US ERA ARCHIVE DOCUMENT

MRID 43035401

DATA EVALUATION RECORD 72-4(B) FRESHWATER FLOW-THROUGH INVERTEBRATE LIFE CYCLE TEST

CHEMICAL: Methyl Parathion Shaughnessey #: 053501

Purity: 95.7% 2. TEST MATERIAL: Technical

CITATION:

Jennifer W. Blasberg, Hugh Murrell, and Author:

John Bucksath

Chronic Toxicity of Methyl Parathion to Title:

Daphnia magna Under Flow-Through Test

Conditions

10/20/93 Date:

Laboratory Report #: 40350 Any Other Study #: N/A

Sponsor: Cheminova Agro A/S

Sponsor #:

Analytical Bio-Chemistry Laboratories, Laboratory:

MRID No.: 43035401

REVIEWED BY:

Dennis J. McLane, Wildlife Biologist

Ecological Effects Branch (7507C)

U.S.E.P.A.

Signature: Demin f. M. Lane Date: 10-4-94

APPROVED BY:

Les W. Touart Section Head

Ecological Effects Branch (7507C)

U.S.E.P.A.

Signature:

10/6/94 Date:

CONCLUSIONS: This study scientifically sound but does not fulfill the guideline requirement for a life-cycle study with Daphnia magna a freshwater aquatic invertebrate. The NOEC is 0.43 $\mu g/L$ and the LOEC is 0.85 $\mu g/L$ for survival, weight, and first brood day. This would place methyl parathion in the very highly toxic category. NOEC was not determined for young/adult/ reproductive day and length.

MAJOR GUIDELINE DEVIATIONS: 7.

- (1) Approximately for 3 days the D.O. was below 50% at the nominal concentration of 2 μ g/L. However, the daphnids had died by that time.
- (2) The production of young was not reported for various

time periods.

- (3) Measured concentrations prior to mixing were not reported.
- (4) The measured concentrations for this comparison between replicates was not reported.
- (5) The study did not provide adequate information to show that a solvent was needed. The water solubility of methyl parathion is 50 to 60 ppm and the highest level tested was 2 ug/L or 0.002 ppm.
- (6) The solvent control was statistically different from the control. Therefore, the effects of the methyl parathion may be masked are difficult to impossible to determine.

8. MATERIALS AND METHODS:

A. Biological System:

Guideline Criteria	Reported Information
Species: Daphnia	Daphnia magna
Source	ABC Laboratories' in-house culture
Food variety 5 mg/L dry weight	
1) Synthetic (trout chow); 2) Alfalfa yeast and algae; 3) Algae Ankistrodesmus falcatus; Chalamydamonas reinhardtii; and Selenastrum capricornutum 108 algal cells per L 4); 4) Solution be made up < 4 hours before test begins	1) Yes 2) Yes 3) Selenastrum capricornutum/ Ankistrodesmus falcatus; 3x108 cells/mL per Liter of test solution and trout chow 4) Not reported
Age at beginning of test: 1) At least 10-12 days old (those that have had at least on brood) should be separated from the culture, 2) Put in a separate culture container and maintained for at least 21 days to insure that good health and conditions are present.	1) Yes 2) Not reported

Guideline Criteria	Reported Information
Renewal: 1) Renewal schedule Monday, Wednesday, and Friday must be	1) Counted offspring
<pre>set-up for counting; 2) Parent daphnids in all beakers counted;</pre>	2) Yes
3) 7 beakers containing 1 parent daphnid each, the offspring, both live and dead, are counted and discarded.	3) N/A
Duration: on 21 st day 1) Count parents 2) Measure to nearest 0.01 mm from apex of helmet to the base of the spine.	1) Yes 2) Yes, reported to 0.01 mm
3) # young, both alive and dead.	3) "the offspring produced"
Test Rejection: 1) 30 % die; 2) Must ≥ 40 young after 21	1) No 2) Yes
days; 3) Production of "resting eggs" or ephippia;	3) No ephippia reported
4) Temp. changes over 5°C from 20°C in 48 hrs;	4) No changes over 1°C
5) DO >50% for 48 hrs;	5) From day 17 until day 21 the D.O. was below (see calculations- figure 1 and graph 1)
6) pH changes > one unit in 48 hrs.	6) No changes over 4/10 of a unit
Data Endpoints: 1) Survival of 1 st generation 2) Production of young at various times for each treatment	1) Yes 2) No
3) Length of 1 st generation at end of test	3) Yes

Comments: None

B. Physical System:

Guideline Criteria	Reported Information

Test Water: 1) Well or spring provided that the source is not polluted 2) Tested for contaminants 3) Measured pH 7.6 and 8.0. 4) Hardness 160 to 180 mg/L 5) Reconstituted water detailed descriptions (ASTM)	1) well water and well water reverse osmosis water 2) Yes, Boron-0.259 ppm; Fluoride-0.65 ppm; Lead-0.0024 ppm 3) 8.0-8.4 pH 4) 126-148 mg/L 5) N/A
Test Temperature: 20°C±2°C	21-22°C
Photoperiod: 1) Recommend 16L/8D; 2) Intensity should be 400 to 800 Lux (37 to 74 footcandles) at surface with wide-spectrum fluorescent lamps.	1) 16L/8D 2) 625-726 lux (58-67 footcandles) by cool-white fluorescent bulbs.
Dosing Apparatus: 1) Intermittent flow proportional diluters or continuous flow serial diluters should be used. 2) A minimum of 5 toxicant concentrations with a dilution factor not greater than 0.5 and controls should be used.	 A half-liter diluter system described by Mount and Brungs 5 levels- 0.12,0.24, 0.5,1.0,2.0 μg/L
Toxicant Mixing: 1) Mixing chamber is recommended but not required; 2) Aeration should not be used for mixing; 3) It must be demonstrated that the test solution is completely mixed before intro. into the test system; 4) Flow splitting accuracy must be within 10%.	1) Yes 2) No 3) Measured concentrations were not made prior to mixing 4) The measured concentrations for this comparison could not be found.

