for supplemental information because it is unclear whether the sediment/seawater system was aerated, and the redox potentials of the sediment and seawater were not determined. In addition, the reported half-life for chlorpyrifos in the sediment/saltwater system (24 days) is for the whole system rather than for the water column and sediment separately. None of the indoor parts of the study are acceptable for supplemental information because fluorescent lighting that includes irradiation below 290 nm was used.

8. RECOMMENDATIONS:
See conclusions

9. BACKGROUND:

Chlorpyrifos is an insecticide used to control a wide variety of insects. Various formulations containing chlorpyrifos as the active ingredient are registered for use on field and vegetable crops (corn accounts for 57% of use), tree fruit and nut crops, ornamentals, turf, domestic indoor and outdoor uses, commercial establishments, aquatic non-food uses, terrestrial non-food uses, animal housing, beef cattle, and dogs.

10. DISCUSSION:
See conclusions.

11. COMPLETION OF ONE-LINER:
Not applicable.

12. CBI INDEX:
Not applicable.
Title:
DETERMINATION OF THE BIOCONCENTRATION POTENTIAL OF 3,5,6-TRICHLORO-2-PYRIDINOL

Author:
R. T. Hedlund

Data Requirement:
EPA Guideline Reference 165-4

Study Completion Date:
November 24, 1972

Performing Laboratory:
Ag-Organics Research
Dow Chemical U.S.A.
Walnut Creek, California

Project Identification:
GS-1282
Page____ is not included in this copy.
Pages\ through 22 are not included.

The material not included contains the following type of information:

___ Identity of product inert ingredients.
___ Identity of product impurities.
___ Description of the product manufacturing process.
___ Description of quality control procedures.
___ Identity of the source of product ingredients.
___ Sales or other commercial/financial information.
___ A draft product label.
___ The product confidential statement of formula.
___ Information about a pending registration action.
___ FIFRA registration data.
___ The document is a duplicate of page(s)______.
___ The document is not responsive to the request.

The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.
Title of Published Document:

PREDICTION OF ECOTOXICOLOGICAL BEHAVIOUR OF CHEMICALS:
RELATIONSHIP BETWEEN PHYSICO-CHEMICAL PROPERTIES AND
BIOACCUMULATION OF ORGANIC CHEMICALS IN THE MUSSEL
MYTILUS EDULIS

Authors:

H. Geyer, P. Sheehan, D. Kotzias,
D. Freitag and F. Korte

Data Requirement:

EPA Guideline Reference 72-6

Publication Date:

1982

Document Citation

Chemicals: Relationship Between Physico-Chemical Properties
and Bioaccumulation of Organic Chemicals in the Mussel
Mytilus Edulis." Chemosphere (Vol. 11, No. 11, 1982),
pp. 1121-1134.
PREDICTION OF ECOTOXICOLOGICAL BEHAVIOUR OF CHEMICALS:
RELATIONSHIP BETWEEN PHYSICO-CHEMICAL PROPERTIES AND BIOACCUMULATION
OF ORGANIC CHEMICALS IN THE MUSSEL MYTILUS EDULIS

H. Geyer, P. Sheehan, D. Kotzias, D. Freitag and F. Korte

Gesellschaft für Strahlen- und Umweltforschung mbH München
Institut für Ökologische Chemie
Ingolstädter Landstr.1
D- 8042 Neuerberg, F.R.G.

and

Institut für Chemie der TU München-Weihenstephan
D - 8050 Freising-Weihenstephan

ABSTRACT

The analysis presented in this paper shows that water solubility as well as
the n-octanol/water partition coefficient are useful indicators of the tendency
of organic chemicals to bioaccumulate. It is suggested that these physico-chemical data be used as screening test for organic chemical bioaccumulation in aquatic organisms, such as the mussel Mytilus edulis.

An important criterion supporting more extensive ecotoxicological evaluation
of chemicals is their potential to bioaccumulate in aquatic organisms there-
by increasing the risk of an adverse response to the compound by the organ-
ism or within its foodweb. Bioaccumulation studies with bivalves,
such as mussels, are of particular importance as these organisms are able to
concentrate and retain to a high degree not only persistent lipophilic chem-
icals but also some heavy metals. Many molluscs have been found to be def-
cient in the mixed function oxidase systems that metabolize many types of
xenobiotics, therefore elimination of these compounds is slow relative to
fish and crustaceans.
Bioaccumulation experiments with the common mussel, *Mytilus edulis*, have shown that uptake of organic compounds was rapid and equilibrium was generally attained within 8 days depending on the chemical\(^{53,74}\). Many bivalves including some mussels are regularly eaten by men and therefore, could contribute to human bioaccumulation of chemicals. Mussels are easy to collect, have been widely used to biologically monitor environmental pollution\(^{3,4a,b,6a}\) and are a recommended test organism for assessing the bioaccumulation potential of chemicals\(^{2b,5,6a-c}\).

Because it is impossible to comprehensively test all available chemicals as well as newly introduced substances with long-term testing procedures, it would be useful to be able to predict facets of their ecotoxicological behaviour (e.g. bioaccumulation potential) by correlation to their physico-chemical properties\(^{2b}\).

An inverse linear relationship between the log water solubility and the log accumulation of organics in activated carbon\(^{7}\), sediments\(^{8,68}\), soil\(^{9,10,57,58}\), humic acids\(^{11}\), bacteria\(^{12}\), algae\(^{13}\), fish\(^{9,14,15,16,17,39}\), rats\(^{18}\), and cattle\(^{19}\) has already been demonstrated. A previous study using the mussel *Mytilus edulis* to investigate the bioaccumulation of seven pesticides, revealed an inverse relationship between the water solubility of the pesticides and their bioaccumulation factor\(^{5}\). A linear relationship also has been demonstrated to exist between the log n-octanol/water partition coefficients of organic chemicals and their log accumulation factor in sediments\(^{32,68}\), soil\(^{9,10,25,27,32,57}\), microorganisms\(^{21,31}\), algae\(^{20}\), earth worms\(^{26}\), water fleas (*Daphnia*)\(^{20,30}\), fish\(^{9,17,20,22,39}\), and cattle\(^{19}\). As a linear relationship between log \(K_{\text{OW}}\) and \(R_m = \log (1/R_f - 1)\) values derived from high performance thin layer chromatography has been reported\(^{57,76,77}\), it is not surprising that a significant relationship has also been obtained by correlating the log bioaccumulation factors of some chemicals in fish and mussels and the log \(R_m\) values for these compounds\(^{28}\).

This paper examines the relevance of water solubility (WS) and of n-octanol/water partition coefficient (\(K_{\text{OW}}\)) for predicting the tendency of variously structured organic chemicals to bioaccumulate in the mussel, *Mytilus edulis*. These relationships are discussed with regard to the utility in screening for the need, and priority of further ecotoxicological testing.
Table 1. Water Solubilities (WS), n-Octanol/Water Partition Coefficients (K_{OW}) and Bioaccumulation Factors (BF) of Organic Chemicals in the Mussel Mytilus edulis under Laboratory Conditions (References as included).

