US ERA ARCHIVE DOCUMENT

DP Barcode: 299970

MRID No: 460626-38

DATA EVALUATION RECORD ALGAL TOXICITY TEST GUIDELINE OPPTS 850.5400 (TIERS I AND II)

CHEMICAL:

PXTS

PC Code No.: 006929

TEST MATERIAL:

PXTS TECHNICAL

Purity: 100%

Batch No.: 1685-23, Bottle #2 Exp. Date March 28, 2005

EPA File Symbol: 75799-R

3. CITATION

Author:

Debbie Desjardins (Study Director), Raymond L.

Van Hoven and Henry O. Krueger

Title:

PXTS: A 96-Hour Toxicity Test With the

Freshwater Diatom Navicula pelliculosa

Study Completion Date:

December 18, 2003

Laboratory:

Wildlife, International, Ltd.

8598 Commerce Drive Easton, Maryland 21601

Sponsor:

Akzo Nobel Functional Chemicals LLC

5 Livingstone Avenue

Dobbs Ferry, New York 10522

Laboratory Report ID:

Wildlife International, Ltd. Project No. 497A-117

MRID No.:

460626-38

REVIEWED BY:

Srinivas Gowda, Biologist

US EPA/OPP/AD/RASSB/Team 1

Signature: Sojuival Gouda

Date: 5 13 04

APPROVED BY:

Norm Cook, Chief

US EPA/OPP/AD/RASSB

Signature:

STUDY PARAMETER

Definitive Test Duration:

96-hr

Type of Concentrations:

Nominal and Mean Measured (two highest

concentrations)

7. CONCLUSIONS

This study is scientifically sound and meets the requirements for a Tier 2 aquatic plant growth and reproduction study. Based on nominal concentrations,

Cell Density	Reported	<u>Verified</u>
		•
<u>96-hr</u>	40 (5	45 44-17
EC _{so} :	$48 \mu \text{g/L}$	47 μg/L
(95 %CI)	$45 - 51 \mu g/L$	41-51 μg/L
NOEC:	$31 \mu \mathrm{g/L}$	31 μ g/L

Study results were based on the nominal concentrations and the initial mean measured concentration of the highest test solution. After 96 hours, treatment related effects for cell density and biomass were apparent in the highest concentration. There were no signs of adherence of cells to the test chambers or aggregation/flocculation of algae in any treatment group. There were no noticeable changes in cell morphology in any of the tested concentrations when compared to the control.

8. ADEOUACY OF THE STUDY

- A. Classification: Core
- B. Rationale: Study not discounted for minor guideline deviations discussed in Section 9.
- C. Repairability: Not applicable.

9. GUIDELINE DEVIATIONS

The study was conducted using the Wildlife International, Ltd. protocol which is based on the harmonized OPPTS Test Guideline 850.5400. This guideline was used in preparing this Data Evaluation Record.

- Photosynthetically-active radiation was not reported.
- The pH at test initiation was pH = 7.7 7.9 and increased to pH = 7.9 8.3 by 96 hours. The guideline recommended pH for *Navicula* is 8.0 ± 0.1 . The pH tended to increase relative to increases in algal densities, which the study author reported is typical for tests conducted with *Navicula pelliculosa*.
- The physical-chemical properties of the test chemical were not reported.

- The study was conducted at concentrations above the known limit of solubility (below 12.5 µg/L) using a solvent to raise the solubility of the test substance above the saturation level, at the request of the EPA.
- A positive control was not included as a part of the study.
- Algistatic and algicidal effects were not differentiated.
- 10. <u>SUBMISSION PURPOSE</u>: Registration

