Introduction to Logic Modeling and Performance Measurement Workshop

State Innovation Grants Workshop
May 20 - 21, 2008

Presented by:

Yvonne M. Watson, Britta Johnson and Terell Lasane
U.S. Environmental Protection Agency
National Center for Environmental Innovation
Evaluation Support Division
Presentation Goals

For participants to leave with:

- An understanding of performance management terminology
- A draft logic model of their SIG program or project
- A framework for developing performance measures for their program/project
Session Agenda

- **Module 1:** Planning for Performance Measurement

- **Module 2:** Identifying and Developing Performance Measures
Performance management includes activities to ensure that goals are consistently being met in an effective and efficient manner. Performance management tools include logic models, performance measurement and program evaluation.

Logic Model
Tool/framework that helps identify the program/project resources, activities, outputs customers, and outcomes.

Performance Measurement
Helps you understand what level of performance is achieved by the program/project.

Program Evaluation
Helps you understand and explain why you’re seeing the program/project results.
Module 1:
Planning for Performance Measurement
Drivers for Performance Measurement

- Environmental Results Order (EPA Order 5700.7)
 - Requires EPA grant officers and grant recipients to identify outputs and outcomes from grants and connect them to EPA’s Strategic Plan.

- Learning and Continuous Program Improvement
Outputs and Outcomes

- **Output**: Products and services provided as a direct result of program/proposal activities.

- **Outcome**: Changes or benefits resulting from activities and outputs. Accomplishment of program goals and objectives
 - short-term (*Change in knowledge, skills, understanding, attitude*)
 - intermediate outcomes (*Change in behavior*)
 - long-term outcomes—impacts (*Change in the environment*)
The Logic Model

"I think you should be more explicit here in step two."
What is a Logic Model?

A logic model is a **diagram** and **text** that describes/illustrates the logical (causal) relationships among program elements and the problem to be solved, thus defining measurements of success.

- We use these resources…
- For these activities…
- To produce these outputs…
- So that these customers can change their ways…
- Which leads to these outcomes…
- Leading to these results!
Logic Model

HOW
- Resources/Inputs
- Activities
- Outputs
- Customers
- Short term outcome
- Intermediate outcome

WHY
- Longer term outcome (STRATEGIC AIM)

PROGRAM

RESULTS FROM PROGRAM

EXTERNAL CONDITIONS INFLUENCING PERFORMANCE (+/-)
Elements of the Logic Model

HOW → WHY

Resources/Inputs:
Programmatic investments available to support the program.

Activities
Things you do—activities you plan to conduct in your program.

Outputs
Product or service delivery/implementation targets you aim to produce.

Customer
User of the products/services. Target audience the program is designed to reach.

Short-term
Changes in learning, knowledge, attitude, skills, understanding.

Intermediate
Changes in behavior, practice or decisions.

Long-term
Change in condition.

External Influences
Factors outside of your control (positive or negative) that may influence the outcome and impact of your program/project.

Outcomes

Program

Results FROM PROGRAM
Elements of the Logic Model: Generic Compliance Assistance Program Example

Resources/Inputs:
- Staff time, $
- Existing regulations
- Existing compliance assistance materials

Activities
- Meet with regulated sector
- Meet with associations
- Develop additional materials, as necessary

Outputs
- Meetings
- Mailings
- Materials

Customer
- Regulated sector
- Associations

Short-term
- Regulated entities are more aware of compliance requirements
- Regulated entities perceive compliance as important
 - **Attitudes**

Intermediate
- Increased compliance
 - **Behavior**

Long-term
- Air quality improves
 - **Condition**

External Influences
Factors outside of your control (positive or negative) that may influence the outcome and impact of your program/project.

Program

Results from Program

Why

How
Exercise 1: Types of Program Elements

<table>
<thead>
<tr>
<th>Example</th>
<th>Type of Program Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Regulated entities perceive compliance as important</td>
<td>1. ____________________</td>
</tr>
<tr>
<td>2. Develop additional compliance assistance materials</td>
<td>2. ____________________</td>
</tr>
<tr>
<td>3. Increased compliance</td>
<td>3. ____________________</td>
</tr>
<tr>
<td>4. Three full-time staff members providing compliance assistance to regulated entities</td>
<td>4. ____________________</td>
</tr>
<tr>
<td>5. Improved air quality, pollution prevention</td>
<td>5. ____________________</td>
</tr>
</tbody>
</table>
What are Logic Models Used For?

- Staff and managers can use logic models to...
 - Develop program/project design
 - Identify and develop performance measures for their program/project
 - Support strategic planning
 - Communicate the priorities of the program/project
 - Focus on key evaluation questions
What are the Benefits of Logic Models?

- Illustrates the logic or theory of the program or project.
- Focuses attention on the most important connections between actions and results.
- Builds a common understanding among staff and with stakeholders.
- Helps staff “manage for results” and informs program design.
- Finds “gaps” in the logic of a program and work to resolve them.
When Can You Use Logic Models?

- For **new** program’s to make transparent the underlying assumptions about how the new program is to work to solve its problems and develop useful PM/PE systems

- For **existing** programs to understand and check assumptions about how the program is supposed to work
How Do You Develop a Logic Model?

1. Establish a team or work group and collect documents.
2. Define the problem and context for the program or project and determine what aspect of your program/project you will logic model.
3. Define the elements of the program in a table.
4. Verify the logic table with stakeholders.
5. Develop a diagram and text describing logical relationships.
6. Verify the Logic Model with stakeholders.

Then use the Logic Model to identify and confirm performance measures and in planning and evaluation.
Step 3. Define the elements of the program or project in a table

WHAT and WHY

<table>
<thead>
<tr>
<th>Resources/Inputs</th>
<th>Activities</th>
<th>Outputs</th>
<th>Customers reached</th>
<th>Short-term (change in attitude)</th>
<th>Intermediate (Change in behavior)</th>
<th>Long-term (change in condition)</th>
<th>External Influences:</th>
</tr>
</thead>
</table>
Step 4. Verify the logic with stakeholders

- Seek review from stakeholders.
- Check the logic
 - If-Then Questions. Start at Activities and move along to Outcomes asking “If this, then that?”
- Compare to what units in the organization do and define their contributions to the outcomes.
- Check the logic by checking it against reality.
Step 5. Develop a diagram and text describing logical relationships

- Draw arrows to indicate/link the causal relationships between the logic model elements.
Something to Consider…

- There are many different forms of logic models….
Identify the universe of regulated PERC and petroleum solvent dry cleaners.

