US ERA ARCHIVE DOCUMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

PESTICIDES AND TOXIC

MEMORANDUM

Review of Two Mutagenicity Studies on Benzyl Benzoate: SUBJECT:

Cytogenetic Assay in Human Lymphocytes; Gene Mutation in

Cultured Chinese Hamster Lung Cells

Tox Chem No.:

HED Project No.: 2-0373

Brian Donat. 3/5/92

Record No.:

S-406128

ID No.:

059820-E

Study Nos.:

203411

203422

TO:

Richard Mountfort, PM Team #10

Insecticide Rodenticide Branch

Registration Division (H7505C)

FROM:

Brian Dementi, Ph.D., D.A.B.T.

Review Section III Toxicology Branch I

Health Effects Division (H7509C)

THRU:

Henry Spencer, Ph.D., Acting Section Head 15 3/15/92

Review Section III

Toxicology Branch I

KB 127/92 Health Effects Division (H7509C)

ACTION REQUESTED

The Registrant has submitted for review two mutagenicity studies on benzyl benzoate designed to satisfy gene mutation (Study No. 203422) and structural chromosomal aberrations (Study No. 203411) mutagenicity guideline testing requirements.

CONCLUSIONS

Review of the gene mutation study (No. 203422) in cultured : (1)Chinese hamster ovary cells (CHO/HGPRT) reveals the study to be acceptable in satisfying the gene mutation guideline requirement.

Under the conditions of the assay, doses of nonactivated benzyl benzoate (10 to 120 ug/ml) and doses of S9-activated

Printed on Recycled Paper

benzyl benzoate (50 to 500 ug/ml) did not induce a mutagenic response in the independent assays. Cytotoxicity was observed in the absence of S9 activation, but cytotoxicity was not observed with S9 activation. It is concluded that benzyl benzoate was tested to the limit of solubility, and to cytotoxic levels without S9 activation, with no evidence of a mutagenic effect.

(2) Review of the cytogenetic assay in human lymphocytes (Study No. 203411) disclosed the study to be unacceptable and, hence, does not serve as intended to satisfy the chromosomal aberrations testing requirement.

120 m

1

Under conditions of the assay, no evidence of a clastogenic effect was seen in the absence of S9 activation. However, no conclusion could be reached when the assay was conducted in the presence of S9 activation. While there were no significant increases in the frequency of cells with aberrations, concerns exist with respect to the presence of complex aberrations at 30 to 500 ug/ml. In the opinion of the reviewers, questionable findings likely would have been resolved had lymphocytes been tested from more than one donor, or possibly if the assay had been repeated. Since the questionable findings remain unresolved, the study is deemed unacceptable.

DOC920093 FINAL

DATA EVALUATION REPORT

BENZYL BENZOATE

Study Type: Mutagenicity: Gene Mutation in Cultured Chinese Hamster Lung Cells (HGPRT)

Prepared for:

Health Effects Division Office of Pesticide Programs Environmental Protection Agency 1921 Jefferson Davis Highway Arlington, VA 22202

Prepared by

Clement International Corporation 9300 Lee Highway Fairfax, VA 22031-1207

Principal Reviewer	Zmi J Haben	Date 3/3/01
	Lynne T. Haber, Ph.D.	
Independent Reviewer	May 2. Mr. Carroll	Date 3/3/92-
. 1	Nancy E. McCarroll, B.S.	and the second s
QA/QC Manager	loun 1. Xlad	Date 3/9/05
	Sharon Segar, Ph.D.	

Contract Number: 68D10075 Work Assignment Number: 1-45

Clement Number: 91-148
Project Officer: James Scott

GUIDELINE SERIES 84: MUTAGENICITY MANMALIAN CELLS IN CULTURE GENE MUTATION

MUTAGENICITY STUDIES

EPA Reviewer: Brian Dementi

Signature:

Review Section III.

Toxicology Branch (I 1/HED

Review Section III,

Acting EPA Section Head: Henry Spencer, Ph.D. Signature:

Date:

Toxicology Branch (I)/HED

DATA EVALUATION REPORT

STUDY TYPE: Mutagenicity: Gene mutation in cultured Chinese hamster ovary cells (CHO/HGPRT)

EPA IDENTIFICATION Numbers:

Tox Chem. Number: 082

MRID Number: 420231-01

TEST MATERIAL: Benzyl benzoate

Benzoic acid benzyl ester; active ingredient of Acarosan: CAS No. SYNONYMS: 120-51-4

SPONSOR: Werner and Mertz GmbH, Mainz, Germany

STUDY NUMBER: 203422

TESTING FACILITY: /CCR-Cytotest Cell Research GmbH and Co., KG. Rossdorf,

Germany

. .

TITLE:OF REPORT: Gene Mutation Assay in Chinese Hamster Ovary (CHO) Cells Mi Vitro With Benzyl Benzoate1

AUTHOR: Heidemann, A.

REPORT TSSUED: December 6, 1990

CONCLUSIONS-EXECUTIVE SUMMARY: Under the conditions of the Chinese hamster lung cell HGPRT forward gene mutation assay, doses of nonactivated benzyl about the control of t benzoate (10 to 120 µg/mL), and doses of S9-activated benzyl benzoate (50 to 500 µg/mL) did not induce a mutagenic response in two independent assays. The test material precipitated at levels above 50 µg/mL +/- S9. Marked cytotoxicity was observed at all nonactivated doses 260 µg/mL in the first trial.

