

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

MEMORANDUM

Date: January 7, 2011

SUBJECT: Review of Agricultural Handler Exposure Task Force (AHETF) Closed Cab Airblast Applicator Exposure Monitoring Studies: AHE55, AHE56, AHE57, AHE58, AHE59

PC Code: --Decision No.: --Petition No.: --Risk Assessment Type: --TXR No.: --MRID No.: 48289601, 48289602, 48303501, 48289604, 48303502 DP Barcode: D381148 Registration No.: --Regulatory Action: --Case No.: --CAS No.: --40 CFR: --

Ver.Apr.08

- **FROM:** Matthew Crowley, Biologist Chemistry and Exposure Branch Health Effects Division
- **THROUGH:** David J. Miller, Chief Chemistry and Exposure Branch Health Effects Division
- TO: Richard Dumas Pesticide Registration Division

This memorandum presents the Health Effects Division's primary reviews of the analytical and field phase reports for the following Agricultural Handler Exposure Task Force (AHETF) closed cab airblast applicator studies: AHE55, AHE56, AHE57, AHE58, and AHE59. The closed cab airblast applicator scenario monograph (AHETF, 2010; MRID 48314201), which incorporates these 5 studies as a single dataset and includes statistical analysis based on pre-defined benchmark accuracy objectives, is reviewed separately (Crowley, 2011; D381148).

These studies meet EPA standards for occupational pesticide exposure monitoring and are considered acceptable and appropriate for use in occupational exposure assessments for closed-cab airblast applicators.

1.0 Executive Summary

The Agricultural Handler Exposure Task Force (AHETF) monitored exposure for 24 workers¹ applying liquid spray pesticides using closed cab airblast equipment. Five separate field studies, summarized in Table 1 below, were conducted, each monitoring different workers while spraying tree or trellis crops in 5 different states in the U.S where closed cab airblast equipment is commonly used in production agriculture.

Table 1. Study Summary												
Study ID	State	Сгор	No. Monitored Workers	Gender	Ages							
AHE55	FL	citrus (orange and tangerine)	5	All male	20-70							
AHE56	GA	pecan	5	All male	43-68							
AHE57	MI	cherry	5	4 male, 1 female	21-58							
AHE58	CA	grape	5	All male	27-49							
AHE59	WA	apple	4	All male	26-62							

Monitored on actual days of work, participants handled from 7 to 90 lbs of active ingredient (carbaryl, malathion, or chlorothalonil), spraying 4 to 30 acres in 2 to 9 hours. Dermal exposure was measured using hand washes, face/neck wipes, and whole body dosimeters (100% cotton union suits) for the remainder of the body (torso, arms, and legs). Inhalation exposure was measured using personal air sampling pumps and OSHA Versatile Samplers (OVS) mounted on the shirt collar. Results represent dermal exposure while wearing a long-sleeved shirt, pants, shoes/socks and chemical-resistant gloves, and inhalation exposure without respiratory protection.

All studies followed the applicable and most up-to-date AHETF standard operating procedures (SOPs) and their corresponding protocols with deviations appropriately recorded with none considered to have compromised the overall research. Field and laboratory fortification samples were acceptable, generally averaging between 70 and 120% recovery, with no systematic deviations. All field samples were appropriately adjusted for the corresponding recovery adjustment factors.

Total dermal exposure, calculated by summing the results for inner dosimeters, hand washes and face/neck wipes, ranged from $9 - 3168 \mu g$, with an average of 377 μg . Normalized to the worker's body weight, dermal exposures ranged from $0.13 - 39.4 \mu g/kg$, with an average of 4.48 $\mu g/kg$. Normalized to the amount of active ingredient handled, dermal unit exposures ranged from $0.4 - 76.6 \mu g/lb$ ai, with an average of 13.3 $\mu g/lb$ ai.²

Inhalation exposure ranged from $0.1 - 6.39 \,\mu\text{g}$, with an average of $1.6 \,\mu\text{g}$. Normalized to the worker's body weight, inhalation exposures ranged from $0.001 - 0.089 \,\mu\text{g/kg}$, with an average of 0.019 $\mu\text{g/kg}$. Normalized by the amount of active ingredient handled, inhalation unit exposures ranged from $0.002 - 0.245 \,\mu\text{g/lb}$ ai, with an average of 0.0567 $\mu\text{g/lb}$ ai.

