National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Index 101

BIOLOGICAL INDEX DEVELOPMENT METHOD: BASIC CONCEPTS

Course Presenters and Contributors

Jeroen Gerritsen, Michael Paul, Mick Micacchion, Russ Frydenborg, Chuck Hawkins, Rick Hafele, Tom Danielson, Dave Courtemanch, and Susan Cormier

National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003 Index 101

Biological Index Uses, Types, and Development

Presented by Mick Micacchion, Ohio EPA

Index 101 Course Outline

- 1. Overview of uses, types and development of indices
- 2. Steps in developing a multimetric index and Example from Florida
- 3. Steps in developing a multivariate predictive model (RIVPACS) index and Example from Oregon
- 4. Maine's approach to developing and using a biological index

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_01

`

Introduction to Index 101

- Regulatory basis of indices
- Why are indices used
- What do indices represent
- What data are needed
- What types of indices are there

Why Use Biological Indices?

- Clean Water Act Section 101(a) Purpose:
- "To restore and maintain the chemical, physical and <u>biological integrity</u> of the Nation's waters."

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_01

5

Biological Integrity: Operational Definition

"The ability of an aquatic community to support and maintain a structural and functional performance comparable to the natural habits of a region."

As modified from Karr and Dudley (1981)

Water Quality Standards and the Use of Biological Indices

- •Beneficial Use Designations
 - Aquatic Life Uses
- Numeric Criteria
 - Biological Criteria
- Narrative Criteria
 - Protection of aquatic life
- Antidegradation

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_01

_

Use of Biological Indices for Other CWA Programs

- 305(b)
 - Water Body Condition Reports
- 303(d)
 - Impaired Waters Listings
- TMDL Process

Some Program Objectives

The Five Major Factors that Determine the Integrity of Aquatic Resources

Why Use Taxonomic Assemblages as Indicators?

- Bioassessment <u>provides indications of cumulative</u> <u>impacts</u> of multiple stressors, not just chemical water quality.
- Biological community integrates past chemical, physical and biological events, <u>both short- and long-term</u> and directly evaluates the condition of the water resource.
- Properly developed methods, measures and reference conditions provide a tool that enables a <u>direct reporting of the ecological condition</u> of a water body.

Symptoms of Ecological Degradation

A Partial List:

- Reduced populations of native species.
- Fewer size (age) classes.
- Reduced number of intolerant species.
- Increased proportion of exotic species.
- Reduced proportion of ecological specialists.
- Simplified trophic web and interactions.
- Increased incidence of serious disease & anomalies.

Important Considerations for Biological Indices

- The measures used must be biological
- The measures must be interpretable at or extend to multiple trophic levels
- The measures must be sensitive to the condition being assessed
- The response range must be suitable for intended uses
- The measure must be reproducible and sufficiently precise
- The variability of the measures must be low enough to detect and quantify changes

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_01

12

Basic Premises of Biological Indices

- Least impacted biological systems have distinctive structural and functional attributes.
- Some attributes can be measured in the field and aggregated into an index.
- Departure of index scores from a reference condition is correlated with the degree (severity) of a perturbation.
- An index that measures many intrarelated factors of ecosystem structure and function best reflects the overall integrity of the community.

Important Steps in Biological Index Development

- Classify ecotypes streams, rivers, lakes, wetlands, cold & warm water, etc.
- Develop cost-effective and reproducible sampling methods.
- Test and evaluate to select reliable and relevant measures
- Define analytical procedures to extract and display results on different spatial and temporal scales.
- Communicate results to different users and audiences.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_01

15

Different Types of Indices

- Multimetric (IBI)
- Multivariate Predictive (RIVPACS)
- Others

Multimetrics (IBI)

- Developed in 1980s
- Improvement on original single metrics (e.g. Hilsenhoff alone)
- Idea is to incorporate several attributes (metrics) reflecting 'biological integrity' into one synthetic multimetric score

Multimetrics (IBI)

Definition

A metric is a characteristic (attribute)
 of the biota that changes in some
 predictable way with increases in
 human disturbance

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_01

19

Index of Biotic Integrity (Karr 1981)

12 Metrics

- Species richness
- #Darter species
- #Sunfish species
- #Sucker species
- %Intolerant species
- %Green sunfish
- %Omnivores
- %Insectivores
- %Top Carnivores
- %Hybrids
- %Diseased individuals
- Number of Fish

Community Composition

Environmental Tolerance

Community Function

Community Condition

- 5,3,1 metric scoring categories.
- 12 to 60 scoring range.
- Calibrated on a regional basis.
- Scoring adjustments needed for very low numbers.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_01