<table>
<thead>
<tr>
<th>No.</th>
<th>Chemical</th>
<th>WS at 20-25°C (μg/L)</th>
<th>log K_{OW}</th>
<th>Bioaccumulation Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aminocarb</td>
<td>1.10x10⁵ (37)</td>
<td>1.74 (37)</td>
<td>4.9 (51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.15x10⁵ (83)</td>
<td>1.734 (83)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Toluene</td>
<td>5.15x10⁵ (49)</td>
<td>2.10 (43)</td>
<td>4.2 (62)</td>
</tr>
<tr>
<td>3</td>
<td>2,4,6-Trichlorophenol</td>
<td>4.20x10⁵ (62)</td>
<td>2.80 (82)</td>
<td>35-60 40 (85)</td>
</tr>
<tr>
<td>4</td>
<td>Naphthalene</td>
<td>3.77x10⁴ (9,40)</td>
<td>3.37 (40)</td>
<td>38 (62)</td>
</tr>
<tr>
<td>5</td>
<td>Fenitrothion</td>
<td>3.0x10⁴ (9,15)</td>
<td>3.38 (15)</td>
<td>7 (52)</td>
</tr>
<tr>
<td>6</td>
<td>Lindane</td>
<td>7.8x10³ (33)</td>
<td>3.29 (78)</td>
<td>154 (74)</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td></td>
<td>350 (61)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Nonylphenol</td>
<td>5.0x10³ (37)</td>
<td>4.10 (37)</td>
<td>10 (51)</td>
</tr>
<tr>
<td>8</td>
<td>λ-Endosulfan</td>
<td>5.3x10² (33)</td>
<td>3.55 (34)</td>
<td>600 (5)</td>
</tr>
<tr>
<td>9</td>
<td>Pentachlorophenol (PCP)</td>
<td>1.4x10⁴ (9)</td>
<td>3.69 (42)</td>
<td>347 (74)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0x10⁴ (82)</td>
<td></td>
<td>345 (61)</td>
</tr>
<tr>
<td>10</td>
<td>α-Hexachlorocyclohexane</td>
<td>2.0x10³ (33)</td>
<td>3.81 (34)</td>
<td>160 (61)</td>
</tr>
<tr>
<td></td>
<td>(α-HCH)</td>
<td></td>
<td>1600 (61)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dieldrin</td>
<td>2.0x10² (33)</td>
<td>4.32 (39)</td>
<td>1,570 (53) 2,338 (53)</td>
</tr>
<tr>
<td>12</td>
<td>Heptachlor Epoxide</td>
<td>3.5x10² (33)</td>
<td>4.43 (59)</td>
<td>1,700 (5)</td>
</tr>
<tr>
<td>13</td>
<td>Endrin</td>
<td>2.6x10² (33)</td>
<td>4.56 (23)</td>
<td>1,920 (5)</td>
</tr>
<tr>
<td>14</td>
<td>Hexachloro-1,3-butadiene</td>
<td>3.23x10³ (43)</td>
<td>4.78 (43)</td>
<td>900 (47)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,000a (47)</td>
<td>1,450a (47)</td>
</tr>
<tr>
<td>15</td>
<td>2,5,4'-Trichlorobiphenyl</td>
<td>1.1x10² (18)</td>
<td>4.96 (55)</td>
<td>2,940 (53)</td>
</tr>
<tr>
<td>16</td>
<td>Di (2-ethylhexyl) phthalate</td>
<td>4.0x10² (79)</td>
<td>5.11 (81)</td>
<td>2,366 (80) 2,500 (80)</td>
</tr>
<tr>
<td>17</td>
<td>P.P'-DDD</td>
<td>20 (33)</td>
<td>5.99 (34)</td>
<td>9,120 (5)</td>
</tr>
<tr>
<td>18</td>
<td>PCB</td>
<td>54 (54)</td>
<td>6.11 (23)</td>
<td>7,200 (65) 15,650b (65)</td>
</tr>
<tr>
<td>19</td>
<td>P.P'-DDT</td>
<td>5.5 (33)</td>
<td>6.19 (40)</td>
<td>4,500 (65) 23,650b (65)</td>
</tr>
</tbody>
</table>

a Name of the mussel not given;
b Data from environmental analysis;
c Mean value (BF range: 304-326);
d Mean value (BF range: 142-177);
e 20°C
Fig. 1. Correlation of log bioaccumulation factor in the mussel *Mytilus edulis* with the log water solubility for various organic chemicals. (Solid circles (•) designate laboratory experiments; open circles (○) indicate data from environmental analysis).
Fig. 2. Correlation of log bioaccumulation factor in the mussel *Mytilus edulis* with log n-octanol/water partition coefficient for organic chemicals. (Solid circles (●) designate laboratory experiments; open circles (○) indicate data from environmental analysis).
DATA BASE FOR BIOACCUMULATION FACTORS (BFs)

The bioaccumulation factors for different chemicals in the mussel, Mytilus edulis, were taken from the literature or calculated from reported concentration data and are summarized with references in Table 1. The bioaccumulation factor (BF) is defined as the ratio between the concentration of the chemical in the mussel (μg/g), on a wet weight basis, and the average concentration of the chemical in the water (μg/ml). For conversion of BF values from dry weight to wet weight a factor of 0.2 was used. If more than one BF value was found in the literature the average was calculated. Most bioaccumulation studies have been under laboratory conditions, however the BFs of some chemicals (PCP, PCBs, DDT, and A-HCH) are reported for the mussel Mytilus edulis from environmental analysis (see Table 1).

CORRELATION OF BFs WITH WATER SOLUBILITIES (WS)

Water solubility data of the investigated chemicals were taken from the literature unless otherwise noted (s. Table 1). These data were correlated with the bioaccumulation factors obtained for mussels under laboratory conditions using a two variable linear regression with log values. The following relation was obtained:

\[\log BF = -0.682 \times \log WS + 4.94 \]

(1)

BF = Bioaccumulation factor in mussel on a wet weight basis, WS = Water solubility (μg/L), correlation coefficient \(r = -0.943 \); N = 16, standard error of the estimate \(s_{yx} = 0.345 \).

The graphic expression of equation (1) is presented in Fig. 1.

CORRELATION OF BFs WITH PARTITION COEFFICIENTS (K\textsubscript{OW})

The n-octanol/water partition coefficients (\(K_{\text{OW}} \) = ratio of the equilibrium concentration of the chemical between n-octanol and water) were determined according to the OECD Guideline\(^{60,82} \) or were taken from literature (see Table 1). These \(K_{\text{OW}} \) values were correlated with the bioaccumulation factors obtained only under laboratory conditions. Using linear regression analysis, the following regression equation was obtained:

\[\log BF = 0.858 \times \log K_{\text{OW}} - 0.808 \]

(2)
$K_{OW} = n$-octanol/water partition coefficient; correlation coefficient $r = 0.955$; $N = 16$; $s_{yx} = \pm 0.308$.

The correlation of the log bioaccumulation factors in the mussel with the log n-octanol/water partition coefficients is presented in Fig. 2.

DISCUSSION

The results indicate an obvious linear inverse relationship between log water solubility and log bioaccumulation of organic chemicals by *Mytilus edulis*. The correlation coefficient r for the relationship for the 16 chemicals, which range from 20 μg/L to 915 mg/L in water solubility, was -0.943. Equation (1) is approximately in agreement with equation (3) obtained for bioaccumulation of seven pesticides by *Mytilus edulis* as reported by Ernst5:

$$
\log BF = -0.843 \times \log WS + 5.15
$$

(3)

$$
WS = \text{Water Solubility (}\mu\text{g/L}); r = 0.9618
$$

The estimates of BF from water solubility reported for fish species shows a similar general pattern of chemical bioaccumulation to that of the mussel, *Mytilus edulis*.9,70

The log n-octanol/water partition coefficients of the organic chemicals ranged from 1.74 to 5.99. This covers a wide range of values enhancing the potential utility of the correlation (equation 2) to predict BFs for a wide range of organic compounds.

The above investigations also showed an obvious relationship between lipophilicity, expressed as log K_{OW} and log bioaccumulation potential of organic chemicals in the mussel *Mytilus edulis* (correlation coefficient $r = 0.955$).

Comparison of the correlation between log BF and log K_{OW} developed for *Mytilus edulis* with those developed for a number of fish species indicates quite good agreement.9,23,70 The near overlap of the equation (2) with the relationship

$$
\log BF = 0.85 \times \log K_{OW} -0.70
$$

(4)

reported by Veith23 between K_{OW} and bioaccumulation factors for 59 chemicals in six fish species suggests the possibility of extrapolating estimated BF
values obtained from experiments with *Mytilus* to the same fish species for which bioaccumulation experiments are generally more difficult and costly to perform.

Non-ionized organic substances of very low water solubility (<50 µg/L) and high n-octanol/water partition coefficients (log K_{OW} > 5) such as p,p'-DDT, PCBs (DF-3), and p,p'-DDD are bioaccumulated by *Mytilus edulis* to the greatest extent (BFs: 23,650; 15,650 and 9,120, respectively). This result fits the general pattern of bioaccumulation of these organic chemicals in other aquatic organisms, such as algae²,¹⁰, fish²,¹⁰,¹³ and oysters⁴⁴,⁴⁵.

Deviations from the straight regression line can occur, if a chemical is ionized or is metabolized to a high extent to hydrophilic transformation products by mussels during the test period. In these cases the bioaccumulation factors will be lower than is predicted by the original chemicals water solubility or n-octanol/water partition coefficients. This reasoning may explain why the BF value of 10 for nonylphenol is lower than would be predicted by the relatively high log K_{OW} value of 4.1. Nonylphenol was not included in the correlations (equation 1 and 2) because it may be a mixture of monoalkyl phenols⁷⁵ and therefore all the metabolites in the mussel could not adequately be determined.

It has also been pointed out that several compound characteristics can influence the bioaccumulation of chemicals by organisms, such as molecular weight, size and steric factors²⁹,⁴⁰,⁶⁷. The fat or lipid content of the organisms is also known to influence bioaccumulation⁵³,⁶³. Ernst found that a correlation exists between the lipid content of mussels and bioaccumulation factors on a wet weight basis⁷⁴.

The evaluation of the literature data demonstrates that the water solubility (WS) and n-octanol/water partition coefficient (K_{OW}) are useful parameters for predicting the bioaccumulation potential of non-ionized organic compounds in *Mytilus edulis*. It is supposed that the bioaccumulation of ionized organic chemicals in mussels and other aquatic organisms like fish will be determined by their pK_a values, the pH, the temperature and salinity of the water⁵⁶,⁶⁰,⁸⁴.