¹ One worker enrolled in study AHE59 (WA-apple) was not monitored, reducing the total from 25 to 24. See Section 2.3.

 $^{^{2}}$ All dermal exposure values reflect a 2X adjustment on hand rinse and face/neck wipe measurements accounting for assumed 50% residue collection method efficiency. See Section 3.3

2.0 Summary of Field Study Characteristics

This section provides summary characteristics of the five closed-cab airblast exposure studies. Attached supplemental tables (Tables S1-26) containing supporting details are cited in each subsection.

2.1 Administrative Summary (Table S - 1)

All studies were sponsored by the AHETF and followed both the study-specific protocols and the AHETF Governing Document (AHETF, 2008-a). Additionally, they were in substantial compliance with Good Laboratory Practice Standards (GLPS) (40 CFR §160)³ and met EPA Test Guidelines in Series 875 – Occupational and Residential Exposure (875.1100 – dermal exposure; 875.1300 – inhalation exposure). Signed copies of acceptable Quality Assurance and Data Confidentiality statements were provided for each study.

2.2 Test Materials (Table S - 2)

All studies used liquid formulation pesticides containing carbaryl, malathion, or chlorothalonil.

2.3 Sample Size, Monitored Workers, and Locations (Table S - 3)

According to the Closed Cab Airblast Scenario Construction Plan and the AHETF Governing Document, a "5 x 5" configuration was deemed a reasonable approach for the closed cab airblast application scenario. That is, a total of 25 "monitoring units" (MU), obtained by monitoring exposure from 5 spatially distinct study locations across the U.S., each with 5 workers per location would be likely to satisfy pre-defined accuracy benchmarks. Only 24 MUs were collected – Subject A5 in AHE59 (WA-apple) was not monitored due to a series of logistical difficulties⁴. Additionally, due to unknown sampling time, inhalation data for subject A2 in AHE59 (WA-apple) was declared invalid, rendering a total of 23 inhalation exposure measurements.

2.4 Environmental Conditions (Table S - 4)

Temperature (including heat index), humidity, wind speed and direction, cloud cover, and rainfall were all reported. The maximum reported temperature was 93.9° F (AHE58 – CA-grape) and the lowest reported temperature was 35.4° F (AHE57 – MI-apple). In no case did the

³ Two minor GLP deviations were noted for all studies. 1 – Test substance was not characterized before use. Per protocol, GLP characterization of test substance was conducted at a later date following collection of substance on monitoring day. This was infeasible due to participant selection process. 2 – Scales used to weigh subjects were not maintained and calibrated according to GLPS specifications. Additional study-specific GLP deviations are as follows – AHE57 (MI-cherry): empty substance containers were not retained for study duration and a non-compliant weather station instrument was used to record environmental conditions; AHE58 (CA-grape) & AHE59 (WA-apple): handheld weather monitoring device not maintained as specified. These deviations do not have any substantive impact on the study results.

⁴ Fully described in Table S-3, initially a field study team was unavailable on the scheduled day. Attempts at utilizing replacement workers were unsuccessful before the application window of the study's surrogate chemical (carbaryl) passed.

ambient temperature exceed the pre-defined threshold of concern for potential heat-related injury. No significant rainfall was reported.

2.5 Clothing and Personal Protective Equipment (PPE) (Table S - 5)

Per the stated goals of the AHETF, monitoring of closed cab airblast applicators was conducted to represent exposure for workers wearing long-sleeve shirts, pants, shoes/socks, and chemical-resistant gloves when exiting the cabs (gloves are not required when inside the cab), and no respiratory protection. So long as the work clothing met the standards of the EPA Worker Protection Standard (WPS), monitoring was conducted with the clothing worn by the worker on the scheduled monitoring day. In two instances – MUs A3 and A4 in study AHE55 (FL-citrus) – the AHETF supplied workers with replacement shirts prior to study initiation. Per protocol, new chemical-resistant gloves were supplied by the AHETF to all workers at the beginning of the day and were available throughout the day according to WPS requirements. Additionally, due to pesticide label requirements for some of the chemicals used in these studies, some workers wore goggles for eye protection. In another case, though not label-required, a worker elected to wear a dust/mist respirator. In these cases, the exposure measurements were adjusted (according to AHETF SOP 9.K) to extrapolate deposited residue to those portions of the face/head covered by the goggles/eyewear or the respirator.