23

Multimetrics (IBI)

- Reference and degraded sites used to select metrics that discriminate
- Also used to test final multimetric combinations that discriminate

Multimetrics (IBI)

- Classification used to separate reference sites into similar biogeographic groups
- IBIs built for individual classes or groups of similar classes

Aquatic Life Use Designations Ohio WQS

Based on Biological Community Attributes

- Exceptional Warmwater Habitat (EWH): Preserve & maintain existing HQ
- Warmwater Habitat (WWH): basic restoration goal for most streams
- Modified Warmwater Habitat (MWH): attainable condition for streams under drainage maintenance or other essentially permanent hydromodifications (e.g. dams)
- Limited Resource Waters (LRW): essentially irretrievable, human induced (e.g. widespread watershed modifications) or naturally occurring conditions (e.g. ephemeral flow)

Multivariate Predictive (RIVPACS)

- Reference sites used to build model for predicting expected taxa
- Classification used to approximate continuous gradient
- Results in a predicted "reference" for each test site = expected taxa

Other Biological Indices

- Maine Approach
- Floristic Quality Assessment Index
- Amphibian Quality Assessment Index
- Hilsenhoff Index
- Many Others (Got any ideas?)

March 31 - April 4, 2003

LOW -

National Biological Assessment and Criteria Workshop, INDEX 101_01

25

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers

(10/22 draft) Natural structural, functional, and taxonomic integrity is preserved. **Condition of the Biotic Community** Structure and function similar to natural community with some additional 2 taxa & biomass: no or incidental anomalies: sensitive non-native taxa may be present; ecosystem level functions are fully maintained Evident changes in structure due to loss of some rare native Specific to Ecotype 3 taxa; shifts in relative abundance; ecosystem level functions fully maintained through redundant attributes of the system. Moderate changes in structure due to replacement of sensitive ubiquitous taxa by more tolerant taxa; overall balanced distribution of all expected taxa; ecosystem functions largely maintained. condition shows signs of physiological Sensitive taxa markedly diminished; stress; ecosystem function shows reduced conspicuously unbalanced distribution of complexity and redundancy; increased major groups from that expected; organism build up or export of unused materials. Extreme changes in structure; wholesale changes in anomalies may be frequent; taxonomic composition; extreme alterations from ecosystem functions are normal densities; organism condition is often poor; extremely altered.

Human Disturbance Gradient =

Designated Aquatic Life Uses: Ohio/Streams & Rivers

natural

Biological Condition

Exceptional Warmwater Habitat: an unusual, balanced integrated community of organisms having a species composition, diversity and functional composition comparable to the 75%ile of statewide reference sites

Warmwater Habitat:

... comparable to the 25%ile of ecoregional reference sites

<u>Modified Warm Water Habitat</u>: ...irretrievable, human modifications of physical habitat ...

<u>Limited Resource Waters</u>: lack potential ... substantially degraded....irretrievable habitat modifications

Low

Human Disturbance

High

National Biological Assessment and Criteria Workshop Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003 Index 101

Multimetric Concepts

Michael Paul; Jeroen Gerritsen Tetra Tech, Inc.

Basic Steps

- Reference/Degraded Criteria
- Classification
 - Reducing variability
- Metric Exploration
 - Incorporating broad ecological information
 - Identifying discriminatory metrics
 - Avoiding redundancy
- Developing the "multi"-metric
 - Testing combinations of metrics

A medical metaphor

■ Have you ever taken a "wellness" test?

■They ask a lot of questions based on common "indicators" = "metrics"

Reference/Degraded Criteria

- What is healthy?
- Need two groups for building models

HEALTHY REFERENCE

Non-smoker Low Stress Exercise 5d/week Healthy Diet

UNHEALTHY DEGRADED

2 packs/day High Stress No exercise High Fat Diet

Classification

- The first few questions always deal with age, gender, etc.
- Expectations differ for different groups.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

6

Metric Exploration

- One indicator doesn't get it done...
- Likely explored a lot of indicators
- Explored relationship of indicators to illness – developed those that were good at discriminating healthy from unhealthy folks.