RECOMMENDATIONS

The use of n-octanol/water partition coefficient and water solubility estimations of BF to screen chemicals for their potential to bioaccumulate in aquatic the need the" city will. There were organisms n-octanol bioaccumulate mussel chemicals. There is chemistry investing. (see Fig. Additions chemicals doing to cause os sels or In order mussels organic culating mussels *Mussel* hancantly conside mical c pressio The typ calls for calls ut hazard the end ever in...
aquatic organism appears to be a quick and inexpensive means to establish
the need and priorities for further testing. Those compounds with high esti-
mated BF values or for which there were other indicators of potential tox-
icity would require further laboratory and possibly ecosystem testing2b.
There would be no need for laboratory bioaccumulation studies with aquatic
organisms, such as mussels or fish46a, if the organic chemicals have
n-octanol/water partition coefficients lower than 1000. In these cases the
bioaccumulation factor in fish 84, and, as shown in this paper, also in the
mussel Mytilus edulis will be lower than 100. However it is recommended that
chemicals highly sorptive to suspended matter be further tested for bioaccu-
mulation in filter feeders, e.g. mussels46b.

There should also no need for bioaccumulation testing with mussels if the
chemical has a water solubility greater than 2000 mg/L46a. According to our
investigations greater solubility values would give a BF of lower than 100
(see Fig. 1).

Additionally, bioaccumulation testing in mussels will not be required if the
chemical is found to be readily degradable, easily hydrolized in water lea-
ding to compounds with significant lower Kow values, or if the chemical, be-
cause of its large molecular size or weight, is not readily taken up by mus-
sels or fish46.

In order to standardize bioaccumulation data in aquatic organisms such as
mussels or fish, it should be normalized to the lipid content of the test
organisms rather than fresh weight28,74. Using a lipid weight basis for cal-
culating BF values reduced the standard deviation among individuals (for
mussels) from up to 30% to better than 16%74. However, studies with My-
tilus have shown that the lipid content of these organisms changes signifi-
cantly due to seasonal and metabolic factors64,66. This aspect should be
considered when applying the results of bioaccumulation test to predict che-
chemical concentrations in natural populations. It may also relate to the ex-
pression of toxic stress as has been demonstrated with other species35,71.

The type of screening procedure described above is in agreement with recent
calls for development of hazard classification-system for synthetic chemi-
cals utilizing structure activity relationships to predict potential
hazard2a,37,72,73. Such systems will be essential to effectively managing
the enormous task of recognizing and predicting the potential hazard of the
ever increasing array of environmental pollutants.
ACKNOWLEDGEMENT

We are indebted to Dr. M. Schmid-Albrecht, GSF, for statistical analysis.

REFERENCES

55. Estimated log Kow from water solubility, Kenaga and Goring (9).
59. Briggs, calculated via parachor (Ref. 57).
85. Ernst W., private communication (1982).

(Received in Germany 10 September 1982)
Article Title:

ACUTE TOXICITY, BIOCONCENTRATION, AND PERSISTENCE OF AC 222,705, BENTHIOCARB, CHLORPYRIFOS, FENVALERATE, METHYL PARATHION, AND PERMETHRIN IN THE ESTUARINE ENVIRONMENT

Authors:

Steven C. Schimmel, Richard L. Garnas, James M. Patrick, Jr., and James C. Moore

Data Requirement:

EPA Guideline Reference 72-3

Publication Date:

January-February 1983

Journal Citation

STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA Sections 10(d)(1)(A), (B), or (C).*

Company: The Dow Chemical Company

Company Agent: George R. Oliver Date: August 1, 1989
Title: Product Registration Manager Signature:

* The above statement supersedes all other statements of confidentiality that may occur elsewhere in this report.
Acute Toxicity, Bioconcentration, and Persistence of AC 222,705, Bentiocarb, Chlорpyrifos, Fenvalerate, Methyl Parathion, and Permethrin in the Estuarine Environment

Steven C. Schimmel, Richard L. Garnas, James M. Patrick, Jr., and James C. Moore

Six pesticides were evaluated in laboratory studies to determine acute (96-h) toxicity, octanol–water partition coefficient (log P), solubility, and persistence in seawater. In addition, three of the six pesticides (synthetic pyrethroids) were tested by using the eastern oyster (Crassostrea virginica) in long-term (28-day) tests to determine their respective bioconcentration factors (BCF). Acute toxicity tests provided the following decreasing order of toxicity to estuarine crustaceans and fishes: AC 222,705, fenvalerate, permethrin, chlорpyrifos, methyl parathion, and bentiocarb. The estuarine mysid (Mysidopsis bahia) was consistently the most sensitive species, with LC₅₀ values as low as 0.008 µg/L. The sheepshead minnow (Cyprinodon variegatus) was generally the least sensitive (range of LC₅₀ values = 1.1–1370 µg/L). log P values were inversely related to solubility in seawater. The following are the increasing order of log P values (range 1.8–6.5) and decreasing order of solubility (range >1000–24 µg/L): methyl parathion, bentiocarb, chlорpyrifos, AC 222,705, fenvalerate, and permethrin. Pesticide half-lives in sediment–water studies ranged from 1.2 to 34 days and were in the following order of increasing persistence: methyl parathion, permethrin, bentiocarb, AC 222,705, chlорpyrifos, and fenvalerate. The steady-state BCF's of the three synthetic pyrethroids were 1900 for permethrin, 2300 for AC 222,705 and 4700 for fenvalerate. After termination of the exposure, each insecticide was depurated by oysters to nondetectable concentrations within 1 week.

The manufacture and use of organochlorine pesticides in the United States have decreased in the last decade, in part due to their adverse effects on fish and wildlife and the tendency of these chemicals to bioconcentrate. Replacement of these pesticides in the agricultural industry fell initially on the organophosphate insecticides and, more recently, the synthetic pyrethroid insecticides. Chlорpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] and methyl parathion [O,O-dimethyl O-(4-nitrophenyl) phosphorothioate] (Figure 1) are organophosphate insecticides that have been in use for many years. Permethrin [3-phenoxybenzyl (4-cis,trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate], fenvalerate [(R,S)-α-cyano-3-phenoxybenzyl (R,S)-2-(4-chlorophenyl)-3-methylbutyrate], and AC 222,705 [(R,S)-α-cyano-3-phenoxybenzyl (R,S)-2-[4-(difluoromethoxy)phenyl]-3-methylbutyrate] (Figure 1) are synthetic pyrethroid insecticides that were introduced during the 1970s (Miester, 1980) and are in wide use throughout western Europe and Japan. The registration of AC 222,705 (Payoff), permethrin, and fenvalerate by the U.S. Environmental Protection Agency (EPA) is limited essentially to cotton applications. The herbicide bentiocarb [S-(4-chlorobenzyl) diethylthiocarbamate] (Figure 1) is now registered by EPA for use in rice fields to control weed growth.

Evaluation of the relative hazards of these chemicals to aquatic environments requires that information on toxicity, accumulation potential, and expected environmental concentrations be compared. We therefore initiated a series of studies on these six pesticides to determine (1) the acute
Table 1. Sampling Schedules and Test Conditions for Conducting Eastern Oyster Bioconcentration Tests with Three Pyrethroid Insecticides

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Uptake</th>
<th>Depuration</th>
<th>Temperature °C</th>
<th>Salinity °/oo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 222,705</td>
<td>0.175, 3.5, 7, 14, 21, 28</td>
<td>29.75, 31.5, 35, 38, 42, 48, 52</td>
<td>28.7 (24-31)</td>
<td>29.1 (18.5-32)</td>
</tr>
<tr>
<td>Fenvalerate</td>
<td>0.1, 2, 5, 10, 20, 21, 23</td>
<td>29.33, 37</td>
<td>28.6 (26-30)</td>
<td>23.8 (17.5-28.5)</td>
</tr>
<tr>
<td>Permethrin</td>
<td>0.2, 5, 9, 15, 20, 23, 31</td>
<td>33, 40</td>
<td>27.7 (22.5-30)</td>
<td>21.9 (17.5-29)</td>
</tr>
</tbody>
</table>

Pretest sample.

Figure 1. Chemical structures of pesticides examined in these studies.

Toxicity of these pesticides to selected estuarine animals, (2) the logarithm of the octanol–water partition coefficient (log P) and solubility of these chemicals in seawater, (3) the persistence in various seawater–sediment conditions, and (4) the steady-state bioconcentration factors of synthetic pyrethroids in eastern oysters (Crassostrea virginica).

MATERIALS AND METHODS

Test Animals. All test animals, except the Atlantic silversides (Menidia menidia), used in the acute (96-h) lethality tests were either collected from estuarine waters adjacent to the Environmental Research Laboratory (ERL), Gulf Breeze, or cultured in the laboratory from laboratory stocks. The silversides were shipped as embryos to the laboratory by air express from Charleston, SC, and reared at the Gulf Breeze Laboratory. Mortality of animals was less than 1% in the 48-h pretesting and they exhibited no obvious diseases or abnormal behavior during acclimation. Fishes were acclimated to laboratory conditions at least 14 days prior to testing. For the mysid (Myisidopsis bahia) tests, newly hatched (≤24-h) individuals were used.

Eastern oysters (Crassostrea virginica) used in the AC 222,705, permethrin, and fenvalerate bioconcentration studies were collected from concrete pilings in an estuarine area near the laboratory. Oysters were held for at least 7 days prior to testing.

