US ERA ARCHIVE DOCUMENT ### **TEXT SEARCHABLE DOCUMENT - 2009** Data Evaluation Report on the Toxicity of Methyl Parathion Technical to Sheepshead Minnow (Cyprinodon variegatus), Early Life Cycle | PMRA Submission Number { | } | EPA MRID Number 467442-01 | |--|---------------------------------------|---| | Data Requirement: | PMRA Data Code | { | | Data Nequilement. | EPA DP Barcode | D326572 and 326467 | | | OECD Data Point | {} | | | EPA MRID | 467442-01 | | | EPA Guideline | 850.1400 | | | • | | | • | athion Technical | Purity: 97.4% (w:w) | | Common name Methyl para | | | | | O-dimethyl O-4-nitrophenyl | . · | | CAS name: | • | dimethyl O-(4-nitrophenyl) ester | | | None Reported | | | Synonyms. | Mone Kehoriea | | | | | al it a Plan | | Primary Reviewer: Christie | E. Padova | Signature: Christia & Padova— Date: 12/8/06 | | Staff Scientist, Dynamac Co | orporation | Date: 12/8/06 | | | | an Jarton | | Secondary Reviewer: John | · · · · · · · · · · · · · · · · · · · | Signature: | | Staff Scientist, Cambridge 1 | Environmental Inc. | Date: 12/27/06 | | | | Man on all | | Primary Reviewer: Edward | Odenkirchen, Biologist | Date: 2/14/09 (4)/1/19 (1) | | EPA/OPP/EFED/ERB – I | | | | Sagandawa Daviormania). Vo | n Donovon Chamist | Date: 2/14/09 Can Donovan | | Secondary Reviewer(s): Yaı
EPA/OPP/EFED/ERB – I | n Donovan , Chemist | Date: 2/10/09 | | LIA/OFF/EFED/ERD — I | | | | Reference/Submission No.: | {} | | | Company Code { | } [For PMRA] | | | Active Code { | | | | Use Site Category { | · - | | | EDA DC Codo 05250 | | | **Date Evaluation Completed:** {dd-mm-yyyy} CITATION: Hicks, S.L. 2006. Methyl Parathion Technical: Early Life-Stage Toxicity Test with the Sheepshead Minnow, *Cyprinodon Variegatus*, Under Flow-Through Conditions. Unpublished study performed by ABC Laboratories, Inc., Columbia, MO. Laboratory Project No. 49732. Study submitted by Cheminova, Inc., Washington, DC. Study initiated September 26, 2005 and submitted January 23, 2006. **DISCLAIMER:** This document provides guidance for EPA and PMRA reviewers on how to complete a data evaluation record after reviewing a scientific study concerning the toxicity of a pesticide to fish, early life cycle. It is not intended to prescribe conditions to any external party for conducting this study nor to establish absolute criteria regarding the assessment of whether the study is scientifically sound and whether the study satisfies any applicable data requirements. Reviewers are expected to review and to determine for each study, on a case-by-case basis, whether it is scientifically sound and provides sufficient information to satisfy applicable data requirements. Studies that fail to meet any of the conditions may be accepted, if appropriate; similarly, studies that meet all of the conditions may be rejected, if appropriate. In sum, the reviewer is to take into account the totality of factors related to the test methodology and results in determining the acceptability of the study. PMRA Submission Number {.....} EPA MRID Number 467442-01 #### **EXECUTIVE SUMMARY:** The 38-day chronic toxicity of methyl parathion to the early life stage of sheepshead minnow (*Cyprinodon variegatus*) was studied under flow-through conditions. Newly-fertilized eggs/embryos (100/level, exact age not reported) of sheepshead minnow were exposed to methyl parathion at nominal concentrations of 0 (negative and solvent controls), 5.0, 10, 20, 40, 80, and 160 μ g ai/L. TWA concentrations were <1.07 (<LOQ, controls), 4.57, 8.86, 17.7, 36.0, 74.5, and 148 μ g ai/L, respectively. The test system was maintained at 24.5-25.5 °C, pH of 7.33-7.72, and salinity of 18.7-19.9%. As survival did not fall below 50% for any treatment level, the 38-day LC₅₀ for post-hatch survival was >148 μ g ai/L. NOAEC and LOAEC values were 8.86 and 17.7 μ g ai/L, respectively, based on treatment-related reductions in terminal growth (length and wet weight). No treatment-related effects on time to 95% hatch or percent hatch were observed. In addition, no treatment-related signs of toxicity in post-hatch fry were observed. Fry survival, however, was statistically-reduced at the 148 μ g ai/L level compared to the negative control (76 versus 90%, respectively). Terminal standard lengths and blotted wet weights were the most sensitive endpoints, with statistically-significant reductions compared to the negative control at the \geq 17.7 μ g ai/L levels. The mean standard length was 16 mm in the negative control, solvent control, 4.57, and 8.86 μ g ai/L groups, and 15, 14, 13, and 9 mm in the 17.7, 36.0, 74.5, and 148 μ g ai/L groups, respectively. Mean blotted wet weight was 0.134 and 0.136 mg in the negative and solvent control levels, respectively, and 0.134, 0.127, 0.112, 0.106, 0.093, and 0.041 mg in the 4.57, 8.86, 17.7, 36.0, 74.5, and 148 μ g ai/L levels, respectively. This study is scientifically sound and satisfies the guideline requirement for an early life toxicity study with sheepshead minnow. #### **Results Synopsis** Test Organism Size/Age (mean Weight or Length): Newly-fertilized embryos, exact age not reported Test Type (Flow-through, Static, Static Renewal): Flow-through #### Egg Hatchability: EC₅₀: >148 μ g ai/L 95% C.I.: N/A Probit Slope: N/A NOAEC: 148 μg ai/L LOAEC: >148 μg ai/L #### Fry Survival: EC₅₀: >148 μ g ai/L 95% C.I.: N/A Probit Slope: N/A NOAEC: 74.5 µg ai/L LOAEC: 148 µg ai/L #### Mean Standard Length: EC₅₀: >148 μ g ai/L 95% C.I.: N/A Probit Slope: 1.51±0.168 NOAEC: 8.86 μg ai/L LOAEC: 17.7 μg ai/L #### Mean Blotted Wet Weight: EC₅₀: 100 μg ai/L 95% C.I.: 88-120 μg ai/L Probit Slope: 2.71±0.492 NOAEC: 8.86 µg ai/L LOAEC: 17.7 µg ai/L Endpoint(s) Affected: Fry Survival and Growth (Length and Wet Weight) PMRA Submission Number {......} EPA MRID Number 467442-01 Most Sensitive Endpoint(s): Length and Wet Weight PMRA Submission Number {.....} EPA MRID Number 467442-01 #### I. MATERIALS AND METHODS GUIDELINE FOLLOWED: The study protocol was based on procedures outlined in the U.S. EPA Series 850 - Ecological Effects Test Guidelines (draft), OPPTS No. 850.1400 Fish Early Life-Stage Test. Deviations from OPPTS No. 850.1400 included: 1. The exact age of the fertilized embryos used for testing was not reported. - 2. The analytical variation among test sample results exceeded 20% at the nominal 5.0 µg ai/L level (lowest dose tested only). Variation at this level was 27%. At the remaining levels, analytical variation ranged from 6 to 15%. - 3. Periodic analysis of the prepared dilution water was conducted in December 2004, approximately 10 months prior to the definitive study. - 4. Raw data obtained during daily observations (including survival, time to hatch, and clinical signs of toxicity) were not provided. These deviations do not affect the scientific soundness or acceptability of this study. **COMPLIANCE:** Signed and dated GLP and Quality Assurance statements were provided. A No Data Confidentiality statement was included in the final report; however, it was not signed or dated. #### A. MATERIALS: 1. Test Material Methyl Parathion Technical **Description:** Amber solid Lot No./Batch No.: 621-BSe-20A **Purity:** 97.4% w:w **Stability of compound under test conditions:** Verified. Test samples collected on days 0, 7, 14, 21, 28, and 38 were analyzed for methyl parathion using gas chromatography in conjunction with a nitrogen/phosphorous detector (GC/NPD). At all except the lowest treatment level, recoveries were within 20% among replicate measurements (range of 6-15%, reviewer-calculated). At the lowest treatment level (5.0 µg ai/L), the analytical variation was 27% among replicate measurements. These results indicate that methyl parathion was stable under the conditions of the test. Storage conditions of test chemicals: Under refrigeration (approx. 4°C) PMRA Submission Number {.....} EPA MRID Number 467442-01 Physicochemical properties of Methyl Parathion. | Parameter | Values | Comments | |--------------------------|--------------|----------| | Water solubility at 20EC | Not reported | | | Vapor pressure | Not reported | | | UV absorption | Not reported | | | pKa | Not reported | | | Kow | Not reported | | (OECD recommends water solubility, stability in water and light, pKa, Pow, and vapor pressure of test compound) #### 2. Test organism: Species: Sheepshead minnow (Cyprinodon variegates) [EPA recommends any of several freshwater fish species, including rainbow trout, brook trout, bluegill, fathead minnow, and channel catfish. See Standard Evaluation Procedure for listing of recommended species. OECD recommends rainbow trout, fathead minnows, zebra fish, and ricefish but does not exclude the use of other species.] Age /embryonic stage at test initiation: Newly-fertilized embryos, exact age not reported [EPA recommends fish embryos 2 to 24 hours old.] Method of collection of the fertilized eggs: Testes from approximately ten male minnows were obtained from sacrificed fish and maintained in a glass dish containing fresh saltwater. Unfertilized eggs from approximately 46 female sheepshead minnows (previously injected twice with Human Chorionic Gonadoptropin solution; refer to Reviewer's Comments section) were collected by gently stroking the abdomen of anesthetized fish and subsequently collecting eggs into a glass dish containing fresh saltwater. The testes were macerated and rinsed into the glass dish containing the collected eggs. The milt and eggs were gently swirled and allowed to remain undisturbed for several minutes. The fertilized eggs were then rinsed with fresh saltwater and maintained in a glass dish at approximately 23°C prior to selection for testing. Source: In-house cultures #### **B. STUDY DESIGN:** #### 1. Experimental Conditions a. Range-finding study: A 28-day flow-through range-finding study was conducted at