Test Vessels: 1) All glass, No. 316 stainless steel, or perfluorocarbon plastics; volume 200 mls. 250 ml (borosilicate glass beakers are typically used). 2) Vessels should be covered with glass plates to prevent evaporation.	1) Test chambers 1-L glass beakers; 50-mesh stainless steel screens; the material in the diluter not reported 2) Not reported
Retention and Pairing Chambers: Glass with mesh nylon or stainless steel screens	Yes
Flow Rate: 1) Flow rates should provide 5 to 10 volume additions per 24 hr; 2) Flow rate must maintain D.O. at or above 60% of saturation and maintain the toxicant level.	 1) 1 L test volume 7.0 times in 24-hours 2) D.O. below 60% Once on day 7 @ 2 μg/L; Once on day 14 @ 1 μg/L; Four times on day 21 sol. control, 0.5, 1.0, and 2.0 μg/L.(see EEB Figure 1)
Aeration: 1) Dilution water should be aerated to insure DO concentration at or near 100% saturation. 2) Test tanks should not be aerated.	1) (see 2) above under Flow Rate:) 2) Not aerated

<u>Comments:</u> No comments.

C. Chemical System:

		Information
Guideline (

1) Yes, control, sol. control,

0.12, 0.24, 0.5, 1.0, 2.0

plus solvent control if μg/L appropriate. 2) Toxicant conc. must be 2) Composite of 4 beakers at measured in one tank at each each level toxicant level every week. 3) Food conc. dry weight 5 3) Trout chow and yeast = mg/L for synthetic; algal final suspended solids conc. cells 108 of 5 mg/mL per chamber; Selenastrum capricornutum/ Ankistrodesmus falcatus; 3x108 cells/mL per Liter of test solution Other Variables: 1) D.O. must be measured at 1)"...days 0, 4, 7, 14, 21 in each conc. at least once a alternating duplicate week; replicates (test chambers A and C on days 0, 7, and 21 and test chambers B and D on days 4 and 14) of the control, vehicle blank, and all test concentrations." 2) Freshwater parameters in a 2) "Water quality parameters of temperatures, hardness, control & 1 conc. must be analyzed 1 .a week; (pH, dissolved oxygen, pH, alkalinity, hardness, and alkalinity, and conductivity conductance were measured daily (Monday-Friday) for the duration of the study. 3) pH should be measured 3) see 2) above. weekly. Solvents: 1) Should not exceed 0.1 ml/L 0.025 mL/L in a flow-through system. 2) Following solvents are 2) Dimethylformamide (DMF) acceptable: triethylene glycol, methanol, acetone, ethanol.

Comments: No comments.

Concentrations:

1) Minimum of 5 concentrations

and a control, all replicated,

9. <u>REPORTED RESULTS</u>:

A. Required Endpoints:

Guideline Criteria	Reported Information
Data Endpoints must include: 1) Survival of first- generation daphnids 2) Number of live young produced per female 3) Dry weight and length of each first-generation daphnids alive at the end of the test	1) see Table IV 2) see Table V 3) see Table VI
Raw data included? (Y/N)	Y

$\underline{\text{B. Effects Data:}}$ (The following is excerpted from the study report Table IX)

Mean Measured Conc.	Mean % Survival	Mean YAD	Mean Length (mm)	Mean Weight (mg)	1 st BRD Day
Control	97.5	7.83	3.83	0.47	7
Vehicle Blank (DMF)	87.5	13.0	4.44	0.78	7
Pooled Controls	92.5	NA	NA	NA	7
(0.076) μg/L	100	9.36V	4.11V	0.64	7
(0.23) μg/L	97.5	11.5V	4.33	0.77	7
(0.43) μg/L	92.5	12.2	4.42	0.7	7
(0.85) μg/L	80CP	10.6V	4.28V	0.62V	7
(1.7) μg/L	0CV	7.5*	NA	NA	7

Control and vehicle blank were compared by a Student t test and found to be significantly different for the following parameters: length, weight, and young/adult/reproductive day (YAD). Data subjected to a one-way analysis of variance (ANOVA) and Dunnett's multiple means comparison test. Significant differences to the control, vehicle blank, and pooled controls are noted with a C, V, and P, respectively.

Key to abbreviations; NA = Not Applicable, YAD =
Young/adult/reproductive day, and BRD = Brood.

*Level 5 not used in analysis because it was affected for survival.

C. Toxicity Observations: See attached Tables

D. Statistical Results:

(1) Statistical Method: ANOVA AND Dunnett's

NOEC: $< 0.076 \mu \text{g/L}$ LOEC: N/A

Endpoint: Young /Adult/ Reproductive Days

(2) Statistical Method: ANOVA AND Dunnett's

NOEC: $< 0.076 \mu g/L$ LOEC: N/A

Endpoint: Day 21 Daphnid Length

(3) Statistical Method: ANOVA AND Dunnett's

NOEC: 0.43 μ g/L LOEC: 0.85 μ g/L

Endpoint: Mean Weight

(4) Statistical Method: ANOVA AND Dunnett's

NOEC: $0.43 \mu g/L$ LOEC: $0.85 \mu g/L$

Endpoint: Mean % Survival

E. Comments: The statistic method used for length is not correct. The Toxstat program warnings that: "This data set has unequal replicates. The Bonferroni T-test should be used instead of the Dunnett's test. As shown below the under (2) did not show that any level was statistical different from the other.

