MEMORANDUM

DATE: October 26, 2004

SUBJECT: Revised EFED Risk Assessment for the Naphthaleneacetic Acid Reregistration Eligibility Decision: Revision Based on Application at Higher Use Rates

TO: Michael Goodis, Risk Manager 53
Mark Howard, Chemical Review Manager
Special Review and Reregistration Division (7508C) 10/22/04

FROM: Allen Vaughan, Entomologist Jose L. Melendez, Chemist
Entomological Fate and Effects Division (7507C)

THROUGH: Mah T. Shamim, Ph.D.
Environmental Fate and Effects Division (7507C) 10/27/04

The attached document is a revised EFED risk assessment for the NAA RED, based on a higher maximum use rate. At this time, the registrant is supporting a maximum use rate of 150 gm a.e./acre for use in thinning olives. The revision of this document reflects this use rate, which exceeds the previous maximum rate of 50 gm a.e./acre.

As a result of this change, risk quotients (RQ's) in this revised assessment are higher. For most nontarget organism groups these higher RQ's still do not exceed levels of concern (LOC's). The only exception is in the case of nontarget terrestrial plants. For terrestrial plants, the previous RQ did not exceed the LOC of 1.0 for endangered species. This RQ was recalculated to reflect the rate change from 50 to 150 gm a.e./acre. The resultant RQ = 2.64, which is above the LOC of 1.0. On this basis, there is concern for risk to endangered terrestrial plants from the use on olives. The attached document has been amended to reflect this change.
Environmental Fate and Ecological Risk Assessment for the Reregistration of NAPHTHALENEACETIC ACID and related compounds

Prepared by:
Allen Vaughan, Entomologist
José L. Meléndez, Chemist

Reviewed by:
Mah T. Shamim, Ph.D., Chief
Environmental Risk Branch V

United States Environmental Protection Agency
Office of Pesticide Programs
Environmental Fate and Effects Division
Environmental Risk Branch V
Ariel Rios Building
1200 Pennsylvania Ave., NW
Mail Code 7507C
Washington, DC 20460
Environmental Risk Conclusions

EFED has considered available information on the toxicity of naphthaleneacetic acid (NAA) and related compounds, the registered uses and areas in which these compounds are applied, fate properties, and application methods in characterizing environmental exposures and ecological risks related to labeled uses. EFED relied on studies conducted on NAA, 1-naphthaleneacetamide, and the ethyl 1-naphthaleneacetate ester, as well as the sodium, potassium, and ammonium salts of NAA. Data gaps were addressed using structure activity relationships (SAR). Upon review and synthesis of this information, EFED believes NAA and related compounds do not present significant potential for risks to birds, mammals, fish, aquatic invertebrates, or aquatic plants. However, an assessment based on very conservative exposure assumptions indicates that endangered terrestrial plants may be at some risk. Risks to terrestrial insects cannot be quantified, but the available data do not suggest a significant potential for adverse effects.

Very little experimental data are available on the physical and chemical properties or the environmental fate of NAA and related compounds. The major routes of dissipation and degradation appear to be volatilization (at least from plant surfaces) and photolysis, respectively. Substantial volatilization from water is probably not important. Biodegradation may also be important, but quantitative data are not available. While no experimental data are available on soil mobility, the chemical and physical properties of NAA suggest moderate to low mobility in soil.

Tier I (FIRST) modeling for drinking water determined when NAA is applied at the maximum rate of 0.33 lb a.e./acres per single application, the residues in surface water are 17.5 μg/L for the annual peak concentration, and 0.976 μg/L for the annual mean concentration. The concentration of NAA in shallow ground water predicted based on SCIGROW2.3 is <0.001 μg/L.

Introduction

1-Naphthaleneacetic acid (NAA) is a plant growth regulator that mimics auxin (e.g. indole-3-acetic acid) a naturally occurring plant growth hormone that is important in seed and root development. In this respect, NAA and related compounds are similar to 2,4-D, another auxin mimic, but distinct from 2,4,5-T, an anti-auxin (Cooke et al. 2002). This risk assessment covers NAA and five related compounds as specified below:

<table>
<thead>
<tr>
<th>PC Code</th>
<th>CASN</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>056001</td>
<td>86-86-2</td>
<td>1-naphthaleneacetamide</td>
</tr>
<tr>
<td>056002</td>
<td>86-87-3</td>
<td>1-naphthaleneacetic acid</td>
</tr>
<tr>
<td>056003</td>
<td>15165-79-4</td>
<td>potassium 1-naphthaleneacetate</td>
</tr>
<tr>
<td>056004</td>
<td>25545-89-5</td>
<td>ammonium 1-naphthaleneacetate</td>
</tr>
<tr>
<td>056007</td>
<td>61-31-4</td>
<td>sodium 1-naphthaleneacetate</td>
</tr>
<tr>
<td>056008</td>
<td>2122-70-5</td>
<td>ethyl 1-naphthaleneacetate</td>
</tr>
</tbody>
</table>

A summary of the agricultural uses of NAA is presented in Figure 1 (USGS 2004a). These use statistics are for 1992, the most recent year for which data are available. As indicated in this figure, 13,665 lbs of NAA were applied, primarily to apples (80% of total) and pears (19.4%) of total, with a relatively small amount (about 0.6% of total) applied to olives. Most NAA is used in the northeast and west coast, with lesser amounts used in the central and
southeast regions. The USGS (2004a) reports the use data only as NAA and does not specify which compounds of NAA were used.

Formulations containing sodium 1-naphthaleneacetate (STIK Clean Crop, Liqui-Stik 200, and Fruitone N), potassium 1-naphthaleneacetate (K-Salt Fruit Fix 200 and K-Salt Fruit Fix 800) or ammonium 1-naphthaleneacetate (Liqui-Stik Concentrate, Fruit Fix Concentrate 200, Fruit Fix Concentrate 800, ALCO Olive Stop) may be used in ground broadcast or aerial applications on apple and pear trees as well as on some ornamental shrubs and shade trees to prevent preharvest fruit drop (apples and pears) and seed pod and nut formation (shrubs and shade trees). Broadcast applications of a formulation of sodium 1-naphthaleneacetate (STIK Clean Crop) and a formulation of ammonium 1-naphthaleneacetate (Liqui-Stik Concentrate) are also used for thinning olive trees.

NAA itself, as well as 1-naphthaleneacetamide and ethyl 1-naphthaleneacetate, is not labeled for broadcast applications. 1-Naphthaleneacetetic acid is used as a rooting compound – i.e., applied as a solution to roots of plants to stimulate grow – and is applied as a mixture with indole-3-butyric acid or Vitamin B-1. Only one formulation, Amcotone, contains 1-naphthaleneacetamide. This is a formulation of both 1-naphthaleneacetamide and 1-naphthaleneacetetic acid that is used to induce fruit set and promote growth in apples and pears. Similarly, there is only one formulation of ethyl 1-naphthaleneacetate (Tre-Hold RTU, Tre-Hold Sprout Inhibitor A-112, Tre-Hold Sprout Inhibitor for Citrus) and this formulation is used as a sprout inhibitor in cut surface and basal bark applications to apple, pear, and olive trees as well as a number of other woody plants.

The distinction between the broadcast and non-broadcast applications of NAA and related compounds is important to this risk assessment in terms of exposure potential. The non-broadcast applications used to promote root growth (for transplantations or to boost established plants), occur primarily in a nursery environment and the potential for substantial unintended environmental contamination is limited. Similarly, the uses of the 1-naphthaleneacetamide formulations to induce fruit set and the ethyl 1-naphthaleneacetate formulation to inhibit sprouting are conducted on individual plants as needed and application rates in units of lb/acre are not a meaningful expression of potential exposure. The formulations that are used in broadcast applications, either aerial or ground, will entail a greater potential for environmental contamination and exposure to nontarget species and general exposures may be estimated based on application rates in units of lb/acre.

The environmental fate characteristics of the salts of NAA are expected to be similar to those of the acid. In the environment, the NAA salts will rapidly dissociate to naphthaleneacetic acid and the corresponding cation. Thus, for this risk assessment, all references to application rate will be in units of lb a.e. (acid equivalents) per acre (lb a.e./acre). Of the three NAA salts labeled for broadcast applications – i.e., the sodium, potassium, and ammonium salts – the product with the maximum labeled use rate (i.e., the highest application specified on the product label in units of lbs/acre) is STIK Clear Crop, which can be applied at a rate of 0.134 lb a.e./acre per application. Two applications are allowed as close as 5 days apart. The maximum labeled broadcast use rates for the other formulations range from 0.076 lb a.e./acre to 0.11 lb a.e./acre.

These maximum labeled rates, however, do not encompass applications used for thinning olive trees – i.e., STIK Clean Crop and Liqui-Stik Concentrate. For these applications, the application rate is specified as a concentration in the field solution that is to be applied to each olive tree when the olives have a diameter of 1/8th to 3/16th inches – i.e., a single application. EFED has determined that the gross maximum application rate for thinning olive trees will be 150 g a.e./acre or about 0.33 lb a.e./acre [150 g · 2.2 lb/1,000 g]. These applications can be
Figure 1: Agricultural use of NAA in the United States for 1992 (USGS 2004a).

made using high-pressure hand gun sprayers or airblast sprayers (Sibbett and Krueger 1998). For this Tier 1 risk assessment, this rate, 0.33 lb a.e./acre, is considered highest use rate or worst case scenario.

EFED reviewed the chemical specific files for available information to use in a “standard” pesticide active ingredient risk assessment (EPA, 2002). The database for NAA and related compounds dates back to the 1960's to mid 1980's, with some more recent study submissions in the 1990's. While some data on the toxicity of NAA have been published in the open literature, they are not applicable to a quantitative risk assessment (Appendix A). Nonetheless, the available studies contain an adequate subset of the Agency's ecotoxicity guideline studies to conduct a qualitative and, where appropriate, quantitative dose-response assessment for most groups of nontarget species.

Relatively little information is available on the environmental fate of NAA and related compounds. As noted above, the environmental fate characteristics of the salts of NAA are expected to be similar to those of the acid. To augment the limited data on the environmental fate of NAA, EFED conducted a structure activity relationship analysis (SAR) on NAA using the Agency’s Estimation Program Interface program (EPI) (Meylan, 1998 and 2000) to further compare the potential similarities between these molecules using a structure-based approach.
Approach to Risk Assessment

The approach to this assessment first focused on the available compound-specific fate and ecotoxicity information submitted in support of registration. Information on environmental fate was taken, for the most part, from the report “Tier I Estimated Drinking Water Concentrations of 1-Naphthaleneacetic Acid for use in Human Health Risk Assessment” (Appendix E). This report was supplemented with information on the foliar half-life of NAA, naphthaleneacetamide, and naphthaleneacetic acid ethyl ester on apple leaves (Obrist 1994), which is summarized in Appendix A and used in the ELL-FATE model. The fate database for NAA and related compounds is sparse and a SAR approach was conducted on NAA to fill gaps in knowledge using the Agency’s EPI-Suite program.

The ecotoxicity database on terrestrial and aquatic organisms for NAA and related compounds was reviewed, including both EPA submissions and studies from the open literature. The database on terrestrial organisms and aquatic plants was adequate to estimate risks using the Agency’s Level of Concern (LOC) approach. Because of the lack of chronic toxicity data for fish and aquatic invertebrates, SAR estimates were obtained, again using the Agency’s EPI-Suite program. Based on the available experimental values on acute toxicity in aquatic species, the EPI-Suite program appeared to adequately predict the toxicity of naphthaleneacetic acid ethyl ester but consistently under-predicted the toxicity of NAA. Thus, for characterizing chronic risk to aquatic species, the SAR estimates of chronic toxicity values from EPI-Suite were adjusted downward based on observed to predicted ratios for acute toxicity.

Once a reasonable fate and ecotoxicity profile was compiled, a Tier I surface water assessment for aquatic and drinking water exposures was conducted using the the highest broadcast application rate for any NAA compound – i.e., Liqui-Stik Concentrate. The product, a formulation of ammonium 1-naphthaleneacetate, can be applied at an estimated rate of 0.33 lb a.e./acre per application. Only one application is used per growing season. Aquatic risks were based on the Tier I aquatic exposure results and the available aquatic toxicity data as well as the chronic estimates for aquatic species based on corrected SAR approximations. Terrestrial risks were based on exposures from the terrestrial model ELL-FATE (ELL-FATE, Version 1.4, dated April 7, 2004) and available bird and mammal toxicity data. Risks to plants were quantified based on the TERR PLANT and AGDRIFT models and the available toxicity studies for seedling emergence and vegetative vigor. The available data on insects were not adequate for quantitative risk assessment and risks were only characterized qualitatively.