Acute Lethality Tests. Methods used in the acute lethality tests followed the flow-through procedures of the American Society for Testing and Materials (1980) except that brine shrimp (Artemia sp.) nauplii were fed to mysids and silversides to prevent starvation during the 96-h test period. Additional deviation from the ASTM method was the use of 2 mL/L of solvent for a fenvalerate test with sheephead minnows (0.5 mL/L is recommended). A higher solvent concentration was necessary due to the low solubility of the insecticide in seawater. The acute lethality of the pesticides AC 222,705, benthocarb, chlorpyrifos, methyl parathion, fenvalerate, and permethrin was determined by exposing 20 animals per aquarium to each concentration for 96 h. Stock solutions of each pesticide, made by dissolving them in triethylene glycol (TEG), were metered by pumps at 20 mL/day into filtered seawater that entered each aquarium from siphons calibrated to deliver 360 L/day. One control aquarium for each test received the same quantity of seawater and TEG with no pesticide; the second received only seawater at 360 L/day. Mortality was recorded daily and dead animals were removed when discovered.

Toxicity tests with mysids, because of their small size, required several modifications in the above procedures. We placed five animals (≤24-h-old juveniles) in each of four replicate chambers (15 cm diameter × 10 cm high cylinder) in each test concentration, using the methods of Nimmo et al. (1978). Seawater delivery was provided by siphons calibrated to deliver 360 L/day.

Bioconcentration Tests. Long-term bioconcentration studies were conducted individually on AC 222,705, fenvalerate, and permethrin, with the eastern oyster (Crassostrea virginica). For each study, 26 oysters (>4 and <8 cmumbo to distal valve edge height) were placed in each 80-L test chamber that received unfiltered seawater from siphons calibrated to flow at the rate of 2400 L/day. One exposure concentration and a control were used for each test. Stock solutions were prepared by dissolving each insecticide in reagent-grade acetone. The solution was then placed in 50-mL syringes and injected by syringe pump at the rate of 20 mL/day. The control oysters received acetone at the rate of 20 mL/day. During the uptake portion of each test, four oysters were randomly sampled from the experimental aquaria on each sampling day (Table I) and analyzed individually. Duplicate water samples were taken and analyzed individually whenever oysters were removed for analysis. Four control oysters were sampled at days 0 (pretest sample) and 14 and at the end of the exposure period.

At the end of the exposure portion of each test, experimental oysters were removed from their exposure aquaria. The aquaria were cleaned and the oysters replaced in the aquaria and provided unfiltered seawater at the rate of 2400 L/day. Oysters were sampled (Table I) until pyrethroids were not detected in tissues for two successive sampling periods. Control oysters were sampled at the end of the depuration period.

Selection of nominal exposure concentrations of the insecticides was based on tests that identified a concentration that would not affect shell deposition. In this test (Butler and Lowe, 1978), 10 µg/L or greater of each insecticide did not decrease shell deposition of oysters relative to the control. Therefore, an exposure concentration of 1.0 µg/L was selected for each insecticide in the bioconcentration studies to minimize the potential for adverse effects during the longer term studies.

Seawater temperature and salinity were monitored continuously throughout each bioconcentration test (Table I); pH and dissolved oxygen were monitored weekly.

Octanol-Water Partition Coefficient (log P). Stock solutions were prepared in 1-octanol (Fisher Certified, A-402) at 1.0 mg/mL for permethrin, fenvalerate, AC
and benthocarb and at 0.25 mg/mL for chlorpyrifos and methyl parathion. A 50-mL aliquot of stock was added to 1500 mL of distilled water (Milli-Q water purifier, Millipore Corp.) in a 2-L separatory funnel. The contents were agitated for 2 min and allowed to separate overnight at 25 ± 1 °C. The aqueous phase was decanted into an 300-mL stainless steel bottles and centrifuged for 30 min at 2000g (25 ± 1 °C). Approximately 175 mL of water was withdrawn from midcolumn of each bottle by pipet, and pipet stem was wiped to remove droplets of water containing traces of excess octanol, and the water was discharged into a 2-L separatory funnel until a total of 1000 mL was collected. The water was extracted and analyzed according to the procedures described for water samples. The octanol phase was decanted into a 150 mm by 25 mm screw-top test tube and centrifuged for 30 min at 1600g. A sample of the octanol phase was diluted with petroleum ether and analyzed according to methods to be described. Each determination was duplicated.

Solubility. A 4-mL aliquot of a pesticide stock solution (1.0 mg/mL in acetonitrile) was added to a 4-L amber glass solvent bottle fitted with a Teflon screw cap. The bottle was rotated on its side and simultaneously purged with a gentle stream of nitrogen gas, so that the chemical uniformly coated the inner glass walls. Three one-half liters of filtered seawater (15 μm; 22 %) was added to the bottle, and the contents were agitated continuously on an Eberbach shaker (Model 6000) at room temperature (22 ± 2 °C). Aliquots were withdrawn by pipet, centrifuged at 2000g for 30 min, and sampled, extracted, and analyzed according to the procedures used for the aqueous phase of the log P determination. Samples were taken at 24, 48, and 96 h. Each determination was duplicated, with steady-state values reported.

Persistence. Sediment was collected from a salt marsh adjacent to Range Point, Santa Rosa Island, Escambia County, FL. The sediment was characterized by a high organic matter content (48 %), high moisture content (83 %), and relatively small particle size (57 % <0.002 mm²). Carrier-free seawater solutions were prepared for each pesticide at concentrations less than the determined solubility by using the procedures described previously for solubility tests. For indoor studies, a series of 150-mL Corex centrifuge bottles contained 10 g (wet weight) of sediment and 100 mL of pesticide solution. All controls were prepared for analytical blanks and fortification purposes. Some containers were prepared with sediments pretreated with 0.5 mL of formalin/g for 24 h. Aliquots were plated on 15 % Zobell's medium throughout the experiment to confirm sterility. Another set of bottles that contained only 100 mL of a pesticide—seawater solution were stoppered and aerated at 50 mL/min. Air exiting each bottle passed through a 6 cm by 0.5 cm i.d. column of Amberlite XAD-4 resin to trap vaporized pesticide. All indoor studies were incubated at 25 °C with 12 h photoperiod under white fluorescent lights. These bottles were agitated continuously at 100 rpm on a rotator table. For all outdoor studies, 100-mL aliquots of a pesticide—seawater solution were added to 250-mL Pyrex Erlenmeyer flasks fitted with ground glass stoppers. Half of the flasks were covered with aluminum foil, and all flasks were exposed outdoors to ambient sunlight and temperature, which varied in the flask from a high of 45 °C during the day to a low of 22 °C at night.

Containers were sampled on days 0, 4, 7, 14, and 28; sediment-containing bottles were sampled in duplicate and all others were single samples. Sediments were centrifuged for 30 min at 1600g and the water phase was decanted into a separatory funnel for extraction. The sediment phase and the water phase were analyzed separately according to methods to be described. Following decantation of water from indoor systems that contained no sediment, the glass bottle was repeatedly rinsed with acetone to remove sorbed residues for quantitation; the glassware of sediment-containing bottles was periodically rinsed separately with acetone. The contents of one bottle served as a blank, and the contents of a similar bottle, following phase separation, were fortified by the method of known addition with the respective pesticide.

Since these studies were conducted over a period of 1 year with different batches of sediment and seawater, a set of containers that contained methyl parathion was run simultaneously with each pesticide, except fenvalerate, which was re-run with AC 222,705.

Analytical Procedure. Water. One liter of seawater was extracted twice with 100-mL portions of petroleum ether (Burdick and Jackson Laboratories, Inc., Muskegon, MI) by shaking for 1 min in a 2-L separatory funnel. Proportional adjustments were made for seawater for sediment studies. The solvent phase was dried by passage through a funnel containing heat-treated (600 °C) glass wool and collected in a 250-mL Kuderna-Danish concentrator. The concentration was 1:1 (v/v) diethyl ether—petroleum ether (permethrin and AC 222,705) were added to the bottle; the contents were shaken for 1 min, and the layers were allowed to separate. The solvent layer was transferred by pipet into a 25-mL concentrator tube, and the extraction procedure was repeated 2 to 3 times. The combined solvent extract was concentrated to 1 mL on a nitrogen evaporator in preparation for cleanup.

Sediment. Ten grams of sediment (wet weight) contained in a 150-mL Corex bottle was homogenized 4 times with 25 mL of acetonitrile by using a Willems Polytrol, following each homogenization, the bottle was centrifuged (1600g) and the liquid was decanted into a 2-L separatory funnel. One liter of 22 % filtered (15 μm) seawater was added to the funnel, and the contents were extracted and concentrated similarly to the procedure used for water samples.

Cleanup. Columns were prepared by adding 3 g of PR-grade Florisil (stored at 130 °C), followed by 2 g of anhydrous sodium sulfate (powder), to a 200 mm by 9 mm i.d. Chromaflex column (Kontes Glass Co., Vineland, NJ) and rinsing with 20 mL of hexane. Tissue and sediment concentrates were transferred with two additional 2-mL volumes of hexane to the column. Benthocarb was eluted with 20 mL of 5 % (v/v) diethyl ether in hexane; chlorpyrifos, with 20 mL of 10 % (v/v) diethyl ether in hexane. Methyl parathion, fenvalerate, AC 222,705 and permethrin were eluted with 20 mL of 10 % 2-propanol in isooctane, following a 20-mL rinse with 5 % diethyl ether in hexane to remove chlorinated pesticides and PCB's. The lower
limits of detection and recovery data for fortified samples are given in Table II.