10. Reviewer's Statistical Results:

(1) Statistical Method: ANOVA and Dunnett's

NOEC: N/A LOEC: N/A

Endpoint: Young /Adult/ Reproductive Days

(2) Statistical Method: ANOVA and Bonferroni's

NOEC: N/A LOEC: N/A

Endpoint: Day 21 Daphnid Length

(3) Statistical Method: ANOVA and Dunnett's

NOEC: 0.43 μ g/L LOEC:0.85 μ g/L

Endpoint: Mean Weight

(4) Statistical Method: ANOVA and Dunnett's

NOEC: 0.43 μ g/L LOEC: 0.85 μ g/L

Most sensitive endpoint: Survival

<u>Comments:</u> The study reports:

" Statistical comparison with the vehicle blank for effects on survival, adult mean length, adult mean weight, days to first brood, and young/adult/reproductive day resulted in an NOEC for survival at level 4 (0.85 μ g/L), NOEC for days to first brood at level 5 (1.7 $\mu g/L$), and NOECs for length, weight, and YAD at level 3 (0.43 μ g/L), although some statistical differences were noted at lower concentrations. These differences are directly attributable to the solvent enhancements effects on the vehicle blank group and decreasing quantities of solvent in the lower test concentrations. For both reproduction and the growth parameters (length and weight), daphnids in the vehicle blank group showed enhancements when compared to the dilution water control group; growth and reproduction in the dilution water control group were within normal range (Table X). For growth and reproduction, the data indicated a general dose-related trend of increased values with increasing solvent concentration until methyl parathion increased to toxic levels."

EEB does not believe that this study provides enough

information to show that DMF caused the erratic YAD and length responses. Based on young/adult/reproductive, the study failed to produce an NOEC. The 0.075 $\mu g/L$, 0.23 $\mu g/L$ and 0.85 $\mu g/L$ levels were different from the solvent control but the 0.43 $\mu g/L$ was not. The 0.43 $\mu g/L$ had DMF and should have provided the same opportunity for increase production as the lower concentration. Similarly with length the 0.076 $\mu g/L$ and the two levels in between do not show effects.

11. ADEQUACY OF THE STUDY:

- A. Classification: Supplemental
- B. Rationale: NOEC was not established for young/adult/reproductive day and length.
- C. Reparability: Repeat the study without a solvent (the EFGWB Oneliner indicates methyl parathion water solubility is 60 ppm; The Merck Index indicates that the water solubility was 50 ppm; and the Pesticide Manual issued by the British Crop Council indcates that at 25°C the water solubility is 55 to 60 ppm).

12. GOOD LABORATORY PRACTICE (GLP) / QUALITY ASSURANCE (QA) STATEMENTS

GLP - signed yes QA - signed yes

13. COMPLETION OF ONE-LINER FOR STUDY:

One-liner completed 9/30/94

Figure 1

Because D.O. monitoring was done on a 7 day basis, number of days the D.O. below 50% was estimated. The following is the method used to make that estimate:

Information and Assumptions:

- 1) Day 14 D.O. was 63.36%
- 2) Day 21 D.O. was 31.11%
- 3) Assumption is that the loss of D.O. in linear

The difference between Day 14 and minimal acceptable level (50%). 63.36% - 50.0% = 13.6%

The loss from Day 14 and to Day 21. 63.36% - 31.11% = 32.25%

The ratio between the 50% difference level and the loss over 7 days.

13.6%/32.23% = 0.42

Number of days between represented by the 0.42 ratio. 7 days x 0.42 = 2.9 days

Study day were the D.O. dropped to 50%. 14 day + 2.9 days = 16.9 days

TABLE IV

Percent Survival of Daphnia magna Exposed to
Methyl Parathion for 21 Days During the Chronic Toxicity Study

Chamber ID (Nominal Conc.)	Mean Measured Conc. (μg/L)	Rep.	Initial Number <u>Instar</u>	Adult <u>Surv.</u>	Percent Surv.	Mean + SD
Control	N/A	Α	10	. 9	90	
		В	10	10	100	97.5 ± 5.0
		С	10	10	100	_
production of the second		D	10	10	100	
Vehicle Blank	N/A	Α	10	10	100	
The second secon		В	10	8	80	87.5 ± 9.6
*		C	10	9	90	
		D	10	8	80	
Pooled Controls ^b						92.5 ± 8.9
Level 1	0.076	Α	10	10	100	
$(0.12 \mu g/L)$	•	В	10	10	100	100 ± 0.0
		С	10	10	100	
	•	D	10	10	100	
Level 2	0.23	Α	10	10	100	
$(0.24 \mu g/L)$		В	10	9	90	97.5 ± 5.0
		С	10	10	100	
•		D	10	10	100	
Level 3	0.43	Α	10	10	100	
$(0.50 \mu g/L)$		В	10	. 8	80	92.5 ± 9.6
- -		С	10	9	90	
		D	10	10	100	•
Level 4	0.85	Α	10	7	70	
$(1.0 \mu g/L)$		В	10	7	70	80 ± 12*
		С	10	9	90	
	•	D	10	9	90	
Level 5°	1.7	A	. 10	0	0	
$(2.0 \mu g/L)$	```	В	10	0 -	0	0.0 ± 0.0*
	•	С	10	0	0	
		D	10	0	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Denotes values significantly different ($p \le 0.05$) from the pooled controls

Data were subjected to frequency analysis coupled with a one-tailed Fisher's exact test.

