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Nanomaterials

1 Most active area of nanotechnology research

1 Current or near term applications:
— nano-engineered TiO, for sunscreens and paints
— carbon nanotube composites in tires
silica nanoparticles as solid lubricants
reagents for groundwater remediation

protein-based nanomaterials in soaps, shampoos,
and detergents.

M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou,
and P. Biswas. Environ. Sci. Technol. (in press)
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Potential Risks

1 Nanotechnology risks are largely unknown

1 Risk is a function of both exposure and
toxicity
1 Need to monitor
— Exposure pathways
— Fate and transport in the environment
— Toxicity
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Environmental Cycling of
Nanomaterials

What are
source Is there harm?

management Bioaccumulation or
alternatives? biomagnification?
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v'How do they travel?  v'Can they be transformed?
v'What factors affect v'What do they become?
mobility? v'Do transformations affect
toxicity?
v'What ‘compartment’ do they
reside
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-Manufacturing
-Landfills
-Wastewater effluent

transformation

- Wiesner et al. (2006) ES&T
Transport/Transfor ' ( Dy).erego,yv.mw,y
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Outline

1 Fate processes affecting the mobility of
nanomaterials in the environment
— Aggregation
— Attachment/filtration
1 Transformations
— Abiotic (redox transformations, photolysis)
— Biotransformation
1 Mobility in the environment
— Groundwater
— Surface water
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Nanoparticle Aggregation

1 Particles aggregate n: water:

— High Hamaker constant-i.c attractive van der
Waals forces

~ical bonding
HVUI\.,,. X
— . “Hragu..
1 Small particles nave . "= cune N
coefficients and many collisions between
particles
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Nanoparticle Stabilization

1 Charge Stabilization

1 Steric Stabilization

Dr. Gregory V. Lowry
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Fullerene Aggregation in Water

v'Cluster dimensions
ranged from 25-500 nm

v'Stable suspensions <
0.05M (NacCl)

v'No surface coatings

Fortner, et al. (2005). C60 in Water: Nanocrystal Formation and Microbial
Response. Environ. Sci. Technol. 39(11); 4307-4316.
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Nanoiron (Fe® Aggregation

®=10"°
(~80 mg/L)

1-min

Nanoiron sedimentation curves (1 mM NacCl)

2_5micron

25 micron
35-min

——— ~40-140 micron diameter (Dg=1.8)
Phenrat et al. ES&T (submitted)
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TiO, (20 nm. “ggregation

—=— 20 ppm (DMEM)

10 ppm

N )
| v ~asing Conc.

Aggregaie size
is a function of
1-IIII\, -\nd

concenucltn

100 150 200
Time (minutes)

Long et al. (2006). Titanium Dioxide (P25) Produces Oxidative
Stress in Immortalized Brain Microglia (BV2): Implication of
Nanoparticle Neurotoxicity. ES&T (in press)
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Nanoparticle Size and Sedimentation

TiO, Sedimentation in DMEM Particle
12 concentration

affects:

1.0 ooemg

08 | N gy 1. Size of
K aggregates

06 1 formed

0.4
2. Stability of

0.2 suspensions

0.0

0O 20 40 60 80 100 3. Fate of the
Time (minutes) particles
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Attachiment to Surfaces

1 Attachment is an impcrtant fate process
— Limits mobility in porous madia
May affect bioavailability
— ~* transformation/degradaticn
. " ~toa,.  (Hamaker Constant)
and its surface properties
— Differences between NPs

Dr. Gregory V. Lowry
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QCM Monitors Nanomaterial

Polymer Mod RNIP
MRNIP

SDBS Mod RNIP Sand Grain

Bare RNIP

Frequency change (Hz)

Sand Grain

Time (min)

Saleh et al. EES (in press) Dr. Gregory V. Lowry
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Attachment Limits Mobility

Inlet | Time=1 min

Monolayer
of sand

Outlet

Nanoiron
Micro-fluidic aggregates are

PDMS cell filiered |
Saleh et al. EES (in press) it * |
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Nanomaterial Transformations

1 Fundamental Questions

— How long do the particles last?

— What do they become?

1 Abiotic transformations

— Redox reactions

— Photolysis (not in groundwater)

1 Biotransformations
— Aerobic oxidations
— Anaerobic reductions

Dr. Gregory V. Lowry
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Reactive Fel I\.. ~oparticles

~taminants

~ed oxidized

Fel

‘e
Acetylenc ‘
H, H

H* is reduced

Nano Fev is

Lifetime depei .
and maybe microbial activity

[
7

0

Coe il A
{'i., B

Liu et al, (2005) ES&T 39, 1338

Liu and Lowry, (2006) ES&T (submitted)
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Fel Lifetime Depends on

Particle Type

Fe® +2H" > Fe” +H, T

Ho (as % of total Fe¥)

p-o- TR

- -0-0

O  Fe(B) without TCE
O Fe(B)* without TCE
& Fe(B) without TCE

0 100

Liu and Lowry (2006) ES&T (in revision)
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Liu etal., (2005) ChemMat. 17, 5315.
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Nanoparticle Fate: Reaction with TCE in Water