2.6 Application Characteristics (Table S - 6)

For these studies, only the airblast application activity was monitored – monitoring was not conducted for those workers responsible for mixing and loading the pesticide. The applications were made by trucks or tractors with enclosed cabs hauling airblast sprayers. Rigs were inspected by the study director to ensure compliance with EPA WPS requirements and to verify that the enclosed cabs were equipped with functioning air conditioning systems. Application characteristics including crop height and row spacing, truck/tractor and airblast sprayer brands and models, nozzle characteristics, and driving speed are also reported in Table S-6.

2.7 Application Rates (Table S - 7)

Per the AHETF Governing Document (AHETF, 2008-a) and the CCAB Scenario Construction Plan (AHETF, 2008-b), the total amount of active ingredient applied should be diversified across the scenario and within each study to provide adequate analytical power. Specifically, amounts of active ingredient handled within a study should be separated logarithmically for each MU and span at least an order of magnitude. Table 2 below presents the amount handled for each worker (total amount handled ranged from 7.3 to 90.3 lb active ingredient). The amount handled was slightly out of the range in six instances (italicized in Table 2) – the effects of which are considered only minor and would be reflected in statistical analyses.

	Table 2. Summary of Amount Handled (lbs ai)													
Desired	Actual Amount Handled (lbs ai) & MU ID													
Stratum of Amount Handled (lbs ai)	AHE55AHE56AHE57AHE58AH(FL-citrus)(GA-pecan)(MI-cherry)(CA-grape)(WA													
5-9	8.0 (A1)	7.9 (A1)	10.8 (A1)	7.3 (A5)	9.4 (A2)									

10-17	15 (A2)	15.8 (A2)	16.9 (A2)	23.0 (A3)	15.8 (A1)
18-30	24 (A3)	24.6 (A3)	27.6 (A3)	34.4 (A2)	15.9 (A3)
31-55	40 (A4)	50.5 (A4)	40.7 (A4)	59.2 (A4)	34.5 (A4)
56-100	75 (A5)	75.7 (A5)	90.3 (A5)	63.5 (A1)	Not monitored (see Section 2.3)

In order to help achieve the range of amount of active ingredient handled as well as to avoid nondetectable exposures, the study design called for workers to apply at least 3 tank loads and/or work for at least 4 hours per day. In a few cases, work days were less than 4 hours (monitoring durations ranged from 2-9.4 hours); however these instances did not result in failure to capture the desired amount of active ingredient handled or non-detectable exposures.

2.8 Exposure Monitoring and Analytical Methods (Table S - 8)

Passive dosimetry methods were utilized for all monitoring – no biomonitoring samples were collected. Dermal exposure to the hands was measured using a hand rinse method administered at the end of the workday as well as at lunch, restroom breaks, or other instances where workers would otherwise wash their hands as outlined in AHETF SOP 8.B. Dermal exposure to the face/neck was measured using a wipe technique as outlined in AHETF SOP 8.C and extrapolated to non-wiped portions of the head (i.e., those parts covered by goggles or a respirator or covered by hair) according to AHETF SOP 9.K. Dermal exposure to the remainder of the body (torso, arms, legs) was measured using whole body dosimeters (100% cotton union suits), sectioned and analyzed separately as the upper and lower body according to AHETF SOP 8.A. All these measurements combine to reflect dermal exposure underneath a single layer of work clothing (long-sleeve shirt, pants, shoes/socks) and chemical-resistant gloves. Inhalation exposure was measured using OVS tubes mounted on the worker's collar and personal sampling pumps (set at 2 liters per minute) according to AHETF SOP 8.D. The concentrations measured represent the chemical available in each worker's breathing zone.

Validated analytical methods specific to each type of monitoring matrix were used to extract residues followed by quantification with gas chromatography (GC) employing flame photometric detection in phosphorous mode (FPD/P). Modifications to analytical methods are outlined in the submitted analytical reports. Limits of quantification and detection (as defined in AHETF SOP 9.A) are presented in Table 3 below.