Integrated Risk Characterization

Risks to Aquatic Organisms

The results of this risk assessment suggest no concern for acute and chronic risks to non-endangered and endangered aquatic species. NAA is practically non-toxic to fish and invertebrates on an acute basis. Estimates of chronic toxicity based on SAR are uncertain because the SAR program consistently underestimated acute toxicity. Thus, estimates were adjusted to account for this factor. The corrected estimates resulted in calculated RQ’s which are substantially below a level of concern for all representative organisms.
Risks to Terrestrial Organisms

Based on the available toxicity data and the maximum application rate of 0.33 lb
a.e./acre, acute and chronic risks to wild mammals and acute risks to birds are unlikely. No
chronic toxicity data are available for birds. Nonetheless, based on the use of the acute toxicity
data for birds, RQ's are below unity by factors of about 125 to 250. Given the apparent lack of a
strong dose-duration relationship in mammals and these very low risk quotients, there is no basis
for predicting adverse effects in birds following longer term exposures.

No toxicity data useful for quantitative risk assessment are available in insects – i.e., the
standard honey bee toxicity assay has not been submitted. However, a Pacific Northwest
Extension Publication (Mayer et al.) indicates that NAA “can be applied at any time with
reasonable safety to bees.” Also, based on a number of screening assays conducted in Europe
(Appendix A), substantial adverse effects in insects from exposures to NAA do not seem likely.

There are a number of areas of uncertainty in the terrestrial risk assessment. This
assessment accounts only for exposure of terrestrial organisms to NAA, but not to its degradates.
Only dietary exposure is included in the exposure assessment, and it is assumed that 100% of the
diet is relegated to single food types foraged only from treated fields.

Endangered Species Assessment

For endangered species the Agency adopts lower levels of concern (LOC's) for risks to some
groups – i.e., 0.1 for mammals and birds and 0.05 for aquatic animals – relative to levels of
concern for acute risks in non-endangered species – i.e., 0.5 for mammals and birds as well as
aquatic animals (EFED 2001). The Agency’s levels of concern for endangered and threatened
species in these groups are not exceeded for the highest use rate scenario (airblast application
of the NAA to olives). A somewhat different approach is taken for terrestrial and aquatic plants, in
which the LOC = 1 for all plants, but the endpoint used to calculate the RQ for endangered
species is based on a more sensitive toxicity endpoint – i.e., EC_{50} or NOEC – than for non-
endangered species – i.e., an EC_{20} (EFED 2001). Based on these criteria, no risks to endangered
aquatic plants are apparent (Table 9). The RQ for non-endangered terrestrial plants is equal to
0.44; thus, it does not exceed the LOC. The risk for endangered terrestrial plants does exceed a
level of concern (RQ = 2.64). These RQ's are based on the Tier I model TERRPLANT, a
screening model that does not consider degradation, and other routes of dissipation of the
chemical. Furthermore, NAA is readily biodegradable, susceptible to photolysis, and to
volatilization, which will likely reduce the exposure (Appendix G). Finally, the residues of
NAA are expected to be reduced with distance from the point of application, specially if it is
applied by airblast sprayers (Appendix D). Appendix H provides a listing of endangered plant
species.

Environmental Fate and Transport

Summary

Very little experimental data are available on the physical and chemical properties or the
environmental fate of NAA and related compounds. Apart from a measured water solubility of
420 mg/L, a pKa of 4.2, and a measured K_{ow} of about 174 (log K_{ow}=2.24), all for NAA, and a
water solubility of 39 mg/L for naphthaleneacetamide, no experimental information is available
on chemical or physical properties. The only experimental data on environmental fate is a foliar
dissipation study which measured half-life of 34.2 hours for naphthaleneacetic acid, 131.6 hours for naphthaleneacetamide, and 12.8 hours for naphthaleneacetic acid ethyl ester.

The ethyl-1-naphthaleneacetate and 1-naphthaleneacetamide are susceptible to hydrolysis, and the end product is 1-naphthaleneacetic acid (Acc. No. 129382). Based on the pKa of 4.2, a proportion of about 0.0015 of 1-naphthaleneacetic acid will be nonionized at pH 7. Based on the estimates of vapor pressure as well as differences in half-life on vegetation, volatility may be an important route of dissipation, particularly for ethyl 1-naphthaleneacetate and to a lesser extent for naphthaleneacetic acid. 1-Naphthaleneacetic acid and structurally similar compounds such as 1-methyl-naphthalene and ethyl-naphthalene are susceptible to biodegradation. No quantitative experimental data on degradation rates, however, are available. Thus, all estimates of biodegradation rates used for quantifying exposures must be based on SAR relationships.

Physical-Chemical Properties and Structure

The chemical structures of naphthaleneacetic acid, naphthaleneacetamide, and ethyl 1-naphthaleneacetate are given in Table 1 along with the corresponding molecular weights and SMILES notation. SMILES notation is a method of specifying chemical structure that is used in the Agency's EPI Program (Meylan and Howard, 1998, 2000). The sodium, potassium, and ammonium salts of NAA are not shown. For these salts, the hydrogen on the hydroxyl group of NAA is simply replaced with the corresponding cation.

<table>
<thead>
<tr>
<th>Property</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naphthalene acetic acid</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>186.2098</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>SMILES Notation</td>
<td>O=C(O)C(c(c(c(c1)c2)c1)c2)O2</td>
</tr>
</tbody>
</table>

Table 2 lists measured and estimated physical-chemical properties of naphthaleneacetic acid, naphthaleneacetamide, and ethyl 1-naphthaleneacetate. Estimated values were derived from the Agency's EPI Program. As noted in the Tier I Estimated Drinking Water Assessment for NAA, very little specific information is available on the environmental fate of NAA. Under ambient conditions in an aqueous solution, the salts of NAA are expected to dissociate to NAA and the cation. The pKa value for NAA is 4.2 (USDA/ARS 1995) – i.e., at a pH of 4.2, half of the molecules are ionized and half are nonionized. At ambient pH (i.e., pH 7) in an aqueous
solution, very little NAA will be nonionized – i.e., \(1 + (1 + 10^{pH-pK_a}) \approx 0.0015\) using the
Henderson-Hasselbalch equation (Keys et al., 1999).

<table>
<thead>
<tr>
<th>Property</th>
<th>Naphthalene acetic acid</th>
<th>Naphthaleneacetamide</th>
<th>Ethyl 1-naphthaleneacetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Solubility (mg/L)</td>
<td>420 (^1)</td>
<td>1557</td>
<td>39,170 (^3)</td>
</tr>
<tr>
<td>Vapor Pressure (mm Hg)</td>
<td>0.3 (^3)</td>
<td>9.57E-006</td>
<td>7.04x10^-07</td>
</tr>
<tr>
<td>Log (K_{ow})</td>
<td>2.24 (^3)</td>
<td>2.60</td>
<td>1.58 (^3)</td>
</tr>
<tr>
<td>Henry’s Law Coefficient (atm(m^3/mole))</td>
<td>1.506E-009</td>
<td>7.500E-011</td>
<td>1.213E-006</td>
</tr>
<tr>
<td>(K_{ow}) (mL/g)</td>
<td>297</td>
<td>2585</td>
<td>2929</td>
</tr>
<tr>
<td>BCF (L/kg)</td>
<td>3.162</td>
<td>1.72</td>
<td>153.4</td>
</tr>
<tr>
<td>Halftime in Air (hrs)</td>
<td>6.929</td>
<td>4.553</td>
<td>6.794</td>
</tr>
<tr>
<td>Halftime in Water (hrs)</td>
<td>stable at pH 7(^a)</td>
<td>360 [Acid]</td>
<td>stable at all pH's(^a)</td>
</tr>
<tr>
<td>Halftime in Soil (hrs)</td>
<td>360 [Acid]</td>
<td>900 [Na]</td>
<td>360</td>
</tr>
<tr>
<td>Aerobic soil metabolism halftime (days(^1))</td>
<td>3.9 [for SCIGROW]</td>
<td>11.7 [for FIRST]</td>
<td></td>
</tr>
<tr>
<td>Aerobic aquatic metabolism halftime (days(^1))</td>
<td>23.4</td>
<td>900</td>
<td>360</td>
</tr>
<tr>
<td>Halftime in Sediment (hrs)</td>
<td>1440</td>
<td>3600</td>
<td>1440</td>
</tr>
<tr>
<td>Halftime on vegetation (hrs)(^1)</td>
<td>34.2</td>
<td>131.6</td>
<td>12.8</td>
</tr>
</tbody>
</table>

\(^1\) Estimates taken from the Tier I Estimated Drinking water Assessment
\(^3\) MRID 00162239 and 40522903.
\(^3\) EPI Suite
\(^3\) Obrist 1994. See Appendix A for summary.
\(^5\) MRID 40522903
\(^6\) Stable at pH 9 and 7.5 days at pH 9. MRID 00129382
\(^7\) Study by registrant, MRID not available.

Abiotic Degradation

Very little information is available on the abiotic degradation or dissipation of NAA and related compounds. Ethyl 1-naphthaleneacetate and 1-naphthaleneacetamide are probably susceptible to hydrolysis, and the end product is 1-naphthaleneacetic acid or 1-naphthaleneacetate ion (Acc. No. 129382). Based on the estimates of vapor pressure, volatility may be an important route of dissipation from plant surfaces, particularly for ethyl 1-naphthaleneacetate and to a lesser extent for naphthaleneacetic acid. The vapor pressure of naphthaleneacetamide is much lower – i.e., about 20 times less than NAA and 200 times less than ethyl 1-naphthaleneacetate – and volatilization may be a much less important process.
speculation is consistent with the vegetation half-life study by Obrist (1994), in which the much shorter half-life for ethyl ester relative to naphthaleneacetamide — about a factor of 10 — was attributed to the more rapid volatilization of the ester. In this study, the dissipation of both naphthaleneacetic acid and naphthaleneacetamide followed first-order kinetics over the observation periods (72 hours for naphthaleneacetic acid and 166 hours for naphthaleneacetamide). The dissipation of naphthaleneacetic acid ethyl ester, however, followed first order kinetics up to hour 48 but was non-linear (biphasic) at 72 hours. One possible explanation for this behavior is that the non-linear pattern is due to initial rapid volatilization of the ester but concurrent and slower hydrolysis of the ester to NAA. While volatilization from plant surfaces may be an important route of dissipation, volatilization from water and soil is not likely to be substantial. 1-Naphthaleneacetic acid is expected to undergo rapid photolysis in water, on soil, and in air. Observed products in water and soil were 1-naphthoic acid and phthalic acid.

Biotic Degradation

Very little information is available on the biodegradation of NAA or related compounds. 1-naphthaleneacetic acid and structurally similar compounds such as 1-methyl-naphthalene and ethyl-naphthalene are susceptible to biodegradation. No quantitative experimental data, however, are available. Based on SAR analyses (Table 3), half-lives in soil and water are expected to be about 360 hours (15 days) for NAA and the NAA ester. Naphthaleneacetamide is expected to be more persistent in soil and water with a half-life of 900 hours (about 38 days) in both media. Much longer half-lives are estimated in sediment, 1440 hours (60 days) for NAA and the NAA ester and 3600 hours (about 150 days) for naphthaleneacetamide. The groundwater exposure assessment conducted by EFED used an aerobic soil metabolism half-life of 3.9 days in the SCIGROW model, similar to the estimates for half-lives in soil and water from the EPI model (Table 3). In the surface water assessment using the FIRST model, current guidelines were followed, and estimated aerobic soil metabolism was 11.7 days (3 x 3.9 days) and anaerobic soil metabolism was 23.4 days (2 x estimated aerobic soil metabolism of 11.7 days).

Mobility

No studies on the mobility of NAA or related compounds have been encountered. Based on the estimated KOC values from EPI-Suite, NAA is likely to be more mobile in soil than either naphthaleneacetamide or the NAA ester. Based on the estimated KOC values for NAA, this compound is expected to have medium to low mobility in soil. An estimated KOC range was 160-610.1

Water Resources

Drinking Water Assessment

Monitoring data were not available for surface or ground water. While the USGS does provide use data on NAA (USGS 2004a), NAA is not included in the list of pesticides monitored in streams, rivers, and ground water of the United States under NAWQA (USGS 2004b). Drinking water exposures were estimated using the Tier I surface water exposure model FQPA Index Reservoir Screening Tool (FIRST, Version 1.0, dated August 1, 2001) and Tier I ground water exposure model Screening Concentrations in Ground Water (SCIGROW2, Version 2.2, dated November 1, 2001). Modeling inputs, using the above environmental fate data and available