Developing a 'multi'-metric

- Finally identified those indicators that consistently discriminated healthy individuals from unhealthy.
- Doctors now use an array of these to measure your "wellness"
- Individual indicators used for diagnosing particular problem areas

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

4

How it works – reference criteria

- Reference/Degraded Criteria
 - Reference sites are used to build classifications
 - Reference and Degraded used to select metrics and test final index
 - Abiotic variables are used
 - Likely need to test a few approaches
 - May need to stratify later

Reference Sites

- The primary function of reference conditions is as a measurement standard
- To be useful, a measurement standard must account for natural variability
 - undisturbed, natural
 - best of available
 - representative of class

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

10

Reference and Degraded Criteria

- Reference sites (must meet all)
 - No discharges within prescribed distance
 - Better than state water quality standards
 - Land use: no direct disturbances
 - Habitat typical for region; good riparian zone
- Stressed sites (meets one or more)
 - Fails water quality or sediment standards
 - Severe habitat impairment
 - Severe nonpoint sources; erosion

Maryland Reference Criteria (must meet all)

- pH •6.0
- ANC ••50• eq/l
- dissolved oxygen •4.0 ppm
- Nitrate-N •4.2 mg/l
- Urban land use •20% of catchment
- Forested land cover
 - 25% of catchment

- Remoteness rating "optimal" or suboptimal"
- Aesthetics rating "optimal" or "suboptimal"
- Instream habitat rating "optimal" or "suboptimal"
- Riparian buffer width •15m
- No channelization
- No point source discharges

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

17

Maryland Stressed Criteria (meets any one)

- pH •5.0 and ANC •0 eq/l
- dissolved oxygen •2.0 ppm
- Nitrate-N ••7.0 mg/l and DO ••2.0 ppm
- Urban land use > 50% of catchment area and instream habitat rating "poor"
- Instream habitat rating "poor" and bank stability rating "poor"
- Channel alteration rating "poor" and instream habitat rating "poor"

Classification

- Classification
 - Comparing like to like
 - Way of apportioning variability
 - Models calibrated to each "class"
- A priori existing
- *A posteriori* derive from your data

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

12

A priori classification

Ecoregions

■ Physiographic provinces

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

15

A posteriori classification

Confirmation

March 31 - April 4, 2003

- Univariate tests
- MANOVA
- Other Ordination
- Similarity analysis

National Biological Assessment and Criteria Workshop, INDEX 101_03

Metric Exploration

- Incorporating broad ecological information
- Identifying discriminatory metrics
- Avoiding redundancy

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

18

Metric Exploration

INDIVIDUAL CONDITION	TAXONOMIC COMPOSITION	COMMUNITY STRUCTURE	LIFE HISTORY ATTRIBUTES	SYSTEM PROCESSES
DISEASE				TROPHIC DYNAMICS
ANOMALIES	IDENTITY	TAXA RICHNESS	FEEDING	PRODUCTIVITY
CONTAMINANT	TOLERANCE		<i>G</i> ROUPS	
LEVELS	RARE OR	RELATIVE ABUNDANCE	HABIT	MATERIAL: CYCLES
DEATH	ENDANGERED KEY TAXA	DOMINANCE	VOLTINISM	PREDATION
METABOLIC RATE				RECRUITMENT
IV. IC		INTECDATES		NEONO 2 TIME (VT

INTEGRATED BIOASSESSMENT

TOXICITY TESTS

RIVPACS

INVERTEBRATE IBI

- FISH IBI

Ideal Multimetric Composite

- Multiple organizational levels
- Addresses structure and function
- Broad sensitivity
- Broad range of habitats, niches
- Metric characteristics
 - Responsive to stressors
 - Low natural variability
 - Interpretable (understanding of ecology)
 - Cost-effective to measure

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

20

Different responsiveness

Testing metrics – reference vs degraded approach

Weak

Discrimination Efficiency = percent degraded < 25th percentile reference

Testing metrics – gradient approach

Metric Value

Stressor Gradient

Avoid redundancy

- Avoid metrics that are components of others
 - E.g. % EPT and % Ephemeroptera
- Correlation analysis avoid highly correlated metrics in same multimetric
 - r>0.7 is a good start

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

N

Delete Metrics

- Obscure ecological meaning
- Weak response to stressors
- Limited ecosystem relevance
- Redundancy to other metrics

Assembling Metrics

- Use sum or average of standard scores of metrics to get final multimetric score
- Test several combinations for overall discrimination efficiency

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

28

Assembling multimetrics

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u> </u>	<u> </u>	///////////////////////////////////////
Metric	Model 1	Model 2	Model 3
Ephemeroptera taxa	X	X	X
Plecoptera Taxa		X	X
Trichoptera Taxa		X	X
Insect taxa	X		
Non-insect taxa	X		
% Ephemeroptera	X		
% Ephemeroptera less Baetid		X	
% Trichoptera Less Hydropsyche		X	X
%Oligochaeta	X		
% scrapers	X	X	X
BCI CTQA		X	X
нві	X	X	
% 5 dominant	X	X	