nominal concentrations of 0 (negative and solvent controls), 6.5, 13, 25, 50, 100, and 200 µg ai/L. Two replicates, each containing 20 embryos, were exposed for a total of 40 embryos per concentration level. Egg hatchability was 78 and 90% in the negative and solvent controls, respectively, compared to 85, PMRA Submission Number {.....} EPA MRID Number 467442-01 85, 70, 83, 78, and 80% in the 6.5, 13, 25, 50, 100, and 200 μg ai/L levels, respectively. Fry mortality at the end of the 28-day exposure ranged from 6% in the 200 μg ai/L level to 16% in the 100 μg ai/L level, compared to 10 and 8% in the negative and solvent control groups, respectively. Standard length and blotted wet weight were measured in surviving fry from the negative control, solvent control, 6.5, 50, and 200 μg ai/L levels at study termination. The mean length was 13, 14, 13, 11, and 10 mm, respectively, and the mean wet weights were 0.076, 0.079, 0.079, 0.061, and 0.044 g, respectively. The concentrations of methyl parathion were determined at the 6.5, 25, and $200 \mu g$ ai/L levels on days 15 and 28. Recoveries ranged from 80 to 90% of the nominal concentrations. b. Definitive study **Table 1: Experimental Parameters** | Parameter | Details | Remarks | | |--|--|---|--| | | | Criteria | | | Parental acclimation, if any Period: Conditions (same as test or not): | Continuous Same as test | The mature sheepshead minnow were maintained in laboratory saltwater ($20 \pm 3\%$) at a temperature of 23 ± 2 °C. | | | Feeding (type, source, amount given, frequency): | Not reported | | | | Health: (any mortality observed) | No prophylactic or therapeutic disease treatments were administered in the 2 weeks prior to test initiation. | | | | Number of fertilized eggs/embryos in each treatment at test initiation | 100 embryos/treatment level, divided into 25 embryos/cup, 1 cup/aquarium, and 4 replicate aquaria/treatment. | Fish were not thinned following hatching. Each treatment should include a minimum of 20 embryos per replicate cup and a minimum of 30 fish per treatment for post-hatch exposure (OECD recommends at least 60 eggs, divided between at least 2 replicates) | | PMRA Submission Number {.....} | Parameter | Details | Remarks
<i>Criteria</i> | | | |---|--|---|--|--| | i ai ametei | Details | | | | | Concentration of test material nominal: | 0 (negative and solvent controls),
5.0, 10, 20, 40, 80, and 160 μg | Concentrations were corrected for test substance purity. | | | | | ai/L | Solutions were analyzed for ai at 0, 7, 14, 21, 28, and 38 days. | | | | mean measured: | <1.07 (<loq, 4.67,<br="" controls),="">8.94, 18.0, 36.2, 74.2, and 149
µg ai/L</loq,> | Analytical variation was excessive at
the 5.0 µg ai/L level only (27%,
reviewer-calculated). This was due
to the day-0 result, which was 121% | | | | TWA (reviewer-calculated): | <1.07 (<loq, 4.57,<br="" controls),="">8.86, 17.7, 36.0, 74.5, and 148
µg ai/L</loq,> | of the mean-measured concentration. At the remaining treatment levels, variation ranged from 6 to 15%, which is within the 20% | | | | | | recommended limit. | | | | | | A minimum of 5 concentrations and a control, all replicated, plus solvent control if appropriate should be used. - Toxicant concentration should be | | | | | | measured in one tank at each toxicant level every week. - One concentration should adversely affect a life stage and one concentration | | | | | | should not affect any life stage. OECD recommends that 5 concentrations be spaced by a constant | | | | | | factor not exceeding 3.2; concentrations of test substance in solution should be within \forall 20% of the mean measured values. | | | | Solvent (type, percentage, if used) | Dimethyl formamide, 20 µl/L | | | | | | | The solvent should not exceed 0.1 ml/L in a flow-through system. Recommended solvents include dimethylformamide, triethylene glycol, methanol, acetone, ethanol. OECD recommends that the solvent not | | | | | | have an effect on survival nor produce
any other adverse effects; concentration
should not be greater than 0.1 ml/L. | | | | Number of replicates | | | | | | control:
solvent control:
treated ones: | 4
4
4/level | Number of replicates should be 4 per concentration. A solvent control should be used in conjunction with a solubilizing agent. | | | PMRA Submission Number {......} | Parameter | Details | Remarks | | | |--|---|--|--|--| | | | Criteria | | | | Test condition static renewal/flow-through: | Flow-through | The diluter was calibrated before the test and checked for normal operation twice daily during the test. | | | | type of dilution system for flow through method: | Intermittent-flow proportional diluter | Intermittent flow proportional diluters
or continuous flow serial diluters should
be used. EPA recommends that flow rate | | | | flow rate: | Approx. 7 volume additions per day | to larval cups should provide 90% replacement in 8 to 12 hours (OECD recommends 5 test chamber volumes/24 hours). For static-renewal, OECD | | | | renewal rate for static renewal: | N/A | recommends 2 renewal procedures;
either transfer eggs and larvae to new,
clean vessels or reatain organisms in
vessels and change at least 2/3 test | | | | | | water. A minimum of 5 toxicant concentrations with a dilution factor not greater than 0.5 and controls should be used. | | | | | | Toxicant Mixing: 1) Mixing chamber is preferred; 2) Aeration should not be used for mixing; 3) The test solution should be | | | | | | completely mixed before introduction into the test system; 4) Flow splitting accuracy should be within 10%. | | | | Aeration, if any | None used. | | | | | | | Dilution water should be aerated to ensure DO concentration at or near 100% saturation. Test tanks and embryo cups should not be aerated. | | | | Duration of the test | 38 days (28-days post-hatch) | Fulfills OPPTS requirement for this species. | | | | | | Recommended test duration is 32 days for EPA. OECD recommendations for test duration are species specific and range from 28-60 days. | | | | Embryo cups, if used | | The embryo cages were slowly oscillated vertically. | | | | type/material (glass/stainless steel): size: | Glass jars with Nitex® screen replacing the bottom 9-cm diameter | Recommended embryo cups are 120 ml
glass jars with bottoms replaced with 40
mesh stainless steel or nylon screen. | | | | fill volume: | Not reported | | | | PMRA Submission Number {......} | Parameter | Details | Remarks | |---|--|---| | | | Criteria | | Test vessel type/material: (glass/stainless steel) | Glass | All chamber drains were covered with stainless steel screen to prevent fish escape. | | size: | 15 x 31 x 22 cm | Recommended test vessel is all glass or glass with stainless steel frame. | | fill volume: | 10 L | | | Source of dilution water | Laboratory saltwater (20 ± 3‰) prepared using a commercial sea salt mix and laboratory freshwater consisting of well water that was de-mineralized by reverse-osmosis. The prepared dilution water was passed through a particulate filter and an UV sterilizer. | Results of periodic analysis of the dilution water for chlorinated hydrocarbons, metals, and organophosphates were provided (from water analyzed in December 2004). The following elements were detected: boron at 5.7 mg/L, calcium at 160 mg/L, magnesium at 580 mg/L, potassium at 200 mg/L, sodium at 5700 mg/L, nitrate at 0.39 mg/L, and total phosphorus at 0.12 mg/L. | | | | Source of dilution water should be natural or reconstituted water; natural water should be sterilized with UV and tested for pesticides, heavy metals, and other possible contaminants. OECD accepts any water in which the test species show control survival at least as good as presented in SEP. | PMRA Submission Number {.....} | Parameter | Details | Remarks | | |---|---
--|--| | T at ameter | Details | Criteria | | | Water parameters hardness: | Not reported | Light intensity at the level of test solution, ranged from 450 to 547 on days 7, 14, and 35. | | | pH: dissolved oxygen: | 7.33-7.72
5.13-6.64 mg/L (71-92% | Recommended hardness: 40-48 mg/L as CaCO ₃ ;
Recommended pH: 7.2 to 7.6 | | | temperature (s) (record all the temperatures used for different life | saturation) 24.5-25.5°C (all stages; | Dissolved Oxygen (DO) should be measured at each concentration at least once a week; | | | stages): | maintained constant during the study) | Freshwater parameters in a control and one concentration should be analyzed once a week. | | | photoperiod: | 16 hours light/8 hours dark, with 30-minute transition periods | Temperature depends upon test species and should not deviate by more than 2EC from appropriate temperature. | | | salinity (for marine or estuarine species): | 18.7-19.9‰ | OECD recommends that DO concentration be between 60 - 90% saturation. As a minimum DO, salinity | | | other measurements: | N/A | (if relevant) and temperature should be
measured weekly, and pH and hardness | | | interval of water quality measurements: | Temperature, pH, salinity, and DO were measured in all replicates of each level at test | at the beginning and end of the test.
