US EPA ARCHIVE DOCUMENT
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

DATE: October 26, 1977

SUBJECT: PP #2F1244 - Baygon In or On a Variety of Commodities

FROM: K. L. Bailey
 Toxicology Branch

TO: F. Sanders, PM #12

Thru: Chief, Toxicology Branch

I. Petitioner

Chemagro Ag. Div.
Mobay Chem. Corp.
Kansas City, Mo.

II. Chemical Structure

III. Chemical Name

2-(1-Methylethoxy) phenol
methylcarbamate

IV. Present Tolerances

There are no presently accepted tolerances for Baygon

V. Proposed Tolerances

Alfalfa (fresh) 6 ppm
Alfalfa (Hay) 22 ppm
Pasture Grass (Green) 8 ppm
Pasture Grass (Hay) 29 ppm
Meat, fat and meat
by-products of cattle
.2 ppm
Goats, hog, horses

Poultry and sheep

Eggs .04 ppm
Milk .1 ppm

VI. Proposed Use

A. Control of adult mosquitoes over alfalfa and pasture grass fields.
To be applied at the rate of 1.25 - 4 fluid oz. per acre as necessary, at 7 to 14 day intervals with no more than 10 applications per crop year.

2. For Fly Control in livestock and animal barns including dairy barns, milk rooms, horse sheep and swine barns and dog kennels as an aqueous 1% w/w solution.

VII. Maximum Theoretical Residue Contribution MTRC

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Tolerance</th>
<th>% diet</th>
<th>MTRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>6 ppm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pasture Grass</td>
<td>22 ppm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, fat and meat</td>
<td>.2 ppm</td>
<td>13.85</td>
<td>.042 mg/day</td>
</tr>
<tr>
<td>by-products of cattle,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goat, hogs, horses,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poultry and sheep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>.04 ppm</td>
<td>2.77</td>
<td>.0017 mg/day</td>
</tr>
<tr>
<td>Milk</td>
<td>.1 ppm</td>
<td>28.62</td>
<td>.0429 mg/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.085 mg/day</td>
</tr>
</tbody>
</table>

VIII. Acceptable Daily Intake, ADI, and Maximal Permissible Intake, MPI, of Baygon

No Effect Level = 250 ppm based on an increase in liver to body weight ratio in female rats.

Safety Factor = 100

250 ppm rat = (.05)(250) = 12.5 mg/kg/day
ADI = (1/100)(12.5 mg/kg/day) = .125 mg/kg/day
MPI (60 kg Adult) = (60 kg)(.125 mg/kg/day) = 7.5 mg/day
MPI = 7.5 mg/day

IX. Comparison of Maximum Permissible Intake MPI and Maximum Theoretical Residue Contribution, MTRC.

The MPI, 7.5 mg/day, is greatly in excess of the MTRC, .086 mg/day. Indeed, MTRC is < 2% of MPI.

X. Chemistry Review

The A. Rathman Chemistry Review of August 23, 1977 has been read and considered is of importance.

Specifically, the Chemistry Branch has concluded that 60-80% of the tissue residues in the cow are composed of an acid hydrolyzable derivative of o-isoproxy phenol. In order to determine whether this unknown o-isoproxy phenol derivative is or is not of toxicologic concern we require the following information:
a. The chemical identity of the metabolite.

b. Information as to whether the metabolism of Baygon is or is not essentially the same in both the rat and cow. If the chemical nature of the metabolite is of no concern and Baygon is metabolized in essentially the same way in both cow and rat we would conclude that this is of no toxicologic concern. However, if the chemical identity of the metabolite is of concern or Baygon is metabolized in a different manner in the cow and rat, additional studies will be necessary.

XI. RPAR Examination; the toxicologic data on hand have been examined and no RPAR criteria have been found to be exceeded.

XII. Conclusion

A. Tolerance Action

There is inadequate toxicologic data at hand to support this tolerance, considering that there are no presently accepted tolerances for Baygon. Specifically, we require the following:

1. A mouse chronic feeding/oncogenic study.
2. At such time as the agency determines a suitable protocol, an additional mutagenic study.
3. In relation to the rat 2 year feeding study (Studies 22991 and 22992) we require the pathology associated with each animal so that it may be determined whether the study is or is not an acceptable oncogenic study.
4. In relation to the teratogenic study (Study 29035) we require clarification in relation to the following points:
 (a) What, specifically, is meant by the term slight bone changes?
 (b) Why, considering the number of fetuses examined, are no abnormal noted. One would, normally, expect some number of abnormalitc to be found.