11. MATERIALS AND METHODS

A. Test Organisms

GuidineCntera	Reported Information
 Species Selenastrum capricornatum (Raphidocelis subcapitata) Skeletonema costatum Anabaena flos-aquae Navicula pelliculosa 	(p. 12) • Navicula pelliculosa
Initial Number of Cells 10,000 cells/mL (Selenastrum, Anabaena, Navicula) 77,000 cells/mL (Skeletonema)	(p. 11) • Approximately 10,000 cells/mL at test initiation.
Stock Culture • 3 to 7 days old	(p.12)Inocula for the test was prepared from a 3 day old culture.
Nutrients Standard formula (ASTM E1218-20) pH 7.5 ± 0.1 (Selenastrum, Navicula, Anabaena), 8.1 ± 0.1 (Skeletonema) Freshly prepared	 (p. 13) Algal cells cultured and tested in freshwater algal medium (ASTM 1218-90E) Stock nutrient solutions prepared by adding reagent-grade chemicals to purified well water. The test medium was prepared by adding appropriate volumes of stock nutrient solutions to purified well water. The pH was adjusted to 7.5 ± 0.1 using 10% HCL and sterilized by filtration.

B. Test System

Guideline Oriteria	Reported Information
Solvent Upper limit - 0.5 mL/L	 (p. 14) -0.1 mL/L of acetone was used to raise the solubility of the test substance above the saturation level.
Temperature 24° ± 2°C (Selenastrum, Navicula, Anabaena) 20° ± 2°C (Skeletonema) Recorded hourly	 (p. 13 and 24) Test chambers were held in an environmental chamber at 24 ± 2°C (22.9 to 23.5°C). The temperature was monitored continuously in the chamber and twice daily in a container of water adjacent to test chambers.
 Light Intensity 4.3 K lx (± 10%) (Selenastrum, Skeletonema, Navicula) 2.2 K lx (± 10%) (Anabaena) Photosynthetically active radiation approx. 66.5 ± 10% μEin/m²/sec 	 (p. 13 and 19) 4030 to 4670 lux (measurements taken at five locations surrounding the test flasks). Photosynthetically active radiation not reported.
Photoperiod 14-hr light/10-hr dark (Skeletonema) Continuous (Selenastrum, Navicula, Anabaena)	(p. 13)Continuous light - 24-hr light/0-hr dark.
 pH 7.5 ± 0.1 (Selenastrum, Navicula, Anabaema) 8.1 ± 0.1 (Skeletonema) Measured at beginning and end of test 	 (p. 13 and 25) pH = 7.7 - 7.9 (0-hr) pH = 7.9 - 8.3 (96-hr) At test initiation, pH was measured in the individual batches of test solution prepared for each treatment. At test termination, the pH was measured in pooled samples of test solution collected from each of the replicates of each treatment and control.
Oscillation Rates 100 cycles/min (Selenastrum) 60 cycles/min (Skeletonema)	(p. 13)Test flasks were shaken continuously at approximately 100 rpm.

Guideline Criteria Test Containers 125-500 mL Erlenmeyer flasks Cleaned/sterilized (solvent and acid) and conditioned Test solution volume ≤ 50% of flask volume	(p.13) • Sterile 250-mL Erlenmeyer flasks, plugged with foam stoppers, and containing the test solution of each respective treatment. • 100 mL test solution (<50% of flask volume).
 Dilution Water Sufficient quality (e.g., ASTM Type I) Saltwater - commercial or modified synthetic formulation added to distilled/deionized water (30 ppt or 24-35 g/kg) 	(p. 13) • Purified well water (NANOpure® water)

C. Test Design

Range-Finding Test Water solubility and physical-chemical properties of test chemical determined? Validated analytical method developed? Lowest dose at detection limit, upper dose at saturation concentration or 1000 mg/L If < 50% reduction in growth at highest dose, no definitive test required	 (p. 11) Physical-chemical properties of the test chemical were not reported. A validated analytical method was developed. Range-finding test was not mentioned. The final test was conducted at concentrations above the known limit of solubility (below 12.5 μg/L) using a solvent to raise the solubility of the test
	solvent to raise the solubility of the test substance above the saturation level, at the request of the EPA.
Dose Range 1.5X -2X progression	(p. 14) • Approximately 2X progression