Temperature should be measured
continuously. | | | | initiation and termination, and weekly throughout the study. Temperature was also | | | | | continuously monitored in a centrally-located test chamber (20 µg ai/L replicate D). | | | | Post-hatch details when the post-hatch period began: number of hatched eggs (alevins)/ treatment released to the test chamber: | Day 10, when hatching was at least 95% complete in the solvent control chambers. All hatched larvae were released. | Percent hatch ranged from 72-88% in each negative control replicate (mean of 80%), and from 72-92% in each vehicle control replicate (mean of 84%). This fulfills the OPPTS minimum requirement of 75% for | | | on what day, the alevins were released | | this species. Percentage of embryos that produce live | | | from the incubation cups to the test chamber: | Day 10 | fry should be \geq 50% in each control;
percentage of hatch in any control
embryo cup should not be more than 1.6
times that in another control cup. | | PMRA Submission Number {.....} | Parameter | Details | Remarks | |--|---|---| | rarameter | Detans | Criteria | | Post-hatch Feeding start date: | Day 6, the day following the start of hatch | Food size and/or quantity were increased during testing on the basis of average fish size. | | type/source of feed: | Live brine shrimp nauplii (Artemia sp.). As the test progressed, a standard commercial fish food was added to the diet. | | | amount given: frequency of feeding: | Ad libitum At least three times daily during the week and at least twice daily on weekends. Fish were not fed during the final 24 hours of the test. | | | Stability of chemical in the test system | Stable, as indicated by relatively constant measured concentrations (within 20% among replicate measurements) at all but the lowest treatment level. | | | Recovery of chemical: Frequency of measurement: LOD: LOQ: | 84-105% of nominal Days 0, 7, 14, 21, 28, and 38 Not reported 1.07 µg ai/L | Based on the results of QC samples in which 20 ml volumes of saltwater were spiked with methyl parathion at 4.62 and 182 µg ai/L and analyzed concurrently with the test samples. | | Positive control {if used, indicate the chemical and concentrations} | N/A | | | Fertilization success study, if any number of eggs used: on what day the eggs were removed to check the embryonic development: | N/A | | | Other parameters, if any | N/A | | PMRA Submission Number {.....} EPA MRID Number 467442-01 #### 2. Observations: **Table 2: Observations** | Parameters | Details | Remarks
<i>Criteria</i> | | | |--|--|--|--|--| | Parameters measured including the sublethal effects/toxicity symptoms | - Embryo survival
- Time to reach ≥95% hatch | Although dry weights are preferred, wet weight data are acceptable. | | | | | - Larval survival - Measurement of growth (total length, blotted wet weight) - Clinical signs of toxicity or abnormal behavior | Recommended parameters measured include: - Number of embryos hatched; - Time to hatch; - Mortality of embryos, larvae, and Juveniles: - Time to swim-up (if appropriate); - Measurement of growth; - Incidence of pathological or Histological effects; - Observations of other effects or clinical signs. | | | | Observation intervals/dates for: | | | | | | egg mortality: no. of eggs hatched: mortality of fry (e.g.,alevins): swim-up behavior: growth measurements: embryonic development: other sublethal effects | Daily Daily Daily N/A Day 38 (28 days post-hatch) Not determined Daily | | | | | Water quality was acceptable (Yes/No) | Yes | | | | | Were raw data included? | No. Raw data obtained during daily observations (including survival, time to hatch, and clinical signs of toxicity) were not provided. | Summarized survival data for hatch and post-hatch periods were reported. | | | | Other observations, if any | N/A | | | | #### II. RESULTS AND DISCUSSION #### A. MORTALITY: On Day 10, percent egg hatchability averaged 78-88% in all test and control groups, with no treatment-related effect observed. The NOAEC for hatchability was 149 µg ai/L. On Day 38 (28 days post-hatch), fish survival averaged 87-92% in the controls through 74.2 μg ai/L treatment levels. At the 149 μg ai/L level, post-hatch survival averaged 76%, which was statistically-reduced compared to the pooled controls (p=0.05). The NOAEC for post-hatch survival was 74.2 μg ai/L. PMRA Submission Number {.....} EPA MRID Number 467442-01 Table 3: Effect of Methyl Parathion on Egg Hatching and Survival at Different Life Stages of Fish. | Treatment,
Measured | Egg hat | ched/embry | viability | Study Day | 4 | Juvenile-survival on
day 38 | | |---|------------------------|------------------------|-----------|-------------------------|--------------|--------------------------------|--| | (and Nominal)
Concentrations, | No. of eggs | hatch/embryo viability | | Treatment Hatch
≥95% | | % | | | μg ai/L | at study
initiation | No. | % | | No. dead | mortality | | | Control (dilution water only) | 100 | 80 | 80 | 9 | 8 | 10 | | | Solvent control | 100 | 84 | 84 | 10 | 9 | 11 | | | 4.67 (5.0) | 100 | 81 | 81 | 9 | 9 | 11 | | | 8.94 (10) | 100 | 79 | 79 | 9 | 9 | 11 | | | 18.0 (20) | 100 | 88 | 88 | 9 | 10 | 11 | | | 36.2 (40) | 100 | 82 | 82 | 9 | 11 | 13 | | | 74.2 (80) | 100 | 82 | 82 | 9 | 7 | 8 | | | 149 (160) | 100 | 78 | 78 | 10 | 19 | 24* | | | NOAEC | 149 μg ai/L | | | 149 μg ai/L | 74.2 µg ai/L | | | | EC ₅₀ | NR | | | NR | NR | | | | Positive control, if used | N/A | N/A | | N/A | N/A | | | | mortality:
EC ₅₀ :
NOAEC | | | 1 | | | | | NR - Not reported ^{*} Statistically-significant difference from pooled control using Dunnett's Test (p=0.05). PMRA Submission Number {.....} EPA MRID Number 467442-01 Table 4: Effect of Methyl Parathion on Growth of Juvenile Fish. | Treatment, | | Swim-up ^(a) | | | | |---|--------|------------------------|--------|------------------------|------------------------| | Measured
(and Nominal)
Concentrations,
µg ai/L | day x1 | day x2 | day xn | Growth -length
(mm) | Growth-wet weight (mg) | | Control (dilution water only) | N/A | N/A | N/A | 16 | 0.134 | | Solvent control | N/A | N/A | N/A | 16 | 0.136 | | 4.67 (5.0) | N/A | N/A | N/A | 16 | 0.134 | | 8.94 (10) | N/A | N/A | N/A | 16 | 0.127 | | 18.0 (20) | N/A | N/A | N/A | 15* | 0.112* | | 36.2 (40) | N/A | N/A | N/A | 14* | 0.106* | | 74.2 (80) | N/A | N/A | N/A | 13* | 0.093* | | 149 (160) ^(b) | N/A | N/A | N/A | 9 | 0.041 | | NOAEC | N/A | N/A | N/A | 8.94 μg ai/L | 8.94 μg ai/L | | LOAEC | N/A | N/A | N/A | 18.0 μg ai/L | 18.0 μg ai/L | | EC ₅₀ | N/A | N/A | N/A | NR | NR | | Positive control, if used mortality: EC ₅₀ : NOAEC | N/A | N/A | N/A | N/A | N/A | ⁽a) Swim-up is generally not applicable for this species. #### **B. SUB-LETHAL TOXICITY AND OTHER CHRONIC EFFECTS:** No treatment-related effect on the time to hatch was reported. Hatching began in the negative and solvent control groups on days 5 and 7, respectively, and in all test substance groups on days 6-7. The negative control and \leq 74.2 µg ai/L groups reached 95% hatch on day 9, and the vehicle control and the 149 µg ai/L group reached 95% hatch on day 10. Hatch was completed (i.e., 100%) in all levels between days 7 and 13. Raw data were not provided. A NOAEC was not reported.