Establish performance measures for dry cleaning sector.

Establish P2 and BMPs.

Use USEPA Design for the Environment (DfE) resources tools.

Dry cleaners keep records of PERC and petroleum solvent use.

Dry cleaners are in compliance with quantity and time limits for hazardous waste storage.

Dry cleaners discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.

Dry cleaners have no readily detectible odor of PERC or petroleum solvent.

Dry cleaners monitor emission control equipment with proper frequency.

Dry cleaners are in compliance with MACT.

Petroleum solvent dry cleaners are in compliance with NSPS.

Dry cleaners increase relevant knowledge and skills as a result of site visits; consultation; or attending compliance assistance events (workshops and trainings).

Dry cleaners keep records of PERC and petroleum solvent use.

Dry cleaners are in compliance with quantity and time limits for hazardous waste storage.

Dry cleaners discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.

Dry cleaners have no readily detectible odor of PERC or petroleum solvent.

Dry cleaners monitor emission control equipment with proper frequency.

Dry cleaners are in compliance with MACT.

Petroleum solvent dry cleaners are in compliance with NSPS.

List of area sources within Michigan prior to pilot.

Templates for multi-media inspection and compliance assistance tools adapted for other states’ use.

Multi-media inspection techniques for use by single media inspector.

Documented process of MERP for other state’s use, and future sectors.

Other States
Wisconsin
Performance-Based Title V Permit for the Printing Sector

Inputs
- DNR air staff and grant$
- Partners staff, volunteers, and $
- Other DNR staff – CEA, waste water, storm water, haz waste; Jeff Smoller
- Department of Commerce
- Printing Cluster Initiative
- UWEX Agents & Specialists?
- Printing Permit Streamlining Group – PIW, GATF, SGIA
- PNEAC
- EPA
- Environmental Orgs
- Multi-State Working Group (MSWG) on Environmental Performance
- Time
- Planning
- Implementation
- Evaluation
- Previous work with Printers: Great Printers, Printer GOP work, memo establishing compliance demonstration methods for printers, cooperative environmental agreements

Outputs

<table>
<thead>
<tr>
<th>Activities</th>
<th>Customers Reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Obtain baseline information on:</td>
<td>• Portion of printing sector needing Title V permits</td>
</tr>
<tr>
<td>a. DNR collects VOC emissions baseline data from participating facilities using Air Emissions Inventory Data</td>
<td>• Interested public</td>
</tr>
<tr>
<td>b. DNR collects data on construction permit application submittals and permit revision requests at participating facilities for the previous 5 years using Air Permit databases</td>
<td>• Stakeholders</td>
</tr>
<tr>
<td>c. DNR collects data on time lag between when a participating facility made the decision to make an operational change and the date the change actually occurred using facility records and DNR permit databases</td>
<td>• EPA</td>
</tr>
<tr>
<td>d. DNR collects information on the administrative time DNR has spent processing construction permits and revisions at participating facilities over the previous five years using Air Permit databases and employee time sheets</td>
<td>• DNR personnel</td>
</tr>
<tr>
<td>e. DNR collects information on the administrative time DNR has spent on compliance and enforcement activities at participating facilities during the last 5-year period using DNR compliance databases and employee time sheets</td>
<td></td>
</tr>
<tr>
<td>f. Participating facilities provide DNR with information on the administrative time needed for them to meet regulatory commitments over the previous five years</td>
<td></td>
</tr>
<tr>
<td>g. DNR surveys the public to ascertain their awareness of public involvement requirements, their past participation, and their satisfaction with past participation over the previous 5 years</td>
<td></td>
</tr>
</tbody>
</table>

Outcomes

<table>
<thead>
<tr>
<th>Short-term (Learning)</th>
<th>Medium-term (Actions)</th>
<th>Long-term (Conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1. Data to show that a performance-based Title V permit incorporating EMS elements can meet all the requirements of Part 70 [start gathering data upon permit issuance Oct 05 and continue through life of grant]</td>
<td>M1. Collect data to show that a performance-based Title V permit incorporating EMS elements can be as effective or more effective in reducing emissions and driving innovation as a traditional Title V permit.</td>
<td>L1. Attain and maintain 8-hr Ozone Standard</td>
</tr>
<tr>
<td>S2. Ability to quickly and efficiently establish a performance-based permit which incorporates EMS.</td>
<td>M2. Gain acceptance by EPA of a permit that uses the structure of an EMS to hold the requirements of a performance-based Title V permit.</td>
<td>L2. Attain and maintain environmental standards from other media established as priorities during the cross media planning step.</td>
</tr>
<tr>
<td>S3. Understanding by the public of their role in the Performance-based Title V permits process.</td>
<td>M3. Measure a reduction in VOC emissions.</td>
<td>L3. Reduced administrative time for DNR staff in air management and in other affected programs.</td>
</tr>
<tr>
<td>S4. Ability of DNR Staff to audit environmental management systems and to be able to evaluate compliance with a performance-based permit that incorporates EMS.</td>
<td>M4. Measure a reduction in Hazardous Air Pollution Emissions.</td>
<td>L4. Reduced administrative time for facilities to meet regulatory obligations.</td>
</tr>
<tr>
<td>S5. Ability of DNR staff to understand and create a Performance-based Title V permit that incorporates EMS elements.</td>
<td>M5. Measure reductions in pollutants in other media besides air that were established as priorities during the cross media planning step.</td>
<td>L5. Establishment of lasting and meaningful partnerships between interested public and participating facility.</td>
</tr>
</tbody>
</table>
Wisconsin
Performance-Based Title V Permit for the Printing Sector