B. Registration

In relation to the conclusion reached the necessary data requirements for other than acute studies consult Section XIII (Toxicology Review A. Registration Actions) of this review.

C. Chemistry Review

In relation to Section X (Chemistry Review) of this review the Chemistry Branch has determined that in the cow 60-80% of the tissue residues are a acid hydrolyzable derivative of p-isoproxy phenol.

In order to determine if this metabolite is or is not of toxicologic concern we require the following information.

 (1) The chemical identity of the metabolite.
(2) Pertinent information as to whether Baygon is or is not metabolized in essentially the same manner in both the rat and cow.

If the metabolite is of toxicologic concern or if Baygon is metabolized in an entirely different manner in the rat as compared to the cow, further toxicologic studies will be required.

XIII. Toxicology Review

A. Registration Actions

(Note: Only deficiencies in acute studies are noted here. Deficiencies noted in relation to other studies are noted in general under Section (Conclusion, A. Tolerance Action) and specifically under Section XIII (Toxicology Review, B. Tolerance Action).

(Note to PH: A separate review is being prepared of the enormous number of studies at hand).

It is the petitioner's contention that there is adequate data available such that, for purposes of registration, toxicologic label information may be readily extrapolated. While the basic concept, toxicologic extrapolation, is a sound principle, it is only feasible if we know the chemical composition of both the material used to perform the toxicologic studies and the product for which the extrapolation is to be made. In general, in the vast majority of submitted studies, only the Baygon concentration is specified and not the concentration of the other ingredients (solvents, emulsifiers, etc.)

Thus, it is impossible to extrapolate pertinent toxicological label information from many of the submitted studies as we do not know the actual chemical composition of the material used to perform the submitted toxicologic studies. It is recommended that the petitioner identify each toxicological study by the composition of the material actually used to perform the study.

(A) Baygon 1.5 (EPA Reg. No. 3125-214)

(1) For purposes of registration, we require either actual acute toxicological studies or reference to particular studies already submitted including the chemical composition of the material used to perform these studies. It must be understood that, for purposes of extrapolation, the referenced studies must have been performed using material of sufficiently similar chemical composition to this product such that it is possible to reasonably determine appropriate label restrictions.

(2) As this product contains suspected carcinogenic compounds, we require conclusive evidence that this compound is not a carcinogen or that the material be replaced with some other suitable chemical.
(B) Baygon Spray Concentrate (EPA Reg. No. 3125-122)

In relation to this product see the previous comment A, (1) above.

(Note: There is no problema in this product)

(C) Baygon MOS (EPA File Symbol 3125-GHA)

In relation to this product see the previous comment (A) (1) above.

(Note: There is no problema in this product)

Baygon 70% WP (EPA Reg. No. 3125-146)

In relation to this product see the previous comment (1) (A), above.

(Note: There is no problema in this product)

Baygon 2% Bait (EPA Reg. No. 3125-121)

In essence, this product is a granular mixture of Baygon and otherwise innoeffect inert ingredients. The toxicity is due essentially to Baygon and the word

Caution is appropriate.

However, considering that the material in the product is a granular mixture, we require

information that the product is not unreasonably attractive to either children or domestic animals.

XIII. Toxicology Review

B. Tolerance Action

A. Two Year Log Feeding Study Tab 22814, PP2F1244, Conducted by Bayer

Institut fur Toxicologic; Pathology concuted by Huntington Researc

In this study 5 groups of beagles, each group composed of 4 males and 4

females, received the compound in their diet at levels of 0 ppm (control

100, 250, 750, and 2000 ppm.

As all the female animals which received 2000 ppm die before terminatio

the study, we have in effect 4 dosage levels for females and 5 for male.
The death of the high-level 2000 ppm females may, presumably, be

attributed to the very marked reduction (+25% control) in food consumpt

of this group.

The parameters measured were the following:

A. General Appearance
B. Body Weight
C. Food Consumption
D. Blood Tests
E. Kidney Function Tests
F. Liver Function Tests
G. Blood Glucose
H. Blood Cholinesterase Inhibition at 16 weeks
I. Mortality Rate
J. Macroscopic and Microscopic examination of the tissues of those animals which died or were sacrificed

The pertinent compound related effects noted are as follows:

1. 2000 ppm
 (a) Decreased food consumption in female dogs
 (b) Decrease in body weight of males and females
 (c) A 100% mortality in female dogs

It is to be noted that these is apparently a typographical error in the report that it concludes the compound inhibits liver protein synthesis at all levels, an observation clearly at odds with the results.