DP Barcode: 299970

Guideline Criteria	Reported Information
 Doses 5 or more concentrations of test substance in a geometric series >90% growth inhibited or stimulated at highest concentration or concentrations bracket expected EC₅₀ 	 (p. 9 and 27) Five concentrations: Nominal = 7.8, 16, 31, 63, 125 μg/L. Mean measured = 144 μg/L Only the highest concentration (125 μg/L) could be analyzed due to limits of the analytical method, the maximum amount of water that can be removed from the test chambers, and the complexity of the algal medium.
 Controls Negative and/or solvent each test Positive - zinc chloride (periodically) 	(p.9)Negative and solvent controlNo positive control
Replicates Per Dose • 3 or more (4 or more for Navicula)	(p. 11)3 replicates per dose, plus a negative and solvent control.
Duration of Test • 96-hr	(p. 11) • 96-hr
 Growth Logarithmic growth (controls) by 96-hr or repeat test 1.5 x 10⁶ cells/mL (Skeletonema) 3.5 x 10⁶ cells/mL (Selenastrum) 	 (p. 19, 27 and 31) Logarithmic growth in control by 96-hr Mean of 1.1 x 10⁶ cells/mL at 96-hr. in the control. Increase by factor of 105.
Daily Observations?	• Yes (p. 16 and 27)

DP-Barcode: 299970

Guideline Criteria	Reported Information
Method of Observations Direct - microscopic cell count of at least 400 cells/flask Indirect - spectrophotometry, electronic cell counter, dry weight, etc; calibrated by microscopic count Qualitative and descriptive	 (p. 16 and 20) Cell counts were performed using a hemacytometer and microscope. The samples were diluted using an electron solution (Isoton ®), as needed, to maintain counting accuracy. A small amount of each sample was loaded onto a hemacytometer and 10 grids were counted. Using this technique, the minimum quantifiable cell density was 1,000 cells/mL. Growth of cells were assessed for aggregations or flocculation of cells and adherence of cells to the test chamber, as well as changes in morphology.
 Cell Separation Syringe ultrasonic bath, or blender; limited sonification (Anabaena) Manual or rotary shaking only (Selenastrum, Skeletonema, Navicula) 	(p. 13)Mechanical shaking in an environmental chamber.
Algistatic and algicidal effects differentiated?	 (P. 19 and 20) Algistatic and algicidal effects not differentiated. After 96 hours, treatment related effects for cell density and biomass were apparent in the highest concentration.
Maximum Labeled Rate	Not reported.

12. REPORTED RESULTS

Guideline Criteria	Reported Information
Quality assurance and GLP compliance	• Yes (p. 3 and 4)
statements included in report?	

Guidelne Griteria	Reported Information
Detailed information on test organisms included (scientific name, method of verification, strain, and source)?	 (p. 12) Yes Original algal cultures obtained from UTEX - The Culture Collection of Algae at the University of Texas at Austin and maintained at Wildlife International, Ltd., Easton, Maryland.
Growth in controls reported?	• Yes (p. 27)
Description of test system and test design included?	• Yes (p. 13)
Initial and final chemical concentrations and pH measured?	• Yes (p. 11, 23, 25)
Initial, 24-, 48-, 72- and 96-hr cell densities measured? % of inhibition or growth and other adverse effects reported?	• Yes • Yes (p. 27)
96-hr EC ₅₀ and when sufficient data generated 24-, 48-, and 72-hr EC ₅₀ , and 95% C.I. reported?	• Yes (p. 10)
Raw data included?	• Yes (p. 48-50)
Methods and data records reported?	• Yes (p. 12)
 Statistical Analysis Mean and standard deviation calculated and plotted? Goodness-of-fit determined? 	(p. 27-32)Only mean calculated and plotted.Yes

