Introduction to Logic Modeling & Performance Measurement: Telling Your Performance Story

State Innovation Grants Workshop
April 28 - 29, 2009

Presented by:

Yvonne M. Watson and Cassandra Barnes
U.S. Environmental Protection Agency
National Center for Environmental Innovation
Evaluation Support Division
Presentation Goals

For participants to leave with:

- An understanding of performance management terminology and how to use the logic model to respond to EPA Order 5700.7
- A draft logic model of their SIG program or project
- A framework for developing a results oriented work plan and performance measures for their program/project
Session Agenda

- **Module 1**: Planning for Performance Measurement

- **Module 2**: Building on the Logic Model: Identifying and Developing Performance Measures
How does it all fit together?

- Environmental Results Order
- Work plans
- Logic models
- Measures: Outputs & Outcomes
Environmental Results Order (EPA Order 5700.7)

- Requires EPA grant officers and grant recipients to identify outputs and outcomes from grants and connect them to EPA’s Strategic Plan.
- Learning and continuous program improvement
EPA Order 5700.7

- Addresses environmental results in 3 stages of the assistance process:
 - Funding Announcements (application/funding process)
 - Work Plan Development (containing anticipated outputs & outcomes)
 - Performance Reporting (including results & performance measures)
Outputs and Outcomes

- **Output**: Products and services provided as a direct result of program/proposal activities.

- **Outcome**: Changes or benefits resulting from activities and outputs. Accomplishment of program goals and objectives
 - short-term *(Change in knowledge, skills, understanding, attitude)*
 - intermediate outcomes *(Change in behavior)*
 - long-term outcomes—impacts *(Change in the environment)*
Module 1:
Planning for Performance Measurement
PERFORMANCE MANAGEMENT

Performance management includes activities to ensure that goals are consistently being met in an effective and efficient manner. **Performance management tools include logic models, performance measurement and program evaluation.**

- **Logic Model**
 Tool/framework that helps identify the program/project resources, activities, outputs, customers, and outcomes.

- **Performance Measurement**
 Helps you understand **what** level of performance is achieved by the program/project.

- **Program Evaluation**
 Helps you understand and explain **why** you’re seeing the program/project results.
The Logic Model

“I think you should be more explicit here in Step Two.”
What is a Logic Model?

A logic model is a diagram and text that describes/illustrates the logical (causal) relationships among program elements and the problem to be solved, thus defining measurements of success.
Logic Model

HOW

Resources/Inputs → Activities → Outputs → Customers → Short term outcome → Intermediate outcome

RESULTS FROM PROGRAM

EXTERNAL CONDITIONS INFLUENCING PERFORMANCE (+/-)

WHY

Longer term outcome (STRATEGIC AIM)
Elements of the Logic Model

HOW

- **Resources/Inputs:** Programmatic investments available to support the program.
- **Activities:** Things you do—activities you plan to conduct in your program.
- **Outputs:** Product or service delivery/implementation targets you aim to produce.
- **Customer:** User of the products/services. Target audience the program is designed to reach.
- **Short-term:** Changes in learning, knowledge, attitude, skills, understanding.
- **Intermediate:** Change in behavior, practice or decisions. *Attitudes*
- **Long-term:** Change in condition. *Condition*

WHY

External Influences
Factors outside of your control (positive or negative) that may influence the outcome and impact of your program/project.

PROGRAM

RESULTS FROM PROGRAM
CASE STUDY: Michigan ERP

- SIG Grant awarded in 2004
- Targets Dry cleaning sector
- Combines air, water and waste requirements for the dry cleaning sector into a multi-media, self-certification, and compliance assistance package, with a statistically valid measurement system.
Exercise 1: Types of Program Elements

Example

<table>
<thead>
<tr>
<th>Type of Program Element</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dry cleaners increase knowledge and skills re: compliance</td>
<td>1.</td>
</tr>
<tr>
<td>2. Identify the universe of regulated PERC & petroleum solvent dry cleaners</td>
<td>2.</td>
</tr>
<tr>
<td>3. Dry cleaners comply with MACT</td>
<td>3.</td>
</tr>
<tr>
<td>5. Worker and community health improve</td>
<td>5.</td>
</tr>
</tbody>
</table>
What are Logic Models Used For?

- Planning tool
- Communication tool
- Implementation tool
- Measurement design
- Evaluation design
What are the Benefits of Logic Models?

- Illustrates the logic or theory of the program or project.
- Focuses attention on the most important connections between actions and results.
- Builds a common understanding among staff and with stakeholders.
- Helps staff “manage for results” and informs program design.
- Finds “gaps” in the logic of a program and work to resolve them.
When Can You Use Logic Models?

- **For new program’s** to make transparent the underlying assumptions about how the new program is to work to solve its problems and develop useful PM/PE systems.

- **For existing programs** to understand and check assumptions about how the program is supposed to work.
How Do You Develop a Logic Model?

1. Clarify program goal and define the elements of the program in a table.

2. Verify the logic table with stakeholders.

3. Develop a diagram and text describing logical relationships.

4. Verify the Logic Model with stakeholders.

Then use the Logic Model to identify and confirm performance measures and in planning and evaluation.
Step 1. Clarify the program goal and define the program elements in a table

<table>
<thead>
<tr>
<th>Resources/Inputs</th>
<th>Activities</th>
<th>Outputs</th>
<th>Customers reached</th>
<th>Short-term (change in attitude)</th>
<th>Intermediate (Change in behavior)</th>
<th>Long-term (change in condition)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External Influences:
Step 2. Verify the logic with stakeholders

- Seek review from stakeholders.