No treatment-related signs of toxicity were observed during the study. Dark discoloration was observed in a single fry each from the negative control, vehicle control, and 4.67 through 36.2 µg ai/L treatment groups. Edema was also observed in one negative control fry. These observations did not follow a dose-dependent response and were not considered to be related to treatment. No behavioral abnormalities were observed during exposure. Raw data were not provided. A NOAEC was not reported. Statistically-significant reductions (p=0.05) in total length and blotted wet weight were observed at the ≥18.0 µg ⁽b) Treatment was excluded from the statistical analyses due to survival effects. ^{*}Statistically-significant from pooled control using Dunnett's Test (p=0.05). PMRA Submission Number {.....} EPA MRID Number 467442-01 ai/L levels compared to the pooled control. The mean standard length was 16 mm in the negative control, solvent control, 4.67, and 8.94 μg ai/L groups, and 15, 14, 13, and 9 mm in the 18.0, 36.2, 74.2, and 149 μg ai/L groups, respectively. Mean blotted wet weight was 0.134 and 0.136 mg in the negative and solvent control levels, respectively, and 0.134, 0.127, 0.112, 0.106, 0.093, and 0.041 mg in the 4.67, 8.94, 18.0, 36.2, 74.2, and 149 μg ai/L levels, respectively. The NOAEC for both growth indicators was 8.94 μg ai/L. #### C. REPORTED STATISTICS: Data that were statistically analyzed included 1) percent egg hatchability, 2) percent fry survival, 3) the mean total length of surviving fish at study termination, and 4) the mean blotted wet weight of surviving fish at study termination. The time to 95% hatch was visually evaluated. For egg hatchability and fry survival, control data were compared using a two-tailed Fisher's exact test and a two-tailed planned comparison t-test. No significant differences were observed, and the controls were pooled for all subsequent analyses. Data were tested for normality using Shapiro-Wilk's test and for homogeneity of variance using Levene's test. These assumptions were met, and the non-transformed data were subsequently analyzed using ANOVA and a one-tailed Dunnett's test. Data were also analyzed using a Fisher's exact test with a Hochberg adjustment. Test substance treatments with statistically-significant effects on hatchability or fry survival were not included in subsequent growth analyses. For the growth endpoints, measurements were made on each organism; however, the organisms were not treated as the experimental unit and rather treated as sub-samples measured within the experimental unit. The control data were compared using a two-tailed planned comparison t-test. No significant differences were observed, and the controls were pooled for all subsequent analyses. Growth data were checked for normality using Shapiro-Wilk's test, and for homogeneity of variance using Levene's test. These assumptions were fulfilled, and the non-transformed data were subsequently analyzed using a nested ANOVA procedure, where the treatment means are weighted for number of fish in each chamber, and a one-tailed Dunnett's test, with the alternate hypotheses being the mean for the parameter was reduced in comparison to the control mean. The NOAEC and LOAEC were based on significance data. The maximum acceptable toxicant concentration (MATC) was calculated as the geometric mean of the overall NOAEC and LOAEC for the most sensitive endpoint. All analyses were performed using SAS software and mean-measured concentrations. LC/EC₅₀ values were not determined. #### D. VERIFICATION OF STATISTICAL RESULTS: Statistical Method(s): The endpoints analyzed included percent egg hatchability, percent fry survival (28 days post-hatch), mean standard length (28 days post-hatch) and mean blotted wet weight (28 days post-hatch). Negative and vehicle control data for each endpoint were compared using a Student's t-Test; no statistically significant differences were detected for any endpoint and all subsequent analyses were conducted using the negative control only. Replicate data for each endpoint were tested for normality using Chi-square and Shapiro-Wilk's tests and for homogeneity of variance using Hartley and Bartlett's tests. If the data met these assumptions of ANOVA, the NOAEC and LOAEC values were determined using the parametric Dunnett's and Williams' tests. If the assumptions were not met, the same values were determined using the non-parametric Steels Many-One Rank and Kruskal-Wallis tests. All NOAEC and LOAEC determinations were conducted using Toxstat statistical software. When applicable, EC₅₀ values (and 95% C.I.) were determined using the probit method via Nuthatch statistical software. All toxicity values were determined using the time-weighted average concentrations. PMRA Submission Number {.....} EPA MRID Number 467442-01 #### Egg Hatchability: EC₅₀: >148 μ g ai/L 95% C.I.: N/A Probit Slope: N/A NOAEC: 148 µg ai/L LOAEC: >148 µg ai/L #### Fry Survival: EC₅₀: >148 μ g ai/L 95% C.I.: N/A Probit Slope: N/A NOAEC: 74.5 µg ai/L LOAEC: 148 µg ai/L #### Mean Standard Length: EC₅₀: >148 μ g ai/L 95% C.I.: N/A Probit Slope: 1.51±0.168 NOAEC: 17.7 μg ai/L LOAEC: 36.0 μg ai/L #### Mean Blotted Wet Weight: EC₅₀: $100 \,\mu g \, ai/L$ 95% C.I.: 88-120 $\mu g \, ai/L$ Probit Slope: 2.71±0.492 NOAEC: 8.86 µg ai/L LOAEC: 17.7 µg ai/L #### E. STUDY DEFICIENCIES: There were no major deviations from OPPTS 850.1400 that affected the scientific soundness or acceptability of this study. #### F. REVIEWER=S COMMENTS: The reviewer relied on a non-parametric analysis to determine the NOAEC for length because of identical replicate values for the two lowest treatment levels; as a result, the reviewer's analysis did not detect a significant reduction in length at the 17.7 μg ai/L treatment level, while the study author's analysis did. Because the study author's NOAEC level for length is more conservative, it is reported in the Executive Summary and Conclusions sections. Results in both of these sections are expressed based on the time-weighted average concentrations; the study author based toxicity estimates on the mean measured concentrations. Five days prior to egg collection, approximately 46 female minnow were injected with Human Chorionic Gonadoptropin (HCG) solution (containing 1000 IUs HCG/ml) at a rate of approximately 0.1 ml per fish. These same female fish were injected a second time 2 days prior to egg collection with HCG solution (containing 400 IU HCG/ml) at a rate of approximately 0.1 ml per fish. The injected female sheepshead minnows were used as the source for the unfertilized eggs. All test solutions were clear and colorless with no visible particulate material, surface film, undissolved test substance, or precipitate for the duration of the definitive test. In-life dates were September 26 – November 3, 2005. PMRA Submission Number {.....