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

29

Different classes may have different indexes

■ Coastal Plain metrics ■ Non-Coastal Plain metrics

- Total taxa
- EPT taxa
- % mayflies
- % Tanytarsini
- Beck's Biotic Index
- Scraper taxa
- % clingers

- Total taxa
- EPT taxa
- % mayflies
- % Tanytarsini
- Ephemeroptera taxa
- Diptera taxa
- Intolerant taxa
- % tolerant individuals
- % collectors

Or may be the same, but use different standardized scores or threshold values

95th Percentile of Reference Site Values

	Class				
Metric		11		IV	
Total Taxa	20	34	32	36	
EPT Taxa	6	10	12	15	
Diptera Taxa	8	12	12	15	
% Tolerant	19	9	8	6	
% Scrapers	12	20	23	20	
% Clingers	55	60	63	65	

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_03

37

Always test any model

- Use an independent dataset with reference and degraded sites
 - Same year set aside
 - Newly collected data
 - Test discrimination efficiency
 - Should match model building DE
 - No strict rule

Index 101

Recalibrating Florida's Stream Condition Index

Russ Frydenborg, FL DEP; Leska Fore, Statistical Design

Florida's Stream Condition Index: 1990's Multimetric Approach

- Established reference condition in various sub-ecoregions
 - Best professional judgment
 - Surrounding land use, in-stream habitat
- Sampled known impaired sites
 - Point source discharge studies
 - Toxicity, low DO, poor habitat

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_05

.

Florida's Stream Condition Index: 1990's Multimetric Approach (cont.)

- Selected 7 metrics
 - Box and whisker plots determined discrimination power
- Aggregated by summing metrics
 - 5, 3, 1 point, depending on departure from reference condition

Florida's SCI Index Re-calibration

- Develop human disturbance gradient
 - Test disturbance gradient for each Bioregion
 - Evaluate metric response to disturbance gradient (new thresholds, new metrics)
- Determination of metric variability
- Power analysis for trend detection
- Develop consistency with EPA Tiered Aquatic Life Use Support guidance (TALUS)

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_05

4

Human Disturbance Factor Analysis

- Landscape level
 - Landscape Development Intensity Index
- Habitat alteration
 - Habitat assessment data
- Hydrologic modification
 - Hydrologic scoring process
- Chemical Pollution
 - Ammonia, etc.

Two Approaches to Assessing Metrics

- Compare extremes
 - reference vs. impaired
- Compare across continuum of disturbance
 - Human Disturbance Gradient

Metric Selection Criteria

- Meaningful measure of ecological structure or function
- Strong and consistent correlation with human disturbance
- Statistically robust, low measurement error
- Represent multiple categories of biological organization
- Not redundant with other metrics
 - Exception: "response signature" metrics

Metric Testing

- 1. Taxonomic richness & composition
- 2. Functional feeding groups
- 3. Life history
- 4. Tolerance and intolerance

EPT vs. Landscape Development Intensity Index

HDG is a combination of other disturbance measures

Scores Measure	1	2	3	4
NH3	<0.1	>0.1	>2	
Habitat	>65	>50 and <65	<50	
Hydro	<6	6-7	8-9	10
LDI (buffer)	<200	200-350	>350	
LDI (ws)	<200	200-350	>350	

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_05

	SCI	New Index	
Taxonomic	Total taxa	Total taxa	
richness	EPT taxa	Mayfly taxa	
		Caddisfly taxa	
	Chironomid taxa	% Tanytarsini	
Feeding group	Collector-filterers	Collector-filterers	
Life history		% Long-lived	
		Clinger taxa	
Community	% Dominance	% Dominance	
structure	% Diptera		
Tolerance &	Florida Index	Intolerant taxa	
Intolerance		% Very tolerant	

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_05

Existing Applications of SCI

- Ambient Monitoring
- Impaired Waters Rule (TMDLs)
- Point Source Permitting
- Watershed (NPS) Studies
- BMP Effectiveness Studies

Conclusions

- Multimetric Indexes are effective in a regulatory sense
- Discriminatory power of metrics
 - Comparing extremes identifies strong metrics, but includes some "noisy" metrics
 - Human Disturbance Gradient improves metric selection and provides an independent measure for comparing biological response

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_05

34

National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Index 101

Use of RIVPACS-type Predictive Models in Aquatic Biological Assessment: Theory and Application

Chuck Hawkins, Utah State University; Rick Hafele, Oregon Dept. of Environmental Quality

The Concept:

O versus E as a Measure of Biological Integrity

the *set* of native taxa expected at a site that are actually observed.