RNIP (Fe%Fe;0,) (Fe;0,/Fe,0,)

Dr. Gregory V. Lowry
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Other transformations that could
affect particle toxicity or mobility

1 Surface functionalization
— E.g. hydroxylation of fullerene to fullerol
— Sorption of DOM or alginates Cai et al,, 2006
1 Oxidation of NPs in the atmospheric Nanoletters 6 (4)
. ; n 669-676
— E.g. oxidation of diesel soot
1 Loss of surface coatings on NP
— Biodegradation of coatings
— Desorption of coatings
1 Biotransformations

— Microbially induced redox transformations

1 Direct or indirect through release of reactive oxygen species
or reductants (e.g. Fe?*)

Wiesner et al. (2006) ES&T
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SWN nges:.. " by v *nthic
Ccooepen -

h Aqgregatlw 7"\1?37
k_/\’_\ moving throun.  ~gut

SWNTSs in Copepod Feces ‘

Templeton, et al. (2006) Environ.

Sci. Technol. ASAP Note: SWNT were hydroxylated and carboxylated
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Nanoiron on Medaka Fish Gils

Nanoiron aggregates accumulate on
Medaka fish gills-(Richard Winn UGA)

Dr. Gregory V. Lowry
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Nanoparticle Functionalization in
Natural Waters (Sorption of DOM)

= Alginates-
biopolymers
produced by brown
seaweed

= Natural Organic
Matter

Hematite-Alginate Aggregates
109 particles/mL; 784 ug/L alginate

Chen et al., 2006 ES&T 40 1516-1523

Dr. Gregory V. Lowry
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Nanomaterial Mobility in Porous Media

1 A---Aggregation
1 B---Straining
1 C---Attachment

1 D---NAPL
Targeting

N Dr. G V. L
Lowry, Env. Nanotech. (in press). o6
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Factor Affecting Nanomaterial
Mobility in the Environment

Schrick et al.,
2004 Chem Mat ;
16 2187-2193 v Chemical

Nanoiron aggregates on — (pH, I, particle surface chemistry)
top of sand v Physical

— (Particle size and concentration,
collector grain size, flow velocity,
heterogeneity)

flows through

Dr. Gregory V. Lowry
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Surface Modifiers Increase Mobility

1. Potential Surface Coatings
Polyelectrolyte (electrosteric)

v' Triblock copolymers

v' Polyaspartic acid

Surfactants (electrostatic)

v SDBS

Polymers (steric)
Cellulose/polysaccharides

Inhibits Aggregation Inhibits Particle-Media Interactions

Dr. Gregory V. Lowry
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Copolymer (MW=40k to 60k)  Modifiers Evaluated

Increasing MW

PMAA ,i-PMMA ,-PSS,,

Polyaspartic acid (MW=2k-3k)

SDBS (MW=350)
Gl (Gl S0 Surfactant

Dr. Gregory V. Lowry
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Modifiers Inhibit Agg/Sed

. RNIP+PSS.650 targizst Polymte_r
I, east aggregation
. RNIP+EDES

B i P *
A ekl

No Polymer
2000 4000 8000 oay VIost aggregation

Time (s)

Saleh, N., et al. (2005). “Nano Lett. 5 (12) 2489-2494.
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Coatings Enhance Mobility

Bare RNIP
Palymer Mod

Sand
L=10cm
porosity=0.33

N | “'acity 103 m/s
1000 S )
pH=7.4

Particle Concentration (mg/L)

Dr. Gregory V. Lowry
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Enhancement Depends on
Cocting Type

Polyelectrolytes \

Surfactant

Sand
L=10cm
~nsity=0.33
v"-,.._" " N-3 m/s
=1 mM (Naui)
R b ™" Tt 39/l partices

Dr. Gregory V. Lowry
34 of46

NANOTECHNOLOGY AND OSWER

Session 4: Fate and Transport of Nanomaterials New opportunities and challenges

Dr. Gregory V. Lowry -- Presentation Slides 177 July 12-13,2006  Washington DC



Mob:lity Deo “nds on lonic
Strengtn ana . mposition

Breakthrough Curves for Polymer mgdified ‘f\

atpH7.6

Tracer

Pol+RNIP - 1mi
Pol+RNIP-10m b
Pol+RNIP-100rmm
Pol+RNIP-500mM
Pol+RNIP-1000rm ki

Sand
L=61cm
porosity=0.33

- ~ity 3.22cml/s

S A, a
=0 =<

Nat or Ca%*

4000
Time (s)

Saleh et al. ES&T (in prep)

6000 5o 30 mg/L particles
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Elution of Modified Nanoiron at
Different lonic Strength (Na*)

lonic Strength mM Na+

— 10 Modified

=25 particles
/1 100 N q
N 500 immobile at
1>100mM
except high
MW polymer

Bare NPs
immobile

Session 4: Fate and Transport of Nanomaterials
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Elution of Modified 1lanoiron at
Different lonic Strength (Ca?)