Lyman, W.J., et. al.; Handbook of Chemical Property Estimation Methods, NY; McGraw-Hill, p. 4-9 (1982)
label information are presented in Table 3 and 4. Table 5 contains the modeled concentrations in surface (FIRST) and ground (SCIGROW2) water. The input and output files for FIRST and SCIGROW are provided in Appendix B.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum single application rate (lb/acre)</td>
<td>0.33</td>
<td>Estimated from the Liqui-Stik Concentrate Label</td>
</tr>
<tr>
<td>Application Method</td>
<td>Orchard Airblast</td>
<td>Sibbett and Krueger 1998</td>
</tr>
<tr>
<td>Number of Applications per Year</td>
<td>1</td>
<td>Liqui-Stik Concentrate Label</td>
</tr>
<tr>
<td>Application Interval (days)</td>
<td>N/A</td>
<td>Single application per season</td>
</tr>
<tr>
<td>PCA factor (decimal)</td>
<td>0.87</td>
<td>Effland et al. 2000</td>
</tr>
<tr>
<td>Depth of Incorporation</td>
<td>0</td>
<td>Broadcast spray</td>
</tr>
<tr>
<td>Adsorption/Desorption Coefficient (K_{oc})</td>
<td>297</td>
<td>Table 3</td>
</tr>
<tr>
<td>Aerobic Soil met. t_{1/2} (days)</td>
<td>11.7</td>
<td>Per input guidelines, available value (3.9 days × 3) (Meléndez 2003)</td>
</tr>
<tr>
<td>Aerobic aquatic met. t_{1/2} (days)</td>
<td>23.4</td>
<td>Per input guidelines, twice the aerobic soil metabolism (11.7 days × 2)</td>
</tr>
<tr>
<td>Water Solubility (mg/L)</td>
<td>420</td>
<td>Table 3</td>
</tr>
<tr>
<td>Hydrolysis (pH 7) t_{1/2} (days)</td>
<td>0</td>
<td>Acc. No. 129382</td>
</tr>
<tr>
<td>Aqueous photolysis t_{1/2} (days)</td>
<td>0</td>
<td>Assume no photolysis as conservative approximation</td>
</tr>
</tbody>
</table>

1 For GENEDEC, the no-spray zone and wetting in parameters were set to zero and no, respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum single application rate (lb/acre)</td>
<td>0.33</td>
<td>Estimated from the Liqui-Stik Concentrate Label</td>
</tr>
<tr>
<td>Number of Applications per Year</td>
<td>1</td>
<td>Liqui-Stik Concentrate Label</td>
</tr>
<tr>
<td>Application Interval (days)</td>
<td>N/A</td>
<td>Single application per season</td>
</tr>
</tbody>
</table>
Table 4. NAA Modeling Input Parameters for SCIGROW.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koc (mL/g)</td>
<td>297</td>
<td>Table 3</td>
</tr>
<tr>
<td>Aerobic Soil met. t½ (days)</td>
<td>3.9</td>
<td>Biowin Output</td>
</tr>
</tbody>
</table>

Table 5. Modeled NAA Surface Water and Ground Water Drinking Water Exposures

<table>
<thead>
<tr>
<th>Drinking Water Source</th>
<th>Peak (μg/L)</th>
<th>Annual Average (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water</td>
<td>17.849</td>
<td>0.976</td>
</tr>
<tr>
<td>Ground Water</td>
<td>0.000987</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Surface Water Ecological Exposure

To determine ecological risks from NAA use, estimated environmental concentrations (EECs) were modeled using the Tier 1 model Generic Estimated Environmental Concentrations (GENEEC, Version 2.0, dated August 1, 2001) and based on input parameter data presented in Table 3. An additional input variable in GENEEC is the spray drift application method. Airblast application was selected as the application method.

Table 6. NAA Surface Water Exposures for Ecological Risk Based on GENEEC

<table>
<thead>
<tr>
<th>Peak (μg/L)</th>
<th>96 hour (μg/L)</th>
<th>21-day (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.45</td>
<td>12.16</td>
<td>10.55</td>
</tr>
</tbody>
</table>

The FIRST model is designed to yield concentration values which exceed those predicted by the linked EPA PRZM and EXAMS models for all but the most vulnerable sites, application patterns and environmental fate properties. PRZM/EXAMS predictions may exceed FIRST predictions only under certain conditions. Because few of these conditions are known to exist in the areas of the U.S. where NAA is used (See Figure 1), EFED expects FIRST estimates to exceed the Tier 2 estimates in all but the most vulnerable sites.

The SCIGROW model is used for estimating concentrations of pesticides in ground water under "maximum loading" conditions. SCIGROW provides an estimate of likely ground water concentrations if the pesticide is used at the maximum allowed label rate in areas with ground water highly vulnerable to contamination due to specific site conditions, high sand content, and high water table. In most cases, a majority of the use areas will have ground water that is less vulnerable to contamination than the areas used to derive the SCIGROW estimate.
Ecological Toxicity and Risk Assessment

Ecological Toxicity

The following is a summary of the ecological toxicity data for NAA and related compounds used in this risk assessment. A fuller summary of these studies as well as other studies submitted to the Agency and studies published in the open literature is given in Appendix A.

Terrestrial Species

Avian Acute Oral Toxicity

\[\text{LD}_{50} > 2510 \text{ mg/kg; NAA acid is practically non-toxic to Bobwhite Quail. (MRID 00065840, Core)} \]

\[\text{LD}_{50} = 1750 \text{ mg/kg; NAA acid is slightly toxic to Mallard Duck. (MRID 00065839, Supplemental)} \]

Dietary \(LC_{50} \) Study with the Mallard Duck and Bobwhite Quail:

NAA Technical
\[\text{LC}_{50} > 10000 \text{ ppm (8-day Study). NAA technical is practically non-toxic to Mallard Duck and Bobwhite Quail. (MRID 00083052, 00085909, Supplemental)} \]

NAA Ester
\[\text{LC}_{50} > 5620 \text{ ppm/NOEC 5620 ppm (8-day Study). NAA ester is practically non-toxic to Bobwhite Quail. (MRID 42584202, Core)} \]

NAA Amide
\[\text{LC}_{50} > 5620 \text{ ppm (8-day Study). NAA amide is practically non-toxic to Bobwhite Quail. (MRID 42584201, Core)} \]

Chronic Study with Mallard Duck and Bobwhite Quail

No studies available.

Mammalian Toxicity Acute \(LD_{50} \)

NAA Technical: \(LD_{50} > 2520 \text{ mg/kg; Toxicity Category III (MRID 00103128)} \)
NAA Amide: \(LD_{50} > 5000 \text{ mg/kg; Toxicity Category IV (MRID 43495901)} \)
NAA Na Salt: \(LD_{50} > 933-1350 \text{ mg/kg; Toxicity Category III (MRID 00108829)} \)
NAA Ester: \(LD_{50} > 2186 \text{ mg/kg; Toxicity Category III (MRID 43494101)} \)

Mammalian Toxicity Acute NOAEL

NAA Technical
Acute NOAEL: 250 mg/kg/day from developmental study in rats (MRID 00042765).
Mammalian Toxicity Chronic NOAEL

NAA, Sodium Salt
Chronic NOAEL: 210 mg/kg/day from two generation reproduction study in rats (MRID 43796301).

Terrestrial Insects

No standard toxicity studies are available. Based on screening studies used in Europe involving several terrestrial insect species, NAA and NAA formulations have been classified as *harmless* (Hassan et al. 1991; Oomen et al. 1994; Samsoe-Petersen 1987, 1995; Thistlewood and Elfving, 1992). Also, a Pacific Northwest Extension Publication (Mayer et al.) indicates that NAA "can be applied at any time with reasonable safety to bees." See Appendix A for additional details.

Non-Target Terrestrial Plants

Seedling Emergence:
- Carrot: NOEC, 0.01 lb ai/acre; EC$_{25}$ 0.06 lb ai/acre; EC$_{50}$ 0.13 lb ai/acre (MRID 43803201, Core)

Seed Germination:
- Cucumber and Tomato: Radical Length NOEC, 0.01 lb ai/acre; EC$_{25}$ 0.02 lb ai/acre (MRID’s 42584203 and 43837401, Core)

Vegetative Vigor:
- Tomato: NOEC, 62.5 ppm (equivalent to 0.01 lb ac/acre); EC$_{25}$ 261.5 ppm (0.043 lb ae/A); EC$_{50}$ >500 ppm (equivalent to > 0.083 lb ae/acre) (MRID 43141101, Core)

Aquatic Species

96-Hour Static Acute Toxicity Test with the Rainbow Trout:
- LC$_{50}$ 28 mg/L; NAA technical is slightly toxic to Rainbow Trout. (MRID 00082528, Core).

96-Hour Static Acute Toxicity Test with the Bluegill Sunfish:
- NAA technical
 - LC$_{50}$ 41 mg/L; NAA technical is slightly toxic to Bluegill Sunfish. (MRID 00082527, Core)

- NAA Ester
 - LC$_{50}$ 2.68 mg/L; NAA ester is moderately toxic to Bluegill Sunfish. (MRID 42498101, Core)

Early-Life Stage Toxicity Test in Fish
No studies were available. EPI-Suite estimates a chronic NOEC of 53.457 mg/L. Based on the corresponding estimates of acute toxicity, this is likely to underestimate toxicity and this concentration is adjusted downward by a factor of 0.074 to 4 mg/L. See discussion below.

48-Hour Static Acute Toxicity Test with the Cladoceran (*Daphnia magna*):

NAA Technical

$\text{LC}_{50} 180 \text{ mg/L (48-hour); NAA technical is practically non-toxic to } Daphnia.$ (MRID 00082526, Core). This LC_{50} is similar to the LC_{50} for NAA of 137 (101 to 148) mg/L reported by Fargasova (1994). A somewhat lower 96-hour LC_{50} value of 78.6 (71.6 to 97.3) was reported by Fargasova (1994) for *Tubifex tubifex*.

NAA Ester

$\text{LC}_{50} 5.68 \text{ mg/L (48-hour); NAA ester is moderately toxic to } Daphnia.$ (MRID 42470801, Core)

Daphnid Reproduction

No studies were available. EPI-Suite estimates a chronic NOEC of 28.055 mg/L. Based on the corresponding estimates of acute toxicity, this is likely to underestimate toxicity and this concentration is adjusted downward by a factor of 0.43 to 12 mg/L. See discussion below.

Aquatic Algae

NAA ammonium salt formulation

LC_{50} in *Selenastrum capricornutum*: 14.9 (11.2 to 19.2) mg/L (MRID 42582203, Core for formulated product)

Aquatic Macrophytes

NAA, potassium salt formulation

14-day NOEC in *Lemma gibba*: 0.46 mg a.i./L (MRID 42582202, Core for formulated product). LOEC of 1.76 mg a.i./L.

Use of QSAR

As noted above, experimental values were not available for chronic toxicity in fish or aquatic invertebrates. Estimates for these as well as other endpoints are available from EPI-Suite and these estimates as well as the available experimental data are summarized in Table 8. As noted in Table 8, EPI-Suite provided reasonably accurate estimates (±30%) of the toxicity of ethyl 1-naphthaleneacetate for acute toxicity in both fish and daphnids. For ethyl 1-naphthaleneacetate, the estimated values are based on other organic esters. The predicted values for NAA are less concordant with the available measured values and the predicted values are uniformly less than the experimental values – i.e., the toxicity of NAA is consistently underpredicted for fish, invertebrates and algae. This may reflect that fact that NAA is a weak acid. As discussed in some detail by Clements et al. (1996), ECOSAR does not contain QSAR functions for weak acids and the QSAR relationships used by EPI Suite for the weak acids – i.e., all but the NAA ester – are based on and should be limited to neutral and non-ionizable organics (Clements et al. 1996).

In the absence of any experimental data on chronic effects in fish or invertebrates, however, the data on the estimated and experimental acute toxicity values in fish or invertebrates were used to
adjust the chronic toxicity estimates from EPI-Suite. Thus, the adjustment factor for fish was 0.074 [28 mg/L observed ÷ 376.711 mg/L predicted] and the adjustment factor for *Daphnia* was 0.43 [180 mg/L observed ÷ 420.734 mg/L predicted].

As discussed in the introduction, the use patterns for naphthaleneacetamide and ethyl 1-naphthaleneacetate do not suggest any potential for significant environmental exposure and a quantitative risk assessment was not conducted. Thus, the values for these NAA compounds estimated from EPA-Suite are not used directly in this risk assessment. The estimated value for NAA in green algae is not used other than to note the underestimate in toxicity by EPI-Suite.

<table>
<thead>
<tr>
<th>Property</th>
<th>Compound</th>
<th>Naphthalene acetic acid</th>
<th>Naphthaleneacetamide</th>
<th>Ethyl 1-naphthaleneacetate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Estimated</td>
<td>Measured</td>
<td>Estimated</td>
</tr>
<tr>
<td>Freshwater Fish Acute 96h LC₅₀ (mg/L)</td>
<td>28 (Trout) 41 (Bluegill)</td>
<td>376.711</td>
<td>251.713</td>
<td>2.68 (Bluegill)</td>
</tr>
<tr>
<td>Freshwater Fish Chronic (mg/L)</td>
<td>53.457</td>
<td>30.996</td>
<td>0.444</td>
<td></td>
</tr>
<tr>
<td>Marine/Estuarine Fish Acute 96h LC₅₀ (mg/L)</td>
<td>115.347</td>
<td>50.362</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Daphnia magna Acute 48h EC₅₀ (mg/L)</td>
<td>180</td>
<td>420.734</td>
<td>264.548</td>
<td>5.68</td>
</tr>
<tr>
<td>Daphnia magna Chronic (mg/L)</td>
<td>28.055</td>
<td>12.003</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Mysid Shrimp Acute 96h LC₅₀ (mg/L)</td>
<td>70.796</td>
<td>88.655</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Aq. Macrophyte 96h EC₅₀ (mg/L)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Green Algae 96h EC₅₀ (mg/L)</td>
<td>41</td>
<td>272.275</td>
<td>162.744</td>
<td>0.319</td>
</tr>
</tbody>
</table>

Ecological Risk Assessment

The risks to terrestrial and aquatic organisms are determined based on Risk Quotient (RQ) and exceedance of Levels of Concern (LOC) method. This method provides an indication of a chemical's potential to cause an effect in the field from effects observed in laboratory studies, when used as directed. Risk quotients are a function of the EEC and the toxicity endpoints as:

\[
RQ = \frac{Estimated \text{ Environmental Concentrations}}{Species \text{ Toxicity Value}}
\]

The RQ is compared to the level of concern (LOC) to determine the potential for risks.
Terrestrial Organisms

The risk assessment for birds and mammals was based on ELL-FATE (Version 1.2, dated July 19, 2001). In addition to the toxicity data summarized in the previous section and discussed further below, ELL-FATE requires an estimate of half-lives on vegetation. The only available data on vegetation half-lives is a study by Obrist (1994, MRID 43482101), detailed at the end of Appendix A. For input into ELL-FATE, the half-life for NAA of 34.2 hours was converted to 1.425 days and used directly in the risk assessment (Appendix C). Naphthaleneacetamide has a somewhat longer halftime (131.6 hours or about 5.5 days) but, as discussed in the introduction, naphthaleneacetamide is not used in broadcast applications and the potential for substantial exposure is low. The use of this somewhat longer halftime would not impact the risk assessment for birds but would lead to a marginal chronic risk in mammals – i.e., 1 exceedence with an RQ of 1.12.