There appears to be a discrepancy between the title of the report and the description within the report regarding the actual cell line that was used. While the title indicates Chinese nameter ovary (CHG) cells, the report largely refers to V79 cells. Based on the medium used and the treatment protocol, we assume that Chinese hamster lung V79 cells were assayed.

MANGALIAN CELLS IN CULTURE GENE MUTATION

and at 150 µg/mL in the second trial. The S9-activated test material was not cytotoxic. Based on these findings, it was concluded that benzyl benzoate was tested to the limit of solubility, and to cytotoxic levels without S9 activation, with no evidence of a mutagenic effect. The study, therefore, satisfies Guideline requirements for genetic effects Category I, Gene Mutations.

STUDY CLASSIFICATION: The study is acceptable.

١.	MATERIALS	:
١.	MATERIALS	

Description: Colorless liquid Identification No.: Batch no. 18504 Furity: 99% Receipt date: Not reported Stability: 12 months, pure and in solution; expiration date. June 28 1991 Contaminants: None listed Solvent us.: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane-sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 darived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none thamser other	****	HIVALINGS.
Identification No.: Batch no. 18504 Purity: 997 Receipt date: Not reported Stability: 12 months, pure and in solution; expiration date. June 28 1991 Contaminants: None listed Solvent us.: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar	1.	Test Material: Benzyl benzoate
Purity: 99% Receipt date: Not reported Stability: 12 months, pure and in solution; expiration date, June 28 1991 Contaminants: None listed Solvent us :: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 darived from 8-12 week-old male Wistar		Description: Colorless liquid
Receipt date: Not reported Stability: 12 months, pure and in solution; expiration date. June 28 1991 Contaminants: None listed Solvent us ·: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar Aroclor 1254 induced mouse lung none lung none other		Identification No.: Batch no. 18504
Receipt date: Not reported Stability: 12 months, pure and in solution; expiration date. June 28 1991 Contaminants: None listed Solvent us ·: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar Aroclor 1254 induced mouse lung none lung none other		Purity: 99% 101 22 19
Contaminants: None listed Solvent us:: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Azoclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		Receipt date: Not reported
Solvent us i: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 darived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		
Solvent us i: Ethanol Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 darived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		Contaminants: None listed
Other provided information: Stored at room temperature. The frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplemente with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methanesulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung hamster other		Solvent us ·i: Ethanol
frequency of dosing solution preparation was not reported. The stability of the test material in medium was determined. 2. Control Materials: Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplementation to yield a calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methanesulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none contents.		
Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplements with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methanesulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar		frequency of dosing solution preparation was not reported. The
Negative: Dulbecco's minimal essential medium (DMEM)/F12 supplements with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methanesulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar	2	Control Materials
with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Accolor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other	 -	Onition independent
with 10% fetal calf serum (FCS) Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		Negarive: Dulhesco's minimal assential medium (DMFM)/F12 supplement
Solvent/volume: Ethanol/1% v/v Positive: Nonactivation (concentration, solvent): Ethyl methanesulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		
Positive: Nonactivation (concentration, solvent): Ethyl methane- sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		
sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL. Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		reaction of the state of the Company
Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4 µg/mL 3. Activation: S9 derived from 8-12 week-old male Wistar x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		sulfonate (EMS) was prepared in culture medium to yield a final concentration of 1 mg/mL.
x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other		Activation (concentration, solvent): 7,12-dimethylbenz(a)anthracene (DMBA) was prepared in dimethyl sulfoxide (DMSO) and used at 15.4
x Aroclor 1254 x induced x rat x liver phenobarbital noninduced mouse lung none hamster other	_	
phenobarbital noninduced mouse lung none hamster other	3.	
none hamster other		
other other		
		other other
		The S9 (Lot no. 191289) was prepared by the testing laboratory. The protein content was determined and found to be 30.3 mg/mL.

MANMALIAN CELLS IN CULTURE GENE MUTATION

	S9 mix composi	tion:			en e
	Component		Concent	ration in S9 M	lix .
	NADP			4 mM	া প্ৰাক্তি
		enhate		5 mM	
	Glucose 6-phos Potassium chlo			33 mM	
			•	3 mM.	
	Magnesium chlo		91	OO mM	* '
		ite buffer, pH 7.4 (final protein cor)		0.3 mg/mL	
.	Test Cells: N	Mammalian cells in	culture		•
		ymphoma L5178Y cel	10		•
		hamster ovary (Ch			
		ls (Chinese hamste		*e)	
	x V/9 cel		it tonig tipropras	(43)	
	OCTION (IISC).			
					1
	Properly maint	ained? Yes.			48
	Periodically o	hecked for mycopla	isma contaminatio	m? <u>Yes</u> .	
		hecked for karyot			
	Periodically 'reported.	'cleansed" against	high spontaneous	background?	Not
5.	Locus Examined	!:			ماران داران دار
	Selecti	ne kinase (TK) ion agent: concentration)		nodeoxyuridine orodeoxyuridine	
	Select	thine-guanine-phos ion agent: concentration)	8-8	Terase (HGPRT) izaguanine (8-2 thioguanine (6	
	Na ⁺ /K ⁺ AT	Pase .	er en		
		Lon agention of s		abain	•
		concentration)			
		locus and/or selec	tion agent; give	details):	
		***	#A STAR STAR STAR STAR STAR STAR STAR STA		
s .	Test Compound	Concentrations Us	eā:		
	(a) <u>Prelimina</u> 60, 100, activation	ary cytotoxicity a 250, and 500 µg/m	ssay: Eight dose L) were evaluated	es (0.1, 1.0, i with and with	hout 39
	A STATE OF THE STA				i .
	(b) <u>Mutation</u>	assay:			
	and 120	S9 <u>activation</u> : Ei µg/mL) were evalua D, 90, 100, 120, a	ted in the initia	al assay, and	five
	The state of the s	tory assay.			
		,,	W		

