US ERA ARCHIVE DOCUMENT

DATA EVALUATION RECORD ALGAL TOXICITY TEST GUIDELINE OPPTS 850.5400 (TIERS I AND II)

CHEMICAL:

PXTS

PC Code No.: 006929

TEST MATERIAL:

PXTS TECHNICAL

Purity: 100%

Batch No.: 1685-23, Bottle #2 Exp. Date March 28, 2005 EPA File Symbol: 75799-R

3. CITATION

Debbie Desigrdins (Study Director), Raymond L. Author:

Van Hoven and Henry O. Krueger

PXTS: A 96-Hour Toxicity Test With the Marine Title:

Diatom (Skeletonema costatum)

Study Completion Date:

January 9, 2003 Laboratory: Wildlife, International, Ltd.

8598 Commerce Drive Easton, Maryland 21601

Akzo Nobel Functional Chemicals LLC Sponsor:

5 Livingstone Avenue

Dobbs Ferry, New York 10522

Wildlife International, Ltd. Project No. 497A-117 Laboratory Report ID:

> MRID No.: 460626-37

REVIEWED BY:

Srinivas Gowda, Biologist

US EPA/OPP/AD/RASSB/Team 1

Signature: Stimival Courda

Date: 05-13-04

APPROVED BY:

Norm Cook, Chief

US EPA/OPP/AD/RASSB

Signature:

Date: 4/3/04

DP Barcode: 299970

6. STUDY PARAMETERS:

Definitive Test Duration:

96-hr

Type of Concentrations:

Nominal and Mean Measured (two highest

concentrations)

7. <u>CONCLUSIONS</u>:

Cell Density	• .	Reported	<u>Verified</u>
	96-hr		
	EC ₅₀ :	>125 µg/L	>125 µg/L
	(95 %CI)	Not calculable	Not calculable
	NOEC:	63 μg/L	63 μg/L

Study results were based on the nominal concentrations and the initial mean measured concentration of the two highest test solutions. After 72 and 96 hours, treatment related effects for cell density and growth rate were apparent in the highest concentration. After 72 hours, treatment related effects for biomass were apparent in the two highest test concentrations.

8. ADEQUACY OF THE STUDY

- A. Classification: Supplemental.
- B. Rationale: This study did not determine an EC₅₀ value. A range finding test was not conducted to establish test solution concentrations for the definitive test.
- C. Repairability: This study may be upgraded to core if the registrant submits a valid range finding study for *Skeletonema costatum* and provides additional description of good faith efforts taken to solubilize PXTS.

9. GUIDELINE DEVIATIONS

The Study was conducted using the Wildlife International, Ltd protocol which is based on OPPTs Test Guideline 850.5400. This guideline was also used in preparing this Data Evaluation Record.

- Photosynthetically-active radiation was not reported.
- The reported photoperiod of 16 hours of light/8 hours of darkness differed slightly than the 14-hour light/10-hour darkness photoperiod recommended in the guidelines.

- The pH at test initiation was pH = 7.9 and increased to pH = 8.5 8.8 by 96 hours. The guideline recommended pH for *Skeletonema* is 8.0 ± 0.1 . The pH tended to increase relative to increases in algal densities, which the study author reported is typical for tests conducted with *Skeletonema*.
- The test flasks were shaken at a faster rate (100 rpm) than the guideline recommended rate of 60 cycles/minute for *Skeletonema*.
- The physical-chemical properties of the test chemical were not reported.
- The study was conducted at concentrations above the known limit of solubility (below $12.5 \mu g/L$) using a solvent to raise the solubility of the test substance above the saturation level, at the request of the EPA.
- Growth was inhibited by <90% at the highest concentration.
- A positive control was not included as a part of the study.
- The mean cell density in the 96-hour control samples was 1.3×10^6 cells/mL. This is slightly lower than the recommended 1.5×10^6 cells/mL as specified in the guideline.
 - Algistatic/algicidal effects were not differentiated.
- 10. SUBMISSION PURPOSE: Registration