The toxicity data indicate that NAA and related compounds are practically non-toxic to birds on an acute basis. For the quantitative characterization of risk using ELL-FATE (Appendix C), only toxicity data on NAA technical are used – i.e., a dietary LC₅₀ value of >10,000 ppm. Nonetheless, both NAA technical and the NAA ester are classified as practically non-toxic to birds. No chronic studies are available on birds. As discussed below, there are no substantial differences between the acute and chronic NOEC values in mammals. Thus, the acute value of >10,000 ppm was used for the risk characterization of chronic exposures to birds. The highest risk quotient is 0.003, substantially below any level of concern for acute risk (RQ=0.5), restricted use (RQ=0.2), or endangered species (RQ=0.1). Therefore, risks to endangered and non-endangered birds are considered low.

Mammalian toxicity data from OPP’s Health Effects Division is used as a surrogate for wild mammal toxicity. The lowest acute oral LD₅₀ for rats is 933 mg/kg – the sodium salt of NAA from MRID 00108829. Thus, Na-NAA is classified as slightly toxic. The chronic toxicity value for mammals is taken as 210 mg/kg from a rat two generation reproduction study (MRID 43796301), in which reproductive effects were limited to reduced litter survival and pup weight throughout lactation in both generations of offspring. As summarized in Appendix C, the highest acute RQ for mammals is 0.08 and the highest chronic RQ is 0.38 – both for a small mammal consuming short grass. Therefore, risks to endangered and non-endangered mammals are considered low.

As summarized in the previous section, standard toxicity studies are available in non-target plants for seedling emergence, seed germination, and vegetative vigor. All of these studies are classified as scientifically valid (Core, see Appendix A). The most sensitive endpoint is seedling emergence, with an NOEC of 0.01 lb a.e./acre and an EC₅₀ of 0.06 lb a.e./acre. In the broadcast application of the salts of NAA, offsite drift is the most plausible route of exposure. For this risk assessment, the TERR PLANT model was used to estimate an EEC, and the AgDRIFT model was used to estimate the proportion of off-site deposition as a fraction of the application rate. Calculations are provided in Appendix D. The RQ for non-endangered terrestrial plants is equal to 0.44; thus, it does not exceed the LOC. The risk for endangered terrestrial plants does exceed a level of concern (RQ = 2.64). These RQ’s are based on the Tier 1 model TERRPLANT, a screening model that does not consider degradation, and other routes of dissipation of the chemical. Furthermore, NAA is readily biodegradable, susceptible to photolysis, and to volatilization, which will likely reduce the exposure (Appendix G). Finally, the residues of NAA are expected to be reduced with distance from the point of application, especially if it is applied by airblast sprayers (Appendix D). Appendix H provides a listing of endangered plant species.
No quantitative data are available on the toxicity of NAA or related compounds to the honey bee. However, a Pacific Northwest Extension Publication (Mayer et al.) indicates that NAA "can be applied at any time with reasonable safety to bees." As summarized in Appendix A, all other studies from the open literature are essentially screening studies for ranking or classifying toxicity to terrestrial insects. The results of these studies cannot be readily expressed in units of application rate that would be directly applicable to this risk assessment. Nonetheless, all of the open literature studies classify NAA as "harmless" relative to a large number of other pesticides.

Aquatic Organisms

The toxicity data indicate NAA is practically non-toxic on an acute basis for all species tested. Acute and chronic risks to aquatic organisms – fish, invertebrates, and plants – are provided in Table 9. Based on the available data and calculated risk quotients, exposure to NAA applied to olives at 0.33 lbs a.e./acre does not approach the acute (LOC, 0.5), restricted use (LOC, 0.1) or endangered species (LOC, 0.05) levels of concern for freshwater fish or invertebrates. Based on limited data – chronic SAR estimates corrected for available acute toxicity data – chronic risks to invertebrates and fish are below the level of concern (LOC ≤1) by a factor of over 300. While these chronic estimates are highly uncertain, this margin of safety is substantial.

Given the locations of the principle apple, pear, and olive growing regions (Figure 1) exposure to estuarine and marine environments is plausible. Toxicity data are not available from testing with estuarine/marine organisms. However, based on the toxicity data from freshwater organism testing, risks to estuarine and marine organisms (fish, aquatic invertebrates, and plants) are unlikely.
<table>
<thead>
<tr>
<th>Species</th>
<th>RQ</th>
<th>Toxicity Value (mg/L)</th>
<th>End-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish, Acute Exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluegill sunfish</td>
<td>3e-04</td>
<td>41</td>
<td>LC_{50}</td>
</tr>
<tr>
<td>Trout</td>
<td>4e-04</td>
<td>28</td>
<td>LC_{50}</td>
</tr>
<tr>
<td>Fish, Chronic Exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated from EPI-Suite</td>
<td>3e-03</td>
<td>4</td>
<td>NOEC</td>
</tr>
<tr>
<td>Aquatic Invertebrates, Acute Exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnia magna</td>
<td>7e-05</td>
<td>180</td>
<td>LC_{50}</td>
</tr>
<tr>
<td>Tubifex tubifex</td>
<td>2e-04</td>
<td>78.6</td>
<td>LC_{50}</td>
</tr>
<tr>
<td>Aquatic Invertebrates, Chronic Exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated from EPI-Suite</td>
<td>9e-04</td>
<td>12</td>
<td>NOEC</td>
</tr>
<tr>
<td>Aquatic Plants, Acute exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenastrum capricornutum</td>
<td>3e-04</td>
<td>41</td>
<td>EC_{50}</td>
</tr>
<tr>
<td>Lemna gibba</td>
<td>3e-02</td>
<td>0.46</td>
<td>NOEC</td>
</tr>
<tr>
<td>Exposures (mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>1.245e-02</td>
<td>Peak exposure from GENECC</td>
<td></td>
</tr>
<tr>
<td>Longer-term</td>
<td>1.055e-02</td>
<td>21-Day average exposure from GENECC</td>
<td></td>
</tr>
</tbody>
</table>

Uncertainties

Ecotoxicity data for terrestrial animals on an acute basis is limited by the number of species tested. Variability in toxicity to chemicals across species can, at times, be quite high. Using two birds and one mammal species to represent all terrestrial animals may result in the underestimation of risks for some particularly sensitive animal while overestimating the risks of others. In addition, use of laboratory rats as surrogates for wild mammals has inherent uncertainties because laboratory mammals are generally bred to minimize genetic variability and to be sensitive to chemical exposures – i.e., likely to exhibit responses at lower doses. In these cases, toxicity may be overstated. Further, chronic risks to mammals may be overestimated because the effects seen in the two-year feeding study could require an analogous exposure in the field.

Most of these issues apply to the aquatic assessment, as well. Specific to this aquatic assessment, additional factors derive from the use of EPI-Suite (in the absence of actual data), and the use of data from freshwater organism tests to conclude low probability of risk to estuarine and marine species.
References

SUBMITTED STUDIES (sorted by MRID number)

Open Literature and Governmental Reports (sorted alphabetically)

Hassan SA; Bigler K; Bogenschuetz H; Boller E; Brun J; Calis J NM; Chiverton P; Coremans-Pelseneer J; Duso C; et al. 1991. Results of the Fifth Joint Pesticide Testing Program carried out by the International Organization for Biological Control, West Plearectic Regional Section Working Group on pesticides and beneficial organisms. Entomophaga. 36(1): 55-68.

http://cru.cahe.wsu.edu/CEPublications/pnw0518/pnw0518.pdf

Sibbett GS; Krueger W. 1998. Olive Spray Thinning Guidelines. Publication 7238, University of California, Division of Agriculture and Natural Resources. Available at:

APPENDIX A

Summary of Toxicity Data

Avian Acute Oral Toxicity

Submissions:

This study used NAA Acid, Technical Grade. The reported LD50 is 1750 (1337-2289) mg/kg bw. The study is classified as scientifically sound, Supplemental (cannot be repaired to CORE) EFED used as somewhat different calculation method to estimate an LC50 value of 1690 mg/kg.

This study used NAA Acid, Technical grade and reports an LD50 value >2150 mg/kg bw – i.e., no mortality noted over a 14 day observation period. The study is classified as scientifically sound, Core.

This study reports an LD50 = >2510 mg/kg. The study used a formulation and thus does not meet guideline requirements. The study is classified as Scientifically sound, Supplemental.

This study reports an LD50 = >2510 mg/kg. At this dose, mortality was noted in only one animal. The study used a formulation and thus does not meet guideline requirements. The study is classified as Scientifically sound, Supplemental.

Open Literature: No studies encountered.

Avian Dietary LC50

Submissions:

This study tested 1-Naphthaleneacetamide and reports a dietary LC50 value >5620 ppm and a NOEC of 1780 ppm based on decreased body weight at 3160 ppm and 5620 ppm. Based on these results technical grade 1-naphthaleneacetamide is classified as practically non-toxic to birds. The study meets guidelines and is classified as Core.

This study tested NAA ethyl ester and reports a dietary LC50 value >5620 ppm. Based on these results technical grade NAA ethyl ester is classified as practically non-toxic to birds. The study meets guidelines and is classified as Core.

This study tested a formulation containing NAA and reported an dietary LC50 value >10000 ppm with no mortality in any animals. While the study is classified as scientifically sound, the use of a formulation does not fulfill guideline requirements Category: Supplemental.

This study tested a formulation containing NAA (different from Fink 1976b above) and reported an dietary LC₅₀ value > 10000 ppm with no mortality in any animals. While the study is classified as scientifically sound, the use of a formulation does not fulfill guideline requirements.

Category: Supplemental.

This study test technical grade NAA at a dietary concentration of 10,000 ppm. No mortality or overt signs of toxicity. This study is scientifically sound and meets guideline requirements. Category: Core. Classification: Practically non-toxic.

Open Literature: No studies encountered.

Avian Reproduction

Submissions: None

Open Literature

Bishop CA; Collins B; Mineau P; Burgess NM; Read WF; Risley C. 2000. Reproduction of Cavity-Nesting Birds in Pesticide-Sprayed Apple Orchards in Southern Ontario, Canada, 1988-1994. This is a field study that specifically looks at reproduction in birds in apple orchards sprayed with various pesticides. There is no specific information on NAA or related compounds.

96-Hour Static Acute Toxicity Test with Rainbow Trout

Submissions:

This study used technical grade NAA and originally reported an LC₅₀ value of 57 (47-68) mg/L ai with an NOEC of 32 mg/L. After review by EFED, the study was resubmitted and classified as Core with a corrected 96-hour LC₅₀ value: 28 mg/L. The compound is classified as Slightly Toxic to trout.

This study used a formulation of NAA and reported an LC₅₀ value 14.1 mg/L (12.6-15.8 mg/L) and a NOEC <5.6 mg/L — i.e., the lowest dose tested. Sublethal effects included surfacing and sounding. The study is classified as scientifically sound but does not fulfill guideline because it used a NAA acid formulation. Category: Supplemental

This is a summary of a study in coho salmon that reports a 96 h LC₅₀ value of 75.7 mg/L.

Open Literature: None

96-Hour Static Acute Toxicity Test with Bluegill Sunfish

Submissions:

This study used technical grade NAA and originally reported an LC₅₀ value of 82 (68-100) mg a.i./L and an NOEC of 68 mg/L. As originally submitted, the study was classified as not scientifically sound because of reporting deficiencies. On re-submission, the study was classified as scientifically sound and core (fulfills guideline requirements. The 96h LC₅₀ value was corrected to 41 mg/L and the technical grade NAA is classified as slightly toxic.

