DATA EVALUATION RECORD

TRICHLORFON

Neurotoxicity in Chicken


REVIEWED BY:

Nicolas P. Hajjar, Ph.D.
Senior Scientist
Dynamac Corporation
11140 Rockville Pike
Rockville, MD 20852
301-468-2500

Signature: [Signature]
Date: August 5, 1983

John R. Strange, Ph.D.
Department Director
Dynamac Corporation
11140 Rockville Pike
Rockville, MD 20852
301-468-2500

Signature: [Signature]
Date: 3 August 1983

APPROVED BY:

 Irving Mauer, Ph.D.
EPA Scientist

Signature: [Signature]
Date: 09-09-83
DATA EVALUATION RECORD

STUDY TYPE: Neurotoxicity in chicken.


ACCESSION NUMBER: Not available.

MRFD NUMBER: 00013561.

LABORATORY: Communicable Disease Center, US Public Health Service, Atlanta, GA.

TEST MATERIAL: Dipterex [50 percent purity, the technical material was not used].

PROTOCOL:

1. The test compound used was Dipterex, with a 50 percent purity obtained from Chemagro Corporation. [It was not stated whether this material was a formulation].

2. The test animals were female chickens of a "sex-linked strain," weighing 2.5 to 3.0 kg.

3. The chicken were administered orally a single dose of atropine at 15 mg/kg, and 15-20 later treated with an aqueous solution of the test material administered subcutaneously in a single dose at levels of 50 to 600 mg/kg.

4. The animals were observed daily for pharmacotoxic signs, and for their ability to stand or walk. Cholinesterase was measured in plasma or homogenates of the brain [both apparently from the same animal]. Pseudocholinesterase was measured with butyryl choline and true cholinesterase with acetyl-β-methyl choline.

RESULTS:

This report evaluates the "paralytic" effects [neurotoxicity] of several chemicals, with Dipterex being used as one of two chemicals with "nonparalytic" effects. The approximate subcutaneous LD50 was 125 mg/kg and the lowest dose producing cholinergic effects was 50 mg/kg. At a 90 mg/kg dose there was no paralysis but leg weakness for 1 or 2 days; there was a small weight loss and 1 of 8 chickens died. Cholinesterase levels in plasma and brain dropped to about 20 percent of control levels.
in one day and then recovered. The half-life of acetylcholinesterase regeneration was 6 to 7 days and for butyrylcholinesterase 13 to 15 days. Reactivation is probably due to synthesis of new enzyme.

CONCLUSIONS:

The report does not specify whether the test compound was a formulated product and if dose levels were corrected for the active ingredient. Therefore, a NOEL for Dipterex cannot be determined from the data.

CORE CLASSIFICATION: Invalid. The test material used was not of a technical grade.