E

the **set** of native taxa expected to occur at a site in the absence of human-caused stress.

The deviation of O from E is a measure of compositional similarity and thus a community-level measure of biological integrity.

O/E has some useful properties as an index of biological condition.

O It has an intuitive biological meaning (taxa are the ecological capital on which all ecosystem processes depend) and is interpretable by researchers, managers, the public, and policy makers.

O/E has some useful properties as an index of biological condition.

O It means the same thing everywhere, which allows direct and meaningful comparisons across regions and states.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

4

O/E has some useful properties as an index of biological condition.

O Its derivation and interpretation are independent of type and knowledge of stressors in the region.

O/E has some useful properties as an index of biological condition.

O It is quantitative.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

6

O/E has some useful properties as an index of biological condition.

Major Issues for the 101 Course

- O Understanding the units of measure.
- O Predicting the expected taxa.
- Calculating O/E, the biological condition value.
- O Determining if an assessed site is impaired.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

8

Basic Concepts

O Predictive models base assessments on the compositional similarity between observed and expected biota.

The Unit of Measure

- O The deviation of O from E is difficult to express in a simple way given the multivariate nature of both terms.
- O We need a simple currency that also retains the information content of compositional similarity.
- O We also need a way of dealing with the fact that we *sample* the biota and thus deal with probabilities not absolutes.

O/E: A Simplified Expression of a Multivariate World

- O Define E as the *number* of native taxa expected to occur at a site in the absence of human-caused stress.
- O Define O as the *number* of taxa that are predicted to occur that are actually present.
- O The ratio O/E is the *proportion* of taxa observed that should have been collected.
- O O/E is not based on raw taxa richness; O is constrained to include only those taxa with a probability of capture greater than a stated threshold.

Basic Concepts (Units of Measure & the Expected Taxa)

	Replicate Sample Number							Freq			
Species	1	2	3	4	5	6	7	8	9	10	(P_c)
Α	*	*	*	*	*	*	*	*	*	*	1.0
В	*	*		*	*	*		*	*	*	0.8
C	*		*		*	*			*		0.5
D		*	*				*		*	*	0.5
E					*						0.1
Sp Count	3	3	3	2	4	3	2	2	4	3	2.9

Species Richness is the Currency.

 $E = \sum P_c = \bullet$ •number of species / sample = 2.9.

O/E as a Measure of Impairment

Expected Biota	Observed Biota				
Species	Рс	O_1	O ₂	O ₃	O ₄
Α	1.0	*	*	*	*
В	0.8	*		*	
С	0.5		*		
D	0.5	*			
E	0.1				
F	0				*
Expected Sp Count	2.9	3	2	2	1
	O/E	1.03	0.69	0.69	0.34

This is the Challenge:

Estimating the Probabilities of Capture of Many Different Taxa that Exhibit Individualistic Distributions

The basic approach to modeling pc's and estimating E was worked out by Moss et al.*

River InVertebrate Prediction and Classification System (RIVPACS)

*Moss, D., M. T. Furse, J. F. Wright, and P. D. Armitage. 1987. The prediction of the macro-invertebrate fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwater Biology 17:41-52.

RIVPACS-type Models: 8 Basic Steps

- 1. Establish a network of reference sites.
- 2. Establish standard sampling protocols.
- 3. Classify sites based on their biological similarity.
- 4. Estimate individual probabilities of capture by relating environmental setting to the biological classification (multivariate statistics).

For each assessed site:

- 5. Sum p_c 's to estimate E.
- 6. Count O
- Calculate O/E.
- 8. Determine if observed O/E is different from reference?

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

16

Creating RIVPACS Models

1. Establish a network of reference sites that span the range of environmental conditions in the region of interest.

2. Use standard protocols to sample biota and habitat features.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

March 31 - April 4, 2003

3. Classify sites in terms of their compositional similarity.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

20

- 4. Derive a multivariate model to predict from environmental features the probabilities of sites belonging to biologically-defined groups and the probabilities of capturing each taxon.
- P_c = f(elevation, watershed area, geology)

The Discriminant Model

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

22

Combining the Discriminant Model + Frequencies of Occurrence Provides Estimates of Probabilities of Capture

5.	Sum p _c 's to
	estimate the
	number of
	taxa (E) that
	should be
	observed at
	the site based
	on standard
	sampling.