No observable cholinesterase inhibition was found for this compound. This lack of observable inhibition is probably the result of the method used rather than the lack of actual inhibition. However, considering that this compound is a carbamate, this is judged to be a minor deficiency.

The overall observable NEL is thus 750 ppm on the basis of mortality in the female animals. The pathology is roughly what one would expect for animals of this age and the study is judged to be core-minimum. No serious hazards are indicated.

B. Supplement No. 5, Accession No. 111903

Rat 2 Year Feeding Study (Studies No 22991 and 11991a) Conducted by Bayer Institut fur Toxicologic and Huntington Research Center (Path.)

In this study 5 groups of rats, each group composed of 25 males and 25 females except the controls which contained 50 of each sex, were exposed to 0 (control 250,750,2000 and 6000 ppm of the compound in their diet.

The following parameters were measured:

1. Behavior
2. Food Consumption
3. Body Weight
4. Hematologic Studies at 7 and 24 months
5. Urinalysis and Kidney Function at 7 and 24 months
6. Liver function at 24 months
7. Cholinesterase activity at 6 months
8. Mortality Rate
9. Pathology of Animals that were sacrificed or died of other causes.
10. Tissue weight and tissue to body weight ratio

The apparent compound related effects noted are as follows:

1. Decrease in food consumption in females - NEL 750 ppm
2. Decrease in body weight gain of females - NEL 750 ppm
3. Increase in liver to body weight ratio in females - NEL 250 ppm
4. Possibly, an increase in (SGPT) GPT in male rats - NEL 250 ppm.

The NEL for this study is thus 250 ppm on the basis of an increase in liver to body weight ratio in female rats.

While no cholinesterase inhibition was noted, this is probably due more to the lack of an appropriate technique than the lack of effect of the compound. Consistency is a carbamate, this deficiency is judged to be of minor importance.

The pathology, roughly, what one would expect in relation to testicular atrophy, pituitary tumors and the other signs and symptoms associated with increasing age in rats. There is however some confusion in relation to the pathology report in that the only reports submitted are for 5 animals per sex/group and for those animals for which tumors were noted; the report suggests that all animals were examined. On this basis the study is judged core:minimum as a feeding study and supplemental oncogenic study. Possibly, with more complete reporting, the study may be classed core:minimum as an oncogenic study. No serious hazards are, at present, suggested for this study.

C. Hen Neurotoxicity Studies (Study No 17974 conducted by Bayer Institute for Toxicology)

A. Pilot Studies

1. Oral Studies

In these two studies adult chickens were given the compound and observed in the presence and absence of atropine for periods of 42 and 60 days respectively. No evidence of neurotoxic damage was found.

The design of the experiments are as follows:

<table>
<thead>
<tr>
<th>dose (mg/kg)</th>
<th>acute toxicological* results</th>
<th>dead after no. of days</th>
<th>neurotoxic damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0/0/1</td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>200</td>
<td>0/1/1</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>500</td>
<td>0/1/1</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>1,000</td>
<td>2/5/5</td>
<td>1</td>
<td>none</td>
</tr>
</tbody>
</table>

Oral With Atropine

<table>
<thead>
<tr>
<th>dose (mg/kg)</th>
<th>acute toxicological* results</th>
<th>dead after no. of days</th>
<th>neurotoxic damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>9/16/16</td>
<td>1 - 5</td>
<td>none</td>
</tr>
<tr>
<td>1,000</td>
<td>2/3/3</td>
<td>2</td>
<td>none</td>
</tr>
</tbody>
</table>

*death/ACH inhibition/No animals used
2. Intraperitoneal Studies

These studies comprise two studies in which the compound was administered via intraperitoneal injection to adult chickens both in the absence and presence of atropine. The animals were examined for periods of 42 and 60 days, respectively, and no neurotoxic damages were observed. The design of the experiments are as follows:

Intraperitoneal - No Atropine - 42 Days

<table>
<thead>
<tr>
<th>dose (mg/kg)</th>
<th>acute toxicological* results</th>
<th>dead after no. of days</th>
<th>neurotoxic damages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0/0/1</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>37.5</td>
<td>0/5/5</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>50</td>
<td>1/1/1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>1/1/1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Intraperitoneal - Atropine - 60 Days