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activities</td>
<td>Customers Reached</td>
</tr>
<tr>
<td>Educational/Instructional Materials: Printwi$er Printer’s expertise in EMS EPA’s Environmental Management Guidance document</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Start programs with 2 or 3 facilities a. Select facilities in Aug 04, b. Begin meeting with partners in September 04, c. Establishment of a relationship between EMS capabilities and major source permitting requirements. c. Establish env. Goals by March 05, d. Start permit drafting by Oct. 04,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. e. Finalize permit by Oct. 05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cross Media Planning Step: Air staff meets with DNR staff in other areas and participating facilities to establish a. Other media regulatory concerns, priorities, and goals b. Cross media impacts. c. Baseline data that needs to be collected. d. Possible permit conditions including facility wide limits, variance needs, etc,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Use outside consultants to provide training for facilities, DNR staff, and public partners a. Provide training to DNR staff and facilities and any other interested parties on EMS b. Provide training to interested parties group and participating facilities on expectations, roles, responsibilities, etc. for participation in such a group c. Provide training to select DNR compliance staff with the goal that they would become certified auditors of EMS. 6. Gather data on baseline info in 1[start after permit is finalized and continue].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8. Survey public to establish whether there is increased public satisfaction. M9. Cultivated interest from other business sectors in pursuing Performance-based Title V permits process.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6. Use of the Performance-based Title V permits by sectors other than the Printing industry.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wisconsin Performance-Based Title V Permit for the Printing Sector

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activities</td>
<td>Customers Reached</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. In conjunction with DNR’s CEA program, establish criteria for approval of EMS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. DNR and pilot facilities and their interested parties groups provide training for other DNR staff and facilities and potential interested parties on the procedures laid out in 7.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maine’s Auto Body and Auto Repair Volunteer ERP: Logic Model Work Flow

Inputs/Activities

- **Inputs:**
 - Maine DEP personnel engaged in ERP Program*
 - Hire staff
 - Train staff in multimedia inspections

- **Activities:**
 - Establish performance measurements for auto body & auto repair
 - Prior to ERP, conduct inspection at random auto body & auto repair facilities
 - Provide technical assistance to auto body & auto repair sector through workshops
 - Evaluate compliance performance using the results of the self-certifications and inspections

Outputs

- Review process with stakeholder group compliance Advisory Panel
- Multi-media inspector trained and qualified
- Compliance checklist guidebooks distributed to auto body and auto repair Facilities
- Workshops with training conducted
- Compliance site visits conducted

Intermediate Outcomes

- Auto body & repair shops keep records of all chemicals, solvents and paints uses
- Auto body & repair shops
- Auto body & repair shops
- Auto body & repair shops

Environmental & or Economic Outcomes

- Auto body & repair compliance improves
- Worker and community public health improve
- Auto body & repair increase environmental results overall
- Environmental Administration and compliance costs are reduced by suing the self-certification tools

* Work with hazardous waste, UIC and Air licensing to determine how ERP interfaces with their program reporting requirements including incorporating information into annual program reports.
OREGON EMS PROPOSAL FOR SMALL LOCAL GOVERNMENTS
STATE INNOVATION GRANT – LOGIC MODEL

Inputs/Activities

Inputs:
- Oregon personnel & $ engaged in EMS program

Activities:
- Prior to implementation of EMS at small local governments, conduct inspections to establish baseline performance.
- Provide EMS training to interested small local governments.
- Conduct targeted and random audits/inspections of small local governments to determine changes in performance and compliance status.
- Engage small local governments and other interested stakeholders in collaborative workgroup to develop a model ISO 14001 compliant EMS for small local governments.

Outputs

- Workshops, trainings, collaborative working sessions offered to small local governments to design a model EMS or a community-specific EMS.
- Technical assistance site visits and phone conferences conducted with three selected small local governments.

Customers Reached

- Small local governments

Short-term Outcomes

- Increase in relevant EMS knowledge and skills as a result of site visits, consultation, or attending technical assistance events.

Intermediate Outcomes

- Non-selected small local governments develop a model ISO 14001 compliant EMS.
- Three selected small local governments faced with compliance issues develop and implement an ISO 14001 compliant EMS.
- Three small local governments with EMSs achieve compliance and beyond compliance performance.
- Three small local governments with EMSs increase source reduction achieved through pollution prevention and waste minimization.
- Three small local governments increase purchase of environmentally preferable products.

Environmental and/or Economic Outcomes

- Overall environmental performance as measured against targeted compliance and sustainability goals improve.
- Worker and community public health improved.
- Measured improvements in resource savings.
- Costs of regulatory compliance, insurance, and environmental liability and risk reduced.
- Potential for increase in investor interest and reduced lending rates available to small local gov.
Mission: To develop and implement a voluntary program to encourage Indiana businesses to implement environmental management systems that potentially will achieve environmental quality improvements and direct public resources to areas where the most environmental improvement can be made.

Evaluation question to assess: Does participation in a voluntary performance-based program increase business’ environmental management and permit IDEM to focus on areas deemed as high priority?

Resources
- IDEM
- SIG funds
- EPA

Activities
- Train/provide technical assistance to businesses on EMS's
- Develop presentations describing benefits of participation in Program
- Coordinate rulemaking with IDEM offices and EPA

Outputs
- Site visits
- Conference calls
- EMS software
- Guidance documents
- Workshops, meeting, and conference presentations to business leaders and associations
- Award ceremonies
- Regulatory benefits
- Press releases

Customers
- Business employees and leaders

Short-term Outcome
- New partnerships between state agencies for financial incentives
- Identification of potential improvements to IDEM policies and procedures
- Increased number of organizations educated in P2 and EMS strategies
- Improvements in permitting and inspecting
- Increased public resources at locations where environmental improvement is needed

Intermediate Outcome
- Implementation of environmental regulatory incentives offered by IDEM
- Increased participation in NEPT and other state and national programs
- Increased # of EMS implemented

Long-term Outcome
- Documented voluntary reductions in releases to the environment

Strategic Goal
- Increased number of facilities developing and implementing an EMS and focusing state resources on high priority areas

External factors affecting program effectiveness:
- Global economics
- Parent companies
- Executive management
- Stock holders
- Labor relations
- External customers
What is “Z” Logic?