Control and vehicle blank were compared by a Student *t* test. A significant difference was not determined so comparison was made with the test levels using the pooled control value.

Since this level was affected for survival, it was not included in the statistical analysis for all other parameters.

TABLE V
Young/Adult Reproduction Days and Time to First Brood of Daphnia magna
Exposed to Methyl Parathion for 21 Days During the Chronic Toxicity Study

and different particular to the control of the cont				Day 2	1 Reproduct	ion ^{a,b}	Time	to First Brood ^{a,c}
Chamber ID (Nominal Conc.)	Mean Measured Conc. (µg/L)	Rep.	Total Young	Adult Reprod. Days	Young/ Adult Reprod. <u>Days</u>	Mean + SD	<u>Days</u>	Mean ± SD (Days)
Control	N/A	Α	980	149	6.58		7	
		В	1314	150	8.76	7.83 ± 0.97	7	7.0 ± 0.0
		С	1137	150	7.58	_	7	
•		D	1259	150	8.39		7	
Vehicle Blank	N/A	Α	1924	150	12.83		7	
		В	1884	148	12.73	13.0 ± 0.24	7	7.0 ± 0.0
••		C	1928	146	13.21	· -	7	
		D	1648	125	13.18	,	7	
Pooled Controls								7.0 ± 0.0
Level 1	0.076	Α	1491	150	9.94		7	
$(0.12 \mu g/L)$		В	1580	150	10.53	9.36 ± 1.5*	7	7.0 ± 0.0
,		C.	1468	150	9.79		7	0.0
		D	1075	150	7.17	,	7	
Level 2	0.23	A	1788	150	11.92		7	
$(0.24 \mu g/L)$		В	1662	148	11.23	11.5 ± 0.3 * 7	7	7.0 ± 0.0
		C	1705	150	11.37		7	7.0 T 0.0
		D	1705	150	11.37	,	7	
Level 3	0.43	Α	1769	150	11.79	-	7	
$(0.50 \mu g/L)$		В	1545	134	11.53	12.2 ± 0.71	7	7.0 ± 0.0
, -		С	1774	135	13.14		7	7.0 _ 0.0
•		D	1823	150	12.15		7.	
Level 4	0.85	Α	1136	105	10.82		7	
$(1.0 \mu g/L)$		В	1155	105	11.00	10.6 ± 0.38*	7	7.0 ± 0.0
		C	1404	135	10.40		7	7.0 <u>T</u> 0.0
		D	1374	135	10.18	•	7	
Level 5	1.7	Α	276	36	7.67		7	
$(2.0 \mu g/L)$		B	288	31	9.29	7.50 ± 1.3^{d}	7	7.0 ± 0.0^{d}
		Č	379	55	6.89	1	7	7.0 T 0.0
		Ď	240	. 39	6.15		7	

^{*} Denotes values significantly different $(p \le 0.05)$ from the vehicle blank

Data were subjected to a one-way analysis of variance and Dunnett's multiple means comparison test.

Control and vehicle blank were compared by a Student *t*-test. A significant difference was determined so comparison was made with the test levels using the vehicle blank.

Control and vehicle blank were compared by a Student *t*-test. No significant difference was determined so comparison was made with the test levels using the pooled controls.

Since this level was affected for survival, it was excluded from statistical analysis for this parameter.

TABLE VI

Adult Weights and Length Measurements of Daphnia magna Exposed to Methyl Parathion for 21 Days During the Chronic Toxicity Study

				Adult \	Veights (m	ıg) ^{a,b}		21 Daphnid gth (mm) ^{a,b}
Chamber ID (Nominal Conc.)	Mean Measured Conc. (µg/L)	Rep.	Adult Surv.	Total Weight	Average Daphnid Weight	Mean + SD	Mean <u>Length</u>	Mean + SD
Control	N/A	A	9	2.4	0.27		3.57	
Property of the State of State of Land of		В	10	6.1	0.61	0.47 ± 0.14	3.91	3.83 ± 0.18
		C	10	5.1	0.51		3.96	
		D	10	4.7	0.47		3.91	•
Vehicle Blank	N/A	Α	10	7.2	0.72		4.35	
		В	8	5.8	0.73	0.78 ± 0.06	4.43	4.44 ± 0.07
		C	9	7.3	0.81	_	4.50	
		D	8 .	6.8	0.85		4.49	•
Level 1	0.076	Α	10	6.7	0.67		4.21	
$(0.12 \mu g/L)$		B.	10	7.0	0.70	0.64 ± 0.10	4.23	4.11 ± 0.17*
, , ,		C	10	7.1	0.71		4.14	-
	•	D	10	4.9	0.49	•	3.86	
Level 2	0.23	Α	10	8.0	0.80	A second	4.40	
$(0.24 \mu g/L)$		В	9	5.8	0.64	0.77 ± 0.09	4.28	4.33 ± 0.06
		C	10	8.3	0.83	_	4.28	. –
•		D	10	8.0	0.80		4.37	
Level 3	0.43	Α .	10	6.5	0.65		4.41	
$(0.50 \mu g/L)$		В	8	5.1	0.64	0.70 ± 0.07	4.39	4.42 ± 0.04
(/-6 /		C	9	6.2	0.69	-	4.47	
		D	10	8.0	0.80		4.42	
Level 4	0.85	Α	7	5.1	0.73		4.26	
(1.0 μg/L)		В	7	3.8	0.54	0.62 ± 0.08*	4.27	÷.28 ± 0.02*
\ F-G /		ċ	9	5.5	0.61	1	4.27	
		D	9	5.2	0.58		4.31	
Level 5°	1.7	` A	0	-	***	****		
$(2.0 \mu g/L)$		В	0			•	,	
\ //		Č	Ō					-
•		D	0				-	

^{*} Denotes values significantly different ($p \le 0.05$) from the vehicle blank

Data were subjected to a one-way analysis of variance and Dunnett's multiple means comparison test.