MANMALIAN CELLS IN CULTURE GENE MUTATION

With S9 activation: Four doses (50, 100, 250, and 500 μ g/mL) were evaluated in both the initial and confirmatory assays.

B. TEST PERFORMANCE:

1. Cell Treatments:

- (a) Cells exposed to test compound for:

 4 hours (nonactivated) 4 hours (activated)
- (b) Cells exposed to positive controls for:

 4 hours (nonactivated) 4 hours (activated)
- (c) Cells exposed to negative and/or solvent controls for:

 4 hours (nonactivated) 4 hours (activated)
- (d) After washing, cells cultured for 7 days (expression period) before cell selection.
- (e) After expression, cells cultured for 8 days in selection medium to determine numbers of mutants and for 7 days without selection medium to determine cloning efficiency.
- 2. Protocol: Not provided.

C. REPORTED RESULTS:

- 1. Stability Determination: RCC Unweltchemie GmbH and Co., D6101
 Rossdorf, Germany, determined the stability of doses ranging from 3.9
 to 49.7 µg/mL in DMEM (-FCS) at room temperature and at 37°C. No loss of any of the doses of benzyl benzoate was observed up to 4 hours of incubation.
- 1. Preliminary Cytotoxicity Assay: Eight doses of the test material (0.1 to 500 μg/mL) were evaluated with and without S9 activation. The solubility limit was 500 μg/mL. Nonactivated benzyl benzoate reduced the relative initial survival (RIS) at 250 μg/mL to 65.4%, and to 5.9% at 500 μg/mL. No cytotoxicity was observed at lower nonactivated doses, or at any S9-activated dose up to the solubility limit.
- Mutation Assay: Doses for the mutation assays were chosen so that the high dose would reduce the plating efficiency to 20-50%. The study author stated that the first two assays without S9 activation were repeated, since cytotoxicity at levels >100 µg/mL prevented the evaluation of a sufficient number of doses; data from these experiments were not provided. Accordingly, benzyl benzoate was evaluated in the first successful nonactivated mutation assay at six doses ranging from 10 to 120 µg/mL; four S9-activated doses ranging from 50 to 500 µg/mL were also evaluated. The author reported that precipitation of the test material was observed at concentrations above 50 µg/mL. No explanation was provided for the differences in solubility

MANMALIAN CELLS IN CULTURE GENE MUTATION

between the preliminary cytotoxicity assay and the mutation assay. Benzyl benzoate was not cytotoxic at doses $\pm 50~\mu g/mL$ -S9. Cytotoxicity at higher nonactivated concentrations (60-120 $\mu g/mL$) was not dose-dependent; RIS was $\pm 18.6\%$ at all levels. The author attributed the lack of a dose-dependent effect to the insolubility of the test compound. In the presence of S9 activation, benzyl benzoate was not cytotoxic at any tested dose. There was no evidence of a mutagenic effect of benzyl benzoate at any assayed concentration with or without S9 activation (Table 1). In contrast, the positive controls (EMS at 1 mg/mL and DMBA at 15.4 $\mu g/mL$) induced marked increases in the number and frequency of mutants.

In the confirmatory assay, the test material was investigated at 50, 90, 100, 120, and 150 $\mu g/mL$ -S9 and at 50, 100, 250, and 500 $\mu g/mL$ +S9. RIS for cultures exposed to nonactivated benzyl benzoate ranged from 64.4% at the low dose (50 $\mu g/mL$) to 21.8% at the high dose (150 $\mu g/mL$); the cytotoxic response was dose-related (Table 2). Severe cytotoxicity (i.e. <50 cells recovered 7 days postseeding) was reported for the cultures treated with 150 $\mu g/mL$ -S9 after the expression period. As in the first assay, no cytotoxicity was observed at any S9-activated dose. Also in agreement with the findings of the initial assay, the test material was not mutagenic at any nonactivated or S9-activated dose. Our reviewers noted that for both trials, the absolute survival of the solvent control cultures was borderline acceptable (\leq 59.2% +/- S9). Nevertheless, from the overall results, the study author concluded that benzyl benzoate was not mutagenic in this test system.

- study author's interpretation of the data was correct. Benzyl benzoate was tested to the limit of solubility, and to cytotoxic doses without S9 activation, but showed no evidence of inducing forward mutations at the HGPRT locus in V79 cells. The response of the test system to the positive controls indicated that the assay was sufficiently sensitive to detect a mutagenic response. We, therefore, c nclude that benzyl benzoata was not mutagenic in this assay.
- E. <u>OUALITY ASSURANCE MEASURES</u>: Was the test performed under GLP? <u>les</u>. A quality assurance statement was signed and dated April 24, 1991.)
- F. CBI APPENDIX: Appendix A, Materials and Methods, CBI pp. 12-19.