- Check the logic

 - If-Then Questions. Start at Activities and move along to Outcomes asking “If this, then that?”

- Compare to what units in the organization do and define their contributions to the outcomes.

- Check the logic by checking it against reality.
Key Questions to Consider…

- Are the program’s outcomes described?
- Are the program’s customers described?
- Are the program’s major resources, activities and outputs described and do they make sense?
- Are there things/issues that might influence the program’s ability to achieve its goal?
Step 3. Develop a diagram and text describing logical relationships

- Draw arrows to indicate/link the causal relationships between the logic model elements.

We use these resources… For these activities… To produce these outputs… So that these customers can change their ways… Which leads to these outcomes… Leading to these results!
• Identify the universe of regulated PERC and petroleum solvent dry cleaners.
• Establish performance measures for dry cleaning sector.
• Establish P2 and BMPs.
• Use USEPA Design for the Environment (DfE) resources tools.

• Dry cleaners keep records of PERC and petroleum solvent use.
• Dry cleaners are in compliance with quantity and time limits for hazardous waste storage.
• Dry cleaners discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.
• Dry cleaners have no readily detectible odor of PERC or petroleum solvent.
• Dry cleaners monitor emission control equipment with proper frequency.
• Dry cleaners are in compliance with MACT.
• Petroleum solvent dry cleaners are in compliance with NSPS.

Michigan Environmental Results Project Logic Model

Outputs

• Compliance assistance materials distributed to dry cleaners.
• Workshops and trainings conducted.
• BMPs developed.

Customers

• Dry Cleaning facilities

Dry cleaners increase relevant knowledge and skills as a result of site visits; consultation; or attending compliance assistance events (workshops and trainings).

Outcomes

Short-term

• Dry cleaners keep records of PERC and petroleum solvent use.

Intermediate

• Dry cleaners are in compliance with quantity and time limits for hazardous waste storage.
• Dry cleaners discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.
• Dry cleaners have no readily detectible odor of PERC or petroleum solvent.
• Dry cleaners monitor emission control equipment with proper frequency.
• Dry cleaners are in compliance with MACT.
• Petroleum solvent dry cleaners are in compliance with NSPS.

Long-term

• Environmental performance in targeted sector-specific improves.
• Worker and community public health improve.
• Dry cleaners achieve equal or better environmental results and increase cost effectiveness and decrease in costs to administer and comply with MERP program.

Resources

• Michigan personnel engaged in ERP project
• MDEQ
• USEPA
• Association members
• Environmental group members
• Private citizens

Activities

• Identify all federal and state-only requirements
• Compile lists of “do’s and don’ts” during MERP development process.

• Work with the USEPA, Region V, to determine how MERP Project interfaces with Title V requirements.
• Provide technical assistance to all dry cleaners through workbooks and workshops.
• Conduct targeted and random inspections of dry cleaners to determine performance and compliance status changes.
• Evaluate sector and facility performance using the results of self-certification and inspection.
• Assistance inspection protocols, and level of oversight accordingly.
• Determine the number of hours to develop permit.
• Conduct pre-evaluation of potential participants in the MERP.

Outputs

• Compliance assistance site visits conducted and phone calls processed.

Customers

• Michigan personnel
• MDEQ
• USEPA
• Association members
• Environmental group members
• Private citizens

• List of area sources within Michigan prior to pilot.

• Templates for multi-media inspection and compliance assistance tools adapted for other states’ use.
• Multi-media inspection techniques for use by single media inspector.
• Documented process of MERP for other state’s use, and future sectors.

• Prior to MERP, conduct inspections at a random set of dry cleaners, to establish baseline performance.

• Other States
What is “Z” Logic?

A

Outputs

Resources

Action A

B

Outputs

Resources

Action B

C

Outcomes

Resources

Action C

Strategic Program Results
Energy R,D,&D Program Using ‘Z’ Logic

External Influences: Price of oil and electricity, economic growth in industry and in general, perception of risk of global climate change and need for national energy security, market and technology assumptions.

Source: McLaughlin and Jordan, 1999
Two Important Rules to Follow

- For every *action* identified in the Logic Model, there must be an *output that connects* to an *outcome* through a *specific customer*.

 OR

- An *action* must produce an *output* that becomes a *key input* to another *activity*.

 THINK CONNECTIONS!
Exercise 2: Logic Modeling

Developing your own logic model
Module 2:
Building on the Logic Model: Identifying and Developing Performance Measures
Perfomance management includes activities to ensure that goals are consistently being met in an effective and efficient manner. **Performance management tools include logic models, performance measurement and program evaluation.**

Logic Model

Tool/framework that helps identify the program/project resources, activities, outputs, customers, and outcomes.

Performance Measurement

Helps you understand **what** level of performance is achieved by the program/project.

Program Evaluation

Helps you understand and explain **why** you’re seeing the program/project results.
The Logic Model as a Tool for Developing Performance Measures

Performance Measurement:
- Ongoing monitoring and reporting of accomplishments of your program or project.