- **Resources** → **Action A** → **A Outputs**

 Resources → **Action B** → **B Outputs**

- **Resources** → **Action C** → **C Outcomes** → **Strategic Program Results**
Energy R,D,&D Program Using ‘Z’ Logic

External Influences: Price of oil and electricity, economic growth in industry and in general, perception of risk of global climate change and need for national energy security, market and technology assumptions.

Source: McLaughlin and Jordan, 1999
Two Important Rules to Follow

- For every *action* identified in the Logic Model, there must be an *output that connects* to an *outcome* through a *specific customer*.

 OR

- An *action* must produce an *output* that becomes a *key input* to another *activity*.

 THINK CONNECTIONS!
Exercise 2: Logic Modeling
Developing your own logic model
Module 2:
Identifying and Developing Performance Measures
Performance management includes activities to ensure that goals are consistently being met in an effective and efficient manner. **Performance management tools** include logic models, performance measurement and program evaluation.

- **Logic Model**
 Tool/framework that helps identify the program/project resources, activities, outputs customers, and outcomes.

- **Performance Measurement**
 Helps you understand **what** level of performance is achieved by the program/project.

- **Program Evaluation**
 Helps you understand and explain **why** you’re seeing the program/project results.
Definitions:

Performance Measurement:
The ongoing monitoring and reporting of program progress and accomplishments, using pre-selected performance measures.

Performance Measure:
A metric used to gauge program or project performance.

Indicators:
Measures, usually quantitative, that provide information on program performance and evidence of a change in the “state or condition” in the system.
Performance Measurement Questions

What are they?

- Questions designed to assess progress/ accomplishments of various aspects of a program/project.

- Performance measurement questions ask/tell you *what* your program is doing.
Performance Questions Across the Performance Spectrum

<table>
<thead>
<tr>
<th>PROGRAM ELEMENTS:</th>
<th>Resources (We use these)</th>
<th>Activities/Outputs (To do these things)</th>
<th>Target Customer (For these people)</th>
<th>Short term Outcome (To change them in these ways)</th>
<th>Intermediate Outcome (So they can do these things)</th>
<th>Long-Term Outcome (Which leads to these outcomes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFORMANCE QUESTIONS:</td>
<td>Do we have enough,</td>
<td>Are we doing things the way we say we should?</td>
<td>Are we reaching the customers targeted?</td>
<td>Did the customer's attitude, knowledge, skills or understanding change?</td>
<td>Are customers using the change as expected? With what results?</td>
<td>What changes in condition have occurred?</td>
</tr>
<tr>
<td></td>
<td>The right,</td>
<td>Are we producing products and services at the levels anticipated?</td>
<td>Are we reaching the anticipated numbers?</td>
<td>Are they satisfied?</td>
<td>Are customers served changing in the expected direction and level?</td>
<td>If so, what did we (others) do to cause the change?</td>
</tr>
<tr>
<td></td>
<td>The necessary level,</td>
<td>According to anticipated quality indicators measures?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The consistency?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| EXTERNAL INFLUENCES: | What factors might influence my program’s success? |
Measures Across the Logic Model Spectrum

<table>
<thead>
<tr>
<th>Element</th>
<th>Definition</th>
<th>Example Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources/Inputs</td>
<td>Measure of resources consumed by the organization.</td>
<td>Amount of funds, # of FTE, materials, equipment, supplies (etc.).</td>
</tr>
<tr>
<td>Activities</td>
<td>Measure of work performed that directly produces the core products and services.</td>
<td># of training classes offered as designed; Hours of technical assistance training for staff.</td>
</tr>
<tr>
<td>Outputs</td>
<td>Measure of products and services provided as a direct result of program activities.</td>
<td># of technical assistance requests responded to; # of compliance workbooks developed/delivered.</td>
</tr>
<tr>
<td>Customer Reached</td>
<td>Measure of target population receiving outputs.</td>
<td>% of target population trained; # of target population receiving technical assistance.</td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>Measure of satisfaction with outputs.</td>
<td>% of customers dissatisfied with training; % of customers “very satisfied” with assistance received.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Accomplishment of program goals and objectives (short-term and intermediate outcomes, long-term outcomes--impacts).</td>
<td>% increase in industry’s understanding of regulatory recycling exclusion; # of sectors that adopt regulatory recycling exclusion; % increase in materials recycled.</td>
</tr>
</tbody>
</table>
Work Quality Measures

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Measure that relates outputs to costs.</td>
<td>Cost per workbook produced; cost per inspection conducted.</td>
</tr>
<tr>
<td>Productivity</td>
<td>Measure of the rate of production per some specific unit of resource (e.g., staff or employee). The focus is on labor productivity.</td>
<td>Number of enforcement cases investigated per inspector.</td>
</tr>
<tr>
<td>Cost Effectiveness</td>
<td>Measure that relates outcomes to costs.</td>
<td>Cost per pounds of pollutants reduced; cost per mile of beach cleaned.</td>
</tr>
<tr>
<td>Service Quality</td>
<td>Measure of the quality of products and services produced.</td>
<td>Percent of technical assistance requests responded to within one week.</td>
</tr>
</tbody>
</table>
Exercise 3: Types of Performance Measures

<table>
<thead>
<tr>
<th>Example</th>
<th>Type of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total annual funding for compliance assistance</td>
<td>1. ________________________________</td>
</tr>
<tr>
<td>2. Number of new entities (from target list) met with</td>
<td>2. ________________________________</td>
</tr>
<tr>
<td>3. Number of compliance assistance requests responded to.</td>
<td>3. ________________________________</td>
</tr>
<tr>
<td>4. Percentage increase in compliance within the sector</td>
<td>4. ________________________________</td>
</tr>
<tr>
<td>5. Estimated reduction in VOCs as a result of increased compliance</td>
<td>5. ________________________________</td>
</tr>
</tbody>
</table>
Steps for Developing Measures

- Step 1: Identify Potential Measures
- Step 2: Assess Each Measure
- Step 3: Choose the Best Measures
- Step 4: Identify Baseline, Target, Timeline and Reporting Schedule
Key Steps in Identifying Potential Measures

STEP 1: Identify the information needed and the audience

- Identify measures in existing documents
- Review the logic model and select the appropriate logic model element
- Express the logic model element as a performance measure
- Determine if the measure clearly relates to the program/project goal or objective
STEP 1: Identify the information needed and the audience

- Review the performance measurement questions developed earlier

- Consider what information is needed to assess whether your program/project is meeting its goals and objectives.