Appendix A - 2
This study used a formulation of NAA and reported an LC₅₀ value 23.7 mg/L and a NOEC 5.6 mg/L. The study is classified as scientifically sound but does not fulfill guideline because it used a NAA formulation. Category: Supplemental

This study used technical grade 1-Naphthaleneacetic Acid, Ethyl Ester and reports an LC₅₀ value 3.75 mg/L with an NOEC of 1.36 mg/L. On review by EFED, the LC₅₀ was recalculated as 2.68 mg/L and the NOEC was adjusted to 0.79 mg/L based on final mean measured concentrations. The study is classified as Core and the agent is classified as moderately toxic.

Open Literature: No studies encountered.

Early-Life Stage Static Toxicity Test with Fathead Minnow
No studies available in submissions or open literature.

48-Hour Static Acute Toxicity Test with the Cladoceran (*Daphnia magna*)

This study used technical grade NAA and reports an LC₅₀ value of 360 (220-590) mg/L and an NOEC of 220 mg/L. As originally submitted, the study was classified as not scientifically sound because of reporting deficiencies. The study was re-submitted and accepted as scientifically sound and classified as Core. The 48h LC₅₀ value was corrected to 180 mg/L and NAA was classified as practically non-toxic.

This study used technical grade 1-Naphthaleneacetic Acid, Ethyl Ester and reported an 48h LD₅₀ of 5.68 mg/L and NOEC of less than 4.38 mg/L.

This study used as formulation of NAA and reports an LC₅₀ value of 23.8 mg/L with an NOEC of 18 mg/L. No individual dose-response data are presented. Category: Supplemental.

Open Literature:

This study used NAA obtained from Ciba Geigy, Basel, Switzerland (purity not reported). Bioassays followed ASTM protocols. The study reports a 48 h LC₅₀ of 137. (101.24-147.57) mg/L and an LC₅₀ of 36.6 (35.72-38.29) mg/L for *Daphnia magna*. The study also gives a 96 h LC₅₀ of 78.6 (71.6-97.31) mg/L and an LC₅₀ of 1.82 (1.78-2.03) mg/L for *Tubifex tubifex*. Statistical method for calculating the reports LC₅₀ values given only as moving average method.

Daphnitr Reproduction
No studies encountered in submissions or open literature.

Aquatic Macrophytes

Submissions:

This study tested as potassium-salt formulation of NAA and reports an EC₅₀ = 5.09 (4.05-6.38) mg/L, an EC₅₀ of 1.67 (1.18-2.41) mg/L, and an NOEC of 0.459 mg/L. The study is classified as scientifically sound, meeting guideline for Tier 2 aquatic plant study with formulated product. Classification: CORE for formulated product.

Appendix A - 3
Hughes J; Alexander M. 1992d. The Toxicity of Fruit Fix Super Concentrate 800 to Leucaena leucocephala: Lab Project Number: B015-001-4. Unpublished study prepared by Malcolm Pirnie, Inc. 35 p. MRID 42582204. [Set No. CBIF01] This study tested an ammonium-salt formulation of NAA and reports an EC₅₀ = 5.61 (4.29-7.35) mg/L, an EC₂₅ of 2.2 (1.46-3.32) mg/L, and an NOEC of 1.81 mg/L. The study is classified as scientifically sound, meeting guideline for Tier 2 aquatic plant study with formulated product. Classification: CORE for formulated product.

Open Literature: None

Aquatic Algae

Submissions
Hughes J; Alexander M. 1992c. The Toxicity of Fruit Fix Super Concentrate 800 to Selenastrum capricornutum: Lab Project Number: B015-001-3. Unpublished study prepared by Malcolm Pirnie, Inc. 37 p. MRID 42582203. This study tested an ammonium-salt formulation of NAA and reports an EC₅₀ = 14.9 (11.2 - 19.2) mg/L, an EC₂₅ of 10.2 (6.77 to 15.4) mg/L, and an NOEC of 6.47 mg/L. The study is classified as scientifically sound, meeting guideline for aquatic algae study with formulated product. Classification: CORE for formulated product.

Open Literature
Fargasova A. 1994. Toxicity determination of plant growth hormones on aquatic alga-Scenedesmus quadricauda. Bull Environ Contam Toxicol. 52(5): 706-711. This study used NAA acid (source and purity not reported). EC₅₀ values for growth reported for after 20 days. The study reports EC₅₀ of 66 (63.21-86.73) mg/L and an LC₅₀ of 78.4 mg/L. Statistical method for calculating the reports LC₅₀ values given as moving average method. Individual response points and concentration-time curves presented.

Non-Target Terrestrial Plants

Submissions

Harnish W. 1992b. K-Salt; Fruit Fix 800 (NAA-Potassium Salt 24.2%) Tier I Non-target Plant Hazard Evaluation-terrestrial Vegetative Vigor Study: Lab Project Number: 22925B004. Unpublished study prepared by Landis International, Inc. and AMVAC Chemical Corp. 92 p. MRID 42564202. Formulation of potassium salt. Study classified as scientifically sound and meeting guideline requirements except for assay in peanut which was not considered scientifically sound because the seeds were treated with Captan. Based on the results of the study, Tier II is testing required. Classification: CORE except for peanut (invalid). Most sensitive species was the tomato based on both plant height (34% inhibition) and dry weight (20% inhibition but not statistically significant).

Harnish W. 1992c. K-Salt; Fruit Fix 800 (NAA-Potassium 24.2%): Tier I and Tier II Non-Target Plant Hazard Evaluation: Terrestrial Seed Germination and Seedling Emergence Study: Lab Project Number: 22925B003. Unpublished study prepared by Landis International, Inc. 406 p. MRID 42584203. Assayed seed germination, seedling emergence and vegetative vigour. No assays not scientifically sound for seed germination. Cucumber, radish and tomato are scientifically sound but do not meet guideline – NOEL for radicle length not determined. Other assays are acceptable. Most sensitive monocot was oat based on radicle length – NOEL, LOEL, EC₂₅, and EC₅₀ of 0.02, 0.03, and 0.05, and 0.12 lb ai/A. Only valid dicit assay was sunflower: NOEL, LOEL, EC₂₅ and EC₅₀ of 0.05, 0.1, 0.14 and 0.24 lb ai/A.

Harnish W. 1992d. Fruit Fix Super Concentrate 800: Tier I and II Non-target Plant Hazard Evaluation--Terrestrial Seed Germination and Seedling Emergence Study: Lab Project Number: 22925B001. Unpublished study prepared by Landis Int'l, Inc. 502 p. MRID 42589901. Seed Germination: Peanut not scientifically sound. Radish, cucumber, sunflower, corn, and wheat scientifically sound but not guideline – NOEL for radicle length not determined. Oats, onion, soybean, and tomato are scientifically sound and meet guideline. Most sensitive monocot: oat based on radicle length – NOEL, LOEL, EC₂₅, and EC₅₀ of 0.01, 0.02, 0.02, and 0.05 lb ai/A. Seedling emergence: invalid. Follow-up study submitted under MRID 43803201.

Appendix A - 4

Tomato is most sensitive species. The study is scientifically sound and fulfills guideline requirements for Tier 2 Vegetative Vigor Assay. EFED calculated the following toxicity values: NOEC, ED25, and EC50 of 62.5, 261.5, and >500 ppm. Classification: Core.

The study is scientifically sound but does not meet guideline requirements because no raw height and weight data are reported. All responses were less than 25% inhibition at doses of up to 500 ppm (0.083 lb a.e./acre). Classification: Supplemental and Tier II testing is not required.

This is a supplement to Harnish 1994b. See previous entry for comments.

This is a follow-up study to Harnish (1992d, MRID 42589901) that had deficiencies in the seedling emergence assay, as discussed above. Partial DER is available for this study. Carrot is most sensitive species, with NOEC (dry weight) = 0.01 lb a.i./A, EC25 = 0.06 lb a.i./A, EC50 = 0.15 lb a.i./A. Classification: Core

This study is scientifically sound but not guideline because only 5 and not 10 species tested. Nonetheless, this study was designed to get NOELs on 5 species not found in Harnish (1992c, MRID 42584203). The most sensitive dicots were the cucumber and tomato, both with EC25, 0.02 lb/acre and an NOEC of 0.01 lb/acre for the most sensitive parameter, radicle length. No monocots were tested.

Open Literature

Based on the abstract, this study used a solution of potassium salt of NAA. When lettuce was sprayed at a concentration 25 mg/dm², lip burn was noted. Additional details are not provided in the abstract.

Terrestrial Insects

Submissions: None

Open Literature:
Hassan SA; Bigler K; Bogenschutz H; Boller E; Brun J; Calis J NM; Chiverton P; Coremans-Pelseneer J; Duss C; et al. 1991. Results of the Fifth Joint Pesticide Testing Program carried out by the International Organization for Biological Control, West Plearctic Regional Section Working Group on pesticides and beneficial organisms. Entomophaga. 36(1): 55-68.

This is a summary of results of a series of screening studies used in Europe to assess effects of a variety of compounds on several non-target terrestrial invertebrates. Based on the criteria used in interpreting the screening studies, an NAA formulation is classified as harmless.

NAA is classified as harmless.

NAA is classified as harmless.

Appendix A - 5
NAA is classified as harmless.

NAA is classified as harmless to Tetranychid and predatory mites.

General Comment on Studies on Terrestrial Insects: There is no standard toxicity test on honey bees. All studies from the open literature are essentially screening studies for crudely ranking or classifying toxicity to terrestrial insects. The results of these studies cannot be readily expressed in units of application rate that would be directly applicable to this risk assessment.

Summary of Data on Foliar Half-lives
This study determined foliar half-times from apple leaves of 14C-labeled naphthaleneacetic acid, naphthaleneacetamide, and naphthaleneacetic acid ethyl ester. The half-times for these compounds were 34.2 hours, 131.6 hours, and 12.8 hours, respectively. The major mechanism of dissipation appeared to be volatilization. The dissipation of both naphthaleneacetic acid and naphthaleneacetamide followed first-order kinetics over the observation periods (72 hours for naphthaleneacetic acid and 166 hours for naphthaleneacetamide). The dissipation of naphthaleneacetic acid ethyl ester followed first order kinetics up to hour 48 but was non-linear (two compartment) at 72 hours. The 72 hour time point was not used in calculating the half-time. The non-linear pattern is probably due to initial rapid volatilization of the ester but concurrent and slower hydrolysis of the ester to NAA.
APPENDIX B

Environmental Exposure Modeling Outputs

Estimated Drinking Water Concentrations in Surface Waters \textit{(FIRST)}

<table>
<thead>
<tr>
<th>RUN No.</th>
<th>1 FOR NAA</th>
<th>ON Olives</th>
<th>* INPUT VALUES *</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE (#/AC)</td>
<td>.330 (.330)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NO.APPS & INTERVAL</td>
<td>1</td>
<td>1</td>
<td>Koc (PPM)</td>
</tr>
<tr>
<td>SOIL SOLUBIL</td>
<td></td>
<td></td>
<td>(%DRIFT)</td>
</tr>
<tr>
<td>APPL TYPE</td>
<td></td>
<td></td>
<td>AREA (IN)</td>
</tr>
<tr>
<td>クロップド INCORP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD AND RESERVOIR HALFLIFE VALUES (DAYS)

<table>
<thead>
<tr>
<th>METABOLIC DAYS UNTIL HYDROLYSIS</th>
<th>PHOTOYSIS</th>
<th>METABOLIC COMBINED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FIELD)</td>
<td>RAIN/RUNOFF</td>
<td>(RESER.)</td>
</tr>
<tr>
<td>11.70</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

UNTREATED WATER CONC (MICROGRAMS/LITER (FPB)) Ver 1.0 AUG 1, 2001

PEAK DAY (ACUTE) ANNUAL AVERAGE (CHRONIC) CONCENTRATION

17.849 | .976

Estimated Drinking Water Concentrations in Groundwaters \textit{(SCI-GROW 2.3)}

SCI-GROW
VERSION 2.3
ENVIRONMENTAL FATE AND EFFECTS DIVISION
OFFICE OF PESTICIDE PROGRAMS
U.S. ENVIRONMENTAL PROTECTION AGENCY
SCREENING MODEL
FOR AQUATIC PESTICIDE EXPOSURE

SciGrow version 2.3
chemical:NAA
time is 8/31/2004 16:6:21

<table>
<thead>
<tr>
<th>Application rate (lb/acre)</th>
<th>Number of applications</th>
<th>Total Use (lb/acre/yr)</th>
<th>Koc (ml/g)</th>
<th>Soil Aerobic metabolism (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.330</td>
<td>1.0</td>
<td>0.330</td>
<td>2.97E+02</td>
<td>3.9</td>
</tr>
</tbody>
</table>

groundwater screening cond (ppb) = 9.87E-04

32
Ambient Surface Water Concentrations for Ecological Effects (GENECC2)

<table>
<thead>
<tr>
<th>RUN No.</th>
<th>1 FOR NAA</th>
<th>ON Olives</th>
<th>* INPUT VALUES *</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE (#/AC)</td>
<td>NO.APPLS & INTERVAL</td>
<td>SOIL SOLUBIL</td>
<td>APPL TYPE NO-SPRAY INCORP</td>
</tr>
<tr>
<td>ONE (MULT)</td>
<td></td>
<td>Koc (PPM)</td>
<td>(%DRIFT) (FT) (IN)</td>
</tr>
<tr>
<td>.330 (.330)</td>
<td>1</td>
<td>1</td>
<td>297.0</td>
</tr>
</tbody>
</table>

FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)

METABOLIC	DAYS UNTIL HYDROLYSIS	PHOTOLYSIS	METABOLIC	COMBINED		
FIELD	RAIN/RUNOFF	(POND)	(POND-EFF)	(POND)		
11.70	2	N/A	.00	.00	23.40	23.40

GENERIC EECs (IN MICROGRAMS/LITER (PPB))

PEAK	MAX 4 DAY	MAX 21 DAY	MAX 50 DAY	MAX 90 DAY
GEEC	AVG GEEC	AVG GEEC	AVG GEEC	AVG GEEC
12.45	12.16	10.55	7.82	6.37

Version 2.0 Aug 1, 2001

Appendix B - 2
APPENDIX C

Output from ELL-FATE for NAA

ELL-FATE, Version 1.4, dated April 7, 2004
Chemical Name:

Use
Formulation

Application Rate

Half-life
Frequency of Application
Maximum # Apps./Year

Inputs

<table>
<thead>
<tr>
<th></th>
<th>Maximum Concentration (PPM)</th>
<th>56 day Average Concentration (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Grass</td>
<td>79.20</td>
<td>3.67</td>
</tr>
<tr>
<td>Tall Grass</td>
<td>36.30</td>
<td>1.68</td>
</tr>
<tr>
<td>Broadleaf plants/sm insects</td>
<td>44.55</td>
<td>2.07</td>
</tr>
<tr>
<td>Fruits/pods/lg insects</td>
<td>4.95</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Avian

<table>
<thead>
<tr>
<th></th>
<th>Acute LC50 (ppm)</th>
<th>Chronic NOAEC (ppm)</th>
<th>Acute RQ (Max. res. mult. apps.)</th>
<th>Chronic RQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Grass</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Tall Grass</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Broadleaf plants/sm insects</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Fruits/pods/lg insects</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Mammalian

<table>
<thead>
<tr>
<th></th>
<th>Acute LD50 (mg/kg b)</th>
<th>Chronic NOAEL (mg/kg)</th>
<th>15 g mammal</th>
<th>35 g mammal</th>
<th>1000 g mammal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Grass</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall Grass</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf plants/sm insects</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits/pods/lg insects</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terrestrial Application Residues

- Short Grass
- Tall Grass
- Broadleaf plants/sm insects
- Fruits/pods/lg insects

Outputs

<table>
<thead>
<tr>
<th></th>
<th># days</th>
<th>Exceeded on short grass (in first 56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute LC50 (ppm)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic NOAEC (ppm)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Max Single Application which does NOT exceed

- Avian Acute: 41.667 (lb a.i.)
- Avian Chronic: 41.667
- Mammalian Acute: 25.92
- Mammalian Chronic: 25.92

Rat Calculated NOAEL (ppm)

- Rat Acute: 0.00
- Rat Chronic: 0.00

Dietary RQ

<table>
<thead>
<tr>
<th></th>
<th>Rat Acute</th>
<th>Rat Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary RQ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Appendix C - 2
APPENDIX D: Formulas for Calculating Nontarget Plant EECs and RQs

Table D-1. Terrestrial Plant Environmental Exposure Concentrations (EECs)

<table>
<thead>
<tr>
<th>Ground Type</th>
<th>EEC Dry Area (lbs a.i./acre)</th>
<th>EEC Semi Aquatic Area (lbs a.i./acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unincorporated</td>
<td>Sheet Run Off</td>
<td>Channelized Run Off</td>
</tr>
<tr>
<td>(Non granular)</td>
<td>Application Rate (lb a.i./acre)*</td>
<td>Application Rate (lb a.i./acre)*</td>
</tr>
<tr>
<td></td>
<td>Run Off Value*</td>
<td>Run Off Value* * Factor 10(^b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Drift (Application Rate (lb a.i./acre)* * 0.01</td>
<td>Drift (Application Rate (lb a.i./acre)* * 0.01</td>
</tr>
<tr>
<td>Unincorporated</td>
<td>Sheet Run Off</td>
<td>Channelized Run Off</td>
</tr>
<tr>
<td>(Granular)</td>
<td>Application Rate (lb a.i./acre)*</td>
<td>Application Rate (lb a.i./acre)*</td>
</tr>
<tr>
<td></td>
<td>Run Off Value*</td>
<td>Run Off Value* * Factor 10(^b)</td>
</tr>
<tr>
<td>Incorporated</td>
<td>Sheet Run Off</td>
<td>Channelized Run Off</td>
</tr>
<tr>
<td>With Drift</td>
<td>Application Rate (lb a.i./acre)/Incorporation Depth in cm] * Run Off Value*</td>
<td>Application Rate (lb a.i./acre)/Incorporation Depth in cm] * Run Off Value*</td>
</tr>
<tr>
<td>(Non Granular)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Drift (Application Rate (lb a.i./acre)* * 0.01</td>
<td>Drift (Application Rate (lb a.i./acre)* * 0.01</td>
</tr>
<tr>
<td>Without Drift</td>
<td>Sheet Run Off</td>
<td>Channelized Run Off</td>
</tr>
<tr>
<td>(Granular)</td>
<td>Application Rate (lb a.i./acre)/Incorporation Depth in cm] * Run Off Value*</td>
<td>Application Rate (lb a.i./acre)/Incorporation Depth in cm] * Run Off Value*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

AERIAL

<table>
<thead>
<tr>
<th>Sheet Run Off</th>
<th>Channelized Run Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Rate (lb a.i./acre) * Run Off Value* * Appl. Eff, 0.6</td>
<td>Application Rate (lb a.i./acre) * Run Off Value* * Appl. Eff, 0.6 * Factor 10(^b)</td>
</tr>
<tr>
<td>Drift (Application Rate (lb a.i./acre)* * 0.05</td>
<td>Drift (Application Rate (lb a.i./acre)* * 0.05</td>
</tr>
</tbody>
</table>

\(^a\) Run Off Value = 0.01 or .02 or 0.05 depending upon the solubility of the chemical, <10 ppm, 10-100 ppm, and >100 ppm, respectively.

\(^b\) for 10 treated acres.

For Seedling Emergence RQs: Use Runoff+ Drift values (except for granular pesticide RQs, runoff values alone used)
For Vegetative Vigor RQs: Use only Drift values
Calculation for airblast application and most sensitive endpoint:

Seedling Emergence:

Sheet runoff: \(0.33 \text{ lb ai/acre} \times 0.05\) (runoff value) \(\times 0.6\) application efficiency

\[\text{plus Drift: } 0.33 \text{ lb ai/acre} \times 0.05 \times 0.6\]

\[(0.33 \text{ lb a.e./acre} \times 0.05 \times 0.6) + (0.33 \text{ lb a.e./acre} \times 0.05) = 0.0264 \text{ lb a.c./acre}\]

EEC

Endpoint for Non-Endangered Species (seedling emergence EC\(_{25}\) carrot) = 0.06 lb ai/acre

\[0.0264/0.06 = 0.44 \text{ RQ value}\]

RQ < LOC for non-endangered species exposed after airblast application.

Endpoint for Endangered Species (seedling emergence NOEC, carrot) = 0.01 lb ai/acre

\[0.0264/0.01 = 2.64 \text{ RQ value}\]

RQ > LOC for endangered species exposed after ground application. As illustrated in the following graph, deposition decreases significantly within a short distance from the point of application.
Figure D.1. Standard Deposition Curve for Airblast Applications Obtained from AGDRIFT.

AgDRIFT® Input Data Summary

--General--
Tier: I
Title: Naphthaleneacetic acid Airblast orchards (Stone and Pome Fruit, Vineyard)
Notes:

Default values appear when they differ from the Current values.

<table>
<thead>
<tr>
<th>Application Method</th>
<th>Current</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orchard Airblast</td>
<td>Aerial</td>
<td></td>
</tr>
<tr>
<td>Application Selection</td>
<td>Normal (Stone and Pome Fr...</td>
<td>Aerosol to Very Fine</td>
</tr>
</tbody>
</table>

Naphthaleneacetic acid Airblast orchards (Stone and Pome Fruit, Vineyard)

Tier I Deposition

The level of deposition is much lower than that observed for aerial applications.
Note the fraction of the application rate.
APPENDIX E: Portion of Drinking Water Memorandum

PC Code 056003: Case Number 0379
 DP Barcode D306434

MEMORANDUM

SUBJECT: Revised Estimated Drinking Water Concentrations of 1-Naphthaleneacetic Acid for use in Human Health Risk Assessment

TO: Michael Goodis, Acting Branch Chief
 Mark Howard, Team Leader
 Registration Division (7505C)

and Ray Kent, Branch Chief
 Health Effects Division (7509C)

FROM: José Luis Meléndez, Chemist
 Environmental Risk Branch V/FED

THROUGH: Mah Shamim, Ph.D., Chief
 Environmental Risk Branch V
 Environmental Fate and Effects Division (7507C)

This memo presents the Tier I Estimated Drinking Water Concentrations (EDWCs) for 1-naphthaleneacetic acid, calculated using FIRST (surface water) and SCIGROW (ground water) for use in the human health risk assessment.

Table 1. Tier I Estimated Drinking Water Concentrations of 1-Naphthaleneacetic acid

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Acute (peak) Surface Water Concentration (ppb)</th>
<th>Annual Average Surface Water Concentration (ppb)</th>
<th>Ground Water Concentration (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA</td>
<td>17.849</td>
<td>0.976</td>
<td>0.000987</td>
</tr>
</tbody>
</table>

These values generally represent upper-bound estimates of the concentrations of 1-naphthaleneacetic acid equivalents that might be found in surface and ground water due to the use of 1-naphthaleneacetic acid (ammonium salt) on olives, which represents the highest use rate scenario. Both models provide estimates suitable for screening purposes. Additional refinements may be developed should they be needed by HED.

Introduction

1-Naphthaleneacetic acid (NAA) is a plant growth regulator, with effects at low concentrations. It acts as a chemical messenger effecting natural plant functions and is the most widely used synthetic auxin. It also acts as a herbicide at high rates. Target crops include apples, pears, citrus, olives, prunes, cherries, pomegranates and ornamental woody plants.

Applications of NAA are made at various periods of the year. NAA is used in the Spring to thin all varieties of apples, and a small percentage of pears. It is used during the Summer to enhance

2 Results of 1-naphthaleneacetic acid, sodium salt, expressed as equivalents of 1-naphthaleneacetic acid.
return bloom. In addition, NAA is used during the Fall on Red Delicious and Golden Supreme apple trees to prevent pre-harvest drop and as a sprout inhibitor applied after a pruning cut to prevent water sprouts from developing.

1-Naphthaleneacetic acid (NAA) belongs to a family of related products, which include, sodium 1-naphthaleneacetate, 1-naphthaleneacetamide, ethyl 1-naphthaleneacetate, potassium 1-naphthaleneacetate, ammonium 1-naphthaleneacetate, and ethyl-1-naphthaleneacetate.

Most products containing 1-naphthaleneacetic acid (NAA) are used to promote root growth (for transplantations or to boost established plants), primarily in a nursery environment. The use rate is lower than the one used to prevent fruit drop. One product contains a mixture of NAA (0.45%) and 1-naphthaleneacetamide (1.20%), which is used on apples and pears to induce fruit set (it is applied prior to flowering).

EFED used as a representative high use rate scenario/product, the ammonium salt of 1-naphthaleneacetic acid. The environmental fate characteristics of the ammonium salt are expected to be similar to those of the acid. In the environment, both species occur in an equilibrium that depends on the pH. Four products are registered that contain exclusively ammonium 1-naphthaleneacetate. The product with the maximum use rate can be applied at 0.33 lb a.e. (equivalents of NAA)/acre per application. Only one application will be made per growing season.

Environmental Fate Database for 1-Naphthaleneacetic Acid

The Division has very little environmental fate data about 1-naphthaleneacetic acid and its related products. One study (Acc. No. 129382) suggests that the ethyl-1-naphthaleneacetate and 1-naphthaleneacetamide are susceptible to hydrolysis, and the end product is 1-naphthaleneacetic acid. Literature information suggests that 1-naphthaleneacetic acid, and structurally similar compounds such as 1-methyl-naphthalene and ethyl-naphthalene, are susceptible to biodegradation, however, no quantitative results are available. A search of the TOXNET database provided additional qualitative information about the environmental fate of this chemical. 1-Naphthaleneacetic acid is expected to undergo rapid photolysis in water, on soil, and in air. The observed products in water and soil were 1-naphthoic acid and phthalic acid (refer to Appendix C). An estimated K_{oc} range was provided was 160-610.

Approach for Calculation of Naphthaleneacetic Acid

In the absence of environmental fate data, EFED assumed a conservative approach.

A calculation of physicochemical properties of 1-naphthaleneacetic acid was performed using EPI Suite™. The EPI (Estimation Program Interface) Suite™ is a Windows® based suite of physical/chemical property and environmental fate estimation models developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation. EPI Suite™ uses a single input to run various estimation models.