	Table 3. Analytical Limits (ug/sample) for AHE55-59													
Monitori	a Matuir		Limit of Dete	ction	Limit of Quantification									
Monitorii	ig Matrix	Carbaryl	Malathion ^a	Chlorothalonil	Carbaryl	Malathion ^a	Chlorothalonil							
Inner Do	osimeter	0.3	0.3	0.3	1.0	1.0	1.0							
Hand Rinse		0.3	0.3	0.3	1.0	1.0	1.0							
Face/Neck Wipe		0.3	0.3	0.3	1.0	1.0	1.0							
OVS air sampler	AHE55 AHE56 AHE59	0.003	0.003	NA	0.01	0.01	NA							
	AHE57 AHE58	NA	0.0015	0.0015	NA	0.005	0.005							

NA = not applicable, chemical not used.

^a Additional validation was performed for malathion for AHE58 (CA-grape), resulting in different LOD/LOQ than other studies using malathion.

3.0 Results

This section provides a discussion of quality assurance and quality control sampling and the actual field monitoring measurements of workers. Attached corresponding supplemental tables providing additional detail are identified.

3.1 Quality Assurance

All phases of each study were subject to appropriate quality assurance processes according to EPA's GLPs and inspected/audited by the AHETF Quality Assurance Unit (QAU) per AHETF SOPs (AHETF SOP Chapter 5: A-K). The inspected phases were: Protocol, Field Phase, Field Data, Draft Report, Analytical Data, Final Report, and Post-Audit Report. Each study contains a signed quality assurance compliance statement as required by GLPs. Protocol amendments or deviations were addressed appropriately under GLP guidance and are described further in Section 4.0.

3.2 Quality Control

AHETF instituted various quality control measures to ensure proper field conduct including calibration of sprayers, preparation and handling of exposure measurement matrices, evaluation of test material, and field observations (AHETF SOP Chapter 10: A-G). Analytical quality control measures for ensuring the integrity of measurements captured in the research were also instituted according to AHETF SOP 9.J. Exposure monitoring matrices (inner whole body dosimeters, hand washes, face/neck wipes, OVS tubes) were fortified with known amounts of active ingredient to assess their stability during field, transit, and storage conditions according to AHETF SOP 8.E. Laboratory control samples were also fortified at the level of quantification and at levels capturing the range of expected field exposures for each matrix. Generally, field fortification samples were collected in triplicate at each of 3 levels (high, middle, and low) on each sampling day. Travel fortifications were generally conducted on each day of sampling in duplicate at the high fortification level only. Untreated control samples were generally conducted in duplicate on each day of sampling. Deviations from this general sampling protocol are specified in the sub-sections below.

The following sections provide results for all quality control sampling across all exposure measurement matrices for all chemicals used. The identified supplemental tables should be referenced for chemical-specific results.

3.2.1 Control Samples (Table S - 9)

As expected, most non-fortified (blank) laboratory and field control samples were below the LOQ. In no instance was an untreated laboratory control found to contain residues. Some field control samples, however, particularly the field control samples for the OVS air samplers, were found to have detectable residues. No summary of these results was provided in the study report. Detected residues in field control samples is a potentially notable finding, since they may impact field fortification recovery estimates, which in turn could alter actual field sample measurements.

Despite the findings in these studies, no action is deemed necessary because only trace amounts were found (most only slightly above the LOQ) which do not significantly impact the results. However, for future AHETF studies, residues found in field control samples should be systematically summarized and reasons for accounting for them (or not) should be described in the study reports.

3.2.2 Laboratory Fortification Recoveries (Table S - 10)

Along with one untreated control, two fortified samples served as additional laboratory recovery samples – one at the LOQ and the other at a level designated to encompass the range of anticipated residues. Average recoveries for each sampling media were > 90% thus no corrections were made to the field sampling measurements based on this aspect of the analytical process.

3.2.3 Field Fortification Recoveries

Field fortification sampling matrices are spiked with known amounts of chemical, then placed in the exposure monitoring area under similar conditions as those in which the actual sampling matrices used on the workers are handled (including drawing air through OVS samplers). Additional samples are fortified to assess degradation of the sample during transit from the field to the lab, but, per AHETF protocol, only analyzed if anomalous field fortification recoveries indicate potential degradation during transport. No storage or transport fortification samples were analyzed.

Field fortifications are conducted at 3 levels to capture the expected range of results, with triplicate samples taken on each day at each fortification level⁵. Once analyzed, the average recovery results (expressed as a percentage of known amount applied) are used as multipliers to adjust, or correct, all measured field samples. As the fortification samples are conducted at levels to capture the range of expected field sample results, adjustments are done using the average percent recovery for the fortification level closest to the measured field sample. The mid-point between each fortification level is used as the threshold in determining the average recovery percentage for use in adjusting the field sample.