Ask yourself:

- Who needs to know what about the program, why, and in what format?
Identify Measures in Existing Documents

- Review measures specified in:
 - Program/Project Mission, Goals, Objectives, Service standards
 - Legislation, Strategic plans (GPRA), Court Orders, PART, Regional Plans, National Program Management Guidance, Regional Priority Commitments
 - Previous evaluations and research reports
 - Consider other sources
Review the Logic Model

- **Review the logic model** –
 - Identify the aspects of performance that are most important to measure (resources, activities, outputs, outcomes)
 - Identify contextual factors that could influence the program either positively or negatively and generate measures for them as appropriate
Express the Logic Model element as a performance measure

- Consider how to express the measure in terms of:
 - **Data:**
 - Raw Numbers (tons of VOCs reduced)
 - Averages (mean tons of VOCs reduced)
 - Percentages (% of dry cleaners reporting VOC reduction)
 - Ratios (Cost per ton of VOCs reduced)
 - Rates (tons of VOCs reduced per 100 dry cleaners)
 - **Unit of Measure:**
 - Is it appropriate to the measure?
Determine whether the measures clearly relate to the mission/goal

- Review the program/project mission and or goal
 - What key activities, outputs or outcomes are specified in the mission or goal?

- Review the list of potential measures developed
 - Will the data collected from the measures developed clearly demonstrate that the mission and or goal was accomplished?
Example Performance Questions and Performance Measures

Resources

- Michigan personnel engaged in ERP project
- MDEQ
- USEPA
- Association members
- Environmental group members
- Private citizens

- Are resources sufficient?
 - # of personnel engaged in the MERP project

- Level of stakeholder involvement
 - # of stakeholders involved in the process
 - # of individual stakeholders identified by affiliation (group or independent)
 - Extent of stakeholder involvement (qualitative measure)
Example Performance Measures

Outputs

- Workshops and trainings conducted.
- Compliance assistance materials distributed to dry cleaners.
- BMPs developed
- Compliance assistance site visits conducted and phone calls processed.
- List of area sources within Michigan prior to pilot

- Do we have the right level of outputs?
 - # of workshops and trainings conducted
 - # of compliance assistance materials distributed to dry cleaners
 - # of BMPs prior, during, and after pilot
 - # of compliance assistance visits conducted and phone calls processed
 - # of area sources within Michigan prior to implementation of pilot
 - # of area sources using MERP during pilot
 - # of area sources using MERP after pilot
Example Performance Measures

- **Customer Reached**
 - Dry cleaning facilities

- **Short-term Outcome**
 - Dry cleaners increase relevant knowledge and skills as a result of site visits; consultation; or attending compliance assistance events (workshops and trainings).

- Are we reaching the right customers?
 - # (% of dry cleaners participating in program
 - #/% of dry cleaners attending events, requesting a compliance assistance site visit or telephone consultation

- Increase in the number (%) of dry cleaners with increased relevant knowledge and skills, as a result of site visits, consultation or attending compliance assistance events
Have customers adopted new practices?

- Increase in # (%) of dry cleaners keeping records of PERC and petroleum solvent use.
- Increase in # (%) of dry cleaners in compliance with quantity and time limits for hazardous waste storage.
- Increase in # (%) of dry cleaners in compliance with MACT.
- Petroleum solvent dry cleaners in compliance with NSPS.
Michigan Environmental Results Project Performance Measures

Resources
- # of personnel engaged in the MERP project
- MDEQ
- USEPA
- Association members
- Environmental group members
- Private citizens
- # of individual stakeholders identified by affiliation (group or independent)
- Extent of stakeholder involvement (qualitative measure)
- # of stakeholders involved in the process

Activities
- Identify the universe of regulated PERC and petroleum solvent dry cleaners.
- Establish performance measures for dry cleaning sector.
- Establish P2 and BMPs.
- Use USEPA Design for the Environment (DfE) resources tools.
- Work with the USEPA, Region V, to determine how MERP Project interfaces with Title V requirements.
- Provide technical assistance to all dry cleaners through workbooks and workshops.
- Conduct targeted and random inspections of dry cleaners to determine performance and compliance status changes.
- Evaluate sector and facility performance using the results of self-certification and inspection.
- Assistance inspection protocols, and level of oversight accordingly.
- Determine the number of hours to develop permit.
- Conduct pre-evaluation of potential participants in the MERP.
- Identify all federal and state-only requirements
- Compile lists of “do’s and don’ts” during MERP development process.
- Identify all federal and state-only requirements
- Compile lists of “do’s and don’ts” during MERP development process.
- Work with the USEPA, Region V, to determine how MERP Project interfaces with Title V requirements.
- Provide technical assistance to all dry cleaners through workbooks and workshops.
- Conduct targeted and random inspections of dry cleaners to determine performance and compliance status changes.
- Evaluate sector and facility performance using the results of self-certification and inspection.
- Assistance inspection protocols, and level of oversight accordingly.
- Determine the number of hours to develop permit.
- Conduct pre-evaluation of potential participants in the MERP.