Performance Measure:
- A metric used to gauge program or project performance.
 - Measures assess the effect of your program or project.
 - Measures help you determine if you achieved the activities that you had planned to conduct.
 - Describe program achievement in terms of resources, activities, outputs and outcomes.
Measures Across the Logic Model Spectrum

<table>
<thead>
<tr>
<th>Element</th>
<th>Definition</th>
<th>Example Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources/Inputs</td>
<td>Measure of resources consumed by the organization.</td>
<td>Amount of funds, # of FTE, materials, equipment, supplies (etc.).</td>
</tr>
<tr>
<td>Activities</td>
<td>Measure of work performed that directly produces the core products and services.</td>
<td># of training classes offered as designed; Hours of technical assistance training for staff.</td>
</tr>
<tr>
<td>Outputs</td>
<td>Measure of products and services provided as a direct result of program activities.</td>
<td># of technical assistance requests responded to; # of compliance workbooks developed/delivered.</td>
</tr>
<tr>
<td>Customer Reached</td>
<td>Measure of target population receiving outputs.</td>
<td>% of target population trained; # of target population receiving technical assistance.</td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>Measure of satisfaction with outputs.</td>
<td>% of customers dissatisfied with training; % of customers “very satisfied” with assistance received.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Accomplishment of program goals and objectives (short-term and intermediate outcomes, long-term outcomes--impacts).</td>
<td>% increase in industry’s understanding of regulatory recycling exclusion; # of sectors that adopt regulatory recycling exclusion; % increase in materials recycled.</td>
</tr>
</tbody>
</table>
Work Quality Measures

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Measure that relates outputs to costs.</td>
<td>Cost per workbook produced; cost per inspection conducted.</td>
</tr>
<tr>
<td>Productivity</td>
<td>Measure of the rate of production per some specific unit of resource (e.g., staff or employee). The focus is on labor productivity.</td>
<td>Number of enforcement cases investigated per inspector.</td>
</tr>
<tr>
<td>Cost Effectiveness</td>
<td>Measure that relates outcomes to costs.</td>
<td>Cost per pounds of pollutants reduced; cost per mile of beach cleaned.</td>
</tr>
<tr>
<td>Service Quality</td>
<td>Measure of the quality of products and services produced.</td>
<td>Percent of technical assistance requests responded to within one week.</td>
</tr>
</tbody>
</table>
Exercise 3: Types of Performance Measures

<table>
<thead>
<tr>
<th>Example</th>
<th>Type of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. # of personnel engaged in the MERP project</td>
<td>1. ______________</td>
</tr>
<tr>
<td>2. #/% of dry cleaners participating in MERP project</td>
<td>2. ______________</td>
</tr>
<tr>
<td>3. # of compliance assistance visits conducted and phone calls processed</td>
<td>3. ______________</td>
</tr>
<tr>
<td>4. Increase in #/% of drycleaners keeping records of PERC and petroleum solvent use</td>
<td>4. ______________</td>
</tr>
<tr>
<td>5. Estimated reduction in VOCs as a result of increased compliance</td>
<td>5. ______________</td>
</tr>
</tbody>
</table>
What are they?

- Questions designed to assess progress/ accomplishments of various aspects of a program/project.

- Performance measurement questions ask *what* your program is doing.
Performance Questions Across the Performance Spectrum

Program Elements:

<table>
<thead>
<tr>
<th>Resources (We use these)</th>
<th>Activities/Outputs (To do these things)</th>
<th>Target Customer (For these people)</th>
<th>Short term Outcome (To change them in these ways)</th>
<th>Intermediate Outcome (So they can do these things)</th>
<th>Long-Term Outcome (Which leads to these outcomes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Questions:</td>
<td>• Do we have enough,</td>
<td>• Are we doing things the way we say we should?</td>
<td>• Are we reaching the customers targeted?</td>
<td>• Did the customer's attitude, knowledge, skills or understanding change?</td>
<td>• What changes in condition have occurred?</td>
</tr>
<tr>
<td></td>
<td>• The right,</td>
<td>• Are we producing products and services at the levels anticipated?</td>
<td>• Are we reaching the anticipated numbers?</td>
<td>• Are customers using the change as expected? With what results?</td>
<td>• Did the program achieve its goals and objectives?</td>
</tr>
<tr>
<td></td>
<td>• The necessary level,</td>
<td>• According to anticipated quality indicators measures?</td>
<td>• Are they satisfied?</td>
<td>• Are customers served changing in the expected direction and level?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The consistency?</td>
<td></td>
<td></td>
<td>• If so, what did we (others) do to cause the change?</td>
<td></td>
</tr>
</tbody>
</table>

External Influences:

<table>
<thead>
<tr>
<th>EXTERNAL INFLUENCES:</th>
<th>What factors might influence my program’s success?</th>
</tr>
</thead>
</table>

36
Steps for Developing Measures

- Step 1: Identify Potential Measures
- Step 2: Assess Each Measure
- Step 3: Choose the Best Measures
- Step 4: Identify Baseline, Target, Timeline and Reporting Schedule
Key Steps in Identifying Potential Measures

STEP 1: Identify the information needed and the audience

- Identify measures in existing documents
- Review the logic model and select the appropriate logic model element
- Express the logic model element as a performance measure
- Determine if the measure clearly relates to the program/project goal or objective
STEP 1: Identify the information needed and the audience

- Review the performance measurement questions developed earlier

- Consider what information is needed to assess whether your program/project is meeting its goals and objectives.

Ask yourself:

- Who needs to know what about the program, why, and in what format?
Identify Measures in Existing Documents

- Review measures specified in:
 - Program/Project Mission, Goals, Objectives, Service standards
 - Legislation, Strategic plans (GPRA), Court Orders, PART, Regional Plans, National Program Management Guidance, Regional Priority Commitments
 - Previous evaluations and research reports
 - Consider other sources
Review the Logic Model

- Review the logic model –
 - Identify the aspects of performance that are most important to measure (resources, activities, outputs, outcomes)
 - Identify contextual factors that could influence the program either positively or negatively and generate measures for them as appropriate
• Identify the universe of regulated PERC and petroleum solvent dry cleaners.
• Establish performance measures for dry cleaning sector.
• Establish P2 and BMPs.
• Use USEPA Design for the Environment (DfE) resources tools.