Control and vehicle blank were compared by a Student *t*-test. A significant difference was determined so comparison with the test levels were made using the vehicle blank.

Since this level was affected for survival, it was not included in the statistical analysis for this parameter.

Methyl Parathion 21 day Daphnia magna Study-Length

File: c:\chem\ch3para\ch3parl2.dat Transform: NO TRANSFORM

ANOVA TABLE

SOURCE	DF	SS	MS	F .
Between	4	18792.652	4698.163	1.308
Within (Error)	178	639510.015	3592.753	
Total	182	658302.667		

Critical F value = 2.45 (0.05, 4, 120)

Since F < Critical F FAIL TO REJECT Ho: All groups equal

Methyl Parathion 21 day Daphnia magna Study-Length

File: c:\chem\ch3para\ch3parl2.dat Transform: NO TRANSFORM

]	BONFERRONI T-TEST -	TABLE 1 OF 2	Ho:Contro	l <treatm< th=""><th>ent</th></treatm<>	ent
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	sig
1 2 3 4 5	Sol. Control 0.12 0.24 0.5 1.0	88.771 82.150 86.667 110.324 85.531	88.771 82.150 86.667 110.324 85.531	0.477 0.151 -1.525 0.221	

Bonferroni T table value = 2.27 (1 Tailed Value, P=0.05, df=120,4)

Methyl Parathion 21 day Daphnia magna Study-Length File: c:\chem\ch3para\ch3parl2.dat Transform

Transform: NO TRANSFORM

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1	Sol. Control	35			
2	0.12	40	31.492	35.5	6.621
3	0.24	39	31.680	35.7	2.105
4	0.5	37	32.083	36.1	-21.553
5	1.0	32	33.279	37.5	3.240

Methyl Parathion 21 day Daphnia magna Study-Length

File: c:\chem\ch3para\ch3parl2.dat Transform: NO TRANSFORM

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	4	18792.652	4698.163	1.308
Within (Error)	178	639510.015	3592.753	
Total	182	658302.667		

Critical F value = 2.45 (0.05,4,120) Since F < Critical F FAIL TO REJECT Ho:All groups equal

Methyl Parathion 21 day Daphnia magna Study-Length

File: c:\chem\ch3para\ch3parl2.dat Transform: NO TRANSFORM

DUNNETTS TEST

***** WARNING *****

This data set has unequal replicates. The Bonferroni T-test should be used instead of the Dunnetts test.

Methyl Parathion 21 day Daphnia magna Study-Length

File: c:\chem\ch3para\ch3par12.dat Transform: NO TRANSFORM

L.	DUNNETTS TEST - TA	BUR I OF Z	HO:CONCIOI <ii< th=""><th>eacmenc</th><th></th></ii<>	eacmenc	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1 2 3 4 5	Sol. Control 0.12 0.24 0.5 1.0	88.771 82.150 86.667 110.324 85.531	88.771 82.150 86.667 110.324 85.531	0.477 0.151 -1.525 0.221	

Dunnett table value = 2.18 (1 Tailed Value, P=0.05, df=120,4)

Methyl Parathion 21 day Daphnia magna Study-Length

File: c:\chem\ch3para\ch3parl2.dat Transform: NO TRANSFORM

DUNNETTS TEST - TABLE 2 OF 2

Ho:Control<Treatment</pre>

JROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	Sol. Control	35			
2	0.12	40	30.244	34.1	6.621
3	0.24	39	30.424	34.3	2.105
4	0.5	37	30.811	34.7	-21.553
5	1.0	32	31.959	36.0	3.240

US EPA ARCHIVE DOCUMENT

z	4 6.580 8.760 7.823 D		10.530	11.920	13.140 12.153	4 10.180 11.000 10.600 File: ch3p	4 6.150 9.290 7.500	NANO
		4 12.73	4 7.17	4 11.23	4 11.53	4 10.18	4 6.15	
ORP IDENTIFICATION P	Control	Sol. Control	0.12	0.24	5.0	1.0	2.0	
ORP II	-	7	m	•	ĸ	v	7	

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day File: ch3psyad Transform: NO TRANSFORM

SUMMARY STATISTICS ON TRANSPORMED DATA TABLE 2 of 2

SEM	0.484	0.122	0.746	0.153	0.353	0.188	0.673
SD D	0.968	. 0.243	1.493	90:0	0.706	0.376	1.345
VARIANCE	0.938	0.059	2.239	0.093	0.498	0.142	1.809
IDENTIFICATION	Centrep	Sol. Control	6.12	0.24	8.0	1.0	2.0
GRP	-	~	<u>_</u>	•	ß	9	7

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day File: chipayad Transform: NO TRANSFORM