Species	P_c		
1	0.70		
2	0.92		
3	0.86		
4	0.63		
5	0.51		
6	0.32 0.07		
7			
8	0.00		
E	4.01		

- 6. Determine O, the number of predicted taxa that were collected (O).
- 7. Calculate O/E.

P_c	0
0.70	*
0.92	*
0.86	
0.63	
0.51	*
0.32	
0.07	
0.00	
4.01	3
	0.70 0.92 0.86 0.63 0.51 0.32 0.07 0.00

O/E = 3 / 4.01 = 0.75

8. Determine if the O/E value is significantly different from the reference condition by comparing against model predictions and error.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

26

Statistical Issues Regarding Inferences of Impairment

Single Sites/Samples

Hypothesis: the observed O/E value is from the same distribution of values estimated for reference sites, i.e., the site is equivalent to reference.

Statistical Issues Regarding Inferences of Impairment

Multiple Sites or Replicated Samples at a Site

Hypothesis: the observed mean is different from 1 (the reference mean).

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

28

RIVPACS-type Models: 8 Basic Steps

- 1. Establish a network of reference sites.
- 2. Establish standard sampling protocols.
- 3. Classify sites based on their biological similarity.
- 4. Estimate individual probabilities of capture by relating environmental setting to the biological classification (multivariate statistics).

For each assessed site:

- 5. Sum p_c's to estimate E.
- 6. Count O
- 7. Calculate O/E.
- 8. Determine if observed O/E is different from reference?

RIVPACS Outputs Can Also Be Used to Identify Sensitive and Tolerant Taxa

Sensitivity Index:

sites taxon was observed
sites taxon was expected

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_06

30

National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Index 101

Oregon's Experience with Multimetric and Multivariate Approaches

Presented by Rick Hafele, Oregon DEQ

Index Tools and Uses?

- Oregon has been using both multi-metric and multivariate analysis tools since mid 1990's
- Two primary uses of indexes
 - Evaluate biological condition and set criteria for impairment.
 - Characterize biological assemblages and identify environmental factors affecting them.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

2

Evaluating Indexes?

Sensitivity: How well do they distinguish changes from expected conditions?

Precision: How much within site variability is there for index scores?

Stressor ID: Can the index help determine environmental stressors?

Reference site requirements: What kind of reference site network is necessary to develop the index?

Oregon's Monitoring Sites

Oregon DEQ Biomonitoring Sites

Example Project Sites

Grande Ronde Study

Factors Influencing Choice of Indexes in Oregon

- Range of disturbance between reference and impacted sites often small, especially in forested regions of the state.
- Small range of disturbance requires more intensive field and lab protocols and sensitive biological index.
 - 8 square feet composite sample from multiple riffles
 - 500 minimum count subsamples
 - Identification level Genus/species for most families.
 - Multi-metric and multivariate models evaluated.
 - BORIS Multivariate Model "Benthic evaluation of ORegon rivers"

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

6

Metric & Multivariate Results

Metric & Multivariate Results

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

8

Metric & Multivariate Results

Multi-metrics

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

10

Multi-metric Scoring Criteria

April

	TotTaxa	EphTaxa	PleTaxa	TriTaxa	SenTaxa	SedInt	%Dom	%Tol	%SedTol	<u>HBI</u>
5pts	>29	>7	>6	>4	>4	>1	<60	<11	<10	<3.2
3pts	24-29	6-7	5-6	3-4	3-4	1	60-71	11-16	10-15	3.2-3.5
1pt	<24	<6	<5	<3	<3	0	>71	>16	>15	>3.5

July

	TotTaxa	<u>Eph I axa</u>	Ple I axa	TriTaxa	SenTaxa	Sedint	%Dom	<u>% l ol</u>	%Sed	<u>ol HBI</u>
5pts	>31	>7	>6	>3	>4	>1	<38	<24	<10	<3.9
3pts	24-31	6-7	5-6	1-2	3-4	1	39-42	24-36	10-15	3.9-4.3
1pt	<24	<6	<5	<3	<3	0	>42	>36	>15	>4.3

September

	<u>TotTaxa</u>	<u>EphTaxa</u>	<u>PleTaxa</u>	<u>TriTaxa</u>	<u>SenTaxa</u>	SedInt	%Dom	%Tol	%SedT	<u>ol HBI</u>
5pts	>37	>7	>7	>5	>5	>1	<53	<11	<7	<4.0
3pts	33-37	6-7	6-7	4-5	2-5	1	53-62	11-16	7-10	4.0-4.6
1pt	<33	<6	<6	<4	<2	0	>62	>16	>10	>4.6

Sensitivity?