} EPA MRID Number 467442-01 #### **G. CONCLUSIONS:** This study is scientifically sound and is thus acceptable. Based on treatment-related effects upon mean standard length and mean blotted wet weight at the ≥ 17.7 µg ai/L levels (the most sensitive endpoints), the NOAEC and LOAEC are 8.86 and 17.7 µg ai/L, respectively. #### Egg Hatchability: EC₅₀: >148 μg ai/L 95% C.I.: N/A Probit Slope: N/A NOAEC: 148 µg ai/L LOAEC: >148 µg ai/L #### Fry Survival: EC₅₀: >148 μg ai/L 95% C.I.: N/A Probit Slope: N/A NOAEC: 74.5 µg ai/L LOAEC: 148 µg ai/L #### Mean Standard Length: EC₅₀: >148 μ g ai/L 95% C.I.: N/A Probit Slope: 1.51±0.168 NOAEC: 8.86 μg ai/L LOAEC: 17.7 μg ai/L #### Mean Blotted Wet Weight: EC₅₀: 100 μg ai/L 95% C.I.: 88-120 μg ai/L Probit Slope: 2.71±0.492 NOAEC: 8.86 µg ai/L LOAEC: 17.7 µg ai/L Endpoint(s) Affected: Fry Survival and Growth (Length and Wet Weight) Most Sensitive Endpoint(s): Length and Wet Weight #### III. REFERENCES: - U.S. Environmental Protection Agency. 1996. Ecological Effects Test Guidelines, OPPTS 850.1400, Fish Early-Life Stage Toxicity Test, 13 pp. - U.S. Environmental Protection Agency. 1982. Pesticide Assessment Guidelines, Subdivision E, Hazard Evaluation: Wildlife and Aquatic Organisms, EPA 540/9-82-024, Series 72-4, Fish Early Life-Stage Test. - Mount, D.I., and W.A. Brungs. 1967. A Simplified Dosing Apparatus for Fish Toxicological Studies. Water Res. 1: 21-29. PMRA Submission Number {.....} EPA MRID Number 467442-01 ### **APPENDIX 1: OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION:** % Egg Hatchability, TWA ug ai/L Transform: NO TRANSFORM File: 4201eh t-test of Solvent and Blank Controls Ho:GRP1 MEAN = GRP2 MEAN ______ GRP1 (SOLVENT CRTL) MEAN = 80.0000 CALCULATED t VALUE = -0.7385 GRP2 (BLANK CRTL) MEAN = 84.0000 DEGREES OF FREEDOM = 6 DIFFERENCE IN MEANS = -4.0000 TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01 % Egg Hatchability, TWA ug ai/L File: 4201eh Transform: NO TRANSFORMATION Chi-square test for normality: actual and expected frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 EXPECTED 1.876 6.776 10.696 6.776 OBSERVED 0 8 14 6 1.876 Calculated Chi-Square goodness of fit test statistic = 5.0826 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. % Egg Hatchability, TWA ug ai/L ``` File: 4201eh Transform: NO TRANSFORMATION ``` Shapiro Wilks test for normality ``` D = 712.000 ``` W = 0.970 ``` Critical W (P = 0.05) (n = 28) = 0.924 Critical W (P = 0.01) (n = 28) = 0.896 ``` Data PASS normality test at P=0.01 level. Continue analysis. ``` % Egg Hatchability, TWA ug ai/L ``` File: 4201eh Transform: NO TRANSFORMATION Hartley test for homogeneity of variance ``` Calculated H statistic (max Var/min Var) = 14.67 Closest, conservative, Table H statistic = 216.0 (alpha = 0.01) ``` Used for Table H ==> R (# groups) = 7, df (# reps-1) = 3 Actual values ==> R (# groups) = 7, df (# avg reps-1) = 3.00 PMRA Submission
Number {.....} EPA MRID Number 467442-01 Data PASS homogeneity test. Continue analysis. NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used). % Egg Hatchability, TWA ug ai/L File: 4201eh Transform: NO TRANSFORMATION Bartletts test for homogeneity of variance Calculated B statistic = 5.56 Table Chi-square value = 16.81 (alpha = 0.01) Table Chi-square value = 12.59 (alpha = 0.05) Average df used in calculation ==> df (avg n - 1) = 3.00 Used for Chi-square table value ==> df (#groups-1) = 6 Data PASS homogeneity test at 0.01 level. Continue analysis. NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above). % Egg Hatchability, TWA ug ai/L File: 4201eh Transform: NO TRANSFORMATION #### ANOVA TABLE | | | | | and the second second second | |----------------|----|---------|--------|------------------------------| | SOURCE | DF | SS | MS | F | | Between | 6 | 254.857 | 42.476 | 1.253 | | Within (Error) | 21 | 712.000 | 33.905 | | | Total | 27 | 966.857 | | | Critical F value = 2.57 (0.05, 6, 21) Since F < Critical F FAIL TO REJECT Ho: All groups equal % Egg Hatchability, TWA ug ai/L File: 4201eh Transform: NO TRANSFORMATION | | DUNNETTS TEST - TAE | BLE 1 OF 2 | Ho:Control <tr< th=""><th>eatment</th></tr<> | eatment | |-----------------------|---|--|--|---| | GROUP | IDENTIFICATION | TRANSFORMED
MEAN | MEAN CALCULATED IN
ORIGINAL UNITS | T STAT SIG | | 1
2
3
4
5 | neg control
4.57
8.86
17.7
36.0
74.5 | 80.000
81.000
79.000
88.000
82.000 | 80.000
81.000
79.000
88.000
82.000
82.000 | -0.243
0.243
-1.943
-0.486
-0.486 | Page 19 of 31 PMRA Submission Number {.....} EPA MRID Number 467442-01 | 7 | 148 | 78.000 | 78.000 | 0.486 | |-----------------------|------|------------------|---------|----------| | Dunnett table value = | 2.46 | (1 Tailed Value, | P=0.05, | df=20,6) | % Egg Hatchability, TWA ug ai/L File: 4201eh Transform: NO TRANSFORMATION | DUNNETTS TEST - 1 | ABLE 2 OF | Z HO: | Control <t< th=""><th>reatment</th></t<> | reatment | |----------------------|----------------|--------------------------------------|--|----------------------------| | GROUP IDENTIFICATION | NUM OF
REPS | Minimum Sig Diff
(IN ORIG. UNITS) | | DIFFERENCE
FROM CONTROL | | 1 neg control | 4 | | | | | 2 4.57 | 4 | 10.129 | 12.7 | -1.000 | | 3 8.86 | 4 | 10.129 | 12.7 | 1.000 | | 4 17.7 | 4 | 10.129 | 12.7 | -8.000 | | 5 36.0 | 4 | 10.129 | 12.7 | -2.000 | | 6 74.5 | 4 | 10.129 | 12.7 | -2.000 | | 7 148 | 4 | 10.129 | 12.7 | 2.000 | % Egg Hatchability, TWA ug ai/L File: 4201eh Transform: NO TRANSFORMATION WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2 | GROUP | IDENTIFICATION | N | ORIGINAL
MEAN | TRANSFORMED
MEAN | ISOTONIZED
MEAN | |-------|----------------|---|------------------|---------------------|--------------------| | 1 | neg control | 4 | 80.000 | 80.000 | 82.000 | | 2 | 4.57 | 4 | 81.000 | 81.000 | 82.000 | | 3 | 8.86 | 4 | 79.000 | 79.000 | 82.000 | | 4 | 17.7 | 4 | 88.000 | 88.000 | 82.000 | | 5 | 36.0 | 4 | 82.000 | 82.000 | 82.000 | | 6. | 74.5 | 4 | 82.000 | 82.000 | 82.000 | | | 148 | 4 | 78.000 | 78.000 | 78.000 | % Egg Hatchability, TWA ug ai/L File: 4201eh Transform: NO TRANSFORMATION WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2 | | IDENTIFICATION | ISOTONIZED
MEAN | CALC.