11. MATERIALS AND METHODS

A. Test Organisms

Guideline Criteria	Reported Information
Species • Selenastrum capricornatum (Raphidocelis	(p. 12) • Skeletonema costatum (CCMP 1332)
subcapitata) • Skeletonema costatum	
 Anabaena flos-aquae Navicula pelliculosa 	

Guideline Criteria	Reported Information
Initial Number of Cells 10,000 cells/mL (Selenastrum, Anabaena, Navicula) 77,000 cells/mL (Skeletonema)	(p. 11)Approximately 77,000 cells/mL at test initiation.
Stock Culture • 3 to 7 days old	 (p.12) The culture was last transferred to fresh medium three days prior to test initiation.
Nutrients Standard formula (ASTM E1218-20) pH 7.5 ± 0.1 (Selenastrum, Navicula, Anabaena), 8.1 ± 0.1 (Skeletonema) Freshly prepared	 (p. 12-13) Algal cells cultured and tested in saltwater algal medium (ASTM 1218-90E) Stock nutrient solutions prepared by adding reagent-grade chemicals to purified well water. The test medium was prepared by adding appropriate volumes of stock nutrient solutions to artificial saltwater at a salinity of approximately 30 ppt. The pH was adjusted to 8.0 using 10% HCL and sterilized by filtration.

B. Test System

Guideline Criteria	Reported Information
• Upper limit - 0.5 mL/L	 (p. 14) 0.1 mL/L of acetone was used to raise the solubility of the test substance above the saturation level.
Temperature • 24° ± 2°C (Selenastrum, Navicula, Anabaena) • 20° ± 2°C (Skeletonema) • Recorded hourly	 (p. 13 and 23) Test chambers were held in an environmental chamber at 20 ± 2°C (20.1 to 21.6). The temperature was monitored continuously in the chamber and twice daily in a container of water adjacent to

Guideline Criteria	r Reported Information
 Light Intensity 4.3 K lx (± 10%) (Selenastrum, Skeletonema, Navicula) 2.2 K lx (± 10%) (Anabaena) Photosynthetically active radiation approx. 66.5 ± 10% μEin/m²/sec 	 (p. 13 and 19) 3680 to 4900 lux (measurements taken at five locations surrounding the test flasks). Photosynthetically active radiation not reported.
 Photoperiod 14-hr light/10-hr dark (Skeletonema) Continuous (Selenastrum, Navicula, Anabaena) 	(p. 13)16 hours of light/8 hours of darkness
 pH 7.5 ± 0.1 (Selenastrum, Navicula, Anabaema) 8.1 ± 0.1 (Skeletonema) Measured at beginning and end of test 	 (p. 13 and 24) pH = 7.9 (0-hr) pH = 8.5 - 8.8 (96-hr) At test initiation, pH was measured in the individual batches of test solution prepared for each treatment. At test termination, the pH was measured in pooled samples of test solution collected from each of the replicates of each treatment and control.
Oscillation Rates 100 cycles/min (Selenastrum) 60 cycles/min (Skeletonema)	(p. 13)Test flasks were shaken continuously at approximately 100 rpm.
 Test Containers 125-500 mL Erlenmeyer flasks Cleaned/sterilized (solvent and acid) and conditioned Test solution volume ≤ 50% of flask volume 	 (p.13) Sterile 250-mL Erlenmeyer flasks, plugged with foam stoppers, and containing the test solution of each respective treatment. 100 mL test solution (<50% of flask volume).
 Dilution Water Sufficient quality (e.g., ASTM Type I) Saltwater - commercial or modified synthetic formulation added to distilled/deionized water (30 ppt or 24-35 g/kg) 	 (p. 13) Artificial saltwater at a salinity of approximately 30 ppt was used.