4 Lyman, W.J., et. al.; Handbook of Chemical Property Estimation Methods, NY; McGraw-Hill, p. 4-9 (1982)

5 The EPI Suite™ and the individual models included within the software are owned by the U.S. Environmental Protection Agency and are protected by copyright throughout the world.

Appendix E-2
PCKOCWIN (refer to Appendix I for details) yielded a K_{oc} of 297. This value lies well within the range reported by Lyman, et. al.. The value was considered suitable for calculations at the Tier I level.

BIOWIN (refer to Appendix I for details) yielded a biodegradation half-life of 3.9 days for 1-naphthaleneacetic acid. EFED believed that this value was reasonable in light of the literature data available for this and similar compounds. Since the guidelines for input parameters for FIRST call for the multiplication of the value by 3 (when there is only one value available), EFED considered that this constituted a reasonable conservative approach. The aerobic aquatic metabolism is twice the aerobic soil metabolism input value as per current guidelines.

For this Tier I level analysis, in the absence of any data about the photolysis on soil or in water for 1-naphthaleneacetic acid, EFED assumed persistence (despite the fact that they are expected to be important routes of degradation). This also constitutes a conservative approach.

The input parameters are presented in Tables 2 and 3. The modeling results are shown in the Table 1.

For background information about PCKOCWIN, and BIOWIN, models of the EPI Suite™ program, please refer to Appendix A.

For background information about FIRST, and SCIGROW, the models used to estimate surface and ground waters, respectively, refer also to Appendix A.

Appendix B shows the output files from FIRST and SCIGROW.

Table 2. Environmental Fate and Other Input Parameters for the Estimation of Naphthaleneacetic Acid using FIRST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Solubility (20°C)</td>
<td>420 ppm</td>
<td>Herbicide Handbook, 5th Edition</td>
</tr>
<tr>
<td>Hydrolysis Half-Life (pH 7)</td>
<td>0</td>
<td>ACC# 129382</td>
</tr>
<tr>
<td>Aerobic Soil Metabolism Half-Life (3X available value = 3 x 3.9 days = 11.7 days)</td>
<td>11.7 days</td>
<td>BIOWIN v.4.00</td>
</tr>
<tr>
<td>Aerobic Aquatic Metabolism Half-life (2X aerobic soil metabolism input)</td>
<td>23.4 days</td>
<td>Per guidelines</td>
</tr>
<tr>
<td>Aqueous Photolysis Half-Life</td>
<td>0</td>
<td>No data available</td>
</tr>
<tr>
<td>Adsorption/Desorption Coefficient (K_{oc})</td>
<td>297</td>
<td>PCKOCWIN v.1.66</td>
</tr>
<tr>
<td>Pesticide is Wetted-In</td>
<td>No</td>
<td>Label</td>
</tr>
<tr>
<td>PCA (olives, highest use rate scenario)</td>
<td>0.87</td>
<td>Default value for other crops</td>
</tr>
<tr>
<td>Application Method</td>
<td>orchard airblast</td>
<td>Sibbett and Krueger 1998</td>
</tr>
<tr>
<td>Application Rate (lb a.i./A)</td>
<td>0.33</td>
<td>Estimated from label</td>
</tr>
<tr>
<td>Applications Permitted per Year</td>
<td>1</td>
<td>Label</td>
</tr>
<tr>
<td>Application Interval (days)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Environmental Fate and Other Input Parameters for the Estimation of Naphthaleneacetic Acid using FIRST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of Incorporation (Broadcast)</td>
<td>0.0</td>
<td>Label</td>
</tr>
</tbody>
</table>

Table 3. Environmental Fate Input Parameters for the Estimation of Naphthaleneacetic Acid using SCIGROW.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Carbon Adsorption/Desorption Coefficient (K_{oc})²</td>
<td>297</td>
<td>PCKOCWIN v.1.66</td>
</tr>
<tr>
<td>Aerobic Soil Metabolism Half-Life</td>
<td>3.9 days</td>
<td>BIOWIN v.4.00</td>
</tr>
</tbody>
</table>
Background Information About PCKOCWIN, BIOWIN, FIRST, and SCIGROW

PCKOCWIN Overview

The following overview of the PCKOCWIN program was obtained from the program manual. The Soil Adsorption Coefficient Program (PCKOCWIN) estimates the soil adsorption coefficient (K_{OC}) of organic compounds. K_{OC} can be defined as "the ratio of the amount of chemical adsorbed per unit weight of organic carbon (OC) in the soil or sediment to the concentration of the chemical in solution at equilibrium" (Lyman, 1990); it is represented by the following equation (Lyman, 1990):

\[
K_{OC} = \frac{\text{ug adsorbed/g organic carbon}}{\text{ug/mL solution}}
\]

K_{OC} provides an indication of the extent to which a chemical partitions between solid and solution phases in soil, or between water and sediment in aquatic ecosystems. Estimated values of K_{OC} are often used in environmental fate assessment because measurement of K_{OC} is expensive. Traditional estimation methods rely upon the octanol/water partition coefficient or related parameters, but recently the first-order molecular connectivity index (1-MCI) has been used successfully to predict K_{OC} values for hydrophobic organic compounds (Sabljic, 1984, 1987; Bahnick and Doucette, 1988). PCKOCWIN uses 1-MCI and a series of group contribution factors to predict Koc. The group contribution method outperforms traditional estimation methods based on octanol/water partition coefficients and water solubility.

PCKOCWIN requires only a chemical structure to make these predictions. Structures are entered into PCKOCWIN by SMILES (Simplified Molecular Input Line Entry System) notations.

The first-order molecular connectivity index (MCI) has been successfully used to predict soil sorption coefficients (Koc) for nonpolar organics. For polar compounds, a new estimation method based on MCI and series of statistically derived fragment contribution factors for polar compounds was developed. After developing an extensive database of measured K_{OC} values, we divided the dataset into a training set of 189 chemicals and an independent validation set of 205 chemicals. Two linear regressions were then performed. First, measured log K_{OC} values for nonpolar compounds in the training set were correlated with MCI. The second regression was developed by using the deviations between measured log K_{OC} and the log K_{OC} estimated with the nonpolar equation and the number of certain structural fragments in the polar compounds. The final equation for predicting log Koc accounts for 96% and 86% of the variation in the measured values for the training and validation sets, respectively. Results also show that the model outperforms and covers a wider range of chemical structures than do models based on octanol-water partition coefficients (K_{OW}) or water solubility.

BIOWIN Overview

The following overview of the BIOWIN program was obtained from the program manual. The Biodegradation Probability Program (BIOWIN) estimates the probability for the rapid aerobic biodegradation of an organic chemical in the presence of mixed populations of environmental microorganisms. Estimates are based upon fragment constants that were developed using multiple linear and non-linear regression analyses.

BIOWIN requires only a chemical structure to make these predictions. Structures are entered into BIOWIN by SMILES notations. The BIOWIN program was developed at Syracuse Research Corporation. The prediction methodology was developed jointly by efforts of the Syracuse Research Corporation and the U.S. Environmental Protection Agency.
Two independent training sets were used to develop four mathematical models for predicting aerobic biodegradability from chemical structure. All four of the models are based on multiple regressions against counts of 36 preselected chemical substructures plus molecular weight. Two of the models, based on linear and nonlinear regressions, calculate the probability of rapid biodegradation and can be used to classify chemicals as rapidly or not rapidly biodegradable. The training set for these models consisted of qualitative summary evaluations of all available experimental data on biodegradability for 295 chemicals. The other two models allow semi-quantitative prediction of primary and ultimate biodegradation rates using multiple linear regression. The training set for these models consisted of estimates of primary and ultimate biodegradation rates for 200 chemicals, gathered in a survey of 17 biodegradation experts. The two probability models correctly classified 90% of the chemicals in their training set, whereas the two survey models calculated biodegradation rates for the survey chemicals with $R^2 = 0.7$. These four models are intended for use in chemical screening and in setting priorities for further review.

Background Information on FIRST:

FIRST is a screening model designed to estimate the pesticide concentrations found in drinking water, providing high-end values on the concentrations that might be found in a small drinking water reservoir due to the use of pesticide. Like GENECC, the model previously used for Tier I screening level, FIRST is a single-event model (one run-off event), but can account for spray drift from multiple applications. FIRST takes into consideration the so-called Index Drinking Water Reservoir by representing a larger field and pond than the standard GENECC scenario. The FIRST scenario includes a 427-acres field immediately adjacent to a 13-acres reservoir, 9 feet deep, with continuous flow (two turnovers per year). The pond receives a spray drift event from each application plus one runoff event. The runoff event moves a maximum of 8% of the applied pesticide into the pond. The amount can be reduced due to degradation on field and the effect of binding to soil. Spray drift is equal to 6.4% of the applied concentration from the ground spray application and 16% for aerial applications.

FIRST also makes adjustments for the percent crop area. While FIRST assumes that the entire watershed would not be treated, the use of a PCA is still a screen because it represents the highest percentage of crop cover of any large watershed in the US, and it assumes that the entire crop is being treated. Various other conservative assumptions of FIRST include the use of a small drinking water reservoir surrounded by a runoff-prone watershed, the use of the maximum use rate, no buffer zone, and a single large rainfall.

Background Information on SCIGROW:

SCIGROW provides a groundwater screening exposure value to be used in determining the potential risk to human health from drinking water contaminated with the pesticide. Since the SCIGROW concentrations are likely to be approached in only a very small percentage of drinking water sources, i.e., highly vulnerable aquifers, it is not appropriate to use SCIGROW for national or regional exposure estimates.

SCIGROW estimates likely groundwater concentrations if the pesticide is used at the maximum allowable rate in areas where groundwater is exceptionally vulnerable to contamination. In most cases, a large majority of the use area will have groundwater that is less vulnerable to contamination than the areas used to derive the SCIGROW estimate.
SURFACE WATERS (FIRST) and GROUND WATERS OUTPUT RUNS

<table>
<thead>
<tr>
<th>RUN No.</th>
<th>1 FOR NAA</th>
<th>ON</th>
<th>Olives</th>
<th>* INPUT VALUES *</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE (#/AC)</td>
<td>No.APPS & SOIL SOLUBIL</td>
<td>APPL TYPE</td>
<td>%CROPPED INCORP</td>
<td></td>
</tr>
<tr>
<td>ONE (MULT)</td>
<td>INTERVAL Koc (DPM)</td>
<td>(%)DRIFT</td>
<td>AREA (IN)</td>
<td></td>
</tr>
<tr>
<td>.330 (.330)</td>
<td>1 1</td>
<td>297.0</td>
<td>420.0</td>
<td>ABLAST (6.3)</td>
</tr>
</tbody>
</table>

FIELD AND RESERVOIR HALFLIFE VALUES (DAYS)

<table>
<thead>
<tr>
<th>METABOLIC DAYS UNTIL HYDROLYSIS</th>
<th>PHOTOlysis</th>
<th>METABOLIC COMBINED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD</td>
<td>RAIN/RUNOFF</td>
<td>(RESERVOIR)</td>
</tr>
<tr>
<td>11.70</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

UNTREATED WATER CONC (MICROGRAMS/LITER (PPB)) Ver 1.0 AUG 1, 2001

<table>
<thead>
<tr>
<th>PEAK DAY (ACUTE)</th>
<th>ANNUAL AVERAGE (CHRONIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCENTRATION</td>
<td>CONCENTRATION</td>
</tr>
<tr>
<td>17.849</td>
<td>.976</td>
</tr>
</tbody>
</table>

SciGrow
VERSION 2.3
ENVIRONMENTAL FATE AND EFFECTS DIVISION
OFFICE OF PESTICIDE PROGRAMS
U.S. ENVIRONMENTAL PROTECTION AGENCY
SCREENING MODEL
FOR AQUATIC PESTICIDE EXPOSURE

SciGrow version 2.3
Chemical: NAA
time is 8/31/2004 16:6:21

<table>
<thead>
<tr>
<th>Application rate (lb/acre)</th>
<th>Number of applications</th>
<th>Total Use (lb/acre/yr)</th>
<th>Koc (ml/g)</th>
<th>Soil Aerobic metabolism (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.330</td>
<td>1.0</td>
<td>0.330</td>
<td>2.97E+02</td>
<td>3.9</td>
</tr>
</tbody>
</table>

groundwater screening cond (ppb) = 9.87E-04

**

Appendix E-7
Appendix F.
Chemical Structures of NAA and Photolysis Products

1-naphthaleneacetic acid

1-naphthoic acid

phthalic acid

Appendix F-1
Appendix G.
Background Data About Oasis Catabol V. 4.55

Metabolism (the breakdown of the molecule by bacteria) stops before the compound is fully degraded, leaving a partially degraded compound called a metabolite. Due to the importance of biodegradation for pesticide products and the need to understand the formation of metabolites, a QSAR program called CATABOL was developed. CATABOL predicts the biodegradation pathway and predicts the possibility that degradation may stop at one or more metabolites.

CATABOL is a mechanistic modeling approach for quantitative assessment of biodegradability in biodegradation pathways of chemicals. The system generates most plausible biodegradation products and provides quantitative assessment for their solubility and toxic endpoints. The core of CATABOL is the biodegradability simulator including a library of hierarchically ordered individual transformations (catabolic steps) and matching substructure engine providing their subsequent performance. The catabolic steps are derived from a set of most plausible metabolic pathways predicted by experts for each chemical from the training set.