WILLIAMS | SIG TABLE
P=.05 WILLIAMS | DEGREES OF
FREEDOM | |---|----------------|--------------------|-------------------|-----------------------------|-----------------------| | _ | neg control | 82.000 | | | | | | 4.57 | 82.000 | 0.486 | 1.72 | k = 1, v = 21 | | | 8.86 | 82.000 | 0.486 | 1.80 | k = 2, v = 21 | | | 17.7 | 82.000 | 0.486 | 1.83 | k = 3, v = 21 | | | 36.0 | 82.000 | 0.486 | 1.84 | k = 4, v = 21 | | | 74.5 | 82.000 | 0.486 | 1.85 | k = 5, v = 21 | | | 148 | 78.000 | 0.486 | 1.85 | k = 6, v = 21 | | | | | | | | s = 5.823 Note: df used for table values are approximate when v > 20. PMRA Submission Number {.....} ``` % Fry Survival, Day 38, TWA ug ai/L File: 4201fs Transform: NO TRANSFORM t-test of Solvent and Blank Controls Ho: GRP1 MEAN = GRP2 MEAN GRP1 (SOLVENT CRTL) MEAN = 89.7500 CALCULATED t VALUE = 0.1573 GRP2 (BLANK CRTL) MEAN = 89.0000 DEGREES OF FREEDOM = 6 DIFFERENCE IN MEANS = 0.7500 TABLE t VALUE (0.05\ (2),\ 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01\ (2),\ 6) = 3.707 NO significant difference at alpha=0.01 % Fry Survival, Day 38, TWA ug ai/L Transform: NO TRANSFORMATION File: 4201fs Chi-square test for normality: actual and expected frequencies INTERVAL 1.876 EXPECTED 6.776 10.696 9 9 6.776 1.876 OBSERVED 10 Calculated Chi-Square goodness of fit test statistic = 6.2848 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. % Fry Survival, Day 38, TWA ug ai/L Transform: NO TRANSFORMATION File: 4201fs Shapiro Wilks test for normality D = 1288.500 0.979 Critical W (P = 0.05) (n = 28) = 0.924 Critical W (P = 0.01) (n = 28) = 0.896 Data PASS normality test at P=0.01 level. Continue analysis. % Fry Survival, Day 38, TWA ug ai/L Transform: NO TRANSFORMATION File: 4201fs Hartley test for homogeneity of variance Calculated H statistic (max Var/min Var) = Closest, conservative, Table H statistic = 216.0 (alpha = 0.01) Used for Table H ==> R (\# groups) = 7, df (\# reps-1) = 3 Actual values ==> R (\# groups) = 7, df (\# avg reps-1) = 3.00 ``` PMRA Submission Number {.....} EPA MRID Number 467442-01 Data PASS homogeneity test. Continue analysis. NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used). % Fry Survival, Day 38, TWA ug ai/L File: 4201fs Transform: NO TRANSFORMATION Bartletts test for homogeneity of variance Calculated B statistic = 3.41 Table Chi-square value = 16.81 (alpha = 0.01) Table Chi-square value = 12.59 (alpha = 0.05) Average df used in calculation ==> df (avg n - 1) = 3. Used for Chi-square table value ==> df (#groups-1) = 6 Data PASS homogeneity test at 0.01 level. Continue analysis. NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above). % Fry Survival, Day 38, TWA ug ai/L File: 4201fs Transform: NO TRANSFORMATION #### ANOVA TABLE | SOURCE | DF | SS | MS | F · | ŀ | |----------------|----|----------|---------|-------|----------------| | Between | 6 | 614.929 | 102.488 | 1.670 | - | | Within (Error) | 21 | 1288.500 | 61.357 | | | | Total | 27 | 1903.429 | | | - | Critical F value = 2.57 (0.05, 6, 21) Since F < Critical F FAIL TO REJECT Ho: All groups equal % Fry Survival, Day 38, TWA ug ai/L File: 4201fs Transform: NO TRANSFORMATION | , | DUNNETTS | TEST | · <u> </u> | TABLE 1 | OF | 2 | Ho:Control< | Treatment | |---|----------|------|------------|---------|----|---|-------------|-----------| | | | | | | | | r | • | | GROUP | IDENTIFICATION | TRANSFORMED
MEAN | MEAN CALCULATED IN ORIGINAL UNITS | T STAT | SIG | |-------|----------------|---------------------|-----------------------------------|--------|-----| | 1 | neg control | 89.750 | 89.750 | | | | 2 | 4.57 | 89.250 | 89.250 | 0.090 | | | 3 | 8.86 | 88.750 | 88.750 | 0.181 | | | 4 | 17.7 | 88.750 | 88.750 | 0.181 | | | - 5 | 36.0 | 86.750 | 86.750 | 0.542 | | | 6 | 74.5 | 90.750 | 90.750 | -0.181 | | | 7 | 148 | 76.000 | 76.000 | 2.482 | * | PMRA Submission Number {.....} EPA MRID Number 467442-01 Dunnett table value = 2.46 (1 Tailed Value, P=0.05, df=20,6) % Fry Survival, Day 38, TWA ug ai/L File: 4201fs Transform: NO TRANSFORMATION | | DUNNETTS TEST - T | ABLE 2 OF | 2 но: | Control <t< th=""><th>reatment</th></t<> | reatment | |-------|-------------------|----------------|--------------------------------------|--|----------------------------| | GROUP | IDENTIFICATION | NUM OF
REPS | Minimum Sig Diff
(IN ORIG. UNITS) | % of
CONTROL | DIFFERENCE
FROM CONTROL | | 1 | neg control | Δ | | | | | 2 | 4.57 | 4 | 13.625 | 15.2 | 0.500 | | 3 | 8.86 | 4 | 13.625 | 15.2 | 1.000 | | 4 | 17.7 | 4 | 13.625 | 15.2 | 1.000 | | 5 | 36.0 | 4 | 13.625 | 15.2 | 3.000 | | 6 | 74.5 | · 4 | 13.625 | 15.2 | -1.000 | | 7 | 148 | 4 | 13.625 | 15.2 | 13.750 | % Fry Survival, Day 38, TWA ug ai/L File: 4201fs Transform: NO TRANSFORMATION WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2 | GROUP | IDENTIFICATION | N | ORIGINAL
MEAN | TRANSFORMED
MEAN | ISOTONIZED
MEAN | |-------|----------------|---|------------------|---------------------|--------------------| | 1 | neg control | 4 | 89.750 | 89.750 | 89.750 | | 2 | 4.57 | 4 | 89.250 | 89.250 | 89.250 | | 3 | 8.86 | 4 | 88.750 | 88.750 | 88.750 | | 4 | 17.7 | 4 | 88.750 | 88.750 | 88.750 | | 5 | 36.0 | 4 | 86.750 | 86.750 | 88.750 | | 6 | 74.5 | 4 | 90.750 | 90.750 | 88.750 | | 7 | 148 | 4 | 76.000 | 76.000 | 76.000 | % Fry Survival, Day 38, TWA ug ai/L File: 4201fs Transform: NO TRANSFORMATION | WILLIAMS T | EST (Isotonic | regression | model) | TABLE 2 | OF 2 | |------------|---------------|------------|--------|---------|------| |------------|---------------|------------|--------|---------|------| | IDENTIFICATION | ISOTONIZED
MEAN | CALC.
WILLIAMS | SIG
P=.05 | TABLE
WILLIAMS | DEGREES OF
FREEDOM | |----------------|--------------------|-------------------|--------------|-------------------|-----------------------| | neg control | 89.750 | | | | | | 4.57 | 89.250 | 0.090 | | 1.72 | k = 1, v = 21 | | 8.86 | 88.750 | 0.181 | | 1.80 | k = 2, v = 21 | | 17.7 | 88.750
 0.181 | | 1.83 | k = 3, v = 21 | | 36.0 | 88.750 | 0.181 | | 1.84 | k = 4, $v = 21$ | | 74.5 | 88.750 | 0.181 | | 1.85 | k = 5, $v = 21$ | | 148 | 76.000 | 2.482 | * | 1.85 | k = 6, v = 21 | Note: df used for table values are approximate when v > 20. Mean length (mm), day 38, TWA ug ai/L PMRA Submission Number {.....} | | | | trols H | o:GRP1 MEAN = G | RP2 MEAN | |---|------------------------------|--------------------------------|----------------------------------|-----------------------------|----------------------| | GRP2 (BLANK | CRTL) MEAN | = 16.2500 | DEGREES OF | | | | TABLE t VALUE
TABLE t VALUE | (0.05 (2),
(0.01 (2), | 6) = 2.447
6) = 3.707 | NO significant
NO significant | difference at difference at | alpha=0.