C. Test Design

Guideline Criteria	Reported Information
 Range-Finding Test Water solubility and physical-chemical properties of test chemical determined? Validated analytical method developed? Lowest dose at detection limit, upper dose at saturation concentration or 1000 mg/L If < 50% reduction in growth at highest dose, no definitive test required 	 (p. 11) Physical-chemical properties of the test chemical were not reported. A validated analytical method was developed. Range-finding test was not mentioned. The final test was conducted at concentrations above the known limit of solubility (below 12.5 μg/L) using a solvent to raise the solubility of the test substance above the saturation level, at the request of the EPA.
Dose Range 1.5X -2X progression	(p. 14) • Approximately 2X progression
Doses 5 or more concentrations of test substance in a geometric series > >90% growth inhibited or stimulated at highest concentration or concentrations bracket expected EC ₅₀ Controls Negative and/or solvent each test	 (p. 9 and 26) Five concentrations: Nominal = 7.8, 16, 31, 63, 125 μg/L. Mean measured = 76 μg/L and 148 μg/L Only two the highest concentration (63 μg /L and 125 μg/L) could be analyzed due to limits of the analytical method, the maximum amount of water that can be removed from the test chambers, and the complexity of the algal medium. <90% growth inhibited at the highest concentration (29% at 96-hr) (p.9) Negative and solvent control
 Negative and/or solvent each test Positive - zinc chloride (periodically) 	Negative and solvent controlNo positive control
Replicates Per Dose • 3 or more (4 or more for Navicula)	(p. 11)3 replicates per dose, plus a negative and solvent control.

DP Barcode: 299970

Guideline Criteria	Reported Information		
Duration of Test • 96-hr	(p. 11) • 96-hr		
 Growth Logarithmic growth (controls) by 96-hr or repeat test 1.5 x 10⁶ cells/mL (Skeletonema) 3.5 x 10⁶ cells/mL (Selenastrum) 	 (p. 19, 26 and 30) Logarithmic growth in control by 96-hr Mean of 1.3 x 10⁶ cells/mL at 96-hr. in the pooled control. Increase by factor of 17. 		
Daily Observations?	• Yes (p. 16 and 26)		
 Method of Observations Direct - microscopic cell count of at least 400 cells/flask Indirect - spectrophotometry, electronic cell counter, dry weight, etc; calibrated by microscopic count Qualitative and descriptive 	 Yes (p. 16 and 26) (p. 16 and 20) Cell counts were performed using a hemacytometer and microscope. Samples were diluted using an electron solution (Isoton ®) as needed to maintain counting accuracy. A small amount of each sample was loaded onto a hemacytometer and 10 grids were counted. Using this technique, the minimum quantifiable cell density was 1,000 cells/mL. Growth of cells were assessed for aggregations or flocculation of cells and adherence of cells to the test chamber, as well as changes in morphology. 		
 Cell Separation Syringe ultrasonic bath, or blender; limited sonification (Anabaena) Manual or rotary shaking only (Selenastrum, Skeletonema, Navicula) 	(p. 13)Mechanical shaking in an environmental chamber.		

Guideline Griteria	Reported Information.
Algistatic and algicidal effects differentiated?	 (P. 19 and 20) Algistatic and algicidal effects were not differentiated. After 72 and 96 hours, treatment related effects for cell density and growth rate were apparent in the highest concentration. After 72 hours, treatment related effects for biomass were apparent in the two highest test concentrations.
Maximum Labeled Rate	Not reported.

12. REPORTED RESULTS

Guideline Criteria .	Reported Information
Quality assurance and GLP compliance statements included in report?	• Yes (p. 3 and 4)
Detailed information on test organisms included (scientific name, method of verification, strain, and source)?	 (p. 12) Yes Original algal cultures obtained from Provasoli-Guillard National Center for Culture of Marine Phytoplankton (CCMP) and maintained at Wildlife International, Ltd., Easton, Maryland.
Growth in controls reported?	• Yes (p. 26)
Description of test system and test design included?	• Yes (p. 13)
Initial and final chemical concentrations and pH measured?	• Yes (p. 11, 22, 24)
Initial, 24-, 48-, 72- and 96-hr cell densities measured? % of inhibition or growth and other adverse effects reported?	YesYes(p. 26)

Guideline Criteria	Reported Information
96-hr EC ₅₀ and when sufficient data generated 24-, 48-, and 72-hr EC ₅₀ , and 95% C.I. reported?	• Yes (p. 10)
Raw data included?	• Yes (p. 47-49)
Methods and data records reported?	• Yes (p. 12)
 Statistical Analysis Mean and standard deviation calculated and plotted? Goodness-of-fit determined? 	(p. 26-31)Only mean calculated and plotted.Yes