Resin. XAD-4 resin traps were eluted with 5 mL of acetone, which was concentrated to minimal volume with a nitrogen evaporator, and diluted to an appropriate volume with petroleum ether.

Analytical Equipment. Fenvalerate, AC 222,705 and permethrin analyses were performed on a Hewlett-Packard Model 5710 gas chromatograph equipped with a 63Ni electron-capture detector. The column was 182 cm by 2 mm i.d. glass, packed with 3% OV-1 (Supelco, Inc., Bellefonte, PA) on 80–100-mesh Supelcoport. For fenvalerate and AC 222,705, the flow rate of the 10% methane in argon carrier gas was 25 mL/min, the column temperature 250 °C, the inlet temperature 200 °C, and the detector temperature 300 °C. Under these conditions, enantiomeric pairs were not separated completely. Conditions were similar for permethrin, with the exception that the column temperature was 225 °C; separation of the stereoisomers was not complete.

Methyl parathion, chlorpyrifos, and benthicarb analyses were performed with a Hewlett-Packard Model 5730A gas chromatograph equipped with a dual nitrogen-phosphorus flame ionization detector. Detector gases were hydrogen at 4 mL/min and air at 100 mL/min. Operating conditions were flow rate of helium carrier gas 30 mL/min, injector and column temperature 200 °C, and detector temperature 300 °C. The column was 182 cm by 2 mm i.d. glass, packed with 5% QF-1 on 80–100-mesh Gas-Chrom Q.

All chemicals were quantitated by peak area, with Hewlett Packard Model 3353E laboratory data system. Aliquots of 5 μL were injected and compared to the analytical standard concentrations noted in Table II. Tissue concentrations were calculated by wet weight; sediment concentrations, by dry weight.

Gas chromatography–mass spectrometry (GC–MS) data were obtained with a Finnigan Model 4000 EI-CI mass spectrometer interfaced to a System Industries System 150 data system. Spectra were determined at 70 eV in the electron impact (EI) mode by using (decafluorotributyl)phosphate as the reference compound for calibration purposes (Eichelberger et al., 1975). The base peak and molecular ion were obtained for each chemical in the EI mode (Table II) and confirmed by further analysis in the chemical ionization (CI) mode. Columns were those mentioned for gas chromatographic analyses of each chemical.

Statistical Methods. Shrimp and fish acute lethality test were analyzed by the probit analysis method of Finney (1971), moving average method (Kendall and Stuart, 1973), or the binomial test method (Siegal, 1956; Sokal and Rohlf, 1969) to determine the concentration of pesticide in water estimated to kill 50% of the test animals (LC₅₀) and the 95% confidence intervals (>95% for the binomial test method). Abbott's correction (Finney, 1971) was used to correct for control mortality (≤5% for fishes; ≤10% for shrimp) when observed.

In the bioconcentration studies, the statistical model of Bahner and Oglesby (1979) was used to determine bioconcentration factors and to describe uptake and depuration of AC 222,705 fenvalerate, and permethrin in oysters.

Each set of experimental data for the persistence studies was treated by linear regression under the assumption that pesticide concentration was first order with respect to time. The quality of the estimated regression lines was tested by determining the correlation coefficient and an analysis

Table II. Pesticide Sources, Purities, Recoveries, and Limits of Detection for AC 222,705 Fenvalerate and Permethrin

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Material Source</th>
<th>Purity, %</th>
<th>GC-MS base peak, m/z</th>
<th>Analyzed standard, ng/mL</th>
<th>Analyzed standard, %</th>
<th>Tissue recovery, %</th>
<th>Lower limit of detection, μg/L</th>
<th>Lower limit of detection, ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 222,705</td>
<td>American Cyanamid</td>
<td>98</td>
<td>184</td>
<td>3.50</td>
<td>94</td>
<td>92</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>Fenvalerate</td>
<td>Shell Development</td>
<td>94</td>
<td>180</td>
<td>5.00</td>
<td>94</td>
<td>94</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Permethrin</td>
<td>IC America, Inc.</td>
<td>93</td>
<td>204</td>
<td>0.50</td>
<td>97</td>
<td>97</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* *N > 12; relative standard deviation < 5%.<ref>Abbott, for 1 L of seawater containing 5 g of sediment (dry weight) and 5 g of tissue (wet weight).
Table III. Acute Toxicity of Six Pesticides to Estuarine Animals in Flowing Seawater Acute (96-h) Lethality Tests

<table>
<thead>
<tr>
<th>pesticide</th>
<th>species</th>
<th>96-h LC₉₀ (µg/L)</th>
<th>test temp (x), °C</th>
<th>test salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 222,705</td>
<td>Mysidopsis bahia, estuarine mysid</td>
<td>0.008⁺ (0.006-0.01)</td>
<td>26.0</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>Penaeus duorarum, pink shrimp</td>
<td>0.22 (0.15-0.70)</td>
<td>25.1</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td>Cyprinodon variegatus, sheepshead minnow</td>
<td>1.1 (0.38-1.3)</td>
<td>29.4</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>M. bahia</td>
<td>330 (260-410)</td>
<td>27.6</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>C. variegatus</td>
<td>370 (1350-1380)</td>
<td>25.6</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>M. bahia</td>
<td>0.035 (0.029-0.043)</td>
<td>26.8</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>C. variegatus</td>
<td>136 (113-153)</td>
<td>31.4</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>Fundulus similis, longnose killifish</td>
<td>4.1 (2.8-6.9)</td>
<td>30.0</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td>Menidia menidia, A lantic silverside</td>
<td>1.7 (1.4-2.0)</td>
<td>27.5</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>Mugil cephalus, striped mullet</td>
<td>5.4 (4.0-6.9)</td>
<td>24.8</td>
<td>24.7</td>
</tr>
<tr>
<td>fenvalerate</td>
<td>M. bahia, estuarine mysid</td>
<td>0.008⁺ (0.005-0.01)</td>
<td>25.4</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>P. duorarum, pink shrimp</td>
<td>0.84 (0.68-1.2)</td>
<td>24.8</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>C. variegatus, sheepshead minnow</td>
<td>5.0 (4.8-5.3)</td>
<td>30.0</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M. menidia, A lantic silversides</td>
<td>0.31 (0.21-0.40)</td>
<td>24.1</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>C. variegatus, striped mullet</td>
<td>0.58 (0.41-1.0)</td>
<td>25.9</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>Oponus beta, Gulf toadfish</td>
<td>5.4 (4.6-6.6)</td>
<td>30.0</td>
<td>24.8</td>
</tr>
<tr>
<td>methyl parathion</td>
<td>M. bahia</td>
<td>0.78 (0.58-1.1)</td>
<td>19.5</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>P. duorarum</td>
<td>1.2 (0.91-1.4)</td>
<td>24.8</td>
<td>21.6</td>
</tr>
<tr>
<td>permethrin</td>
<td>M. bahia</td>
<td>0.02⁺ (0.017-0.024)</td>
<td>26.0</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>P. duorarum</td>
<td>0.22 (0.06-0.79)</td>
<td>24.9</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>C. variegatus</td>
<td>7.8 (6.2-10)</td>
<td>30.0</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>M. menidia</td>
<td>2.2 (1.2-2.4)</td>
<td>25.5</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>M. cephalus</td>
<td>5.5 (4.1-7.4)</td>
<td>24.5</td>
<td>19.0</td>
</tr>
</tbody>
</table>

*LC₉₀ values based on measured concentrations. *⁺ LC₉₀ values based on nominal concentrations.

RESULTS

Acute Lethality. AC 222,705 and fenvalerate were the most toxic of the six pesticides tested (Table III). In general, our studies show the following decreasing order of toxicity: AC 222,705, fenvalerate, permethrin, chlorpyrifos, methyl parathion, and benthicarb. As a group, the synthetic pyrethroids were toxic to all species tested at concentrations ≤7.8 µg/L. Benthicarb, the only herbicide tested, was significantly less toxic than the five insecticides; methyl parathion, the second least toxic pesticide, was 423 times more toxic to myid shrimp (Mysidopsis bahia) than benthicarb.

Mysid shrimp were consistently the most sensitive species to all six pesticides, and sheepshead minnows were generally the least sensitive (Table III). Pyrethroid LC₉₀ values for mysid shrimp were at least one-tenth those for another crustacean, Penaeus duorarum.

Log P, Solubility, and BCF. The log P values for these six pesticides varied over 4 orders of magnitude (Table IV). The pyrethroids displayed the greatest affinity for the octanol phase, with a value of 6.2 for AC 222,705 and fenvalerate; the highest log P value in the study was 6.5 for permethrin. The two organophosphate insecticides differed markedly in log P values, with chlorpyrifos having the higher (log P = 5.2) and methyl parathion having the lowest of all six pesticides (log P = 1.9). The herbicide, benthicarb, and a log P value of 3.4.