alpha=0. | | ### Transform: NO TRANSFORM t-test of Solvent and Blank Controls | | | | | | | Chi-square te | | | and expected fre | quencies | . 4 | | INTERVAL | • | | -0.5 to 0.5 | >0.5 to 1.5 | >1.5 | | | | | | | | |
Calculated Ch
Table Chi-Squ | i-Square goo
are value (a | dness of fit
lpha = 0.01) | test statistic = = 13.277 | 8.0218 | | | Data PASS nor | mality test. | Continue ana | lysis. | | | | | | | • | | | | Mean length (
File: 4201sl | mm), day 38,
Transf | TWA ug ai/L
orm: NO TRANS | FORMATION | | | | Shapiro Wilks | | | | | | | D = 7.250 | | | | | . : | | W = 0.936 | | | | | | | | | | | | | | Data PASS non | mality test | at P=0.01 lev | rel. Continue ana | lysis. | | | | | | | | | | | | | FORMATION | | | | Hartley test
Bartletts tes | | | | | | | These two tes
zero variance | | e performed b | ecause at least | one group has | | | Data FATE to a | | | | | | | | | eity of varia
s are useless | nce assumption. | | | PMRA Submission Number {.....} EPA MRID Number 467442-01 Mean length (mm), day 38, TWA ug ai/L $\,$ File: 4201sl Transform: NO TRANSFORMATION | | STEELS MANY-ONE RA | ANK TEST - | Но | :Control <t< th=""><th>reatmen</th><th>t</th></t<> | reatmen | t | |----------------------------|---|---|---|--|--------------------------------------|-----| | GROUP | IDENTIFICATION | TRANSFORMED
MEAN | RANK
SUM | CRIT.
VALUE | df | sig | | 1
2
3
4
5
6 | neg control
4.57
8.86
17.7
36.0
74.5 | 16.000
16.000
16.000
14.750
13.750
12.500
9.250 | 18.00
18.00
11.50
10.00
10.00 | 10.00
10.00
10.00
10.00
10.00 | 4.00
4.00
4.00
4.00
4.00 | * | Critical values use k = 6, are 1 tailed, and alpha = 0.05 Mean length (mm), day 38, TWA ug ai/L File: 4201sl Transform: NO TRANSFORMATION WILCOXON RANK SUM TEST W/ BONFERRONI ADJUSTMENT - Ho:Control<Treatment | GROUP IDENTIFICATION | TRANSFORMED
MEAN | RANK
SUM | CRIT.
VALUE | REPS | SIG | |----------------------|---------------------|-------------|----------------|------|-----| | 1 neg contro | 16.000 | | | | | | 2 4.5 | 16.000 | 18.00 | None | 4 | | | 3 8.8 | 16.000 | 18.00 | None | 4 | | | 4 17. | 7 14.750 | 11.50 | None | 4 | | | 5 36. | 0 13.750 | 10.00 | None | 4 | | | 6 74. | 5 12.500 | 10.00 | None | 4 | | | 7 14 | 9.250 | 10.00 | None | 4 | | | | | | | | | Critical values use k = 6, are 1 tailed, and alpha = 0.05 Mean length (mm), day 38, TWA ug ai/L File: 4201sl Transform: NO TRANSFORMATION KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2 | GROUP | IDENTIFICATION | TRANSFORMED
MEAN | MEAN CALCULATED IN
ORIGINAL UNITS | RANK
SUM | |-------|----------------|---------------------|--------------------------------------|-------------| | 1 | neg control | 16.000 | 16.000 | 88.500 | | 2 | 4.57 | 16.000 | 16.000 | 90.000 | | 3 | 8.86 | 16.000 | 16.000 | 90.000 | | 4 | 17.7 | 14.750 | 14.750 | 58.000 | | 5 | 36.0 | 13.750 | 13.750 | 42.500 | | 6 | 74.5 | 12.500 | 12.500 | 27.000 | | 7 . | 148 | 9.250 | 9.250 | 10.000 | Calculated H Value = 25.275 Critical H Value Table = 12.590 Since Calc H > Crit H REJECT Ho:All groups are equal. PMRA Submission Number {.....} EPA MRID Number 467442-01 Mean length (mm), day 38, TWA ug ai/L File: 4201s1 Transform: NO TRANSFORMATION DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2 | | | | | | | GI | ROU | P | | | | |-------|----------------|-------------|----------|----|---|----|-----|---|---|---|--| | | | TRANSFORMED | ORIGINAL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GROUP | IDENTIFICATION | MEAN | MEAN | 7 | 6 | 5 | 4 | 2 | 3 | 1 | | | | | | | - | - | -, | _ | - | - | - | | | 7 | 148 | 9.250 | 9.250 | \ | | 1 | | | | | | | 6 | 74.5 | 12.500 | 12.500 | | \ | | | | ī | | | | 5 | 36.0 | 13.750 | 13.750 | ٠. | | 1 | | | | | | | 4 | 17.7 | 14.750 | 14.750 | | | | \ | | | | | | 2 | 4.57 | 16.000 | 16.000 | * | | | | \ | | | | | 3 | 8.86 | 16.000 | 16.000 | * | | | | | \ | | | | 1 | neg control | 16.000 | 16.000 | * | | | | | | Λ | | | | | | | | | | | | | | | * = significant difference (p=0.05) Table q value (0.05,7) = 3.038 . = no significant difference SE = 5.663 #### Estimates of EC% | Parameter | Estimate | 95% Bou | nds | Std.Err. | Lower Bound | | |-----------|----------|---------|---------|----------|-------------|--| | | | Lower | Upper | | /Estimate | | | EC5 | 17. | 10. | 28. | 0.10 | 0.61 | | | EC10 | 29. | 20. | 43. | 0.078 | 0.69 | | | EC25 | 74. | 62. | 90. | 0.040 | 0.83 | | | EC50 | 2.1E+02 | 1.8E+02 | 2.5E+02 | 0.036 | 0.84 | | | | | | | | | | 1.51 Std.Err. = 0.168 Slope = Goodness of fit: p = 0.21 based on DF= 4201SL : Mean length (mm), day 38, TWA ug ai/L Observed vs. Predicted Treatment Group Means | Dose | #Reps. | Obs.
Mean | Pred.
Mean | Obs.
-Pred. | Pred.
%Control | %Change | |--|--|--|--|---|--|---| | 0.00
4.57
8.86
17.7
36.0
74.5 | 4.00
4.00
4.00
4.00
4.00
4.00
4.00 | 16.0
16.0
16.0
14.8
13.8
12.5
9.25 | 16.0
15.9
15.7
15.2
14.0
12.0
9.42 | -0.0150
0.0832
0.293
-0.416
-0.264
0.493
-0.174 | 100.