• Dry cleaners keep records of PERC and petroleum solvent use.
• Dry cleaners are in compliance with quantity and time limits for hazardous waste storage.
• Dry cleaners discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.
• Dry cleaners have no readily detectable odor of PERC or petroleum solvent.
• Dry cleaners monitor emission control equipment with proper frequency.
• Dry cleaners are in compliance with MACT.
• Petroleum solvent dry cleaners are in compliance with NSPS.

• Environmental performance in targeted sector-specific improves.
• Worker and community public health improve.
• Dry cleaners achieve equal or better environmental results and increase cost effectiveness and decrease in costs to administer and comply with MERP program.

• Work with the USEPA, Region V, to determine how MERP Project interfaces with Title V requirements.
• Provide technical assistance to all dry cleaners through workbooks and workshops.
• Conduct targeted and random inspections of dry cleaners to determine performance and compliance status changes.
• Evaluate sector and facility performance using the results of self-certification and inspection.
• Assistance inspection protocols, and level of oversight accordingly.
• Determine the number of hours to develop permit.
• Conduct pre-evaluation of potential participants in the MERP.
• Templates for multi-media inspection and compliance assistance tools adapted for other states’ use.
• Multi-media inspection techniques for use by single media inspector.
• Documented process of MERP for other state’s use, and future sectors.

• Other States
Express the Logic Model element as a performance measure

- Consider how to express the measure in terms of:
 - Data:
 - Raw Numbers (tons of VOCs reduced)
 - Averages (mean tons of VOCs reduced)
 - Percentages (% of dry cleaners reporting VOC reduction)
 - Ratios (Cost per ton of VOCs reduced)
 - Rates (tons of VOCs reduced per 100 dry cleaners)
 - Unit of Measure:
 - Is it appropriate to the measure?
Michigan ERP: Performance Measures

<table>
<thead>
<tr>
<th>Logic Model Elements</th>
<th>Resources</th>
<th>Activities</th>
<th>Outputs</th>
<th>Customer reached</th>
<th>Short-term Outcome</th>
<th>Intermediate Outcome</th>
<th>Long-term Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan personnel engaged in ERP project</td>
<td>Identify the universe of regulated PERC & petroleum solvent dry cleaners</td>
<td>Compliance assistance materials distributed to dry cleaners</td>
<td>Dry cleaning facilities</td>
<td>Dry cleaners increase relevant knowledge and skills as a result of site visits; consultation; or attending compliance assistance events (workshops and trainings)</td>
<td>Dry cleaners keep records of PERC & petroleum solvent use</td>
<td>Environmental performance of dry cleaners improve</td>
<td>Worker & community public health improve</td>
</tr>
<tr>
<td>MDEQ</td>
<td>Establish performance measures for dry cleaning sector</td>
<td>Workshops & trainings conducted</td>
<td>BMPs developed</td>
<td>Dry cleaners are in compliance with quantity & time limits for hazardous waste storage</td>
<td>Dry cleaners are in compliance with MACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEPA</td>
<td>Environmental group members</td>
<td>Establish P2 BMPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Association Members</td>
<td>Private citizens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Measures						
# of personnel engaged in the MERP	Type of performance measures developed	# of workshops and trainings conducted	# of dry cleaners participating in MERP	Increase in # of dry cleaners with increased knowledge about compliance requirements	Increase in # of dry cleaners in compliance with MACT	Pounds of VOC air emissions reduced
$$$ Invested	# of BMPs developed prior, during and after pilot	# of BMPs developed				

Example Measures

- # of personnel engaged in the MERP
- $$$ Invested
- Type of performance measures developed
- # of workshops and trainings conducted
- # of BMPs developed prior, during and after pilot
- #/% of dry cleaners participating in MERP
- Increase in #/% of dry cleaners with increased knowledge about compliance requirements
- Increase in # of dry cleaners in compliance with MACT
- Pounds of VOC air emissions reduced
Determine whether the measures clearly relate to the mission/goal

- Review the program/project mission and or goal
 - What key activities, outputs or outcomes are specified in the mission or goal?

- Review the list of potential measures developed
 - Will the data collected from the measures developed clearly demonstrate that the mission and or goal was accomplished?
Performance Measures:

- # of personnel engaged in the MERP
- $$ Invested
- Type of performance measures developed
- # of workshops and trainings conducted
- # of BMPs developed prior, during and after pilot
- #/% of dry cleaners participating in MERP
- Increase in #/% of dry cleaners with increased knowledge about compliance requirements
- Increase in # of dry cleaners in compliance with MACT
- Pounds of VOC air emissions reduced
Step 2: Assess the Measures

- Assess the value of the measures in relation to goals and objectives
- Assess the feasibility of the measure in terms of:
 - Data collection (availability, implementation cost, baselining)
 - Data quality (reliability, validity, objectivity)
 - Analysis
 - Reporting (how to report, to whom to report, frequency of reporting, meaningfulness to audiences)
Step 3: Choose the Best Measures

- Assess the value of the measures in relation to the goals and objectives of the program.
 - Required
 - Important
 - Interesting
- Select final list of measures – you won’t be able to collect data for all measures.
- Check in with managers and stakeholders.
- Identify a priority list of measures
Step 4: Identify a Standard

For each performance measure develop a:

1. Baseline – current state
2. Target – desired level of performance
3. Timeline – date when performance will be achieved
Tips for Choosing the Best Measures

For each measure ask…

- Does the measure clearly relate to the project goal and objective?
- Is the measure important to management and stakeholders?
- Is it possible to collect accurate and reliable data for the measure?
- Taken together, do the measures accurately reflect the key results of the program, activity or service?
- Is there more than one measure for each goal or objective?
- Are your measures primarily outcome, efficiency, or quality measures?
Exercise 4: Application of Performance Measure Development

Developing Your Own Measures
Performance Management includes activities to ensure that goals are consistently being met in an effective and efficient manner. **Performance management tools** include logic models, performance measurement and program evaluation.