Multi-metric Model

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

12

Sensitivity?

Multi-metric Model

Sensitivity?

Multi-metric Model

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

14

Sensitivity?

Multivariate Model

Sensitivity?

Multivariate Model

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

16

Sensitivity?

Multivariate Model

Precision

Replicate Site Data Comparison

*15 same day duplicate samples compared

	Range between Duplicate Samples	Mean Difference Between Duplicates
Metrics:	•	•
25th Percentile	0-25	11.3
1 Std. Dev.	0-35	12.7
20 th & 70 Percenti	le 0-30	12
BORIS Model	0-14	6.3

^{*} Data standardized to a 100 point scale

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

18

Precision

Replicate Site Data

Precision

Replicate Site Data

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

20

Characterizing Possible Stressors

Multivariate Analysis: List of missing and replacement taxa can be used to characterize some stressor variables.

Multi-metric Analysis: Individual metrics provide useful information about different environmental stresses.

Stressor Indicators

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

22

Stressor Indicators

(Hypothetical Example)

March 31 - April 4, 2003

Evaluating Indexes?

Sensitivity: In Oregon multivariate models have shown a slightly higher level of sensitivity to detect changes from reference condition than multi-metric indexes.

Precision: Oregon replicate site data have shown less variability for multivariate models than multi-metric models.

Stressor ID: Both models used in combination probably provide best assessment of environmental stressors.

Reference site requirements: Both methods require reference site information, but multivariate models probably require more intensive reference site sampling than multi-metric indexes.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_08

24

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Index 101

Use of Linear Discriminant Models to Determine Life Use Attainment

Tom Danielson, Susan Davies, Leon Tsomides, and Dave Courtemanch; Maine DEP

Outline

- Maine's Water Classification System
- Macroinvertebrate Sampling Methods
- Linear Discriminant Models
- Advantages and Considerations

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

è

Maine's Water Classification System for Rivers and Streams

- Classes A and AA (treated same for aquatic life use)
 - Aquatic life shall be as naturally occurs.
- Class B
 - no detrimental changes in the resident biological community
 - maintain all indigenous species
- Class C
 - · maintain structure and function of resident biological community
- Non-attainment (NA)
 - does not meet minimum criteria

Tiered Aquatic Life Use Support (TALUS)

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

Sampling Stations

March 31 - April 4, 2003

Sampling Methods

- Rock bags or baskets
 - · Standard volume of cobble
- Usually 3 replicates
- Placed in riffle or run of wadable stream or river
- Left in stream for 4 weeks to allow macroinvertebrates to colonize rocks
- Standard sampling window between July and September

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

Sampling Methods for Deep Rivers

- 3 or 4 cones filled with standard amount of rocks.
- Cones have attached rope and buoy to facilitate retrieval.
- During retrieval, staff slide a "hat" down the rope to cover cone during retrieval and minimize loss or organisms.
- Divers help retrieve cones if problems arise.

Sampler Retrieval

- Sampler collected with D-frame dipnet to avoid losing critters
- Sampler emptied into sieve bucket
- Sampler and rocks are cleaned inside bucket to remove macroinvertebrates and detritus
- Macroinvertebrates are picked from detritus in the lab

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

ç

Data Manipulation

- Subsampling and identification
 - <500 individuals all individuals identified
 - >500 individuals subsampling is allowed (e.g., 1/2, 1/4)
- Level of taxonomic identification
 - 88% of taxa identifications have been to genus or species
 - 12% of taxa identifications have been to a higher taxonomic level because of early instar or damaged specimens.
 - Taxa counts from replicates are averaged
- Taxa counts are standardized to genus level before model variables are calculated

Development of Linear Discriminant Models

- In 1999, DEP biologists assigned 376 blind samples to one of four a priori groups -
 - Class A (n = 120)
 - Class B (n = 117)
 - Class C (n = 72)
 - Non-attainment (NA) of minimum criteria (n = 67)
- DEP biologists included Dave Courtemanch, Susan Davies, and Leon Tsomides
- Assignment of samples was based on abundance, richness, community structure, and ecological theory.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

10

Consistency of a priori Assignments

- Consistency of MDEP biologists
 - 96% of independent assignments were unanimous OR majority agreement (2 out of 3)
- Three non-MDEP biologists independently assigned a priori classes to samples
 - 80% of independent assignments concurred with MDEP biologists' consensus assignments
- Interpretations did not differ by more than one class in either direction

Development of Linear Discriminant Models

- LDMs are multivariate predictive models that use biological variables to predict a new sample's probability of membership in the four a priori groups (A, B, C, & NA).
- For example,
 - Given a set of biological variable values, what is the probability that a sample belongs to the Class A group?