ANOVA TABLE

Sounce DF SS MS F Between 6 107.917 17.986 21.828 Within (Brrox) 21 17.304 0.824 Total 27 125.221					
letween 6 107.917 17.986 21.828 1thin (Error) 21 17.304 0.824 octal 27 125.221	OURCE	DB	88	M 8	Ĉi.
Mithin (Error) 21 17.304 0.824 octal 27 125.221	etween	9	107.917	17:986	21.828
otal 27 125.221	ithin (Brror)	21	17.304	0.824	6 6 7 7 8 8
	otal	27	125.221		

Critical F value = 2.57 (0.05,6,21)
Since F > Critical F REJECT Ho:All groups equal

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day File: chipayad Transform: NO TRANSFORM

	810						
estment	T STAT		-B.047	-2.391	-5.686	-6.746	-4.327
Ho: Control < Treatment	TRANSPORMED MEAN CLICULATED IN GROUP IDENTIFICATION MEAN ORIGINAL UNITS T STAT	7.823	12.988	9.357	11.473	12.153	10.600
BLR 1 OF 2	TRANSPORMED	7.823	12.988	9.357	11.473	12.153	10.600
DUNNETTS TEST - TABLE 1 OF 2	IDBNTIFICATION	Control	Sol. Control	0.12	0.24	5.0	1.0
۵	GROUP	-	N	m	•	w	9

0.502		.20,6)
7.500		1, P=0.05, d£
7.800		(1 Tailed Value, Pac. 05, dfm20,6)
0.0		0 - 2.46
		Dunnett table value = 2.46
7	:	Dunn

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day File: ch3peyad Transform: NO TRANSPORM

reatment	DIFFERENCE FROM CONTROL		-5.165	-1.535	-3.650	-4.330	-2.778	0.323
Ho: Control < Treatment	t of CONTROL		20.3	20.2	20.3	20.2	20.2	20.2
;	Minimum sig Diff & of DIFFEREN (IN ORIG. UNITS) CONTROL FROM CON		1.679	1.579	1.579	1.579	1.579	1.579
TABLE 2 OF 2	NUM OP RRPS	•	•	•	•	•	•	4
DUNNETTS TEST - TABLE 2 OF 2	IDENTIFICATION	Control	Sol. Control	0.13	0.34	8.0	1.0	9.0
1	: 8:	н	7	~	•	s	9	7

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day File: chjpayad Transform: NO TRANSFORM

	WILLIAMS TEST	(Isotonic	WILLIAMS TEST (Isotonic regression model)	TABLE 1 OF 2	(1 Da
GROUP	IDBNTIFICATION	NO	ORIGINAL DENTIFICATION N MEAN	TRANSPORMED MEAN	I SOTONI ZED MEAN
-	Contr	Control	7.823	7.823	10.759
~	. 801. C	Sol. Control 4	12.988	12.988	10.759
m		0.12	9.357	9.357	10.759
~	*	0.24	11.473	11.473	10.759
ĸ		0.5	12.153	12.153	10.759
9		1.0	10.600	10.600	10.600
7		7.0	7.500	7.500	7.500

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day File: chlpayad Transform: NO TRANSFORM

WILLIAMS TEST (Isotonic regression model)	(Isotonic	regression	model)	TABLE 2 OF 2	P 2
IBOUTIFICATION NEAN NEAN	ISOTONI ZED NEAN	CALC. WILLIAMS	SIG P=.05	TABLE	DEGREES OF FREEDOM
Control	10.759	; ; ; ; ;		! ! ! ! !	; ; ; ; ; ;
Sol. Control	10.759	4.574	•	1.72	k* 1, v=21
0.12	10.759	4.574	*	1.80	
0.24	10.759	4.574	*	1.83	ω,
8.0	10.759	4.574	•	1.84	÷
1.0	10.600	4.327	*	1.85	k= 5, v=21
7.0	7.500	0.502		1.85	k= 6, v=21

 $\ensuremath{\mathbf{s}}=-0.908$ Note: df used for table values are approximate when v>20 .

.ethyl Parathion 21 Day Daphnia magna - Young/Adult/Day
File: c:\chem\ch3para\ch3pyad2 Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	5	79.955	15.991	19.865
Within (Error)	18	14.490	0.805	
Total	23	94.445		

Critical F value = 2.77 (0.05,5,18) Since F > Critical F REJECT Ho:All groups equal

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day File: c:\chem\ch3para\ch3pyad2 Transform: NO TRANSFORMATION

	DUNNETTS TEST - TABLE 1 OF 2		Ho:Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG	
1	Sol. Control	12.988	12.988			
2 3	0.12	9.357 11.473	9.357 11.473	5.722 2.388	*	
4 5	0.5	12.153 10.600	12.153 10.600	1.316 3.763	*	
6	2.0	7.500	7.500	8.650	*	

Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5)

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day

File: c:\chem\ch3para\ch3pyad2 Transform: NO TRANSFORMATION

	DUNNETTS TEST - T	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1 2	Sol. Control 0.12	4 4	1.529	11.8	3.630
3	0.24	4 4	1.529 1.529	11.8 11.8	1.515 0.835
5 6	1.0	4 4	1.529 1.529 1.529	11.8 11.8	2.387 5.488

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day

File: c:\chem\ch3para\ch3pyad3 Transform: NO TRANSFORM

ANOVA TABLE

SOURCE	DF	SS	MS	F	
Between	4	31.466	7.866	13.023	
Within (Error)	15	9.063	0.604		
Total	19	40.529			

Critical F value = 3.06 (0.05, 4, 15)