With few exceptions, field fortification averages for each fortification level and each monitoring matrix were in the range of 70-120%. A summary of field fortification results for each matrix is provided below in Sections 3.1.3.1 - 3.1.3.4.

3.2.3.1 Inner Dosimeters (Table S - 11 and Table S - 12)

Most results for inner whole body dosimeter (WBD) field fortification samples were acceptable, with recoveries ranging from 78% to 112% and coefficients of variation ranging from 0.43% to 12.3%. Unusually high and low recoveries were observed at the 2200 ug and 5000 ug levels in

⁵ AHE58 (CA-grape) reports a deviation from the standard 3-level fortification protocol resulting from dilution errors by the laboratory technician that were not discovered until after the fortification samples were used in the field and analyzed. Despite this difference, the fortifications are still useful to correct field samples and did not compromise the overall research.

AHE58 (CA-grape) -233% and 42.7%, respectively. However, no results required adjustments using these fortification levels, so the decision to include or exclude these recoveries (as potential outliers) is moot.

3.2.3.2 Face/Neck Wipes (Table S - 13 and Table S - 14)

Results for face/neck wipe field fortification samples were acceptable, with average recoveries ranging from approximately 72.7% to 117% and coefficients of variation ranging from 1.1% to 13.8%.

3.2.3.3 Hand Washes (Table S - 15 and Table S - 16)

Results for hand wash field fortification samples were acceptable, with average recoveries ranging from 62.5% to 122% and coefficients of variation ranged from 1.2% to 13.3%.

3.2.3.4 OVS Air Samplers (Table S - 17, Table S - 18, and Table S - 19)

The results for face/neck wipe field fortification samples were acceptable, with average recoveries ranging from approximately 75% to 129% and coefficients of variation ranging from 1.08% to 25.7%. However, notably anomalous results were observed and are listed in Table 4 below. Additionally, per AHETF standard procedures, samples for the highest fortification level (1000 ug) went unanalyzed as no OVS air sample in the field exceeded 100 ug.

	Table 4. Unusual OVS Field Fortification Results
AHE55 (FL-citrus)	Contamination was suspected for the malathion low-level (0.05 ug) fortification since recoveries were abnormally high for the three samples (203%, 157%, and 150%). Field monitoring samples that would have used results for this fortification level instead were adjusted based on the mid-level fortification results.
	Improper fortification sample preparation led to unusually high recovery samples at the low-level on the first two days of sampling. These were excluded from calculation of the low-level recovery average.
AHE58 (CA-grape)	The high-level fortification for the first two days of sampling should have been 100 ug samples but were inadvertently prepared at 250 ug. Additionally, one sample was lost during analysis and the other two were unusually high, indicating improper fortification. These samples were not included in calculation of the high-level fortification average. This had no effect on results, because no AHE58 field sample residue was high enough to justify use of recovery results from either of the high-level fortification samples.
A HE50	Described in the study report as resulting from improper vial preparation, an unusually low recovery (11.8%) at the mid-level fortification (0.5 ug) on the first day of sampling was excluded in calculation of average
(WA-apple)	Despite being unusually high, recoveries from fourth day of sampling (163% and 184%) at the low- level fortification (0.05 ug) were included in the average calculation due to large recoveries at this fortification level on other sampling days. For this level, the maximum adjustment factor of 1.2 will be used, per AHETF standard procedures, since the factor from the average recovery is 1.29.

3.3 Field Measurements

The following sections summarize the exposure monitoring results, conducted as described in Section 2.8. All measurements were appropriately adjusted for field fortification recoveries. Face/neck wipe measurements were extrapolated to un-wiped portions of the face and head

according to AHETF SOP 9.K. For samples below the LOQ or LOD, $\frac{1}{2}$ LOQ or $\frac{1}{2}$ LOD was used.

Additionally, in order to account for potential residue collection method inefficiencies, EPA has directed the AHETF to make adjustments to hand and face/neck field study measurements as follows⁶:

- if measured exposures from hands, face and neck contribute less than 20% as an average across all workers, no action is required;
- if measured exposure contribution from hands and face/neck represents between 20% and 60% of total, the measurements shall be adjusted upward by 50%, or submission of a validation study to support the residue collection method
- if measured exposure contribution from hands and face/neck represents is greater than 60%, a validation study demonstrating the efficiency of the residue collection methods is required.