<table>
<thead>
<tr>
<th>dose (mg/kg)</th>
<th>acute toxicological* results</th>
<th>dead after no. of days</th>
<th>neurotoxic damages</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0/0/1</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>75</td>
<td>0/1/1</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>100</td>
<td>3/13/13</td>
<td>1 - 2</td>
<td>none</td>
</tr>
</tbody>
</table>

*Deaths/Symptoms/No. Animals

Feeding Study

In this study 5 groups of 8 adult chickens were exposed respectively to 0 ppm (control), 300, 1500, 3000, and 4,500 ppm of the compound in their diet for a period of 30 days. Following dietary exposure, the animals were observed for period of 30 days and a variety of nervous tissues were subsequently examined histologically.

No evidence of neurotoxic damage was found. It is to be noted that the tables body weight and food consumption, while mentioned, were not included in this report.

Summary

It is concluded that this Core-Minimum study demonstrates that the compound is a neurotoxin.

D. Supplement 115 Volume II of II Accession No. 11903

Histopathologic Report of Hon Neurotoxicity Study (Reports 20937 and 17974, performed by Bayer Toxicology Institute)

(Note: For further details consult Review C above)

Graduated sections of spinal cord from the cervical, dorsal and lumbar regions as well as sciatic nerve were examined using hematoxylin-eosin and eosin. While some evidence of bacterial or viral infection was found, no evidence of correlated neurotoxicity was noted.
E. Supplement No. 5, Volume II of II, Accession No. 093225, Study 29035

Rat Teratogenic Study Conducted by Bayer Institute of Toxicology.

It is not clear if the problems associated with this study relate to a translation from German, as has been the case in the 3-generation study, or are inherent deficiencies of the study.

In any case, we require the following information before the study can be evaluated:

(a) What, specifically, is meant by the term slight bone changes?
(b) Clarification is required why, considering the number of fetuses examined, no deformities of any kind are noted.

F. Supplement No. 5 Baygon Toxicology, Vol. II of II PP2F1244, Accession No. 093225

Study No. 23299

Rat Three Generation Reproduction Study conducted by Bayer Institute for Toxicology

In this typical rat three generation reproduction study, initially 5 groups of each group composed of 20 female and 10 male FB 30 strain of rats, were exposed respectively to 0 (control), 250, 750, 2000 and 6000 ppm of baygon in their diet. The following parameters were measured:

(a) Body Weight
(b) Fertility
(c) Litter Size
(d) Survival Rate
(e) Examination for Deformities
(f) Dissection and Organ Weights (F.3b) including thymus, heart, liver, spleen, kidneys, both adrenal glands, and both testes for 2 males and 2 females from each group.

In relation to general parameters there is a decrease in pup survival and body weight at 2000 and 6000 ppm.

In relation to reproduction, there is a clear and progressive decrease in number of pups per litter with an NOEL of 250 ppm.

As high levels of the compound in this study and in chronic rat and dog studies produce marked decreases in body weight, it is possible that this decrease in number of pups per litter relates to decreased body weight in the rats; this study core-minimum.

II Study No. 23299

Rat Three Generation Reproduction Pathology Report - conducted by Huntington Research Centre

The only data reported is for liver tissue in which lymphocytic infiltration is be found in all groups including the control at essentially the same frequency in all groups. The pathology, while sketchy, is adequately covered in the Two Year Rat Feeding Study.
G. Supplement No. 5, Volume II of II, Accession No. 093225

Study 30301

Mutagenic Study Using Mice Conducted By Industrial Bio-Test

In this mouse dominant lethal mutation study using Baygon IP, there is no discernable increase in mutation rate MR when measured using the following parameter:

\[
MR = \frac{\text{Number of Early Resorption Sites} \times 100}{\text{Number of Implantation Sites}}
\]

However, when measured using the following parameter the MR is observed to increase the first week and possibly the second:

\[
MR = \frac{\text{(Embryos Test Group/Female) } \times 100}{\text{(Embryos Control Group/Female)}}
\]

Considering the ambiguous results obtained in this study and the observation that the compound at high doses in a three generation reproduction study does modify reproduction, it is concluded that no weight should be given to this study at this time. Rather, additional mutagenic studies should be instituted at such time as appropriate protocols are determined.