DP Barcode: 299970

Dose Response

Mean Cell Density and Percent Inhibition

		MEAN	II Density	MAIG I C. C.	A STATE OF THE PROPERTY OF THE PARTY OF THE	CONTRACTOR CONTRACTOR	AND PROPERTY OF	CONTRACTOR OF THE PARTY OF THE
	201	our	748-1	our	72.1	our A	26 E	our S
Nominal Conc. at Test initiation (ug/le)	Mean Cella Density (cell/mL)	Percent	Mean Gall Density: (cell/inl.)	Percent Inhibition	Mean Cell (Density ((cell/mL)	Percent Inhibition to	Mean Cell Density (Cell III)	Percent Inhibition
Negative Control	26,000		197,333		1,033,333		.1,048,333	
Solvent Control	42,667	••	260,000	<u></u>	835,000		1,068,000	4 K
Pooled Control	34,334		228,667.		934,167		1,058,333	
7.8	27,667	35	85,667	63	385,333°	59	863,333	18
16	32,667	23	193,000	16	846,667	9.4	1,035,000	2.2
31	41,000	3.9	173,667	24	805,000	14	890,000	16
63	3,333	92	6,333	97	23,000	98	151,333'	86
125	6,667	84	2,667	. 99	5,333*	99	55,667*	95

Percent Inhibition was calculated relative to the pooled control replicates.

Mean Area Under the Growth Curve (Biomass) and Percent Inhibition

Mea	II Area C	muer the	Olowin.	Cui ve (Di	OH MANAGES AND ASSESSED	CHARLEST CONTRACTOR	PROPERTY AND PERSONS	
	0-24	Hours	048	Hours	24 J 0-72 H	OUIS	10061	ous
Nominal Tests Conc. at Test Initiation (ug/L)	Mean; Arca	Percent Inhibition	Mean) Mean) Agai	Percent Inhibition	Mesi Area	Percent Inhibition		Percent Inhibition
Negative Control	192,000		2,632,000		17,160,000		41,900,000	-
Solvent Control	392,000		3,784,000		16,684,000	••	39,284,000	
Pooled Control	292,000	-	3,208,000		16,922,000		40,592,000	
7.8	212,000	46	1,332,000	58	6,744,000°	60	21,488,000	47
16	272,000	31	2,740,000	15	14,976,000	- 11	37,316,000	8.1
31	372,000	5.1	2,708,000	16	14,212,000°	16	34,312,000	15
63	0	100-	0	100	116,000°	99	1,968,000	95
125	0	100	0	100	0'	100	516,000*	99

Percent Inhibition was calculated relative to the pooled control replicates.

² Percent inhibition was calculated relavtive to the solvent control replicates.

^{*} Statistically significant difference (p<0.05) at 72 and 96 hours from the pooled control replicates using Dunnett's test.

² Percent inhibition was calculated relaytive to the solvent control replicates.

Statistically significant difference (p<0.05) at 72 and 96 hours from the pooled control replicates using Dunnett's test. p. 28

DP Barcode: 299970

•		•		
Mean Grov	wth Rate	and P	ercent	Inhibition

		Mean Gro				THE PARTY OF THE P		COME SERVICE SERVICE	
	0.2(1)	louis .	0-48 Hours 24		* (\$12 Found 1)		0.96 Hours		
Nominal Test Conc. at Test Initiation (Ug/L)	Mean Growth Rafe	Percenta infiliation	Mean Growth a Rate	ePercent Enhibition	Mean Grown Rate	Percent Inhibition	Mean (Growth (Erre	Percent Inhibition	
Negative Control	0.0389	ACTIVITY OF STREET	0.0615		0.0643		0.0485		
Solvent Control	0.0600		0.0678		0.0612		0.0483.	3	
Pooled Control	0.0495		0.0646		0.0628	·	0.0484		
7.8	0.0412	17	0.0445	31	0.0502°	20	0.0464	4.1	
16	0.0489	1.1	0.0614	5.0	0.0616	2.0	0.0483	0.26	
	0.0583	-18	0.0595	8.0	0.0608	3.2 '	0.0467	3.5	
31	0.0383	100	0.0	100	0.0104	83	0.0274	43	
63	0.0	100	0.0	100	0.0*	100	0.0151*	69:	

¹ Percent Inhibition was calculated relative to the pooled control replicates.