3.3.1 Inner Dosimeters (Table S - 20)

After adjusting for field fortification recoveries (see Section 3.1.3.1) and summing the upper and lower body sections, the total dermal exposure underneath the long-sleeve shirt and pants ranged from $0.7 - 1540 \ \mu$ g with an average of 99.8 μ g. Out of a total of 48 inner dosimeter samples, 7 were below the LOQ or LOD.

3.3.2 Face/Neck Wipes (Table S - 21)

Because some workers wore label-prescribed eye protection or elected to wear a respirator, and because measurements cannot be easily conducted on hair, extrapolations from those portions of the face/neck that are wiped need to be made to portions of the head that are not measured. Specifics on these adjustment factors can be found in AHETF SOP 9.K. Additionally, to account for potential inefficiencies in residue collection by the wipe technique, the measurements are further adjusted by a factor of 2 (i.e., assuming 50% inefficiency).

After adjusting for field fortification recoveries (see Section 3.1.3.2) and extrapolating to nonwiped portions of the head described above, total head exposure ranged from $0.24 - 7.24 \,\mu\text{g}$ with an average of 1.19 μg . Including adjustments for potential method collection inefficiencies, total head exposure ranged from $0.48 - 14.4 \,\mu\text{g}$ with an average of 2.36 μg . Out of a total of 24 face/neck wipe samples, 21 were below the LOQ or LOD.

3.3.3 Hand Washes (Table S - 22)

Per protocol, hand washes were collected at the end of each work day and during restroom or lunch breaks. From only one worker – AHE59 (WA-apple) MU3 – were more than 2 hand wash samples collected. As for the face/neck wipe measurements, the hand wash measurements were also adjusted by a factor of 2 to reflect potential inefficiencies in the collection method.

⁶ This directive was discussed and presented at a meeting of the Human Studies Review Board (June 2007). The terminology used to describe this are "method efficiency adjusted" (MEA) or "method efficiency corrected" (MEC).

After adjusting for field fortification recoveries (see Section 3.1.3.3) and summing each hand wash, the total hand exposure ranged from $0.65 - 1312 \ \mu$ g with an average of 138 μ g. Including adjustments for potential method collection inefficiencies, total hand exposure ranged from $1.3 - 2624 \ \mu$ g with an average of 275 μ g. Out of a total of 36 hand wash samples, 4 were below the LOQ or LOD.

3.3.4 OVS Air Samplers/Inhalation Exposure (Table S - 23)

Front and back sections of the OVS tube were analyzed separately. Most back section samples were non-detects, with none above the LOQ. All front section samples had detected residues. Because pump operation time was not recorded, inhalation data for subject A4 in study AHE59 (WA-apple) was considered invalid, and was not analyzed. Thus there were a total of 23 air samples. After adjusting for field fortification recoveries (see Section 3.1.3.4) the total collected chemical amounts ranged from $0.024 - 1.54 \mu g$ with an average of $0.386 \mu g$.

To calculate worker inhalation exposure – specifically, "breathing zone" exposure – the measured amounts are adjusted based on the pump flow rate (in liters per minute) and a typical worker's breathing rate for this type of activity. For these studies a breathing rate of 8.3 liters per minute was used, representing sedentary activities, like driving a tractor (NAFTA, 1998). The calculation is as follows:

Inhalation exposure = Adjusted residue (μg) * [Breathing rate (LPM) ÷ Pump flow rate (LPM)]

Calculated inhalation exposures ranged from $0.103 - 6.39 \mu g$, with an average of 1.6 μg .

3.4 Exposure Calculations

This section provides total exposures (expressed as mass active ingredient), as well as exposures normalized to (i.e., dividing by) body weight and amount of active ingredient handled (AaiH).

3.4.1 Dermal Exposures (Table S - 24)⁷

Total dermal exposure, calculated by summing the results for inner dosimeters, hand washes and face/neck wipes, ranged from $9 - 3168 \mu g$, with an average of 377 μg . Normalized to the worker's body weight, dermal exposures ranged from $0.13 - 39.4 \mu g/kg$, with an average of 4.48 $\mu g/kg$. Normalized by the amount of active ingredient handled, dermal unit exposures ranged from $0.4 - 76.6 \mu g/lb$ ai, with an average of 13.3 $\mu g/lb$ ai.