38 Juni 27 37

18th 2 18th 65

and the second

CANCIALIAN CELLS IN CULTURE GENE MUTATION

Substance	Dose/mL	S9-Acti- vation	Relative X Survival (after treatment)*	Number of Survivors x10 ⁵ at Selection ^a	Mean Number of Mutant Colonies ±S.D. ^b	Mutation Frequency/ 10 cells
Negative Control						
Culture medium		• +	100 (57.4)4	2.38 3.63	0.640.5	3.5 9.5
Solvent Control						
Ethanol	XI.	s •	100 (56.6)	2.24	1.4±0.9	6.2
Positive Control +59	14 ·	+	100 (35.9)	5	7.48	•
Dimethyl sulfoxide	**	+	100 (52.3)	5.87	2.0*1.0	3.4
Positive Controls		w.	To see			
Ethylmethane sulfonate	1 mg	.•	53.1	1.21	57.847.9	6.927
7,12-Dimethylbenz-	15.4 48	+	28.3	3.37	19.4±5.0	97.6
™ Test Material						ų.
Benzyl banzoate		•	101.8	2.36	2.041.9	ري د
		•	6.3	2.35	2.440.9	10.2
	120 µgf	•	18.6	2.01	1.240.8	0.9
		+	102.1	4.41	2.011.4	4.5
	100 µg	+	98.7	3.82	3.811.1	0.0
	250 µg	+	100.9	1.78	8.0.8	4.
		+	7.66	4.17	0.610.9	4.4
And the second s	***************************************					

Representative Results of the Initial V79 Chinese Hamster Lung Cell

TABLE 1.

Forward Gene Mutation Assay with Benzyl Benzoate

Mean Number of Mutant Colonies Means and standard deviations of tive dishes per dosing group. Average of two dishes.

Mutation Frequency (MF) - Average Number of Survivors at Selection

Intermediate doses (75, 80, and 90 µg/mL) exhibited similar cytotoxicity and did not suggest a mutagenic *Levels >50 µg/ml precipitated. The lowest dose -S9 (10 µg/ml) showed no evidence of a mutagenic effect. Walues in parentheses are the absolute survival rates. effect.

Representative Results of the Confirmatory V79 Chinese Hanster Lung Cell Forward Gene Mutation Assay with Benzyl Benzoate TABLE 2.