As expected, the solubility of the six pesticides in seawater was inversely related to the log P values (Table IV). The more hydrophobic insecticides, namely chlorpyrifos, AC 222,705, fenvalerate, and permethrin, had the lower solubilities, 73, 49, 24, and 50 µg/L, respectively. As a group, the synthetic pyrethroids were very hydrophobic and extremely insoluble in seawater. Both methyl parathion and benthicarb were less hydrophobic (Table IV) and more soluble in seawater than the highest value tested, 1000 µg/L.

Eastern oysters (Crassostrea virginica) accumulated all three synthetic pyrethroids in their tissues to concentra-

Table IV. Octanol-Water Partition Coefficient (log P), Solubility (µg/L), and Steady-State Bioconcentration Factor (BCF)

<table>
<thead>
<tr>
<th>pesticide</th>
<th>log P</th>
<th>solubility</th>
<th>BCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl parathion</td>
<td>1.8</td>
<td>>1000</td>
<td></td>
</tr>
<tr>
<td>benthicarb</td>
<td>3.4</td>
<td>>1000</td>
<td></td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>5.2</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>AC 222,705</td>
<td>6.2</td>
<td>49</td>
<td>2300</td>
</tr>
<tr>
<td>fenvalerate</td>
<td>6.5</td>
<td>24</td>
<td>4700</td>
</tr>
<tr>
<td>permethrin</td>
<td>6.5</td>
<td>50</td>
<td>1900</td>
</tr>
</tbody>
</table>

of variance. The time to half concentration was computed from the regression equation, with corresponding 95% confidence intervals.

Persistence. An assumption of first-order disappearance kinetics was used to determine the regression of the logarithm of pesticide concentration on sampling time for untreated estuarine sediment—water studies (Table V). With the exception of permethrin, an analysis of variance was performed for each regression. In each case, the null hypothesis was rejected at the α = 0.01 level of significance, indicating that the assumption of first-order kinetics was valid. The half-lives and corresponding 95% confidence intervals, as determined from each regression, are reported in Table V. Methyl parathion had the lowest half-life of 1.2 (0.80-2.0) days. Half-lives of methyl parathion in identical studies run consecutively with each pesticide study over a period of 1 year did not exceed the 95%
Figure 2. Uptake and depuration of AC 222,705, fenvalerate, and permethrin by eastern oysters (Crassostrea virginica) in flowing seawater tests.

Table V. Persistence Studies: Regression of Pesticide Concentration on Sampling Time in Sediment Studies

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>N</th>
<th>b</th>
<th>a</th>
<th>r^2</th>
<th>Half-life, days</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl</td>
<td>12</td>
<td>-0.30</td>
<td>0.78</td>
<td>0.94</td>
<td>1.2</td>
<td>0.60-2.0</td>
</tr>
<tr>
<td>Parathion</td>
<td>8</td>
<td>-0.048</td>
<td>0.90</td>
<td>0.85</td>
<td>6.4</td>
<td>4.0-9.0</td>
</tr>
<tr>
<td>BHC</td>
<td>10</td>
<td>-0.019</td>
<td>0.81</td>
<td>0.91</td>
<td>24</td>
<td>20-29</td>
</tr>
<tr>
<td>AC 222,705</td>
<td>10</td>
<td>-0.019</td>
<td>0.61</td>
<td>0.88</td>
<td>16</td>
<td>13-21</td>
</tr>
<tr>
<td>Fenvalerate</td>
<td>9</td>
<td>-0.014</td>
<td>-0.22</td>
<td>0.87</td>
<td>34</td>
<td>27-42</td>
</tr>
<tr>
<td>Permethrin</td>
<td>5</td>
<td>-0.011</td>
<td>0.43</td>
<td>0.94</td>
<td>27</td>
<td>20-35</td>
</tr>
</tbody>
</table>

-a = $a + bx; \bar{y} = \log$ concentration; x = time. b Ten grams of sediment and 100 mL of a pesticide-seawater solution. c Analysis of variance performed for assumption of first-order disappearance; the null hypothesis was rejected at the $\alpha = 0.01$ level of significance. d 95% confidence interval.

Confidence interval reported here. Chlorpyrifos was the most persistent of the two organophosphates examined, with a half-life of 24 (20-29) days. Benthiocarb, the only herbicide tested, had a half-life of 6.4 (4.0-9.0) days. Fenvalerate was the most persistent pesticide in these studies, with a half-life of 34 (27-42) days. A duplicate study conducted over 1 year later gave remarkably similar results, 27 (20-35) days. Although sufficient data were not collected to compute a statistically significant regression, permethrin had the lowest half-life of all three pyrethroids, 2.5 days. The half-life and 95% confidence interval for AC 222,705 was 16 (13-21) days. In this study and in the oyster bioconcentration test, AC 222,705 displayed selective loss of enantiomers, as is evident from the gas chromatograms in Figure 3. The response of the standard (A) with an electron capture detector is a doublet; analysis of tissue extract from an exposed oyster (B) and sediment extract from this persistence study (C) shows selective loss of the second peak of the doublet. Numerous controls, fortifications, and reinjections diminish the possibility that this observation is the result of an analytical artifact. This phenomenon did not occur for any other persistence test conditions with AC 222,705 or for the other two pyrethroids.

In other persistence studies, pesticide half-lives were determined by using a variety of experimental conditions (Table VI). Pretreatment of sediment-containing systems with formalin (sterile) resulted in no appreciable loss of any pesticide after 28 days and emphasized the importance of biological activity for pesticide half-life. In controlled laboratory conditions (indoor), the majority of the pesticides tested disappeared slowly from seawater solutions, the exceptions being benethiocarb and chlorpyrifos, which volatilized from the seawater. The resin traps accounted for 63% of the starting material in the chlorpyrifos studies and 45% in the benethiocarb studies. In contrast, these two pesticides failed to volatilize from sediment-containing system, as is evident from the half-lives for sterile tests. Pesticide half-lives were lower in outdoor seawater solution exposures. For the pyrethroids, the approximate half-lives for permethrin, fenvalerate, and AC 222,705 were 14, 8.0, and 6.1 days, respectively, as a result of sunlight exposure (outdoor-light), since little change in pesticide concentration occurred in foil-covered thermal controls (outdoor-dark). The two organophosphates, chlorpyrifos and methyl parathion, had half-lives of 4.6 and 6.3 days, respectively, from exposure to sunlight, with some loss of pesticide attributed to thermal decomposition. Within experimental error, benethiocarb failed to disappear in outdoor studies; it did not volatilize, as in indoor tests with seawater solutions, because flasks were stopped.

DISCUSSION

AC 222,705, Fenvalerate, and Permethrin. A review of the literature revealed no data on the acute toxicity of AC 222,705 to fishes or aquatic invertebrates; however, the acute effects of fenvalerate and permethrin have been documented. Jolly and Avault (1978), Muirhead-Thompson (1978), Muller et al. (1978), and Zito et al. (1979) reported LC_{50} values 2-3 orders of magnitude higher than those we report for the mysid shrimp. Reasons for
Table VI. Persistence Studies: Pesticide Half-Lives for Different Experimental Conditions

<table>
<thead>
<tr>
<th>pesticide</th>
<th>untreated</th>
<th>sterile</th>
<th>sediment b</th>
<th>water c</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl parathion</td>
<td>1.2</td>
<td>> 28 h</td>
<td>> 28 h</td>
<td>6.3</td>
</tr>
<tr>
<td>benthiocarb</td>
<td>6.4</td>
<td>> 28 h</td>
<td>8.7 i</td>
<td>> 14 h</td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>24</td>
<td>> 28 h</td>
<td>< 2.0 i</td>
<td>4.6</td>
</tr>
<tr>
<td>AC 222,705</td>
<td>16</td>
<td>> 28 h</td>
<td>26</td>
<td>6.1</td>
</tr>
<tr>
<td>fenvalerate</td>
<td>34</td>
<td>> 28 h</td>
<td>> 28 h</td>
<td>8.0</td>
</tr>
<tr>
<td>permethrin</td>
<td>< 2.5</td>
<td>> 28 h</td>
<td>> 21 h</td>
<td>14</td>
</tr>
</tbody>
</table>

a Except for untreated sediment-water studies, sufficient numbers of samples were not analyzed for statistical validation.
b Ten grams sediment and 100 mL of a pesticide-seawater solution.
c One hundred milliliters of pesticide-seawater solution.
d One-half of milliliter of formalin/gram of sediment.
e 25 °C with 12-h photoperiod white fluorescent light.
f Stopped, Pyrex flasks exposed to ambient sunlight and temperature (22-45 °C).
g Foil-covered flasks.
h Within experimental error, no significant change in pesticide concentration.
i Pesticide volatilized, as determined by analysis of XAD resin traps.

Table VII. Comparative Acute Toxicity of Four Classes of Pesticides Tested at the Environmental Research Laboratory, Gulf Breeze, 1960-1980.