3.4.2 Inhalation Exposures (Table S - 24)

As shown in Section 3.2.4, inhalation exposure is calculated based on the chemical in air over the monitoring period, the pump flow rate, and the worker's breathing rate. Inhalation exposures

⁷ All dermal exposures reflect the 50% method efficiency assumption (i.e., a 2X upward adjustment) for hand rinse and face/neck wipe measurements ("MEA" = method efficiency adjustment). Supplemental Table S-24 presents "Non-MEA" values for reference.

ranged from $0.1 - 6.39 \,\mu\text{g}$, with an average of $1.6 \,\mu\text{g}$. Normalized to the worker's body weight, inhalation exposures ranged from $0.001 - 0.089 \,\mu\text{g/kg}$, with an average of $0.019 \,\mu\text{g/kg}$. Normalized by the amount of active ingredient handled, inhalation unit exposures ranged from $0.002 - 0.245 \,\mu\text{g/lb}$ ai, with an average of $0.0567 \,\mu\text{g/lb}$ ai.

3.5 Field Observations (Table S - 25)

For all studies, observers were employed to monitor each worker and record their behavior throughout the work day. Much of the observations detailed application procedures (e.g., AHE55 MU A1 @ 1020: "Finishes outside of row 1, N to S, then turns and sprays other side of row 1W and row 2E using all nozzles. Row 1 is shorter than other rows, only 6 to 8 ft. trees."), while others indicated potential impacts on exposure such as when they entered/exited the vehicle and/or instances where they contacted something with a bare hand (e.g., AHE59 MUA4 @ 1144: "Exited cab, walked back to sprayer and with bare hands, turned lever to shut off one side of airblast sprayer to treat end row."). Field observations should be considered when analyzing this data.

4.0 **Protocol Amendments and Deviations (Table S - 26)**

Field and analytical phase deviations were minor. Reported field phase deviations included failure to collect a handwash sample at a bathroom break (AHE56 – GA-pecan, MUA4) and slight deviations from specified ranges of amount of active ingredient handled and monitoring time requirements. Additionally, workers were observed not wearing chemical-resistant gloves while outside the application equipment (see Table S-25), despite protocols stating that "the use of label-specified PPE (especially the use of gloves outside the cab if contacting contaminated surfaces)" would be enforced during participation. Analytical phase deviations included two instances where a 15% calibration criterion was exceeded as wells as some analytical method deviations. No protocol amendments or deviations were considered to adversely affect the results of exposure monitoring or compromise the overall research.

5.0 Conclusion

As the studies followed their corresponding protocols as well as EPA guidelines for occupational pesticide exposure monitoring, the results are considered useful for assessment of exposure and risk for closed cab airblast applicators. Since these were collected with the intention to populate a generic pesticide exposure database, reviewers are directed to the additional information and statistical analyses in the AHETF Closed Cab Airblast Scenario Monograph (AHETF, 2010; MRID 48314201) and recommendations for use of the data in its corresponding HED review (Crowley, 2011; D381148).

6.0 References

AHETF, (2008-a). Volume IV AHETF Revised Governing Document for a Multi-Year Pesticide Handler Worker Exposure Monitoring Program. Version Number: 1. April 7, 2008. Agricultural Handlers Exposure Task Force (AHETF). [MRID 47172401]

AHETF, (2008-b). Monitoring Unit Selection and Construction Plan for Scenario: Airblast Application of Liquids Sprays to Crops Using Closed Cab Equipment. April 1, 2008. Agricultural Handlers Exposure Task Force (AHETF).

AHETF, (2010). Agricultural Handler Exposure Scenario Monograph: Closed Cab Airblast Application of Liquid Sprays. Report Number AHE1005. December 2, 2010. [MRID 48314201]

Bruce, E. (2010-a). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in California Trellis Crops. Study Number AHE58. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 282 p. November 3, 2010. MRID 48289604.

Bruce, E. (2010-b). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Washington Pome Fruit. Study Number AHE59. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 220 p. November 3, 2010. MRID 48303502.