dium + 100 (55.7)4 3.07 1.640.5 5.2 1640.5	Substance	Dose/mL	S9-Acti-	Relative X Survival (after treatment)	Number of Survivors x10 ⁵ at Selection*	Mean Number of Mutant Colonies *S.D.b	Mutation Frequency/
dium + 100 (55.7) ⁴ 3.07 1.640.5 5.2 1641.3	Negative Control						
100 (55.7)4 3.07 1.640.5 5.2 1.641.3 5.2 1.641.3 1.7 1.641.3 1.7 1.641.3 1.7 1.641.3 1.7 1.641.3 1.7 1.641.3 1.7 1.641.3 1.6	Culture medium						
12		1 1	• 4	100 (55.7)4	3.07	1.640.5	6
12	Solvent Control		÷	100 (51.9)	2.34	1.8:1.3	7.7
## 100 (59.2) 2.89 3.442.3 11.8 11.8 100 (56.3) 2.62 2.441.1 9.2 2.441.1 9.2 2.441.1 9.2 2.44 1.2 20.247.2 510.1 1.2 4.8	Test Material	7 9 1]					
Sulfoxide 1X + 100 (55.3) 2.62 2.441.1 9.2 sulfoxide 1X + 100 (55.3) 2.84 1.240.8 4.2 trols sulfoxide 1X + 100 (55.3) 2.84 1.240.8 4.2 trols sulfoxide 1 mg	Echanol	20 M		100 (59.2)	2.89	3.4*2.3	e
Sulfoxide 12 + 100 (55.3) 2.84 1.210.8 4.2 Itols se zulfonate 1 mg	Positive Control +59		 -	100 (56.3)	2.62	2.411.1	9.5
1.210.8 4.2	Dimethyl sulfoxide			100 (55 3)	i c		
se zulfonate 1 mg	Positive Controls			frier) and	7.04	1.240.8	4.2
15.4 μg + 75.8 1.11 18.442.4 165.9 15.9 1.11 1.1	Ethylmethans sulfons			, c	.0		
1.0 1.0	7.12-Dimethylbenz.			0.5	9.40	20.2±7.2	510.1
oate 120 µg*.f - 41.2 2.44 1.610.9 6.6 50 µg* + 89.7 3.12 1.811.3 5.8 500 µg + 97.3 3.49 2.011.6 500 µg + 94.1 2.80 0.210.4 0.7 Indard deviations of five dishus per dosing group. Mean Number of Mutant Colonies Average Number of Survivors at Selection entheses are the absolute survival rates. /#L precipitated. Intermediate doses (90 and 100 µg/mL ·S9, and 100 µg/mL +S9) showed no mutagenic effect.	(a) anthracene	17.4	+	75.8	1.11	18.412.4	165.9
μg*.f 41.2 2.44 1.6±0.9 6.6 μg + 89.7 3.12 1.8±1.3 5.8 μg + 97.3 3.49 2.0±1.6 5.7 9 μg + 97.3 3.49 2.0±1.6 5.7 9	Test Material						
Hg + 89.7 3.12 1.841.3 5.8 49 7.3 3.49 2.041.6 5.7 97.3 3.49 2.041.6 5.7 94.1 2.80 0.240.4 0.7 9.7 94.1 2.80 0.240.4 0.7 9.7 9.4 1 2.80 0.240.4 0.7 9.7 9.7 9.8 94.1 94.1 5.8 94.1 0.7 9.7 9.8 94.1 94.1 94.1 94.1 94.1 94.1 97.1 9.8 97.1 9.8 97.1 9.8 97.1 9.8 97.1 9.8 97.1 9.8 97.1 9.8 97.1 9.8 97.1 9.8 97.1 97.1 97.1 97.1 97.1 97.1 97.1 97.1	Benzyl benzoate		,	41.2	2.44	1.6+0 9	Ý.
s of five dishes per dosing group. Hean Number of Mutant Colonies Average Number of Survivors at Selection a absolute survival rates. Intermediate doses (90 and 100 µg/mL -S9, and 100 µg/mL +S9) showed no scarded at day 6 for an unexplained reason. The highest dose 100 µg/mL -S9, and 100 µg/mL				. 00	1		o .
s of five dishes per dosing group. Mean Number of Mutant Colonies Average Number of Survivors at Selection a absolute survival rates. Intermediate doses (90 and 100 µg/mL -S9, and 100 µg/mL +S9) showed no scarded at day 6 for an unexplained reason. The highest dos.			• +	7.60	3.12	1.611.3	ر م
S of five dishes per dosing group. Mean Number of Mutant Colonies Average Number of Survivors at Selection a absolute survival rates. 1. Intermediate doses (90 and 100 µg/mL ·S9, and 100 µg/mL +S9) showed no ct. Scarded at day 6 for an unexplained reason. The highest dose from			. 4	24.1	2.80	2.041.6	5.7
S of five dishes per dosing group. Mean Number of Mutant Colonies Average Number of Survivors at Selection a absolute survival rates. 1. Intermediate doses (90 and 100 μg/mL -S9, and 100 μg/mL +S9) showed no ct. Scarded at day 6 for an unexplained reason. The highest dose from	Average of two dishes.						1
Average Number of Mutant Colonies Average Number of Survivors at Selection a absolute survival rates. 1. Intermediate doses (90 and 100 µg/mL ·S9, and 100 µg/mL +S9) showed no ct. Scarded at day 6 for an unexplained reason. The highest dose the	Means and standard devi	s of	ve dishes	per dosing group.			
Average Number of Survivors at Selection a absolute survival rates. 1. Intermediate doses (90 and 100 µg/mL -S9, and 100 µg/mL +S9) showed no ct. scarded at day 6 for an unexplained reason. The bighest dos (150)	Mutation Frequency (MF)		n Number o	f Mutant Colonie			
0 and 100 µg/mL -S9, and 100 µg/mL +S9) showed no		Avera	se Number o	f Survivors at S	election		
scarded at day 6 for an unexplained reason. The highest does then	Values in parentheses a Levels >50 µg/mL precip evidence of a mutagenic	e abs	ute surviv _e termediate	doses (90 and 10	10 µg/mL -S9, and	100 µg/mL +S9) show	
	The 50 µg/ml. cultures w	SCAL	lat day 6	for an unexplain		phone does then	

*Levels >50 µg/mL precipitated. Intermediate doses (90 and 100 µg/mL ·S9, evidence of a mutagenic effect.

*The 50 µg/mL cultures were discarded at day 6 for an unexplained reason.

severely cytotoxic after expression.

009412

APPENDIX A

MATERIALS AND METHODS
CBI pp. 12-19

Page is not included Pages 12 through 19	/				
The material not incluinformation:	nded contains	the	following	type	of
Identity of product	inert ingredie	nts.	<u>.</u>		
Identity of product :	impurities.				
Description of the pr	roduct manufac	turing	process.		
Description of quality	ty control pro	cedure	es.		
Identity of the source	ce of product	ingred	ients.		
Sales or other commen	rcial/financia	l info	rmation.		
A draft product label	1.				
The product confident	tial statement	of fo	rmula.		
Information about a p	pending regist:	ration	action.		
\times FIFRA registration da	ata.				
The document is a dup	plicate of page	e(s) _	· · · · · · · · · · · · · · · · · · ·		
The document is not i	responsive to	the re	quest.		
		•			*.

.

009412

DATA EVALUATION REPORT

BENZYL BENZOATE

Study Type: Mutagenicity: Mammalian Cells in Culture Cytogenetic Assay in Human Lymphocytes

Prepared for:

Health Effects Division
Office of Pesticide Programs
Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Clement International Corporation 9300 Lee Highway Fairfax, VA 22031-1207

Principal Reviewer	Nay 2. M. Caroll	Date 2-28-92
	Naney E. McCarroll, B.S.	
Independent Reviewe	- Lyne J. Hall	Date <u> </u>
QA/QC Manager	Lynne T. Haber, Ph.D. Maun A. Magel	
	Sharon Segal, Ph.D.	