<table>
<thead>
<tr>
<th>pesticide class (no. of pesticides tested) / no. of species tested</th>
<th>most sensitive species</th>
<th>most toxic pesticide</th>
<th>96-h LC50 μg/L</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>organochlorine (> 24) / > 3</td>
<td>Panaeus duorarum, pink shrimp</td>
<td>analytical-grade heptachlor</td>
<td>0.03</td>
<td>Schimmel et al. (1976)</td>
</tr>
<tr>
<td>organophosphate (> 26) / > 3</td>
<td>P. duorarum</td>
<td>baytex (Bayer 29493)</td>
<td>0.060 a</td>
<td>Butler (1963)</td>
</tr>
<tr>
<td>carbamate (> 10) / > 3</td>
<td>Panaeus aztecus, brown shrimp</td>
<td>carbaryl</td>
<td>2.5 a</td>
<td>Butler (1963)</td>
</tr>
<tr>
<td>synthetic pyrethroid (3) / 4</td>
<td>Myisodopsis bahia, myisid shrimp</td>
<td>AC 222,705 and fenvalerate</td>
<td>0.008</td>
<td>present study</td>
</tr>
</tbody>
</table>

The discrepancy may be due to the sensitivity of the mysid shrimp compared to the species they tested, but differences in test procedures (static vs. flow through) or in shorter duration of exposure in some tests (Muirhead-Thompson, 1978) may account for the higher LC50 values reported in the literature.

The 96-h LC50 values for AC 222,705 and fenvalerate to mysids were the lowest (i.e., most toxic) of any chemicals tested at the Gulf Breeze Laboratory over the past 20 years (Table VII). On the basis of mysid sensitivity to the three pyrethroids at concentrations at least 1 order of magnitude lower than those detectable by chemical analysis (Table III), any detection of these insecticides in estuarine waters would likely be associated with adverse effects on the biotic component of that system.

Although no reports are available in the literature regarding the acute toxicity of AC 222,705 to fishes, the acute effects of fenvalerate on fish in static tests have been documented by Mulla et al. (1979) and Coats and O’Donnell-Jeffery (1979), whose reported LC50 values (3.0-200 μg/L) are generally higher than ours (0.31-5.0 μg/L) and may be due to differences in exposure conditions (static vs. flow-through tests) and test duration (24-48 vs. 96-h exposures). These authors also included acute static tests for five fish species exposed to permethrin that ranged from 5 to 135 μg/L (fish LC50 values in this study ranged from 2.2 to 7.8 μg/L). In 96-h flowing toxicity tests with permethrin, LC50 values for seven freshwater fish species (*Salmo gairdneri*, *Carassius auratus*, *Cyprinus carpio*, *Pimephales promelas*, *Ictalurus melas*, *Ictalurus punctatus*, and *Lepomis macrochirus*) ranged from 1.8 to 14.2 μg/L (Meyer, 1980).

Although water solubilities reported elsewhere for synthetic pyrethroids, including permethrin and fenvalerate (Coats and O’Donnell-Jeffery, 1979; Zitko et al., 1979), are similar to ours, published partition coefficients are at least 2 orders of magnitude lower than ours. Problems associated with the determination of partition coefficients have been addressed by Karickhoff and Brown (1979). At their suggestion, we also used an alternative method to estimate partition coefficients, namely, relative retention time with high-pressure liquid chromatography. Using the method of Veith et al. (1979a), we obtained partition coefficients within 0.5 order of magnitude of those we reported for octanol-water partition.

The bioconcentration factors of pyrethroids in eastern oysters are also larger than values reported by others. The bioconcentration of the (S)-acid isomer of fenvalerate by carp in a 24-h renewal exposure after 7 days of exposure to [14C]fenvalerate was approximately 1100 (Ohkawa et al., 1980). After 7 days of depuration in toxicant-free water, 75% of the 14C activity in tissue was lost. In a 30-day experiment also using [14C]fenvalerate in an aquatic model ecosystem, bioaccumulation ratios were 100 for fish, 491 for snails, 303 for *Daphnia*, and 412 for algae. The authors concluded that metabolism by the biota, especially fish, was responsible for the low accumulated residues. At the Gulf Breeze Laboratory, 28-day chronic toxicity tests with *Cynipodon variegatus* gave similar bioconcentration factors: 480 for permethrin, and 570 for fenvalerate (Hansen, 1981). Calculated steady-state bioconcentration factors for the synthetic pyrethroids, using the octanol-water partition coefficients and the regression equation of Veith et al. (1979b), are at least 1 order of magnitude higher than our values. The enzymatic metabolism of synthetic pyrethroids (Chambers, 1980) offers an explanation for this paradox.

The half-lives of all six pesticides are reported with those of other pesticides studied in our laboratory in Table VIII for untreated sediment–water studies. With the exception of kepone (half-life >90 days), fenvalerate had the highest half-life (34 days), followed by chlorpyrifos (24 days) and AC 222,705 (16 days). Chlorpyrifos and bendihiocarb had the highest half-lives, respectively, of the organophosphates and carbamates.

Data from our persistence studies and data of others suggest that microbial activity may be a major factor in the disappearance of these pesticides. The addition of formalin, a typical biological sterilant, to our sediment studies inhibited loss of the pyrethroids. Other reports
Table VIII. Persistence Studies: Approximately Half-Lives for Different Pesticides Tested in 10 g of Sediment and 100 mL of Pesticide-Seawater Solution

<table>
<thead>
<tr>
<th>pesticide</th>
<th>half-life, days</th>
</tr>
</thead>
<tbody>
<tr>
<td>organochlorine</td>
<td><2.0</td>
</tr>
<tr>
<td>pentachlorophenol</td>
<td>>90</td>
</tr>
<tr>
<td>kepone</td>
<td></td>
</tr>
<tr>
<td>organophosphate</td>
<td><0.5</td>
</tr>
<tr>
<td>phorate</td>
<td>1.2</td>
</tr>
<tr>
<td>methyl parathion</td>
<td>2.3</td>
</tr>
<tr>
<td>EPN</td>
<td>6.5</td>
</tr>
<tr>
<td>carbofuran</td>
<td>24</td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td></td>
</tr>
<tr>
<td>carbamate</td>
<td>1.7</td>
</tr>
<tr>
<td>carbaryl</td>
<td><4.0</td>
</tr>
<tr>
<td>diflubenzuron</td>
<td>6.4</td>
</tr>
<tr>
<td>benthicarb</td>
<td></td>
</tr>
<tr>
<td>pyrethroid-</td>
<td><2.5</td>
</tr>
<tr>
<td>permethrin</td>
<td>16</td>
</tr>
<tr>
<td>AC 222,705</td>
<td>34</td>
</tr>
<tr>
<td>fenvalerate</td>
<td></td>
</tr>
</tbody>
</table>

offer additional support. Permethrin half-life in soil was approximately 28 days and was mediated by microbial metabolism, with degradation of the trans isomer occurring more rapidly than that of the cis isomer (Kaufman et al., 1977). The estimated half-life of permethrin and fenvalerate (WL 43775) in a variety of soils ranged from 3 to 4 weeks for permethrin, again with enhanced loss of the trans isomer, and from 6 to 8 weeks for fenvalerate (Williams and Brown, 1979). Both high organic (52%) Cloverdale soil and sterilized soils displayed little loss of either pyrethroid after 16 weeks. Hill (1981) reported average half-lives for fenvalerate of 6.0 weeks in the field and 5.2 weeks when incubated indoors for Lethbridge soil, faster degradation being noted for the RS,SR enantiomeric pair. Our half-life for permethrin (2.5 days) and fenvalerate (34 days) are considerably less. Although the rapid degradation of permethrin did not allow examination of cis/trans isomer differences, selective degradation of AC 222,705 enantiomeric pairs was evident both in bioconcentration tests and in persistence studies and should be noted by others addressing environmental monitoring for AC 222,705 residues. Altogether, we reported three different sets of values that depend on biotransformation, namely, time to steady-state BCF, steady-state BCF, and half-life in sediment; each set ranks the three synthetic pyrethroids in the same order, i.e., fenvalerate > AC 222,705 > permethrin.

The quantitative expression of biotransformation rates has been suggested before by others (Baughman et al., 1980). Our correlations with first-order rates support their kinetic approach and contention that biotransformation studies should incorporate statistical treatment of data and mathematical analysis according to some proposed rate equations.

AC 222,705, fenvalerate, and permethrin did not disappear from seawater solutions in our studies unless exposed to ambient sunlight. Other investigations have also examined the photolysis of pyrethroids. Holmstead et al. (1978a,b) investigated the photochemical reactions of permethrin and fenvalerate and proposed pathways to account for the various photoproducts obtained in UV and sunlight studies, finding that the rate of disappearance was independent of solvent polarity; i.e., photolysis rates in hexane or water were similar. Ware et al. (1980) examined dislodgable insecticide residues on cotton foliage for eight pesticides. If the reported data are treated with first-order kinetics, the calculated half-lives for AC 222,705, fenvalerate, and permethrin were 5.5, 6.3, and 3.0 days, respectively. Mikami et al. (1980) studied the photodegradation of fenvalerate in various natural waters, including seawater, and noted a lack of photosensitization. The photolysis half-lives we report are comparable to those cited. However, the synthetic pyrethroids are extremely hydrophobic and in aquatic environment will quickly become associated with organic bottom materials or suspended sediments. While we have demonstrated the importance of biotransformation reactions relative to sediments, it is doubtful that the photoactivity of pyrethroids on sediments is a significant disposition process environmentally, due to sunlight attenuation and scattering, although other investigations arrived at a different interpretation (Miller and Zepp, 1979).