lonic Strwa%

— 0.5mm\

mmm 1mM

=== 5mM Particles
immobile at

I>1 mM
Caz*except
high MW
polymer

Polmer-Mod polyaspartate SDBS  Bare
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Relative Mobility and Estimated
Transport Distances

1 Calculate the sticking coefficient
from breakthrough data

Column

Length Breakthrough

Length  Tolerance level

1 Estimate Travel Distance for given

tolerance (C/C ) a,=media grain radius; n=porosity
° n,=single collector efficiency

a=sticking coefficient (function of I)

Dr. Gregory V. Lowry
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Estimated Transport Distance for (C/C,=0.01)

(MW=60k)

Asartate
(MW=3k)

Dr. Gregory V. Lowry
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Mobility of Carbon and Metal-
oxide Nanomaterials

TABLE 1. Characteristics of Nanomaterials Used for Filtration Experiments and Calculated Particle Mobility in a System
Resembling a Sandy Groundwater Aquifer”

electrophoretic distance to
mobility (10—% ClIGy reduce C/Cy
nanomaterial size (nm) mEs~1VY) +25D a£25D loga 10 0.1% (m)®

fullerol .2, not detectable  0.9% +£0.01  (0.0001 £+ 0.0001) —3.98
SWNT . —3.98 0.94 £0.01 (0,001 £ 0.0004) —2.89
silica 5 —1.95 0.97 £0.01 0.008 £ 0.003 —2.10
5 —2.45 0.85 £0.02 0.039 £ 0.001 —1.32

—2.58 0.68 £ 0.01 0.169 £ 0.004 —-0.77

—-1.99 0.56 £ 0.06 0.298 £ 0.013 —0.52

anatase s —-0.27 0.56 £0.01 0.336 £ 0.005 —0.47
ferroxane . —0.43 0.30 £0.03 0.895 £ 0.023 —0.05

* M, monodisperse suspensions; P, polydisperse suspensions. ® Conditions assumed for calculations: 7= 15 °C, H= 10 J, Darcy velocity
= 0.003 cmis, porosity = 0.30, mean sand grain diameter = 350 #m. © According to the model cross-section of an individual fullerene nanotube
encased in a close-packed cylindrical surfactant micelle (16), the outer diameter of this nanomaterial is close to 4 nm with a specific gravity of
approximately 1.0. 9 Average hydrodynamic diameter

I= 10 mM, pH=7, v=0.003 cm/s

Lecoanet, et al. (2004). Laboratory Assessment of the Mobility of Nanomaterials in
Porous Media. Environ. Sci. Technol. 38(19); 5164-5169.
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Mobility of Nanomaterials from
Landfills

1 Mobility from landfills could be limited
considering leachate properties™
— Calcium 200-3000 mg/L (<5mM)
— Magnesium 50-1500 mg/L
— Sodium 100-200 mg/L
— Clay liners and leachate collection

*Davis and Masten, Principles of Environmental
Engineering and Science, McGraw Hill, 2004

Dr. Gregory V. Lowry
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Mobility in Su:. ce\ ‘aters

“Mobility in surface watars is . “now 2
- 1 in receiving waters may ',
alarey. ~r promote disagyregau-.
“~nwTace o “nas in surface water. s
S anVv. -

— Allaui .. . “thay o maga Jllids s
possible and my resu.... ~ e, ~fion ond
partitioning to solids

— Photolysis in surface waters is possible

Dr. Gregory V. Lowry
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Conclusions

1 Nanomaterials aggregate in the environment
— Predominantly present as aggregates
— Sizes range from 10’s of nanometers to 10’s of
microns depending on ionic strength and composition
1 Nanomaterial mobility in porous media is low
under typical GW conditions
— Surface modifcation enhances mobility
— Mobility in/from landfills will likely be low

— Mobility in surface water should be high, with sorption
and sedimentation the likely sink (i.e. in sediments)

Dr. Gregory V. Lowry
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Conclusions

1 Redox transformations change the surface
characteristics of the particles
— Oxidation, hydroxylation
— Sorption of organic matter
— Biotransformations are likely but not demonstrated
1 Nanomaterials appear to cycle with other
particles in the environment
— Copepods
— Transformations during this process are not known

Dr. Gregory V. Lowry
44 of46

NANOTECHNOLOGY AND OSWER
Session 4: Fate and Transport of Nanomaterials New opportunities and challenges

Dr. Gregory V. Lowry -- Presentation Slides 182 July 12-13,2006  Washington DC



Open Questions

1 Fate and Transport

Will NMs bioaccumulate or facilitate the bioaccumulation of other
contaminants?

How significant are biotransformations of NMs?
Is photolysis significant?
What role does heterogeneity play in particle mobility?
Is incineration effective at destroying NMs?
What is the fate of surface coatings on nanomaterials?
1 Toxicity
What are “environmentally relevant” concentrations of NMs?

Despite aggregation, is the low population of single particles
responsible for toxicity?

Do surface coatings enhance or mitigate the toxicity of the
particles?

Dr. Gregory V. Lowry
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