Outputs
- # of workshops and trainings conducted.
- # of compliance assistance materials distributed to dry cleaners.
- # of BMPs prior, during, and after pilot
- Prior to MERP, conduct inspections at a random set of dry cleaners, to establish baseline performance.
- # of compliance assistance site visits conducted and phone calls processed.
- # of area sources within Michigan prior to implementation of pilot.
- # of area sources using MERP during pilot.
- # of area sources using MERP after pilot.
- Templates for multi-media inspection and compliance assistance tools adapted for other states’ use.
- Multi-media inspection techniques for use by single media inspector
- Develop process of MERP for other state’s use, and future sectors

Customers
- # (%) of dry cleaners participating in program.
- Increase in the number (%) of dry cleaners keeping records of PERC and petroleum solvent use.
- Increase in the number (%) of dry cleaners in compliance with quantity and time limits for hazardous waste storage.
- Increase in the number (%) of dry cleaners that discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.
- Increase in the number (%) of dry cleaners with increased relevant knowledge and skills, as a result of site visits; consultation; or attending compliance assistance events.
- Increase in the number (%) of dry cleaners with no readily detectable odor of PERC and petroleum solvent.
- Increase in the number (%) of dry cleaners that monitor emission control equipment with the proper frequency.
- Increase in the number (%) of dry cleaners in compliance with the Maximum Achievable Control Technology.
- Increase in the number (%) of petroleum solvent dry cleaners that are in compliance with the NSPS.

Short-term
- Increase in the number (%) of dry cleaners keeping records of PERC and petroleum solvent use.
- Increase in the number (%) of dry cleaners in compliance with quantity and time limits for hazardous waste storage.
- Increase in the number (%) of dry cleaners that discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.
- Increase in the number (%) of dry cleaners with no readily detectable odor of PERC and petroleum solvent.
- Increase in the number (%) of dry cleaners that monitor emission control equipment with the proper frequency.
- Increase in the number (%) of dry cleaners in compliance with the Maximum Achievable Control Technology.
- Increase in the number (%) of petroleum solvent dry cleaners that are in compliance with the NSPS.

Intermediate
- Increase in the number (%) of dry cleaners keeping records of PERC and petroleum solvent use.
- Increase in the number (%) of dry cleaners in compliance with quantity and time limits for hazardous waste storage.
- Increase in the number (%) of dry cleaners that discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.
- Increase in the number (%) of dry cleaners with no readily detectable odor of PERC and petroleum solvent.
- Increase in the number (%) of dry cleaners that monitor emission control equipment with the proper frequency.
- Increase in the number (%) of dry cleaners in compliance with the Maximum Achievable Control Technology.
- Increase in the number (%) of petroleum solvent dry cleaners that are in compliance with the NSPS.

Long-term
- Increase in the number (%) of dry cleaners keeping records of PERC and petroleum solvent use.
- Increase in the number (%) of dry cleaners in compliance with quantity and time limits for hazardous waste storage.
- Increase in the number (%) of dry cleaners that discharge separator water to a sewer, tank, evaporator, or container and never to a septic system.
- Increase in the number (%) of dry cleaners with no readily detectable odor of PERC and petroleum solvent.
- Increase in the number (%) of dry cleaners that monitor emission control equipment with the proper frequency.
- Increase in the number (%) of dry cleaners in compliance with the Maximum Achievable Control Technology.
- Increase in the number (%) of petroleum solvent dry cleaners that are in compliance with the NSPS.
- Customers Reached:
 - Number (%) of dry cleaners participating in program.
 - Number (%) of dry cleaners attending events, requesting a compliance assistance site visit, or telephone consultation.

Outcomes
- Measured improvements in targeted sector-specific environmental performance measures.
- Measured improvements in worker and community public health.
- An increase in cost effectiveness will be measured by a decrease in hours required by the state to administer and the facility to comply with the MERP program. This will achieve equal or better environmental results as compared to conventional regulatory or permitting program.
Summary of Wisconsin Title V EMS Permit Pilot Project Evaluation Approach

<table>
<thead>
<tr>
<th>Goals</th>
<th>Objectives</th>
<th>Measures (Sources in parentheses)</th>
<th>Potential Targets/Data/Sources/Baselines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve efficiency for regulated entities and for agency</td>
<td>Reduce agency permitting costs, time, and other resources.</td>
<td>DNR administrative time needed to implement EMS permit vs. traditional permitting (ARTWM, APII, LM, PN)</td>
<td>Target: By June 2006, reduce the hours spent per permit review, renewal, and revision by 20-40% (APII).
Indicator: Number of person-hours spent annually per individual permit action (review, renewal, revision) (APII).
Source: Air permit databases, employee timesheets. (LM)
Baseline: Data from previous five years. (LM)</td>
</tr>
</tbody>
</table>

| | | Amount of air permit activity, including applications received, and air permit revisions requested with EMS permit vs. traditional permitting (ARTWM, APII, LM, PN) | Target: By June 2006, reduce by 40-50% the need to revise or modify permits (APII).
Indicator: Number of operation permit revision requests and the numbers of construction/ modification permit applications submitted at each permitted facility (APII, LM).
Source: Air permit databases (LM)
Baseline: Data from previous five years. (LM) |

| | | Administrative time spent on compliance activities related to EMS permit vs. traditional approach (ARTWM, LM) | Target: Reduce agency compliance-related administrative time for pilot facilities by X% to Y%
Indicator: Number of person-hours spent annually on compliance activities per facility.
Source: Compliance databases, employee timesheets. (LM)
Baseline: Data from previous five years. (LM) |

| | | Facility’s administrative time needed to implement EMS permit vs. traditional permitting vs. traditional approach (ARTWM, PN) | Target: Reduce facility’s permit-related administrative time by X% to Y%.
Indicator: Number of person-hours spent annually per individual permit action.
Source: Data provided by facility.
Baseline: Data from previous five years. |
Summary of Wisconsin Title V EMS Permit Pilot Project Evaluation Approach