Contract Number: 68D10075
Work Assignment Number: 1-45
Clement Number: 91-149

Project Officer: James Scott

GUIDELINE SERIES 84: MUTAGENICITY MANMALIAN CELLS IN CULTURE CYTOGENETICS

EPA Reviewer: Brian Dementi, Ph.D.

EPA Review Section III

Toxicology Branch (I)/HED

EPA Acting Section Head: Henry Spencer, Ph.D. Signature:

EPA Review Section III,

Toxicology Branch (I)/HED

Signature: /Sukin Derne Date: _3/5/92

DATA EVALUATION REPORT

STUDY TYPE: Mutagenicity: Mammalian cells in culture cytogenetic assay in

human lymphocytes

EPA IDENTIFICATION Numbers:

Tox Chem. Number: 082

MRID Number: 420231-02

TEST MATERIAL: Benzyl benzoate

SYNONYMS: Acarosano; benzoic acid benzyl ester

SPONSOR: Werner and Mertz GmbH, Mainz, Germany

STUDY NUMBER: 203411

TESTING FACILITY: CCR-Cytotest Cell Research GmbH and Co., KG, Rossdorf.

TITLE OF REPORT: Chromosome Aberration Assay in Human Lymphocytes In Vitro with Benzyl Benzoate

AUTHOR: A. Heidemann

REPORT ISSUED: May 16, 1991.

CONCLUSIONS-EXECUTIVE SUMMARY: Human lymphocytes derived from a single donor were evaluated for chromosome aberrations 24 hours postexposure to three nonactivated doses (10.0, 100.0, and 250.0 µg/mL) and three S9-activated doses (30.0, 250.0, and 500.0 μg/mL) of benzyl benzoate. Chromosome aberrations were also scored in cultures exposed to the high dose with and without S9 activation 48 hours posttreatment. Results indicated that levels ≥100.0 µg/mL +/-S9 were partially insoluble in culture medium and that nonactivated $500~\mu g/mL$ was cytotoxic. No evidence of a clastogenic effect was seen in the absence of S9 activation. However, no conclusions can be reached for the S9-activated phase of testing. Although there were no significant increases in the frequency of cells with aberrations, our reviewers have concerns

MAMMALIAN CELLS IN CULTURE CYTOGENETICS

regarding the presence of complex aberrations at 30, 250, and 500 $\mu g/mL$ (24-hour harvest). We assess that the biological significance, if any, of these findings probably would have been resolved had the study author followed the recommended approach of using human lymphocytes derived from independent donors or by repeating the assay. Since no definitive conclusions can be reached, the study does not satisfy Guideline requirements for genetic effects, Category II, Structural Chromosome Aberrations.

STUDY CLASSIFICATION: The study is unacceptable.

A.

MAI	<u>CERIALS</u> :
1.	Test Material: Benzyl benzoate
	Description: Colorless liquid Identification No.: Batch number 18504 Purity: 99%
	Receipt date: Not reported Stability: Stable for 12 months in solution; expiration date June 28 1991
	Contaminants: None listed Solvent used: Ethanol (ETOH)
	Other provide information: The test material was stored at room temperature protected from light. Solutions of the test macerial were prepared on the day of use. The test material was found to be stable in culture medium Dulbecco's modified Eagle medium/Ham's F ₁₂ 1:1 (DMEN/F ₁₂) at 37°C for 4 hours.
2.	Control Materials:
	Negative: DMEM F ₁₂
	Solvent/final concentration: ETOH/1%
	Positive: Nonactivation (concentrations, solvent): Ethyl methane- sulfonace (EMS) was prepared in DMEM/F ₁₂ to yield a final concentration of 720 µg/mL.
	Activation (concentrations, solvent): Cyclophosphamide (CF) was prepared in DMEM/ F_{12} to yield a final concentration of 60 $\mu g/mL$.
· 3.	age)
	x Aroclor 1254 x induced x rat x liver
	phenobarbital noninduced mouse lung none hamster other
	other

MAMMALIAN CELLS IN CULTURE CYTOGENETICS

The rat S9 liver homogenate was prepared by the performing laboratory. The protein content of the batch (lot number 191289) used in this study was 30.3 mg/mL.

S9 mix composition:

Component	Concentration	<u>in</u>	S9 Mix	
Sodium phosphate buffer, pH 7.4	100	mM		
KC1	33	mM		
NADP	· 4	mM		
Glucose 6-Phosphate	5	mM		
MgCl ₂	8	mM		
S9	150	mg	protein	

Note: 20 μ l of the S9 mix were added to 10 mL of culture medium to yield a final protein concentration of 0.3 mg/mL.

4. Test Compound Concentration Used:

- (a) Preliminary cytotoxicity assay: Cytotoxicity was assessed in parallel with the cytogenetic assay.
 - (1) Nonactivated conditions: Eight doses (0.3, 1.0, 3.0, 19.0, 30.0, 100.0, 250, and 500.0 μg/mL) with a 24-hour cell harvest and six dose (3.0, 10.0, 30.0, 100.0, 250.0, and 500.0 μg/mL) with a 48-hour cell harvest.
 - (2) S9-activated conditions: As above.