Logic Model
Tool/framework that helps identify the program/project resources, activities, outputs customers, and outcomes.

Performance Measurement
Helps you understand **what** level of performance is achieved by the program/project.

Program Evaluation
Helps you understand and explain **why** you’re seeing the program/project results.
Contacts:

Yvonne M. Watson
watson.yvonne@epa.gov
(202) 566-2239

Cassandra D. Barnes
barnes.cassandraD@epa.gov
(202) 566-1318
Appendices

- Appendix A: Example SIG Logic Models
- Appendix B: Example SIG Performance Measures
- Appendix C: More on Program Evaluation
Appendix A

Appendix A: Example SIG Logic Models
Wisconsin
Performance-Based Title V Permit for the Printing Sector

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activities</td>
<td>Customers Reached</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNR air staff and grant$</td>
<td>1. Obtain baseline information on:</td>
<td>• Portion of printing sector needing Title V permits</td>
</tr>
<tr>
<td>Partners staff, volunteers, and $</td>
<td>a. DNR collects VOC emissions baseline data from participating facilities using Air Emissions Inventory Data</td>
<td>• Interested public</td>
</tr>
<tr>
<td>• Other DNR staff – CEA, waste water, storm water, haz waste; Jeff Smoller</td>
<td>b. DNR collects data on construction permit application submittals and permit revision requests at participating facilities for the previous 5 years using Air Permit databases.</td>
<td>• Stakeholders</td>
</tr>
<tr>
<td>• Department of Commerce</td>
<td>c. DNR collects data on time lag between when a participating facility made the decision to make an operational change and the date the change actually occurred using facility records and DNR permit databases.</td>
<td>• EPA</td>
</tr>
<tr>
<td>• Printing Cluster Initiative</td>
<td>d. DNR collects information on the administrative time DNR has spent processing construction permits and revisions at participating facilities over the previous five years using Air Permit databases and employee time sheets.</td>
<td>• DNR personnel</td>
</tr>
<tr>
<td>• UWEX Agents & Specialists?</td>
<td>e. DNR collects information on the administrative time DNR has spent on compliance and enforcement activities at participating facilities during the last 5-year period using DNR compliance databases and employee time sheets.</td>
<td></td>
</tr>
<tr>
<td>• Printing Permit Streamlining Group – PIW, GATF, SGIA</td>
<td>f. Participating facilities provide DNR with information on the administrative time needed for them to meet regulatory commitments over the previous five years.</td>
<td></td>
</tr>
<tr>
<td>• PNEAC</td>
<td>g. DNR surveys the public to ascertain their awareness of public involvement requirements, their past participation, and their satisfaction with past participation over the previous 5 years.</td>
<td></td>
</tr>
<tr>
<td>• EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Environmental Orgs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multi-State Working Group (MSWG) on Environmental Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous work with Printers: Great Printers, Printer GOP work, memo establishing compliance demonstration methods for printers, cooperative environmental agreements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wisconsin

Performance-Based Title V Permit for the Printing Sector

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>CUSTOMERS REACHED</th>
<th>SHORT-TERM (LEARNING)</th>
<th>MEDIUM-TERM (ACTIONS)</th>
<th>Long-term (Conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational/Instructional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials: Printwi$er</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printer’s expertise in EMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA’s Environmental Management Guidance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>document</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Start programs with 2 or 3 facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Select facilities in Aug 04,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Begin meeting with partners in September 04,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Establishment of a relationship between EMS capabilities and major source permitting requirements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Establish env. Goals by March 05,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Start permit drafting by Oct. 04,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. e. Finalize permit by Oct. 05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cross Media Planning Step: Air staff meets with DNR staff in other areas and participating facilities to establish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Other media regulatory concerns, priorities, and goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Cross media impacts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Baseline data that needs to be collected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Possible permit conditions including facility wide limits, variance needs, etc,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Use outside consultants to provide training for facilities, DNR staff, and public partners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Provide training to DNR staff and facilities and any other interested parties on EMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Provide training to interested parties group and participating facilities on expectations, roles, responsibilities, etc. for participation in such a group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Provide training to select DNR compliance staff with the goal that they would become certified auditors of EMS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gather data on baseline info in 1[start after permit is finalized and continue].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8. Survey public to establish whether there is increased public satisfaction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M9. Cultivated interest from other business sectors in pursuing Performance-based Title V permits process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6. Use of the Performance-based Title V permits by sectors other than the Printing industry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wisconsin
Performance-Based Title V Permit for the Printing Sector

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activities</td>
<td>Customers Reached</td>
</tr>
<tr>
<td></td>
<td>7. In conjunction with DNR’s CEA program, establish criteria for approval of EMS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. After evaluation of the program, create model documents and strategies for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Performance-based Title V model permit using EMS structure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. EMS elements needed to satisfy our requirements specifically for printers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Compliance procedures to be used with performance-based approach.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Procedures for establishing emission-caps.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Procedures for establishing variance from selected non-performance-based requirements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Strategy for obtaining meaningful and continuing public involvement in the EMS and permit process.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. DNR and pilot facilities and their interested parties groups provide training for other DNR staff and facilities and potential interested parties on the procedures laid out in 7.</td>
<td></td>
</tr>
</tbody>
</table>
Maine’s Auto Body and Auto Repair Volunteer ERP: Logic Model Work Flow