Since F > Critical F REJECT Ho:All groups equal

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day

File: c:\chem\ch3para\ch3pyad3 Transform: NO TRANSFORM

Dunnett table value = 2.36 (1 Tailed Value, P=0.05, df=15,4)

Methyl Parathion 21 Day Daphnia magna - Young/Adult/Day

File: c:\chem\ch3para\ch3pyad3 Transform: NO TRANSFORM

NUM OF Minimum Sig Diff % of DIFFERENCE		DUNNETTS TEST -	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
0.12 4 1.297 10.0 3.630 0.24 4 1.297 10.0 1.515 1.297 10.0 0.835	GROUP	IDENTIFICATION				
0.12 4 1.297 10.0 3.630 0.24 4 1.297 10.0 1.515 1.297 10.0 0.835						
3 0.24 4 1.297 10.0 1.515 4 0.5 4 1.297 10.0 0.835	1	Sol. Control	4			
4 0.5 4 1.297 10.0 0.835	2	0.12	4 .	1.297	10.0	
4	3	0.24	4	1.297	10.0	
1 0 4 1.297 10.0 2.387	4	0.5	4	1.297	10.0	0.835
5	5	1.0	4	1.297	10.0	2.387

Percent <u>Survival</u> of Daphnia magna CH3 Parathion 21 Days c:\chem\iprodion\survival.dat TITLE:

FILE:

TRANSFORM: NO TRANSFORM NUMBER OF GROUPS: 7

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Control	1	9.0000	9.0000
1	Control	2	10.0000	10.0000
1	Control	3	10.0000	10.0000
1	Control	4	10.0000	10.0000
1 2 2 2 2 3 3 3 4 4	Sol. Control	1	10.0000	10.0000
2	Sol. Control	1 2 3	8.0000	8.0000
2 ·	Sol. Control		9.0000	9.0000
2	Sol. Control	4	8.0000	8.0000
3	0.12	1 2 3	10.0000	10.0000
3	0.12	2	10.0000	10.0000
3	0.12		10.0000	10.0000
3	0.12	4	10.0000	10.0000
4	0.24	1	10.0000	10.0000
	0.24	1 2 3	9.0000	9.0000
4	0.24	3	10.0000	10.0000
4	0.24	4	10.0000	10.0000
5	0.50	1	10.0000	10.0000
5	0.50	4 1 2 3	8.0000	8.0000
4 5 5 5 5	0.50		9.0000	9.0000
5	0.50	4	10.0000	10.0000
6	1.0	1 2	7.0000	7.0000
6	1.0		7.0000	7.0000
6 6 6	1.0	3	9.0000	9.0000
	1.0	4	9.0000	9.0000
7	2.0	1	0.0000	0.000
7	2.0	2	0.0000	0.0000
7	2.0	3	0.0000	0.000
7	2.0	4	0.0000	0.0000

Percent Survival of Daphnia magna CH3 Parathion 21 Days File: c:\chem\iprodion\survival.dat Transform: NO TRANSFORM

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	9.000	10.000	9.750
. 2	Sol. Control	4	8.000	10.000	8.750
3	0.12	4	10.000	10.000	10.000
4	0.24	4	9.000	10.000	9.750
5	0.50	4	8.000	10.000	9.250
6	1.0	4	7.000	9.000	8.000
7	2.0	4	0.000	0.000	0.000

Percent Survival of Daphnia magna CH3 Parathion 21 Days

File: c:\chem\iprodion\survival.dat Transform: NO TRANSFORM

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM
1	Control	0.250	0.500	0.250
2	(Sol. Control)	0.917	0.957	0.479
3	0.12	0.000	0.000	0.000
4	0.24	0.250	0.500	0.250
5	0.50	0.917	0.957	0.479
6	1.0	1.333	1.155	0.577
7	2.0	0.000	0.000	0.000

Percent Survival of Daphnia magna CH3 Parathion 21 Days

File: c:\chem\iprodion\survival.dat Transform: NO TRANSFORM

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	Control	4	9.750	9.750	9.750
2	Sol. Control	4	8.750	8.750	9.500
3	0.12	4	10.000	10.000	9.500
4	0.24	4	9.750	9.750	9.500
5	0.50	4	9.250	9.250	9.250
6	1.0	4	8.000	8.000	8.000
7	2.0	4	0.000	0.000	0.000

Percent Survival of Daphnia magna CH3 Parathion 21 Days

File: c:\chem\iprodion\survival.dat Transform: NO TRANSFORM

WILLIAMS TEST	(Isotonic regression model)	TABLE 2 OF 2
---------------	-----------------------------	--------------

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
Control Sol. Control 0.12 0.24 0.50 1.0 2.0	9.750 9.500 9.500 9.500 9.250 8.000	0.489 0.489 0.489 0.977 3.420	*	1.72 1.80 1.83 1.84 1.85	k= 1, v=21 k= 2, v=21 k= 3, v=21 k= 4, v=21 k= 5, v=21 k= 6, v=21

s = 0.724

Note: df used for table values are approximate when v > 20.