99.4
98.1
94.7
87.5
75.0
58.8 | 0.00
0.614
1.92
5.30
12.5
25.0
41.2 | !!!Warning: EC50 not bracketed by doses evaluated. Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORM | t-test | of | Solvent | and | Blank | Controls | |--------|----|---------|-----|-------|----------| | | | | | | | Ho: GRP1 MEAN = GRP2 MEAN | GRP1 (SOLVENT CRTL) MEAN | 1 = | 0.1363 | CALCULATED t VALUE = | -0.0921 | |--------------------------|------------|---------|----------------------|---------| | GRP2 (BLANK CRTL) MEAN | = | 0.1375 | DEGREES OF FREEDOM = | 6 | | DIFFERENCE IN MEANS | = | -0.0012 | | | TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01 PMRA Submission Number {.....} EPA MRID Number 467442-01 Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORMATION Chi-square test for normality: actual and expected frequencies | INTERVAL | <-1.5 | -1.5 to <-0.5 | -0.5 to 0.5 | >0.5 to 1.5 | >1.5 | |----------------------|-------|---------------|--------------|-------------|-------| | EXPECTED
OBSERVED | 1.876 | 6.776
10 | 10.696
10 | 6.776
8 | 1.876 | Calculated Chi-Square goodness of fit test statistic = 5.5524 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORMATION Shapiro Wilks test for normality D = 0.003 W = 0.963 Critical W (P = 0.05) (n = 28) = 0.924 Critical W (P = 0.01) (n = 28) = 0.896 Data PASS normality test at P=0.01 level. Continue analysis. Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORMATION Hartley test for homogeneity of variance Calculated H statistic (max Var/min Var) = 11.45 Closest, conservative, Table H statistic = 216.0 (alpha = 0.01) Used for Table H ==> R (# groups) = 7, df (# reps-1) = 3 Actual values ==> R (# groups) = 7, df (# avg reps-1) = 3.00 Data PASS homogeneity test. Continue analysis. NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used). Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORMATION PMRA Submission Number {.....} EPA MRID Number 467442-01 Bartletts test for homogeneity of variance 7.25 Calculated B statistic = Table Chi-square value = 16.81 (alpha = 0.01) Table Chi-square value = 12.59 (alpha = 0.05) Average df used in calculation ==> df (avg n - 1) = 3.00 Used for Chi-square table value ==> df (#groups-1) = 6 Data PASS homogeneity test at 0.01 level. Continue analysis. NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above). Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORM #### ANOVA TABLE | SOURCE | DF | SS | MS | F | |----------------|----|--------|--------|--------| | Between | 6 | 0.0265 | 0.0044 | 22.000 | | Within (Error) | 21 | 0.0033 | 0.0002 | | | Total | 27 | 0.0298 | | | Critical F value = 2.57 (0.05, 6, 21)Since F > Critical F REJECT Ho:All groups equal Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORM | I | DUNNETTS TEST - TA | ABLE 1 OF 2 | Ho:Control <treatment< th=""></treatment<> | | | | | |---------------------------------|---
---|---|--|------------------|--|--| | GROUP | IDENTIFICATION | TRANSFORMED
MEAN | MEAN CALCULATED IN
ORIGINAL UNITS | T STAT | SIG | | | | 1
2
3
4
5
6
7 | neg control
4.57
8.86
17.7
36.0
74.5 | 0.136
0.134
0.128
0.112
0.107
0.093
0.041 | 0.136
0.134
0.128
0.112
0.107
0.093
0.041 | 0.200
0.800
2.475
2.950
4.300
9.525 | *
*
*
* | | | Dunnett table value = 2.46 (1 Tailed Value, P=0.05, df=20,6) Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORM > DUNNETTS TEST - TABLE 2 OF 2 Ho:Control<Treatment > > NUM OF Minimum Sig Diff % of DIFFERENCE PMRA Submission Number {.....} EPA MRID Number 467442-01 | GROUP | IDENTIFICATION | REPS | (IN ORIG. UNITS) | CONTROL FRO | M CONTROL | | |---------------------------------|---|----------------------------|--|--|--|--| | 1
2
3
4
5
6
7 | neg control
4.57
8.86
17.7
36.0
74.5 | 4
4
4
4
4
4 | 0.025
0.025
0.025
0.025
0.025
0.025 | 18.1
18.1
18.1
18.1
18.1
18.1 | 0.002
0.008
0.025
0.030
0.043
0.095 | | Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORM WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2 | 2 4.57 4 0.134 0.134 0
3 8.86 4 0.128 0.128 0
4 17.7 4 0.112 0.112 0
5 36.0 4 0.107 0.107 | GROUP | IDENTIFICA: | rion | N | ORIGINAL
MEAN | TRANSFORMED
MEAN | ISOTONIZED
MEAN | |--|-----------------------|-------------|--------------------------------------|---|---|---|--| | | 1
2
3
4
5 | neg | 4.57
8.86
17.7
36.0
74.5 | 4 | 0.134
0.128
0.112
0.107
0.093 | 0.134
0.128
0.112
0.107
0.093 | 0.136
0.134
0.128
0.112
0.107
0.093 | Mean Wet Weight (g), day 38, TWA ug ai/L File: 4201ww Transform: NO TRANSFORM | WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2 | | WILLIAMS | TEST | (Isotonic | regression | model) | TABLE 2 | OF | 2 | |--|--|----------|------|-----------|------------|--------|---------|----|---| |--|--|----------|------|-----------|------------|--------|---------|----|---| | IDENTIFICATION | ISOTONIZED | CALC. | SIG | TABLE | DEGREES OF | |---|---|---|-------------|--------------------------------------|--| | | MEAN | WILLIAMS | P=.05 | WILLIAMS | FREEDOM | | neg control
4.57
8.86
17.7
36.0
74.5 | 0.136
0.134
0.128
0.112
0.107
0.093
0.041 | 0.224
0.894
2.767
3.298
4.808
10.649 | *
*
* | 1.72
1.80
1.83
1.84
1.85 | k= 1, v=21
k= 2, v=21
k= 3, v=21
k= 4, v=21
k= 5, v=21
k= 6, v=21 | s = 0.013 Note: df used for table values are approximate when v > 20. 2.71 Std.Err. = #### Estimates of EC% Slope = | Parameter | Estimate | 95% Bounds | 5 | Std.Err. | Lower Bound | | |-----------|----------|------------|--------|----------|-------------|--| | | | Lower (| Jpper | | /Estimate | | | EC5 | 26. | 14. | 47. | 0.13 | 0.55 | | | EC10 | 35. | 22. | 58. | 0.10 | 0.61 | | | EC25 | 59. | 43. | 81. | 0.066 | 0.73 | | | EC50 | 1.0E+02 | 88. 1 | .2E+02 | 0.037 | 0.84 | | | | | | | | | | 0.492 4.57 8.86 17.7 36.0 74.5 148. 4.00 4.00 4.00 4.00 4.00 4.00 0.134 0.128 0.111 0.107 0.0932 0.0410 ### Data Evaluation Report on the Toxicity of Methyl Parathion Technical to Sheepshead Minnow (Cyprinodon variegatus), Early Life Cycle PMRA Submission Number {.....} EPA MRID Number 467442-01 0.00641 0.000621 -0.0141 -0.00786 0.00928 -0.00279 100. 99.8 98.2 89.6 65.7 34.2 0.0110 0.178 1.79 10.4 34.3 65.8 | Goodness of | fit: p = | 0.094 | based on | DF= | 4.0 | 21. | | |---------------|-------------|--------------|---------------|----------------|-------------------|---------|--| | 4201WW : Mear | n Wet Weigh | nt (g), da | ay 38, TW | ug ai/L | | | | | Observed vs. | Predicted | Treatment | Group Me | eans | | | | | Dose | #Reps. | Obs.
Mean | Pred.
Mean | Obs.
-Pred. | Pred.
%Control | %Change | | | 0.00 | 4.00 | 0.136 | 0.128 | 0.00839 | 100. | 0.00 | | 0.128 0.128 0.126 0.115 0.0840 0.0438 PMRA Submission Number {.....} | APPENDIX 2: | COPY | OF REVIEV | WER'S TW | A CALCULATIONS: | |--------------------|------|-----------|----------|-----------------| | | | | | | | | | | | | | · · | | | | | |---------------------------------|------------|----------------------------------|---------------|--| | Nominal Concentration (ug ai/L) | Time (Day) | Measured Concentration (ug ai/L) | TWA (ug ai/L) | | | 5.0 | 0 | 5.65 | | | | | 7 | 4.13 | | | | | 14 | 4.70 | | | | | 21 | 4.29 | | | | | 28 | 4.44 | | | | | 38 | 4.83 | 4.566 | | | 10 | 0 | 9.98 | | | | | 7 | 8.50 | | | | | . 14 | 8.90 | | | | | 21 | 8.81 | | | | | 28 | 8.86 | | | | | 38 | 8.61 | 8.862 | | | 20 | 0 | 19.6 | , | | | | 7 | 17.3 | | | | | 14 | 17.7 | | | | | 21 | 16.8 | | | | | 28 | 17.3 | | | | | 38 | 19.2 | 17.743 | | | 40 | 0 | 36.3 | | | | | 7 | 37.4 | | | | | 14 | 35.0 | | | | | 21 | 35.7 | | | | | 28 | 34.4 | | | | | 38 | 38.2 | 35.978 | | | 80 | 0 | 69.0 | | | | | 7 | 75.0 | | | | | 14 | 74.2 | | | | | 21 | 77.2 | | | | | 28 | 73.5 | , | | | | 38 | 76.1 | 74.514 | | | 160 | 0 | 149 | | | | | 7 | 151 | | | | | 14 | 145 | | | | | 21 | 151 | | | | | 28 | 143 | | | | | 38 | 155 | 148.447 | |