(b) Cytogenetic assay:

- (1) Nonactivated conditions: Cultures in the cytotoxicity phase of testing that were exposed to 10, 100, and 250 µg/mL (24-hour harvest) and to 250 µg/mL (48-hour harvest) were scored for chromosome aberrations:
- (2) S9-activated conditions: Cultures in the cytotoxicity phase of testing that were exposed to 30, 250, and 500 μg/mL (24-hour harvest) and to 500 μg/mL (48-hour harvest) were scored for chromosome aberrations.
- 5. Test Cells: Human lymphocytes were obtained from the blood of one healthy female donor (age 41 years). Lymphocyte cultures were initiated within 24 hours of collection in DMEM/F₁₂ medium supplemented with 15% fetal calf serum (FCS) and containing phytohemagglutinin (concentration not specified) and antibiotics.

Properly maintained? Yes.

Cell line or strain periodically checked for mycoplasma contamination? Not applicable.

4 of 9

MANMALIAN CELLS IN CULTURE CYTOGENETICS

Cell line or strain periodically check for karyotype stability? Not applicable.

B. TEST PERFORMANCE:

1. Cell Treatments:

- (a) Cells exposed to test compound for: 4 hours (nonactivated) 4 hours (activated)
- (b) Cells exposed to positive controls for:
 4 hours (nonactivated) 4 hours (activated)
- (c) Cells exposed to negative and/or solvent controls for: 4 hours (nonactivated) 4 hours (activated)

2. Cytogenetic Assay:

- Treatment: Forty-eight hours after initiation, duplicate cultures were exposed to the selected test material doses, the solvent control (ETOH), or the positive controls (EMS or CP) in both the presence and absence of S9 activation. At the end of the 4-hour treatment, cells were centrifuged, refed culture medium, and reincubated. Colcemid (final concentration, 0.2 μg/mL) was added 3 hours before the cultures were harvested (24 and 48 hours posttreatment). Metaphase cells were collected swollen in 0.0375 M KCl, and fixed in glacial acetic acid: absolute methanol (1:3). Slides were stained with Giemsa and coded.
- (b) Metaphase analysis: Two hundred metaphase plates (100 cells/ culture) from each selected dose group and the negative, solvent and positive control groups were scored for chromosome aberrations; gaps were recorded but not included in the aberration frequencies. The mitotic index (MI) was determined by counting 1000 cells per culture. Polyploid cells per 100 scored cells were also determined.
- (c) <u>Statistical methods</u>: The data from the experimental groups were evaluated for statistical significance (p<0.05) by the Chi-square test.

(d) <u>Evaluation criteria</u>:

(1) Assay validity: The assay was considered acceptable if
(a) the frequency of chromosome aberrations in the negative
and/or solvent control cultures was within the performing
laboratory's historical range (not provided) and (b) the
positive controls induced significant increases in the
frequency of aberrations.

MAMMALIAN CELLS IN CULTURE CYTOGENETICS

- (2) <u>Positive response</u>: The test material was considered positive if at least one dose caused a significant increase in the chromosome aberrations frequency compared to the negative control.
- 3. Protocol: None provided.

C. REPORTED RESULTS:

 Cytotoxicity Assay. Initially doses ranging from 0.3 to 500.0 μg/mL +/-S9 were assessed for cytotoxic effects 24 and 48 hours posttreatment. Slight compound precipitation was reported at concentrations ≥100.0 μg/mL +/-S9.

In the absence of S9 activation, the MI for cells sampled 24 hours postexposure to 500 µg/mL was markedly reduced (-75%) compared to the solvent value; a slight reduction was also seen at 250 µg/mL. Below 250 µg/mL, the MI was not adversely affected by compound treatment. There was an -40% reduction in mitotic cell recovery 48 hours following treat . at with 500 µg/mL -S9; no convincing evidence of cytocoxiecity was seen at lower nonactivated doses. No adverse effects on the number of mitotic cells were seen with the S9-activated test material at either harvest time. Based on these preliminary findings, cultures exposed to nonactivated 10.0, 100.0, and 250.0 µg/mL (24-hour cell harvest) and 250.0 µg/mL (48-hour cell harvest) were examined for chromosome aberrations. As the results presented in Table 1 indicated, no significant increases in the frequency of structural chromosome aberrations were found. Similarly, the incidence of numerical abernations in treated groups were generally comparable to the negative and solvent control values.

In the presence of S9 activation, the test material was not cytotoxic at any level; accordingly, cultures exposed to 30, 250, 500 μ g/mL (24-hour sampling time) and 500 μ g/mL (48-hour sampling time) were examined for abnormal chromosome morphology (Table 2). In agreement with the nonactivated findings, there were no significant increases in either structural or numerical chromosome aberrations at any S9-activated dose. Our reviewers noted, however, that single complex aberrations were scored at two dose levels following the 24-hour harvest (1 dicentric at 30 μ g/mL and 1 exchange figure at 500 μ g/mL). Similarly, multiple aberrations (cells with >5 aberrations) were observed at two doses (250 and 500 μ g/mL) 24-hour posttreatment.

By convention, multiple aberrations are generally considered to be cells with >10 aberrations and the types of aberrations within these cells are rarely identified. However, information accompanying the individual culture data indicated that all abnormal figures in cells classified as multiple aberrations were exchanges. Therefore, the actual number of complex aberrations scored in the 250- and 500-µg/mL treatment groups were >5 and >6 exchanges, respectively.