Inputs/Activities

Inputs:
Maine DEP personnel engaged in ERP Program*
-Hire staff
-Train staff in multimedia inspections

Activities:
-Establish performance measurements for auto body
-Establish performance measurements for auto repair
-Prior to ERP, conduct inspection at random auto body & auto repair facilities
-Provide technical assistance to auto body & auto repair sector through workshops
-Evaluate compliance performance using the results of the self-certifications and inspections

Outputs

-Review process with stakeholder group compliance Advisory Panel
-Multi-media inspector trained and qualified
-Compliance checklist guidebooks distributed to auto body and auto repair
-Workshops with training conducted
-Compliance site visits conducted

Intermediate Outcomes

-Technical transfer to auto body & auto repair
-Increased knowledge of compliance, pollution prevention and human health exposure reductions

Environmental & or Economic Outcomes

-Compliance checklist guidebooks distributed to auto body & auto repair facilities
-Workshops with training conducted
-Compliance site visits conducted

Customer Reached

-Review process with stakeholder group compliance Advisory Panel
-Multi-media inspector trained and qualified
-Compliance checklist guidebooks distributed to auto body and auto repair
-Workshops with training conducted
-Compliance site visits conducted

Short-term Outcomes

-Auto body & repair shops keep records of all chemicals, solvents and paints uses
-Auto body & repair shops HW regulations, UIC program, VOC/Air emission regs
-Auto body & repair shops

Short-term Outcomes

-Auto body & repair compliance improves
-Worker and community public health improve
-Auto body & repair increase environmental results overall
-Environmental Administration and compliance costs are reduced by using the self-certification tools

* Work with hazardous waste, UIC and Air licensing to determine how ERP interfaces with their program reporting requirements including incorporating information into annual program reports.
OREGON EMS PROPOSAL FOR SMALL LOCAL GOVERNMENTS
STATE INNOVATION GRANT – LOGIC MODEL

Inputs/Activities
- Oregon personnel & $ engaged in EMS program
- Prior to implementation of EMS at small local governments, conduct inspections to establish baseline performance.
- Provide EMS training to interested small local governments.
- Conduct targeted and random audits/inspections of small local governments to determine changes in performance and compliance status.
- Engage small local governments and other interested stakeholders in collaborative workgroup to develop a model ISO 14001 compliant EMS for small local governments.

Activities:
Oregon
- Prior to implementation of EMS at small local governments, conduct inspections to establish baseline performance.
- Provide EMS training to interested small local governments.
- Conduct targeted and random audits/inspections of small local governments to determine changes in performance and compliance status.
- Engage small local governments and other interested stakeholders in collaborative workgroup to develop a model ISO 14001 compliant EMS for small local governments.

Outputs
- Workshops, trainings, collaborative working sessions offered to small local governments to design a model EMS or a community-specific EMS.
- Technical assistance site visits and phone conferences conducted with three selected small local govs.

Customers Reached
- Small local governments

Short-term Outcomes
- Increase in relevant EMS knowledge and skills as a result of site visits, consultation, or attending technical assistance events.

Intermediate Outcomes
- Non-selected small local governments develop a model ISO 14001 compliant EMS.
- Three selected small local governments faced with compliance issues develop and implement an ISO 14001 compliant EMS.
- Three small local governments with EMSs achieve compliance and beyond compliance performance.
- Three small local governments with EMSs increase source reduction achieved through pollution prevention and waste minimization.
- Three small local governments increase purchase of environmentally preferable products.

Environmental and/or Economic Outcomes
- Overall environmental performance as measured against targeted compliance and sustainability goals improve.
- Worker and community public health improved.
- Measured improvements in resource savings.
- Costs of regulatory compliance, insurance, and environmental liability and risk reduced.
- Potential for increase in investor interest and reduced lending rates available to small local gov.
Logic Model: Indiana Environmental Performance-Based Program

Mission: To develop and implement a voluntary program to encourage Indiana businesses to implement environmental management systems that potentially will achieve environmental quality improvements and direct public resources to areas where the most environmental improvement can be made.

Evaluation question to assess: Does participation in a voluntary performance-based program increase business’ environmental management and permit IDEM to focus on areas deemed as high priority?

<table>
<thead>
<tr>
<th>Resources</th>
<th>Activities</th>
<th>Outputs</th>
<th>Customers</th>
<th>Short-term Outcome</th>
<th>Intermediate Outcome</th>
<th>Long-term Outcome</th>
<th>Strategic Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEM</td>
<td>Train/provide technical assistance to businesses on EMS’s</td>
<td>Site visits, Conference calls, EMS software, Guidance documents</td>
<td>Business employees and leaders</td>
<td>New partnerships between state agencies for financial incentives</td>
<td>Implementation of environmental regulatory incentives offered by IDEM</td>
<td>Documented voluntary reductions in releases to the environment</td>
<td>Increased number of facilities developing and implementing an EMS and focusing state resources on high priority areas</td>
</tr>
<tr>
<td>SIG funds</td>
<td>Develop presentations describing benefits of participation in Program</td>
<td>Workshops, meetings, and conference presentations to business leaders and associations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partners:</td>
<td>Coordinate rulemaking with IDEM offices and EPA</td>
<td>Award ceremonies, Regulatory benefits, Press releases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External factors affecting program effectiveness:
- Global economics
- Parent companies
- Executive management
- Stock holders
- Labor relations
- External customers