Statistical Results

Statistical Method: Cell density, growth rate, and area under the growth curve were analyzed statistically by non-linear regression (SAS, Version 8.02) to determine EC₅₀ values and corresponding 95% confidence limits for each 24-hour exposure interval. To determine the NOEC at 72 and 96 hours, cell density and the area under the growth curve data were first evaluated for normality and homogeneity of variance using Shapiro-Wilk's and Levene's tests, respectively, and were compared to the pooled control using Dunnett's test (p=0.05).

Statistically significant difference (p<0.05) at 72 and 96 hours from the pooled control replicates using Dunnett's test.

ECson E. Cso and E. Cso Values (µg/L) Values Over the 96-hr Exposure Period

, L. C.	~509 ~ 6~50		50	VP 8 -/			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second second second second	THE WAY THE PARTY OF THE PARTY.
		ell Density		Area Uno	er the Grow	th Curve		nowth Rate	
Time;	inc.	. 03%	NOEG:	EG.	95%	NOEC	EC	95%	NOEC:
	(ugil):	Ci (μg/L)	(ugil)	(igT)	(ug E)	NOECH (UB/D)	(LQL)	(ERNT)	(my/L)
24-hr	49	43 - 51		· 47	36 - 47	-	47	42 - 47	_
48-hr	: 39	32 - 45	-	42	31 - 46	-	44	r42 - 46	
72-hr	41	36 - 46	31	40	38 - 43	16	49	46 - 53	31
96-hr	48	45 - 51	31	43	40 - 46	31	79	53 - 114	31

p. 20 and 30

13. VERIFICATION OF STATISTICAL RESULTS

Statistical Method:

NOEC Determination

The 72 hour and 96 hour data were first checked for normality and homogeneity using the Shapiro-Wilks' Test and Bartletts Test, respectively. Data were normally distributed; therefore, the NOECs were determined using the Bonferroni T-Test.

EC₅₀ Determination

The EC₅₀, E_bC₅₀ and E_rC₅₀ values and 95% confidence limits were calculated for cell densities, biomass and growth rate. The EC values were determined using EPA's Linear Interpolation Method for Sublethal Toxicity: The Inhibition Concentration (ICp) Approach.

EC. E. C. and E. C. Values (µg/L) Values Over the 96-hr Exposure Period

としてのり エントし	40 mma m.,	C ₅₀ v aruc	5 (PB =)		01 1210 2 0				
				AreaUnc	ler the Grow	th Curve		rowth Rate	
Time	(07/L)	95%	NOEC	EC	95%	NOEG	EC.	95%	NOEC
	(ug/L)	((원 (원)	(ug/L)	(ug/L)	195% 1.6.1	(ug/L)	(1845)	(ug/b)	(m/L)
24-hr	49	42 - 51		47	38 - 47	 .	. 47	38 - 47	
48-hr	39	33 - 46	' 	40	33 - 47		44	43 - 46	
72-hr	41	36 - 46	31	40	38 - 43	16	49	46 - 52	_1
96-hr	47 .	41 - 51	31	43	39 - 46	31	79	53 - 117	_!

The NOEC could not be verified because the mean square values are zero, and an F value could not be calculated.

DP Barcode: 299970

MRID No: 460626-38

REVIEWER'S COMMENTS:

- The growth rate NOECs could not be verified because the mean square values are zero and an F value could not be calculated.
- Verified EC_{50} values are the same or are very similar to the those reported in the Study.