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

12

Series of Four Linear Discriminant Models

* Aquatic life use attainment decisions are based on the three 2-way tests.

First Stage Model (4-way test)

- Example: 0.30 A, 0.54 B, 0.16 C, 0.00 NA
 - Based on 9 variables
 - Total Abundance of Individuals
 - Generic Richness
 - Plecoptera Abundance
 - Ephemeroptera Abundance
 - Shannon-Weiner Diversity
 - Hilsenhoff Biotic Index
 - Relative Abundance of Chironomidae
 - Relative Generic Richness of Diptera
 - Hydropsyche Abundance

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

14

Advantages of Multivariate Analysis

Separation of Class A and Class C samples using 1 variable.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

Advantages of Multivariate Analysis

Separation of Class A and Class C samples using 2 variables.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

16

Advantages of Multivariate Analysis

"C or Better" Model (2-way test)

- Example: 1.00 A/B/C 0.00 NA
 - Based on 4 variables
 - Probability A+B+C from First Stage Model
 - · Cheumatopsyche Mean Abundance
 - EPT Richness / Diptera Richness
 - Relative Oligochaeta Abundance

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

18

"B or Better" Model (2-way test)

- Example: 0.99 A/B 0.01 C/NA
 - Based on 7 variables
 - Probability A+B from First Stage Model
 - Perlidae Mean Abundance
 - Tanypodinae Mean Abundance
 - Chironomini Mean Abundance
 - Relative Ephemeroptera Abundance
 - EPT Generic Richness
 - Sum of Mean Abundances of Dicrotendipes, Micropsectra, Parachironomus, and Helobdella

"A" Model (2-way test)

- Example: 0.05 A 0.95 B/C/NA
 - · Based on 6 variables
 - Probability A from First Stage Model
 - Relative Plecoptera Richness
 - Sum of Mean Abundances of Cheumatopsyche, Cricotopus, Tanytarsus, and Ablabesmyia
 - Sum of Mean Abundances of Acroneuria and Stenonema
 - Ratio EP Generic Richness
 - Ratio of Class A Indicator Taxa (Brachycentrus, Serratella, Leucrocuta, Glossosoma, Paragnetina, Eurylophella, and Psilotreta)

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

20

Results of Linear Discriminant Models

* Based on p=0.60 threshold, result is Class B.

Model Performance

Class A Model				B or Better Model				C or Better Model			
		TO STATE OF THE PARTY.	odel diction			Secretaring and	del iction		Model Prediction		
		Α	B,C,NA			A,B	C,NA			A,B,C	NA
A Priori	Α	87%	13%	A Priori	A,B	94%	6%	A Priori	A,B,C	96%	4%
	B,C,NA	9%	91%		C,NA	6%	94%		NA	12%	88%

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

22

Advantages of Approach

- Direct relationship between model outcomes and aquatic life uses.
 - Translates broad resource goals and objectives to scientifically defensible, quantitative thresholds
- Based on ecological theory and demonstrated to reflect changes in resource condition.
- Statistically based with known probability of error.

Effects of Increasing Flow below Dams on the Saco River

Effects of Removing TSS Discharge on Androscoggin River Impoundments

Reducing Discharges from Guilford Industries into Piscataquis River

Considerations of Approach

- Process of assigning a priori classes requires experienced biologists
 - but classification steps in developing multimetric indexes and predictive models also greatly benefit from having experienced biologists
- Requires periodic recalibration as number of samples in database increases.
- · Possible circularity based on a priori classification
 - Do Class A model outcomes represent minimally-disturbed reference conditions?

Does the model accurately classify minimally disturbed streams?

- 27 samples were selected with following criteria:
 - not used to build the model
 - no known point sources
 - average % of upstream watershed
 - 94% forested
 - 3% logged
 - 2% crop
 - 1% residential
 - <1% urban/industrial/commercial</p>
- 24 (89%) of samples had model outcomes of class A

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101_09

28

For More Information

- Biomonitoring Web Site
 - http://www.state.me.us/dep/blwq/docmonitoring/biomonitoring/index.htm
- Methods Manual
 - http://www.state.me.us/dep/blwq/docmonitoring/finlmeth1.pdf
- Fifteen Year Retrospective
 - http://www.state.me.us/dep/blwq/docmonitoring/biomonitoring/biorep2000.htm
- E-mail
 - biome@maine.gov