Improved partnerships between federal and state government and industry

Increased number of organizations educated in P2 and EMS strategies

Improvements in permitting and inspecting

Increased public resources at locations where environmental improvement is needed

Documented violations and corrections identified
Appendix B: Example SIG Performance Measures
Summary of Wisconsin Title V EMS Permit Pilot Project Evaluation Approach

<table>
<thead>
<tr>
<th>Goals</th>
<th>Objectives</th>
<th>Measures (Sources in parentheses)</th>
<th>Potential Targets/Data/Sources/Baselines</th>
</tr>
</thead>
</table>
| Improve efficiency for regulated | Reduce agency permitting costs, time, and other resources. | DNR administrative time needed to implement EMS permit vs. traditional permitting (ARTWM, APII, LM, PN) | Target: By June 2006, reduce the hours spent per permit review, renewal, and revision by 20-40% (APII).
Indicator: Number of person-hours spent annually per individual permit action (review, renewal, revision) (APII).
Source: Air permit databases, employee timesheets. (LM)
Baseline: Data from previous five years. (LM) |
| entity and for agency | | Amount of air permit activity, including applications received, and air permit revisions requested | Target: By June 2006, reduce by 40-50% the need to revise or modify permits (APII).
Indicator: Number of operation permit revision requests and the numbers of construction/ modification permit applications submitted at each permitted facility (APII, LM).
Source: Air permit databases (LM)
Baseline: Data from previous five years. (LM) |
<p>| | | with EMS permit vs. traditional permitting (ARTWM, APII, LM, PN) | |
| Reduce agency compliance-related | Administrative time spent on compliance activities related to EMS permit | Target: Reduce agency compliance-related administrative time for pilot facilities by X% to Y%. | |
| costs and other resources | vs. traditional approach (ARTWM, LM) | Indicator: Number of person-hours spent annually on compliance activities per facility. | |
| | | Source: Compliance databases, employee timesheets. (LM) | |
| | | Baseline: Data from previous five years. (LM) | |
| Reduce regulated entity permitting | Facility’s administrative time needed to implement EMS permit vs. | Target: Reduce facility’s permit-related administrative time by X% to Y%. | |
| costs and other resources | traditional permitting vs. traditional approach (ARTWM, PN) | Indicator: Number of person-hours spent annually per individual permit action. | |
| | | Source: Data provided by facility. | |
| | | Baseline: Data from previous five years. | |</p>
<table>
<thead>
<tr>
<th>Summary of Wisconsin Title V EMS Permit Pilot Project Evaluation Approach</th>
</tr>
</thead>
</table>
| **Reduce regulated entity compliance-related costs and other resources** | Facility’s time spent on compliance activities affected by use of EMS permit (ARTWM, LM, PN) | Target: Reduce facility's time spent on compliance-related activities by X% to Y%.
Indicator: Number of person hours spent annually on compliance-related activities related to permit by facility.
Source: Data provided by facility.
Baseline: Data from previous five years. |
| **Increase operating efficiency of regulated entity** | Time lag between industry’s decision to make an operational change and the date the change is implemented, under the EMS permit vs. the traditional approach. (ARTWM, LM, PN) | Target: Reduce average lag time by X% to Y%.
Indicator: Average lag time
Source: Facility records and DNR permit databases (LM, PN)
Baseline: Data from previous five years. |
| **Improve environmental performance** | Reduce air emissions beyond what is required in regulation | Reduce emissions beyond what is required in regulation (ARTWM, APII, LM, PN, GT) | Target: Reduce emissions by X% to Y% for VOCs and A% to B% for HAPs.
Indicator: Annual VOC and HAP emissions (APII, LM, PN)
Source: Air Emissions Inventory data (annual consolidated report)
Baseline: Data from previous five years. |
| **Reduce other pollution** | Reduce pollution (other than air) with EMS permit vs. traditional approach (LM, PN, GT) | Target: Reduce emissions/discharges/transfers of [pollutant] by X% to Y%. To reflect continuous improvement, could be to reduce emissions X% per year.
Indicator: Annual measure of pollution
Source: Will vary
Baseline: Data from previous five years. |
| **Drive innovation** | Innovation under EMS permit vs. traditional approach (LM) | Target: Able to identify permit-related innovations
Indicator: List of innovations per facility
Source: Facility discussions/survey
Baseline: Perception of traditional levels of innovation and barriers to innovation |
| **Transferability** | Consistency with Title V air permit requirements (LM) | Target: Consistency with Title V.
Indicator: Acceptance/approval by EPA
Source: Not applicable
Baseline: Not applicable |
| **Transfer approach to other firms/sectors** | Interest of other facilities (in and out of printing industry) to participate (LM, PN) | Target: X facilities or Y% of facilities interested in innovation
Indicator: Facilities expressing an interest in undertaking the innovation
Source: Discussions/survey
Baseline: Not applicable |
| **Improve compliance** | Maintain or increase compliance rates | Compliance rates (ARTWM, APII, LM, PN) | Target: Maintain compliance or increase compliance to X% compliance.
Indicator: Compliance rates
Source: WACD and Compliance Certification Reports (APII)
Baseline: Data from previous five years. |
Summary of Wisconsin Title V EMS Permit Pilot Project Evaluation Approach