TITLE: FILE:

Methyl Parathion 21 Day Daphnia magna Study - Weight

c:\chem\ch3para\dafwt.dat

TRANSFORM: NO TRANSFORM

NUMBER OF GROUPS: 5

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Sol.Control	1	7.2000	7.2000
1	Sol.Control	2	5.8000	5.8000
1	Sol.Control	3	7.3000	7.3000
1	Sol.Control	4	6.8000	6.8000
2	0.12	1	6.7000	6.7000
2	0.12	2 3	7.0000	7.0000
2	0.12		7.1000	7.1000
. 2	0.12	4	4.9000	4.9000
3	0.24	1 2	8.0000	8.0000
3	0.24	2	5.8000	5.8000
3	0.24	3	8.3000	8.3000
3	0.24	4	8.0000	8.0000
4	0.5	1	6.5000	6.5000
4	0.5	2 3	5.1000	5.1000
4	0.5	3	6.2000	6.2000
4	0.5	4	8.0000	8.0000
5	1.0	1	5.1000	5.1000
5	1.0	2	3.8000	3.8000
5	1.0	3	5.5000	5.5000
5	1.0	4	5.2000	5.2000

Methyl Parathion 21 Day Daphnia magna Study - Weight

File: c:\chem\ch3para\dafwt.dat

Transform: NO TRANSFORM

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Sol.Control	4	5.800	7.300	6.775
2	0.12	4	4.900	7.100	6.425
3	0.24	4	5.800	8.300	7.525
4	0.5	4	5.100	8.000	6.450
5	1.0	4	3.800	5.500	4.900

Methyl Parathion 21 Day Daphnia magna Study - Weight

File: c:\chem\ch3para\dafwt.dat Transform: NO TRANSFORM

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	
1	Sol.Control	0.469	0.685	0.342	

]
	-
	I
	V
	-
A	
2	N
7	1
2	
)	(
ı	
5	
1	
)	Ι
1	
5	N
C	Ι
1	

2	0.12	1.062	1.031	0.515	
3	0.24	1.342	1.159	0.579	
4	0.5	1.430	1,196	0.598	
5	1.0	0.567	0.753	0.376	

Methyl Parathion 21 Day Daphnia magna Study - Weight

File: c:\chem\ch3para\dafwt.dat Transform: NO TRANSFORM

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	4	14.633	3.658	3.756
Within (Error)	15	14.613	0.974	
Total	19	29.246		

Critical F value = 3.06 (0.05,4,15)

DUNNETTS TEST

Since F > Critical F REJECT Ho:All groups equal

Methyl Parathion 21 Day Daphnia magna Study - Weight

- TABLE 1 OF 2

TRANSFORMED MEAN CALCULATED IN ORIGINAL UNITS T STAT SIG 1 Sol.Control 6.775 6.775 2 0.12 6.425 6.425 0.502 3 0.24 7.525 7.525 -1.075 4 0.5 6.450 6.450 0.466 5 1.0 4.900 4.900 2.687 *		ONNETTS TEST - TA	no.concrotateacment				
2 0.12 6.425 6.425 0.502 3 0.24 7.525 7.525 -1.075 4 0.5 6.450 6.450 0.466	GROUP	IDENTIFICATION			T STAT	SIG	
	3 4	0.12 0.24 0.5	6.425 7.525 6.450	6.425 7.525 6.450	-1.075 0.466	*	

Ho · Control < Treatment

Dunnett table value = 2.36 (1 Tailed Value, P=0.05, df=15,4)

Methyl Parathion 21 Day Daphnia magna Study - Weight

File: c:\chem\ch3para\dafwt.dat Transform: NO TRANSFORM

	DUNNETTS TEST - '	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	Sol.Control	4			0.350
2	0.12	4	1.647	24.3	0.350
3	0.24	4	1.647	24.3	-0.750
4	0.5	4	1.647	24.3	0.325
5	1.0	4	1.647	24.3	1.875

Methyl Parathion 21 Day Daphnia magna Study - Weight File: c:\chem\ch3para\dafwt.dat Transform: NO

Transform: NO TRANSFORM

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	Sol.Control	4	6.775	6.775	6.908
2	0.12	$\overline{4}$	6.425	6.425	6.908
3	0.24	4	7.525	7.525	6.908
4	0.5	4	6.450	6.450	6.450
5	1.0	4	4.900	4.900	4.900

Methyl Parathion 21 Day Daphnia magna Study - Weight File: c:\chem\ch3para\dafwt.dat Transform: NO Transform: NO TRANSFORM

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED	CALC.	SIG	TABLE	DEGREES OF	
	MEAN	WILLIAMS	P=.05	WILLIAMS	FREEDOM	
Sol.Control 0.12 0.24 0.5 1.0	6.908 6.908 6.908 6.450 4.900	0.191 0.191 0.466 2.687	*	1.75 1.84 1.87 1.88	k= 1, v=15 k= 2, v=15 k= 3, v=15 k= 4, v=15	

0.987

Note: df used for table values are approximate when v > 20.

Percent D.O. 21 Day Daphnia Study

	Day 0	%	Day 4	%	Day 7	%	Day 14	%	Day 21	%
Control	8.1	93.32%	8	92.17%	7.8	91.44%	8.2	94.47%	8	92.17%
Sol.Contr	6.2	71.43%	5.4	62.21%	6.2	72.68%	5.7	65.67%	4.9	56.45%
0.12	7.6	87.56%	7.6	87.56%	7.6	89.10%	7.8	89.86%	7.6	87.56%
0.24	7.1	81.80%	6.7	77.19%	6.8	79.72%	6.7	77.19%	6.9	79.49%
0.5	6.2	71.43%	6.4	73.73%	5.8	68.00%	6.1	70.28%	4.7	54.15%`
1	6.4	73.73%	6.3	72.58%	5.8	68.00%	4.8	55.30%	4.4	50.69%
2	5.7	65.67%	5.2	59.91%	5.3	62.13%	5.5	63.36%	2.7	31.11%

Methyl Parathion 21-Day Daphnia Study D.O. for Day 14 and Day 21