Dose Response

Mean Cell Density and Percent Inhibition

Nominal [®]	24	Hour 1	48	Hour	72	Hour	26	ior
Conc. at Test Initiation (µg/L);	Mean Cell Density , (cell/mL)		Mean Cell Density (cell/mL)	Percent I	Mean Cell Density (cell/mb)	Percent 2 Inhibition 2	Mean Gall Density (cell/mlb)	Percent Inhibition
Negative Control	221,000		1,010,000		1,386,667	••	1,310,000	-
Solvent Control	233,000		878,333		1,380,000		1,353,333	•
Pooled Control	227,000	-	944,167		1,383,333	-	1,331,667	
7.8	243,000	-7.0	891,667	-1.5	1,373,333	0.72	1,260,000	5.4
. 16	234,333	-3.2	848,333	3.4	1,466,667	-6.0	1,406,667	-5.6
31	221,000	2.6	848,333	3.4	1,386,667	-0.24	1,386,667	-4.1
63	171,667	24	555,000	37	1,276,667	7.7	1,280,000	3.9
125	111,667	51	148,000	83	261,667*	81	. 950,000*	29

¹ Calculations were performed using SAS Version 8.02.

Percent Inhibition was calculated relative to the pooled control replicates.
 Percent inhibition was calculated relavtive to the solvent control replicates.

^{*} Statistically significant difference (p<0.05) at 72 and 96 hours from the pooled control replicates using Dunnett's test.

DP Barcode: 299970

a Under the Growth Curve (Biomass) and Percent Inhibition

· I	viean Are	a Under in	e Growin	Cui ve (Dio	mass, and	1 CI COME I	AND AND AND PERSONS	
Nominal Test	##### 0-24 Hours		0.48 Hours 3.48 F		144 \$ 10-72 i	lours 44	្សេស 0.23 លែក ភាព	
Concat Test Initiation (ug/L)		Percent Inhibitions 2	Mean/Areal	Percents Innibition 2		Percent Inhibition		
Negative Control	1,728,000		14,652,000		41,564,000	•	72,076,000	
Solvent Control	1,872,000	-	13,360,000		38,612,000		69,564,000	
Pooled Control	1,800,000	-	14,006,000	•	40,088,000	<u></u>	70,820,000	
7.8	1,992,000	-11	13,760,000	1.8	39,092,000	2.5	68,844,000	2.8
16	1,888,000	-4.9	13,032,000	7.0	38,964,000	2.8	71,596,000	-1.1
31	1,728,000	4.0	12,712,000	9.2	37,684,000	6.0	69,116,000	2.4
63	1,136,000	37	8,008,000	43	28,140,000	30	56,972,000	20
125	416,000	77	1,684,000	88	4,752,000°	88	17,444,000*	75

Calculations were performed using SAS Version 8.02.

Percent Inhibition was calculated relative to the pooled control replicates.

Statistically significant difference (p<0.05) at 72 and 96 hours from the pooled control replicates using Dunnett's test.

DP Barcode: 299970

and Percent Inhibition

		Mean	Growth R	ate and P	ercent mun	THE PERSON NAMED OF THE PARTY O	Caraman de la companya de la company		
Nominal Test	∛\$ 0-24 Hours (-≥		0.48 Hours		0:721	lours.	0.926181001761		
Conc. at Test. Initiation (ug/E)	Mean Growth Rate	Percent Inhibition P		Percent Inhibition	.Mem Gowh Rois	Recent Inifiation		Percent Tabletton	
Negative Control	0.0434		0.0536	-	0.0401		0.0295		
Solvent	0.0460		0.0507	-	0.0400	_	0.0299		
Control Pooled Control	0.0447		0.0522		0.0401		0.0297		
7.8	0.0475	-6.3	0.0510	-0.57	0.0400	0.23	0.0291	2.0	
	0.0463	-3.4	0.0499	1.6	0.0409	2.1	0.0302	-1.9	
16	0.0439	1.8	0.0499	1.6	0.0401	-0.052	0.0300	-1.1	
31			0.0410	19	0.0390	2.7 '	0.0292	1.5	
63	0.0333	65	0.0135	73	0.0169	58	0.0260	12	

¹ Calculations were performed using SAS Version 8.02.