<table>
<thead>
<tr>
<th>Area of Concern</th>
<th>Description</th>
<th>Target</th>
<th>Indicator</th>
<th>Source</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce regulated entity compliance-related costs and other resources</td>
<td>Facility’s time spent on compliance activities affected by use of EMS permit (ARTWM, LM, PN)</td>
<td>Reduce facility’s time spent on compliance-related activities by X% to Y%.</td>
<td>Number of person hours spent annually on compliance-related activities related to permit by facility.</td>
<td>Data provided by facility.</td>
<td>Data from previous five years.</td>
</tr>
<tr>
<td>Increase operating efficiency of regulated entity</td>
<td>Time lag between industry’s decision to make an operational change and the date the change is implemented, under the EMS permit vs. the traditional approach. (ARTWM, LM, PN)</td>
<td>Reduce average lag time by X% to Y%.</td>
<td>Average lag time</td>
<td>Facility records and DNR permit databases (LM, PN)</td>
<td>Data from previous five years.</td>
</tr>
<tr>
<td>Improve environmental performance</td>
<td>Reduce air emissions beyond what is required in regulation</td>
<td>Reduce emissions by X% to Y% for VOCs and A% to B% for HAPs.</td>
<td>Annual VOC and HAP emissions (APII, LM, PN)</td>
<td>Data from previous five years.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emissions of VOCs and HAPS with EMS permit vs. traditional approach (ARTWM, APII, LM, PN)</td>
<td></td>
<td>Air Emissions Inventory data (annual consolidated report)</td>
<td>Data from previous five years.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce pollution (other than air) with EMS permit vs. traditional approach (LM, PN, GT)</td>
<td>Reduce emissions/discharges/transfers of [pollutant] by X% to Y%. To reflect continuous improvement, could be to reduce emissions X% per year.</td>
<td>Annual measure of pollution</td>
<td>Will vary</td>
<td>Data from previous five years.</td>
</tr>
<tr>
<td>Drive innovation</td>
<td>Innovation under EMS permit vs. traditional approach (LM)</td>
<td>Able to identify permit-related innovations</td>
<td>List of innovations per facility</td>
<td>Facility discussions/survey</td>
<td>Data from previous five years.</td>
</tr>
<tr>
<td>Transferability</td>
<td>Consistency with Title V air permit requirements (LM)</td>
<td>Consistency with Title V.</td>
<td>Acceptance/approval by EPA</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Interest of other facilities (in and out of printing industry) to participate (LM, PN)</td>
<td>X facilities or Y% of facilities interested in innovation</td>
<td>Facilities expressing an interest in undertaking the innovation</td>
<td>Discussions/survey</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Improve compliance</td>
<td>Compliance rates (ARTWM, APII, LM, PN)</td>
<td>Maintain compliance or increase compliance to X% compliance.</td>
<td>Compliance rates</td>
<td>WACD and Compliance Certification Reports (APII)</td>
<td>Data from previous five years.</td>
</tr>
</tbody>
</table>
| Improve public involvement in permit development | Increase public involvement | Public involvement in EMS permit vs. traditional approach (LM, PN, GT) | Target: Increase number of participating person-events by X% to Y%.
Indicator: Attendance at meetings and other events; visits to website; etc.
Source: DNR survey of the public (LM, PN); number of people touring facility (GT); number of hits to website (APII)
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
|---|---|---|---|
| | | Opportunities for public involvement in EMS permit vs. traditional approach (GT) | Target: Increase public involvement opportunities by X% or be able to document efforts to improve opportunities.
Indicator: Number of opportunities for public interaction (e.g., meetings, tours) or efforts to improve public involvement opportunities (e.g., revised website).
Source: Facility and agency records and information.
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
| Satisfaction with public involvement | Satisfaction with public involvement process with EMS permit vs. traditional approach (ARTWM, APII, LM, PN) | Target: Increase % of public satisfied by X% to Y%.
Indicator: Public satisfaction with meaningful participation (APII)
Source: Survey (LM, APII, PN)
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
| Knowledge of public involvement | Knowledge of public involvement opportunities in EMS permit vs. traditional approach (LM, PN) | Target: % increase in knowledge about public involvement activities.
Indicator: Public awareness of public involvement requirements (LM, PN) and/or role of public (LM)
Source: DNR survey of the public
Baseline: Data from previous five years or perceptions about pre-innovation participation. |
OREGON EMS PROPOSAL FOR SMALL LOCAL GOVERNMENTS

Inputs/Activities

Inputs:
- Number of Oregon personnel & $ engaged in EMS program

Activities:
- Oregon
 - Prior to implementation of EMS at small local governments, conduct inspections to establish baseline performance.
 - Provide EMS training to interested small local governments.
 - Conduct targeted and random audits/inspections of small local governments to determine changes in performance and compliance status.
 - Engage small local governments and other interested stakeholders in collaborative workgroup to develop a model ISO 14001 compliant EMS for small local governments.

Small Local Governments
- Small local government conducts an assessment of its environmental performance status.
- Small local government sets goals for specified areas in which to improve performance.
- Small local government conducts a gap analysis to compare its current status to its goals.
- Small local government develops action plan and institutionalizes plan-do-check-act approach as part of implementing EMS.

Outputs
- Number of workshops, trainings, collaborative working sessions offered to small local governments to design a model EMS or a community-specific EMS.
- Number of technical assistance site visits and phone conferences with selected three small local govs.

Short-term Outcomes
- Number of regulated entities with increased relevant EMS knowledge and skills as a result of site visits, consultation, or attending technical assistance events.

Intermediate Outcomes
- Number (%) of small local governments engaged in developing a model ISO 14001 compliant EMS.
- Number (%) of small local governments facing with compliance issues develop and implement an ISO 14001 compliant EMS.

Environmental and/or Economic Outcomes
- Improvements in overall environmental performance as measured against targeted compliance and sustainability goals.
- Measured improvements in worker and community public health.

Customers Reached
- Number (%): Number of workshops, trainings, collaborative working sessions offered.
- Number of technical assistance site visits or phone consultations.
- Number of stakeholder groups engaged in developing model EMS.

