US ERA ARCHIVE DOCUMENT

035602 Shaughnessy No.

Date out of EAB: 15 NOV 1983

To:	Jacoby Product Manager #21 Registration Division (TS-767		
From:	Richard V. Moraski, Ph.D., Act Environmental Chemistry Review Exposure Assessment Branch Hazard Evaluation Division (TS	Section 1	
Attac	hed please find the EAB review	of	
Reg./	File No.: 476 - EEEI	·	
Chemi	cal: Dazomet		
		<u>.</u>	
Type I	Product: Fungicide/Bacteri	cide	
Produc	ct Name: N-521 PAC		
Compar	ny Name: Stauffer		
Submis	ssion Purpose: new use		
ZBB Co	ode: other	ACTION CODE: 175	
Date 1	In: 9/16/83	EFB # 3540	
Date C	Completed: 11/15/57	TAIS (level II)	Days
Deferrals To:		62	1
	Ecological Effects Branch	•	
	Residue Chemistry Branch		

1.0 INTRODUCTION

Chemical Name and Type of Pesticide: tetrahydro-3,5-dimethyl-2H-1,3,5-thiadizine-2-thione, 24% ai, fungicide/bactericide

Trade Name: N-521 PAC Fungicide/Bactericide

Chemical Structure:

Stauffer Chemical is applying for the registration of N-521 PAC to control the growth of slime-forming fungi and bacteria in aqueous systems (pulp and paper mills and slurries of adhesives, glues, etc.).

2.0 DIRECTIONS FOR USE

See attached label.

- 3.0 DISCUSSION OF DATA
- 3.1 HYDROLYSIS
- 3.1.1 N-521 hydrolysis data, appendix 8, Acc. #251207.

Experimental Procedure

The hydrolysis of N-521 (Mylone) was studied at four pH values at 25°C in buffered solutions: pH 4.96, 7.38, 9.05, and 10.8 In addition, the major hydrolysis product, MIT (methyl isothiocyanate) was also tested at pH 4.96 and 10.8. Analysis was by HPLC and the procedure followed is shown below:

A one milliliter aliquot of the buffered, thermostated test solution was placed in a vial, extracted with 1-mL of p-toluenesulfonanilide internal standard solution (in methylene chloride), dried, and analyzed by HPLC using the following experimental conditions.

Liquid Chromatograph: Waters Associates M-6000 A

Column: 30 cm x 3.9 mm I.D. stainless steel column packed with 10 um u-Porasil (Waters Associates Part No. 27477).

Guard Column: Waters Associate Guard Column (Part No. 84550) packed with Corasil II.

Mobile Phase: 5 V% tetrahydrofuran in methylene chloride. Burdick and Jackson LC- grade solvents used without further purification.

Flow Rate: 1.5 mL/minn

Column Pressure: 550 PSIG, with high sensitivity noise filter in flow-path.

Detector: DuPont Model 842 UV-photometer, at 0.32 AUFS.

Injector: Rheodyne Model 70-10 sample injection valve with a 20-ul sample loop.

Data Acquisition: Varian CDS 111 computing-integrator.

Recorder: Linear Instruments Model 785; chart speed 16 inches per hour.

Results

Table 1 gives the rate constants and half-lives of N-521 and MIT at the pH values tested. Figure 1 gives a graphic presentation of the hydrolysis data for N-521. Figures 2-4 show the HPLC results. MIT was the major hydrolysis product, but did not accumulate more than 10% for the period tested (could not be determined). N-521 and MIT were more stable in acid than basic solutions.

Conclusion

The study is unacceptable for the following reasons:

- 1. The concentration of the fungicide tested was not given.
- 2. Sterility of water and glassware not indicated.
- 3. Type and concentration of buffer used not indicated.
- 4. A material balance was not given.
- 5. An explanation of how half-lives were determined was not given.
- 6. Sampling times for buffers at pH 9.05 and 10.08 difficult to determine.
- 7. Unknown if buffers stored in dark.
- 8. Ordinate axis on graph of hydrolysis curves not understood.

4.0 RECOMMENDATIONS

4.1 EAB objects to the registration of N-521 PAC as a preservative of aqueous solutions on the basis of the unacceptable hydrolysis study reviewed above (section 3.1.1).

Herbert L. Manning, Ph.D. Review Section #1
EAB/HED