The hierarchy of implementation of individual transformations in the simulator is set according to the descending order of their probabilities. For deriving these probabilities, a frequency matrix is constructed where observed BOD (or ThCO2) for training set chemicals are used as dependent variables and probabilities of individual transformations — as independent variables. The matrix is solved for probabilities of individual transformations by nonlinear least squares Marquard’s method.

The data in the training set agreed well with the calculated BODs \(r^2 = 0.90 \) in the entire range (i.e. a good fit was observed for readily, intermediate and difficult to degrade chemicals). After introducing 60% ThOD as a cut off value the model predicted correctly 98 % ready biodegradable structures and 96 % not ready biodegradable structures. Cross validation by 4 times leaving 25% of data resulted in \(Q^2 = 0.88 \) between observed and predicted values. To make biodegradability predictions the model only needs the structure of a chemical. For structure input we have also provided a structure editor. The output is given as % of theoretical BOD. The model allows for identifying potentially persistent catabolic intermediates, their molar amounts, solubility (\(\log Kow, BCF \)) and toxic properties (acute toxicity, phototoxicity, mutagenicity, ER/AR binding affinity). Presently, the system simulates the biodegradability in MITI-I OECD 301 C and Ready Sturm OECD 301 B tests. Other simulators will be available in the program upgrades.

In order to improve the reliability of the CATABOL predictions a new training set of documented multiple biodegradation routes for 260 chemicals was collected. The new training set was used to train the CATABOL to simulate multiple metabolic pathways. The performance of the multiple pathways based microbial simulator to reproduce biodegradation of chemicals and their stable metabolites was reported and analyzed.

The new version of CATABOL allows evaluating the performance of the simulator and the degree of belonging of chemicals into the domain of the biodegradation simulator.
Output from Oasis Catabol:

<table>
<thead>
<tr>
<th>Trans</th>
<th>Level</th>
<th>Quantity</th>
<th>P obtain</th>
<th>P stable</th>
<th>LogKOW</th>
<th>Smiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>391</td>
<td>0.999</td>
<td>1</td>
<td>0.999</td>
<td>2.6044</td>
<td>c1(CC(=O)O)c2c(cccc2)ccc1</td>
</tr>
<tr>
<td>2</td>
<td>363</td>
<td>0.000776</td>
<td>0.001</td>
<td>0.000776</td>
<td>3.7183</td>
<td>c1(C)c2c(cccc2)ccc1</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>0</td>
<td>0.000224</td>
<td>0</td>
<td>2.2515</td>
<td>c1(CO)c2c(cccc2)ccc1</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>0</td>
<td>0.000224</td>
<td>0</td>
<td>2.8686</td>
<td>c12c(c(C=O)ccc1)ccc2</td>
</tr>
<tr>
<td>5</td>
<td>272</td>
<td>0.000031</td>
<td>0.000224</td>
<td>0.000031</td>
<td>3.0504</td>
<td>C(=O)(O)c1c2c(cccc2)ccc1</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>0</td>
<td>0.000193</td>
<td>0</td>
<td>2.2086</td>
<td>c1(O)c(O)c2c(cccc2)cc1</td>
</tr>
<tr>
<td>7</td>
<td>105</td>
<td>0</td>
<td>0.000193</td>
<td>0</td>
<td>1.0405</td>
<td>C(=O)(O)C(=O)C=Cc1c(O)ccc1</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>0</td>
<td>0.000193</td>
<td>0</td>
<td>2.007</td>
<td>c1(O)c(C=O)ccc1</td>
</tr>
<tr>
<td>9</td>
<td>205</td>
<td>0.000018</td>
<td>0.000193</td>
<td>0.000018</td>
<td>2.2447</td>
<td>C(=O)(O)c1c(O)ccc1</td>
</tr>
<tr>
<td>10</td>
<td>129</td>
<td>0.000175</td>
<td>0</td>
<td>1.0326</td>
<td>c1(O)c(O)ccc1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>49</td>
<td>0</td>
<td>0.000175</td>
<td>0</td>
<td>-0.4244</td>
<td>C(=O)(O)C(=O)=CC=CC=O</td>
</tr>
<tr>
<td>12</td>
<td>54</td>
<td>0.000175</td>
<td>0</td>
<td>0.35</td>
<td>C=O</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0</td>
<td>0.000175</td>
<td>0</td>
<td>-0.4605</td>
<td>C(=O)O</td>
</tr>
<tr>
<td>14</td>
<td>60</td>
<td>0.000175</td>
<td>0</td>
<td>0.6346</td>
<td>C(=O)(O)=CC=C</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>46</td>
<td>0.000175</td>
<td>0</td>
<td>-0.3974</td>
<td>C(=O)(O)=CC=C</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>101</td>
<td>0.000175</td>
<td>0</td>
<td>-1.7993</td>
<td>C(=O)(O)=CC(C)O</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>54</td>
<td>0.000175</td>
<td>0</td>
<td>-0.1659</td>
<td>C(C)=O</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>0</td>
<td>0.000175</td>
<td>0</td>
<td>0.0868</td>
<td>C(C)=O</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>0</td>
<td>0.000193</td>
<td>0</td>
<td>-1.2432</td>
<td>C(=O)(O)(C)=O</td>
</tr>
</tbody>
</table>

The Smiles codes were converted into structures and the names of such structures were located. These appear in the next page.
Naphthaleneacetic acid

1-methyl-naphthalene

Appendix G-3
2-naphthylmethanol

2-naphthaldehyde
2-naphthoic acid

naphthalene-1,2-diol
(3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoic acid

salicylaldehyde

salicylic acid

Appendix G-6
pyrocatechol

(2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoic acid
(2Z)-2-hydroxy-penta-2,4-dienoic acid

2-oxopent-4-enoic acid
4-hydroxy-2-oxopentanoic acid

2-oxopropanoic acid

Appendix G-9
Acetaldehyde

Acetic acid

Formaldehyde
formic acid
Species Listing by State for Crop
Olives (124)

Minimum of 1 Acre

<table>
<thead>
<tr>
<th>County</th>
<th>Acres</th>
<th>Plant</th>
<th>Status</th>
<th>County presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresno (3851096)</td>
<td>acres</td>
<td>Pseudobahia peisonii</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cordylanthus palmatus</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sidalcea keckii</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dudleya setchellii</td>
<td>Endangered</td>
<td>possible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudobahia bahifolia</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orcuttia inaequalis</td>
<td>Threatened</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caulanthus californicus</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Castilleja campestris ssp. succulenta</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calpytridium pulchellum</td>
<td>Threatened</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monolopia (=Lembertia) congdonii</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td>Glenn (849369)</td>
<td>acres</td>
<td>Orcuttia pilosa</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chamaesyce hooveri</td>
<td>Threatened</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tuctoria greenei</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td>Kern (5223304)</td>
<td>acres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opuntia treleasei</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caulanthus californicus</td>
<td>Threatened</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eremaiche kemensis</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monolopia (=Lembertia) congdonii</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td>Madera (1378090)</td>
<td>acres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudobahia peisonii</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cordylanthus palmatus</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudobahia bahifolia</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orcuttia pilosa</td>
<td>Threatened</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orcuttia inaequalis</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lupinus tidiastromii</td>
<td>Threatened</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Castilleja campestris ssp. succulenta</td>
<td>Endangered</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calpytridium pulchellum</td>
<td>Threatened</td>
<td>known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tuctoria greenei</td>
<td>Endangered</td>
<td>extirpate</td>
</tr>
</tbody>
</table>

Appendix H-1
Species Listing by State for Crop
Olives (124)

Minimum of 1 Acre

Status: County presence:

California
County

Tehama (1895715 Acres)
Plant
GRASS, HAIRY ORCUTT
GRASS, SLENDER ORCUTT
MEADOWFOAM, BUTTE COUNTY
SPURGE, HOOVER'S
TUCTORIA, GREEN'S

Orcuttia pilosa
Orcuttia tenuis
Limnanthes floccosa ssp. californica
Chamaesyce hooveri
Tuctoria greenei

Endangered known
Threatened known
Endangered known
Threatened known
Endangered known

Tulare (3096901 Acres)
Plant
CHECKER-MALLOW, KECK'S
CLARKIA, SPRINGVILLE
GRASS, SAN JOAQUIN VALLEY ORCUTT
JEWELFLOWER, CALIFORNIA
SPURGE, HOOVER'S
WOOLLY-THREADS, SAN JOAQUIN

Sidalcea keckii
Clarkia springvillensis
Orcuttia inaequalis
Caulanthus californicus
Chamaesyce hooveri
Monologia (=Lemertia) congdonii

Endangered known
Threatened known
Threatened known
Endangered known
Threatened known
Endangered known

Appendix H-2
DATA PACKAGE BEAN SHEET
Date: 27-Oct-2004
Page 1 of 2

*** Registration Information ***

Registration: RED-23776 - NAA RED
Company: -
Risk Manager: RM 53 - Michael Goodis - (703) 308-8157 Room# CM-2 604B
Risk Manager Reviewer: Mark Howard MHOWARD1

Sent Date: _______________ Calculated Due Date: _______________ Edited Due Date: _______________ Type of Registration: Project
Action Desc: ________________________________
Ingredients: ________________________________

*** Data Package Information ***

Expedite: ○ Yes ● No Date Sent: _______________ Due Back: _______________
DP Ingredient: 056002, 1-Naphthaleneacetic acid

DP Title: REVISE RISK ASSESSMENTS
CSF Included: ○ Yes ● No Label Included: ○ Yes ● No Parent DP #: _______________

Assigned To Date In Date Out
Organization: EFED / ERB5 15-Oct-2004
Team Name: ________________________________
Reviewer Name: Vaughan, Allen 18-Oct-2004
Contractor Name: ________________________________

Administrative Due Date: _______________
Negotiated Due Date: _______________
Projected Completion Date: _______________

*** Studies Sent for Review ***

No Studies

*** Additional Data Package for this Decision ***

Printed on Page 2

*** Data Package Instructions ***

Please revise the Environmental Risk Assessment for NAA based on the registrant requested higher use rate for olives (from 50 grams to 150 grams/acre).

Thanks,
Mark Howard
308-8172
** Additional Data Package for this Decision **

<table>
<thead>
<tr>
<th>DP#</th>
<th>Division/Branch</th>
<th>Date Sent</th>
<th>Date Due</th>
<th>Instructions?</th>
<th>CSF</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>306431</td>
<td>SRRD / RRB3</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>☐ Yes ☐ No</td>
<td></td>
</tr>
<tr>
<td>306431</td>
<td>SRRD / RRB3</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>☐ Yes ☐ No</td>
<td></td>
</tr>
<tr>
<td>306432</td>
<td>SRRD / RRB3</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>☐ Yes ☐ No</td>
<td></td>
</tr>
<tr>
<td>306432</td>
<td>SRRD / RRB3</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>☐ Yes ☐ No</td>
<td></td>
</tr>
<tr>
<td>306434</td>
<td>SRRD / RRB3</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>☐ Yes ☐ No</td>
<td></td>
</tr>
<tr>
<td>306434</td>
<td>EFED / ERB5</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>○ Yes ☐ No</td>
<td>☐ Yes ☐ No</td>
<td></td>
</tr>
</tbody>
</table>
DATA PACKAGE BEAN SHEET
Date: 27-Oct-2004
Page 1 of 2

*** Registration Information ***

Registration: RED-23776 - NAA RED
Company:
Risk Manager: RM 53 - Michael Goodis - (703) 306-8157 Room# CM-2 604B
Risk Manager Reviewer: Mark Howard MHOWARD1
Sent Date:
Calculated Due Date:
Edited Due Date:
Type of Registration: Project
Action Desc:
Ingredients:

*** Data Package Information ***

Expedite: ☐ Yes ☐ No
Date Sent:
Due Back:
DP Ingredient: 056002, 1-Naphthaleneacetic acid

DP Title: Revised Drinking Water Assessment Request
CSF Included: ☐ Yes ☐ No
Label Included: ☐ Yes ☐ No
Parent DP #:

Assigned To

Organization: EFED / ERB5
Team Name:
Reviewer Name: Melendez, Jose
Contractor Name:
Date In: 15-Oct-2004
Date Out:
Administrative Due Date:
Negotiated Due Date:
Projected Completion Date:

*** Studies Sent for Review ***

No Studies

*** Additional Data Package for this Decision ***

Printed on Page 2

*** Data Package Instructions ***

Please revise the Drinking Water Assessment for NAA based on the higher (from 50 to 150 grams/acre) use rate needed for olives.

Thanks,
Mark Howard
308-8172
<table>
<thead>
<tr>
<th>DP #</th>
<th>Division/Branch</th>
<th>Date Sent</th>
<th>Date Due</th>
<th>Instructions?</th>
<th>CSF</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>306431</td>
<td>SRRD / RRB3</td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306431</td>
<td>SRRD / RRB3</td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306431</td>
<td>SRRD / RRB3</td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306431</td>
<td>SRRD / RRB3</td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306431</td>
<td>SRRD / RRB3</td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>