In summary, our studies with the pyrethroid insecticides show that they are extremely toxic to estuarine animals. Estuarine invertebrates are particularly sensitive; 96-h LC₅₀ values for two insecticides were <10 ng/L. In addition, they are bioconcentrated from water by oysters from 1900 to 4700 times, and their half-lives in sediment–seawater systems ranged from 2.5 days (permethrin) to 34 days (fenvalerate). Our results thus indicate that if synthetic pyrethroids are used in areas adjacent to estuarine systems, they may represent a substantial threat in their acute toxicity (at concentrations 1/10 of those detectable by our analytical methods), their tendency to bioconcentrate in estuarine biota, and (for fenvalerate and AC 222,705) their tendency to persist in estuarine sediments.

Benthoicarb, Chlorpyrifos, and Methyl Parathion. Benthoicarb was acutely toxic to the freshwater fishes, Salmo gairdneri, Lepomis macrochirus, and Ictalurus punctatus with 96-h LC₅₀ values ranging from 1.2 to 2.5 mg/L (Johnson and Finley, 1980). If the relationship of LC₅₀ values for freshwater fishes to those for freshwater invertebrates is similar to those we found for estuarine species, we should expect enhanced sensitivity (lower LC₅₀ values) for the freshwater invertebrate species. Proposed label instructions for benthoicarb providing recommended application rates for use on flooded rice fields (4 lb/acre, or 2.95 mg/L in 6 in. of water) indicate that aquatic animals in these fields would probably be adversely affected.

A substantial aquatic toxicity data base for the pesticide chlorpyrifos exists in the literature. In studies using saltwater fish species, Korn and Earnest (1974) reported a 96-h LC₅₀ of 0.58 µg/L for striped bass (Morone saxatilis). Flow-through toxicity tests with three estuarine fishes (C. variegatus, Fundulus similis, and Leistostomus xanthurus) produced 48-h EC₅₀ values of 1000, 3.2, and 7.0 µg/L, respectively (Lowe, 1980). Lowe's values for F. similis and C. variegatus are even more widely separated than those generated in this study. Lowe's chlorpyrifos studies on the invertebrate species, Callinectes sapidus, Palaeomonetes pugio, Panaeus duorarum, and Panaeus aztecus, produced 48-h LC₅₀ values that ranged from 0.2 to 8.2 µg/L. Chlorpyrifos toxicity may be directly related to temperature. Normally, the two penaeid shrimp species are very similar in sensitivity to pesticides. When Lowe exposed the two species to chlorpyrifos at temperatures that differed by 17 °C, P. aztecus exposed at 29 °C had an EC₅₀ value of 0.2 µg/L; P. duorarum at 12 °C, 2.4 µg/L. Macek et al. (1969) reported the same temperature-toxicity relationship with rainbow trout (Salmo gairdneri) exposed to chlorpyrifos at 1.6, 7.2, and 12.7 °C.

Studies on chlorpyrifos with freshwater species generally compare favorably with those we report here. For example, the 96-h LC₅₀ values for three species of stoneflies (Pteronarcys californica, Pteronarcella badia, and Claassenia sabulosa) were 10.0, 0.38, and 0.57 µg/L, respectively.
Rainbow trout exposed to the insecticide for 96 h at three different temperatures gave LC50 values from 7.1 to 51 μg/L (Macek et al., 1968).

The acute toxicity of methyl parathion to the two crustaceans we report here (0.78 μg/L for Mysis sialis and 1.2 μg/L for P. duorarum; Table III) compare favorably with those reported by others. Those two populations of P. azteca were 2.4 and 3.4 μg/L (Albaugh, 1972). Nagy and Ferguson (1970) reported 24-h LC50 values ranging from 2.5 to 23.3 μg/L for four populations of the freshwater shrimp, Palaeomonetes kadiakensis. Eisler (1969) reported 96-h LC50 values that ranged from 2 to 7 μg/L for the saltwater crustaceans, Cragon septemspinosa, Palaeomonetes vulgaris, and Pagurus longicarpus. Muncy and Oliver (1963) reported a substantially higher 48-h LC50 value for the crayfish, Procambarus clarkii (40 μg/L).

We could find no published reports of the solubility or octanol-water partition coefficient for benthicarbox. However, two related thio carbamates herbicides, EPTC (Clath et al., 1980) and molinate (Soderquist et al., 1977), have reported solubilities that exceed 100 mg/L. Chlorpyrifos is soluble to 0.4 mg/L and its octanol-water partition coefficient is 5.11 (Chiu et al., 1977). Although we found no reported solubility or partition coefficient values for methyl parathion, ethyl parathion is soluble to 24 mg/L in distilled water and its partition coefficient is 3.81 (Chiu et al., 1977). These data are consistent with those we report.

If our chlorpyrifos partition coefficient is applied to the regression equation of Veith et al. (1979b) that estimates bioconcentration in fathead minnows, our calculated BCF is 5200. Although we did not determine the BCF for chlorpyrifos, Hansen (1981) reported BCF values of 1200 for C. variegatus and <400 for Menidia menidia in 28-day early life stage toxicity tests. Discrepancies between calculated and observed values may be the result of metabolism of chlorpyrifos by fish (Smith et al., 1966). Bioconcentration factors for methyl parathion and benthicarb are expected to be low due to their more hydrophilic character; i.e., high water solubilities and low partition coefficients.

Although the literature affords no data regarding the persistence of benthicarbox, studies of other thio carbamate herbicides reported volatilization from field water as the major route of environmental dissipation (Soderquist et al., 1977; Clath et al., 1980). Soderquist et al. (1977) found dilute aqueous solutions of molinate to be stable in sunlight. We had similar findings from our studies with benthicarbox. However, we found that the presence of sediment inhibited volatilization, as is evident from the high residues after 28 days in sterile sediment. Although benthicarbox is more persistent than other carbamates that we have studied, biotransformation in aquatic environments represents another major route in the pesticide's dissipation.

In contrast to the thio carbamate herbicides, the literature is replete with data concerning the fate of organophosphate insecticides. Methyl parathion has been used by a number of investigators to calibrate processes in experimental systems or computer models for the purpose of predicting the environmental fate of chemicals (Baughman, 1980; Cole et al., 1977; Pritchard et al., 1979). Their data are similar to those we report for the persistence of methyl parathion, namely, rapid dissipation due to biotransformation in sediment or photolysis in sunlight. Freed et al. (1979) reported the half-life of chlorpyrifos in distilled water (53 days) and in moist Willamette soil (120 days). Pritchard (1981) reported a half-life of 19 days for chlorpyrifos in estuarine sediment-water microcosms. Although photolysis and hydrolysis are significant dissipative processes in our studies, chlorpyrifos, like the pyrethroids, rapidly partitions into bottom materials and suspended sediment where photolysis is hampered and biotransformation is slow. Other studies with artificial ponds have confirmed this hypothesis (Hughes et al., 1980).

In summary, our studies with benthicarbox, chlorpyrifos, and methyl parathion show that the acute toxicity values differed widely (benthicarbox LC50 values for invertebrates were 2 to nearly 4 orders of magnitude higher than those derived from exposure to chlorpyrifos and methyl parathion) and that their persistence (half-life) in seawater-sediment studies varied from 1.2 days (methyl parathion) to 24 days (chlorpyrifos). Chlorpyrifos may represent a potential hazard for benthic species due to its high acute toxicity and persistence in sediments.

Registry No. AC 222.705, 70124-77-5; fenvalerate, 51630-56-1; permethrin, 53945-53-1; chlorpyrifos, 2921-88-2; methyl parathion, 296-00-0; benthicarbox, 28249-77-6.

LITERATURE CITED

Hansen, D. J., U.S. Environmental Protection Agency, Environmental Research Laboratory, Gulf Breeze, FL, personal communication, 1981.

Korn, S.; Earnest, R. Calif. Fish Game 1974, 60, 128-131.

Pritchard, P. H., U.S. Environmental Protection Agency, Environmental Research Laboratory, Gulf Breeze, FL, personal communication, 1981.

Veith, G. D.; Austin, N. M.; Morris, R. T. Water Res. 1979a, 13, 43.

Ware, G. W.; Estesen, B. J.; Buck, N. A. Bull. Environ. Contam. Toxicol. 1980, 258, 608.

Received for review October 23, 1981. Revised manuscript received September 8, 1982. Accepted September 17, 1982. Gulf Breeze Contribution No. 186. This paper was presented in part at the 181st ACS National Meeting, Atlanta, GA, March 29-April 3, 1981; PEST 30.