Statistical Results

Statistical Method: Cell density, growth rate, and area under the growth curve were analyzed statistically by non-linear regression (SAS, Version 8.02) to determine EC₅₀ values and corresponding 95% confidence limits for each 24-hour exposure interval, where possible. To determine the NOEC at 72 and 96 hours, cell density and the area under the growth curve data were first evaluated for normality and homogeneity of variance using Shapiro-Wilk's and Levene's tests, respectively, and were compared to the pooled control using Dunnett's test (p=0.05).

² Percent Inhibition was calculated relative to the pooled control replicates.

³ Percent inhibition was calculated relative to the solvent control replicates.

^{*} Statistically significant difference (p<0.05) at 72 and 96 hours from the pooled control replicates using Dunnett's test.

DP Barcode: 299970

MRID No: 460626-37

EC₅₀, E_bC₅₀ and E_cC₅₀ Values (μg/L) Values Over the 96-hr Exposure Period

EC	E.C.	and E.C.	Values	(μg/L) Va	lues Over	Mark To Account	CONTRACTOR		
		ell Density		AreaUnd	er the Grow	th Curve .		rowth Rate	7888
			2000年	EC ₂	195%	NOEC	EG.	25%. GI	NOEC
ime.	EC. (ng/L)	$\mathbf{C}\mathbf{I}$	(igL)	(ugi)	(ng/L)	(ug/b)	(ugL)	(ugil)	
		S TIPLE		76	62-92	_	94	83-107	
24-hr	.117	97-141					94	89-100	
48-hr	76	68-84		70	64-76		}	113-121	63
72-hr	95	88-103	63	79	74-84	31	117 7	113-121	- 3
<u> </u>	>125	_1	63	93	87-99	.31	>125	<u> </u>	63
96-hr	>125		4	h the data oh	tained	,			* 11

^{95%} Confidence limits could not be calculated with the data obtained.

VERIFICATION OF STATISTICAL RESULTS 13.

Statistical Method:

The 72 hour and 96 hour data were first checked for normality and homogeneity using the Shapiro-Wilks' Test and Bartletts Test, respectively. Data were normally distributed; therefore, the NOECs were determined using the Bonferroni T-Test.

The EC₅₀, E_bC₅₀ and E_rC₅₀ values and 95% confidence limits were calculated for cell densities, biomass and growth rate. The EC values were determined using EPA's Linear Interpolation Method for Sublethal Toxicity: The Inhibition Concentration (ICp) Approach.

and E.C. Values (µg/L) Values Over the 96-hr Exposure Period

$\mathrm{EC}_{50},\mathrm{E_{b}C}_{50}$	and E.C	Values	(μg/L) V	alues Ov	er the 96-	hr Expos	ure rem		
50, 20	i i c	ell Density		Area Und	er the Grow	m cm vc	111111111111111	Growth Rate	
	P. P. B. CHARLES IV.	95%		EC	295% ±	NOEC	₩ĒC ₅₀ :-	95% C I	NOEC a
	βEC ₅₀ (μg/Ľ)	CI.		(1/21)	(ng/L)	(ug/L)	(µg/L)		
	100	ι ι	PASSES STREET, SAN	80	57 - 95		99	86 - 107	
24-hr	120			73	6379	-	97	89 - 102	
48-hr	76	58 - 86		84	75 - 89	31	116	109 - 122	_2
72-hr	98	94 - 101	63	ļ		31	>125	,1	_2
96-hr	>125	1	63	97	90 - 102	31	1 125	1	<u> </u>

^{195%} Confidence limits could not be calculated with the data obtained.

The NOEC could not be verified because the mean square values are zero, and an F value could not be calculated.

DP Barcode: 299970

MRID No: 460626-37

REVIEWER'S COMMENTS:

- The growth rate NOECs could not be verified because the mean square values are zero and an F value could not be calculated.
- Verified EC₅₀ values are the same or are very similar to the those reported in the Study.