TARLE 1. Representative Results from the Monactivated Human Lymphocyte in Villo Cytogenetic Assays with Bensyl Bensoate

Substance	Dose/ud.	Hervest Time (Hours)	Mitotic Index (X)*	No. of Cells Scored	Total No. of Aberrations ^b	No of Cells with Aberrations ^b	Fercent Cells with Aberrations ^b	Biologically Significant Aberrations (No./Type) ^C
Negative Control Culture medium	1	\$2	4.1	200	m	e	1.50	24 · 34 · 36 · 36 · 36 · 36 · 36 · 36 · 3
Bulwait Control	***	48	4.7	200	.લં ન	01 m	1 00	84 11 11 12 13 14 14
Positive Control Eth, I methanesulfonate 720 µg	720 µ6	**	3. .a	200	23	77	10.50	38; 6F; 11F; 15E
Tout Maturial								
Benkyl benzoate	250.0 25 250.0 25 250.0 25	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.5	200	ž ~ 1		2.16	1HA 2b; 51F
	250.0 ps 500.0 ps	3 4 3 4	11.5	1008 ND ^h	 ;	*	1.00	5 :

extember of metaphases per 1000 cells scored per culture.

bours excluded.

Abbraviations used:

B = Break IF = Isotragment PA = Paltiple aberrations; all
F = Fragments E = Exchange class of aberrations were exchanges)

 $^{\rm d}N_{\rm O}$ atructural aberrations were seen in the lowest scored dose (10 $\mu g/mL$). benco(a)pyrene

Meas than 200 metaphase found for analysis.

flusuificient number of metaphases available for analysis.

Whis culture lost owing to an unspecified technical error.

"ND - Not done

)

TABLE 2. Representative Results from the 59-Activated Human Lymphocyte in Villo Cytogenetic Asseys with Bensyl Bensoate

Substance Substance	Section of the sectio	Time Time (Hours)	Time Index	Cells Cells Scared	No. of	Calls with Aberrations	Cells with Aberrations	Aberrations (No./Type)
Negative Control								
Culture medium	;	24	1.1	200	•		2.00	2B; 1F; 11F
Solvent Control								*
Ethanol	**	24	7.2	200	~	~	1.00	82
	=	87	10.7	200	•	•	00.0	*
Positive Control				• •		. 1		
Cyclophosphamide	3	77	 	200	. 77	7	10.50	10B; 21B; 4F; 51F; 3E
Test Haterial								
Benzyl benzoate	30 86	24	5.7	200	•		3.00	38; 2IF; 10
	100 11	37	7.3	2	;	:	:	
	250 MB	77	8.8	200	64	•••	2.50	18: 014: 1M
	200 pt	3.	9.9	200	7	ņ	1.50	IIF; IM, IE
	250	97	12.3	702	1	•	;	;
	2005	.	13.0	200	~	d	1.00	10: 117

*Mumber of metaphases per 1000 cells scored per culture.

bgaps excluded.

Cabbraviations used:

B = Break
F = Fragments
E = Exchange
IF = Isofragment MA = Multiple aberrations
(ctla with >5 aborrations;
all observed aberrations were exchanges)

dND - Not done.

との方はないかからないのであるというとうだれるとないないないとうとう

27

MANMALIAN CELLS IN CULTURE CYTOGENETICS

There also appeared to be a slight increase in simple aberrations (i.e., breaks and fragments) at the 30- and 250-µg/mL treatment levels. In the absence of a significant effect on the percentage of cells with aberrations, the findings were not definitive evidence of clastogenesis; they were, however, unusual.

Based on the results, the study author concluded that benzyl benzoate was not clastogenic in this <u>in vitro</u> human lymphocyte cytogenetic wassay.

- D. REVIEWERS' DISCUSSION/CONCLUSIONS: We conclude that there was no evidence of a clastogenic response induced by nonactivated benzyl benzoate in human lymphocytes derived from a single donor. However, the biological significance of the rare complex aberrations at all S9-activated levels following the 24-hour harvest illustrates the rationale for conducting human lymphocyte cytogenetic assays with replicate cultures from different donors or performing independent experiments. We believe that the relevance, if any, of these results could have been clearly established either by the use of donor cells from a second source or the performance of a repeat test. We assess, therefore, that the data from the S9-activated phase of testing are inconclusive and that the study should be repeated.
- E. <u>QUALITY ASSURANCE MEASURES</u>: Was test performed under GLPs? <u>Yes</u>. (A quality assurance statement was signed and dated June 18, 1991).
- F. CBI APPENDIX: Appendix A, Materials and Methods, CBI pp. 14-16.

APPENDIX A

MATERIALS AND METHODS
CBI pp. 14-16

a destruit et **javar**en (j. 1901). Signatur en 1900 j**avar**en 1914 - 1914.

to make your its

* 41.028 T

No seemater and

710

benzyl benzoate
Page is not included in this copy. Pages 30 through 37 are not included.
The material not included contains the following type of information:
Identity of product inert ingredients.
Identity of product impurities.
Description of the product manufacturing process.
Description of quality control procedures.
Identity of the source of product ingredients.
Sales or other commercial/financial information.
A draft product label.
The product confidential statement of formula.
Information about a pending registration action.
FIFRA registration data.
The document is a duplicate of page(s)
The document is not responsive to the request.
The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

* * *