EPA Strategic Plan 2003-2008

Goal 2: Clean and Safe Water
- **Objective 2.1: Protect Human Health** with targets of:
 - Increase the percentage of the population served by community water systems that will receive drinking water that meets all applicable health-based drinking-water standards through effective treatment and source water protection (Sub-objective 2.1.1: Water Safe to Drink)

Goal 3: Land Preservation and Restoration
- **Objective 3.1: Preserve Land**
- **Objective 3.2: Protect Water Quality**

Goal 4: Healthy Communities and Ecosystems
- **Objective 4.1: Prevent and reduce chemical risks to humans, community, and ecosystems.**
- **Objective 4.2: Communities**

OREGON EMS PROPOSAL FOR SMALL LOCAL GOVERNMENTS – SAMPLE PERFORMANCE MEASURES

<table>
<thead>
<tr>
<th>Goal 2: Clean and Safe Water</th>
<th>Objective 2.1: Protect Human Health with targets of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Increase the percentage of the population served by community water systems that will receive drinking water that meets all applicable health-based drinking-water standards through effective treatment and source water protection (Sub-objective 2.1.1: Water Safe to Drink)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goal 3: Land Preservation and Restoration</th>
<th>Objective 3.1: Preserve Land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Manage hazardous waste properly (Sub-objective 3.1.2)</td>
</tr>
<tr>
<td></td>
<td>• Increase the percentage of UST facilities that are in significant operational compliance with both release detection and release prevention requirements (Sub-objective 3.1.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goal 4: Healthy Communities and Ecosystems</th>
<th>Objective 4.1: Prevent and reduce chemical risks to humans, community, and ecosystems.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Sustain community health (Sub-objective 4.2.1)</td>
</tr>
<tr>
<td></td>
<td>• Restore community health by facilitating restoration of communities impacted by environmental problems (Sub-objective 4.2.2)</td>
</tr>
</tbody>
</table>
Step 2: Assess the Measures

- Assess the value of the measures in relation to goals and objectives

- Assess the feasibility of the measure in terms of:
 - Data collection (availability, implementation cost, baselining)
 - Data quality (reliability, validity, objectivity)
 - Analysis
 - Reporting (how to report, to whom to report, frequency of reporting, meaningfulness to audiences)
Step 3: Choose the Best Measures

- Assess the value of the measures in relation to the goals and objectives of the program.
 - Required
 - Important
 - Interesting

- Select final list of measures – you won’t be able to collect data for all measures.

- Check in with managers and stakeholders.

- Identify a priority list of measures
Step 4: Identify a Standard

For each performance measure develop a:

1. Baseline – current state
2. Target – desired level of performance
3. Timeline – date when performance will be achieved
Tips for Choosing the Best Measures

For each measure ask…

- Does the measure clearly relate to the project goal and objective?
- Is the measure important to management and stakeholders?
- Is it possible to collect accurate and reliable data for the measure?
- Taken together, do the measures accurately reflect the key results of the program, activity or service?
- Is there more than one measure for each goal or objective?
- Are your measures primarily outcome, efficiency, or quality measures?
Exercise 4: Application of Performance Measure Development

Developing Your Own Measures
Performance management includes activities to ensure that goals are consistently being met in an effective and efficient manner. Performance management tools include logic models, performance measurement and program evaluation.

Logic Model
Tool/framework that helps identify the program/project resources, activities, outputs customers, and outcomes.

Performance Measurement
Helps you understand what level of performance is achieved by the program/project.

Program Evaluation
Helps you understand and explain why you’re seeing the program/project results.
Definitions:

Program Evaluation:

A systematic study that uses measurement and analysis to answer specific questions about how well a program is working to achieve its outcomes and why.
Differences between PM and PE

Performance Measurement

- Ongoing monitoring and reporting of accomplishments.
- Examines achievement of program objectives.
- Describes program achievements in terms of outputs, outcomes in a given time against a pre-established goal.
- Early warning to management.

Program Evaluation

- In-depth, systematic study conducted periodically or on ad-hoc basis.
- Examines broader range of information on program performance than is feasible to monitor on an on-going basis.
- Explains why the results occurred.
- Longer term review of effectiveness.
Relationship between PM and PE

- Performance measurement data provides information needed to conduct the evaluation and assess program performance.
- Lack of performance measurement data is a major obstacle to conducting an evaluation.
Evaluation and the Logic Model

Process Evaluation

Design Evaluation

HOW

WHY

Resources/ Inputs
Activities
Outputs
Customers
Short term outcome
Intermediate outcome
Longer term outcome (STRATEGIC AIM)

Outcome Evaluation
Impact Evaluation

Adapted from Evaluation Dialogue Between OMB and Federal Evaluation Leaders: Digging a Bit Deeper into Evaluation Science, April 2005
Common Evaluation Questions

<table>
<thead>
<tr>
<th>Evaluation Type</th>
<th>Common Evaluation Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design assessment</td>
<td>- Is the design of the program well formulated, feasible, and likely to achieve the intended goals?</td>
</tr>
</tbody>
</table>
| **Process evaluation or implementation assessment** | - Is the program being delivered as intended to the targeted recipients?
- Is the program well managed?
- What progress has been made in implementing new provisions? |
| **Outcome evaluation** | - Are desired program outcomes obtained?
- What role, if any, did the program play?
- What role, if any, did the context play?
- Did the program produce unintended outcomes? |
| **Impact evaluation** | - Did the program cause the desired impact?
- Is one approach more effective than another in obtaining the desired outcomes? |
| **Cost evaluation** | - What are the specific costs for implementing and operating the program?
- Is the program cost efficient? Cost effective?
- How do the costs of the program compare to a similar program aimed at the same outcome? |

Adapted from *Evaluation Dialogue Between OMB and Federal Evaluation Leaders: Digging a Bit Deeper into Evaluation Science, April 2005*
Contacts:

Yvonne M. Watson
watson.yvonne@epa.gov
(202) 566-2239

Britta Johnson
johnson.britta@epa.gov
(202) 566-1465

Terell Lasane
lasane.terell@epa.gov
(202) 566-0705