| Improve public involvement in permit development | Increase public involvement | Public involvement in EMS permit vs. traditional approach (LM, PN, GT) | Target: Increase number of participating person-events by X% to Y%.
Indicator: Attendance at meetings and other events; visits to website; etc.
Source: DNR survey of the public (LM, PN); number of people touring facility (GT); number of hits to website (APII)
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
|---|---|---|---|
| Opportunities for public involvement in EMS permit vs. traditional approach (GT) | | Target: Increase public involvement opportunities by X% or be able to document efforts to improve opportunities.
Indicator: Number of opportunities for public interaction (e.g., meetings, tours) or efforts to improve public involvement opportunities (e.g., revised website).
Source: Facility and agency records and information.
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
| Satisfaction with public involvement | Satisfaction with public involvement process with EMS permit vs. traditional approach (ARTWM, APII, LM, PN) | Target: Increase % of public satisfied by X% to Y%.
Indicator: Public satisfaction with meaningful participation (APII)
Source: Survey (LM, APII, PN)
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
| Knowledge of public involvement | Knowledge of public involvement opportunities in EMS permit vs. traditional approach (LM, PN) | Target: % increase in knowledge about public involvement activities.
Indicator: Public awareness of public involvement requirements (LM, PN) and/or role of public (LM)
Source: DNR survey of the public
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
OREGON EMS PROPOSAL FOR SMALL LOCAL GOVERNMENTS

STATE INNOVATION GRANTS – SAMPLE PERFORMANCE MEASURES

Inputs/Activities

Inputs:
- Number of Oregon personnel & $ engaged in EMS program

Activities:
- Oregon
 - Prior to implementation of EMS at small local governments, conduct inspections to establish baseline performance.
 - Provide EMS training to interested small local governments.
 - Conduct targeted and random audits/inspections of small local governments to determine changes in performance and compliance status.
 - Engage small local governments and other interested stakeholders in collaborative workgroup to develop a model ISO 14001 compliant EMS for small local governments.

Small Local Governments
- Small local government conducts an assessment of its environmental performance status.
- Small local government sets goals for specified areas in which to improve performance.
- Small local government conducts a gap analysis to compare its current status to its goals.
- Small local government develops action plan and institutionalizes plan-do-check-act approach as part of implementing EMS.

Outputs

- Number of workshops, trainings, collaborative working sessions offered to small local governments to design a model EMS or a community-specific EMS.
- Number of small local governments engaged in developing a model ISO 14001 compliant EMS.
- Number (%) of small local governments attending EMS training events or workshops.
- Number of small local governments who were not selected to develop an EMS.
- Number of technical assistance site visits or phone consultations.
- Number of stakeholder groups engaged in developing model EMS.

Customers Reached

- Number (% of small local governments engaged in developing a model ISO 14001 compliant EMS.
- Three small local governments faced with compliance issues develop and implement an ISO 14001 compliant EMS.
- Increase in the three small local governments with EMS that are in compliance and have achieved beyond compliance performance.
- Increase in the three small local governments with EMS that have achieved pollution prevention and waste minimization through source reduction.
- Increase in the three small local governments that are purchasing environmentally preferable products.

Intermediate Outcomes

- Improvements in overall environmental performance as measured against targeted compliance and sustainability goals.
- Measured improvements in worker and community public health.
- Measured improvements in resource savings; reductions in the the costs of regulatory compliance, insurance, and environmental liability and risk; and potential for increase in investor interest and reduced lending rates available to the small local government.

Environmental and/or Economic Outcomes

- Number (%) of small local governments attending EMS training events or workshops.
- Three small local governments faced with compliance issues develop and implement an ISO 14001 compliant EMS.
- Increase in the three small local governments with EMS that are in compliance and achieved beyond compliance performance.
- Increase in the three small local governments with EMS that have achieved pollution prevention and waste minimization through source reduction.
- Increase in the three small local governments that are purchasing environmentally preferable products.

Short-term Outcomes

- Number of regulated entities with increased relevant EMS knowledge and skills as a result of site visits, consultation, or attending technical assistance events.
Appendix C: More on Program Evaluation
Definitions:

Program Evaluation:

A systematic study that uses measurement and analysis to answer specific questions about *how well a program is working to achieve its outcomes and why*.
Differences between PM and PE

Performance Measurement
- Ongoing monitoring and reporting of accomplishments.
- Examines achievement of program objectives.
- Describes program achievements in terms of outputs, outcomes in a given time against a pre-established goal.
- Early warning to management.

Program Evaluation
- In-depth, systematic study conducted periodically or on an ad-hoc basis.
- Examines broader range of information on program performance than is feasible to monitor on an ongoing basis.
- Explains why the results occurred.
- Longer term review of effectiveness.
Relationship between PM and PE

- Performance measurement data provides information needed to conduct the evaluation and assess program performance.
- Lack of performance measurement data is a major obstacle to conducting an evaluation.
Evaluation and the Logic Model

Adapted from Evaluation Dialogue Between OMB and Federal Evaluation Leaders: Digging a Bit Deeper into Evaluation Science, April 2005
Common Evaluation Questions

<table>
<thead>
<tr>
<th>Evaluation Type</th>
<th>Common Evaluation Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design assessment</td>
<td>▪ Is the design of the program well formulated, feasible, and likely to achieve the intended goals?</td>
</tr>
</tbody>
</table>
| Process evaluation or implementation assessment | ▪ Is the program being delivered as intended to the targeted recipients?
▪ Is the program well managed?
▪ What progress has been made in implementing new provisions? |
| Outcome evaluation | ▪ Are desired program outcomes obtained?
▪ What role, if any, did the program play?
▪ What role, if any, did the context play?
▪ Did the program produce unintended outcomes? |
| Impact evaluation | ▪ Did the program cause the desired impact?
▪ Is one approach more effective than another in obtaining the desired outcomes? |
| Cost evaluation | ▪ What are the specific costs for implementing and operating the program?
▪ Is the program cost efficient? Cost effective?
▪ How do the costs of the program compare to a similar program aimed at the same outcome? |