Crowley, M., 2011. Memorandum: Review of Agricultural Handler Exposure Task Force (AHETF) Monograph: Closed Cab Airblast Application of Liquid Sprays. D381148. January 7, 2011.

NAFTA - Dept. of Pesticide Regulation (DPR), California EPA, HSM-98014, April 24, 1998.

Smith, L. (2010-a). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Florida Citrus. Study Number AHE55. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 377 p. November 3, 2010. MRID 48289601.

Smith, L. (2010-b). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Georgia Pecans. Study Number AHE56. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 379 p. November 3, 2010. MRID 48289602.

Smith, L. (2010-c). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Michigan Stone Fruit. Study Number AHE57. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 169 p. November 3, 2010. MRID 48303501.

Supplemental Tables S – 1-26

Table S - 1. Administrative Details	14
Table S - 2. Summary of Pesticides Used	15
Table S - 3. Summary of Monitored Workers and Locations	17
Table S - 4. Summary of Meteorological Conditions	18
Table S - 5. Summary of Work Clothing and PPE	19
Table S - 6. Summary of Application Characteristics	21
Table S - 7. Summary of Application Rate Information	23
Table S - 8. Descriptions of Exposure Monitoring and Analytical Methods	24
Table S - 9. Field Control Samples with Detected Residues	28
Table S - 10. Summary of Concurrent Laboratory Fortification Samples	29
Table S - 11. Inner Whole Body Dosimeter Samples: Summary of Field Fortification Recov	'ery
Samples and Corresponding Adjustment Factors	30
Table S - 12. AHE58 – Inner Whole Body Dosimeter Samples: Summary of Field Fortification	on
Recovery Samples and Corresponding Adjustment Factors	32
Table S - 13. Face/Neck Wipe Samples: Summary of Field Fortification Recovery Samples	and
Corresponding Adjustment Factors	33
Table S - 14. AHE58 – Face/Neck Wipe Samples: Summary of Field Fortification Recovery	у
Samples and Corresponding Adjustment Factors	35
Table S - 15. Hand Wash Samples: Summary of Field Fortification Recovery Samples and	
Corresponding Adjustment Factors	36
Table S - 16. AHE58 – Hand Wash Samples: Summary of Field Fortification Recovery	
Samples and Corresponding Adjustment Factors	38
Table S - 17. OVS Air Samples: Summary of Field Fortification Recovery Samples and	
Corresponding Adjustment Factors	39
Table S - 18. OVS Air Samples: Summary of Field Fortification Recovery Samples and	
Corresponding Adjustment Factors	41
Table S - 19. AHE58 – OVS Air Samples: Summary of Field Fortification Recovery Samples	es
and Corresponding Adjustment Factors.	42
Table S - 20. Inner Dosimeter Field Sample Results	43
Table S - 21. Face/Neck Wipe Field Sample Results	44
Table S - 22. Hand Wash Field Sample Results	45
Table S - 23. OVS Air Sample Field Results and Inhalation Exposure Table S - 24. Does the state of the state	46
Table S - 24. Dermal and Inhalation Exposures	47
Table S - 25. Select Excerpts from Field Observations	48
Table S - 26. Protocol Amendments and Deviations	51

		Table S - 1.	Administrative D	etails		
Stu AHE#	ady ID EPA MRID	Title	Author Report Date		Field Principal Investigator	Analytical Facility
AHE55	48289601	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Florida Citrus	Larry D. Smith, Ph.D.	11/3/10	Tami I. Belcher	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825
AHE56	48289602	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Georgia Pecans	Larry D. Smith, Ph.D.	11/3/10	Aaron Rotondaro	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825
AHE57	48303501	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Michigan Stone Fruit	Larry D. Smith, Ph.D.	11/3/10	Aaron Rotondaro	Ricerca Biosciences, LLC 7528 Auburn Road Concord, OH 44077
AHE58	48289604	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in California Trellis Crops	Eric Bruce	11/3/10	Brian D. Lange	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825
AHE59	48303502	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Closed Cab Equipment in Washington Pome Fruit	Eric Bruce	11/3/10	Tami I. Belcher	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825

	Table S - 2. Summary of Pesticides Used												
			Product In	formation			Produ	ict Purity Analy	sis				
Study ID	Trade Name	Formulation	Manufacturer	Packaging	Active Ingredient	Label % ai	Actual % ai	Lot / Batch #	Laboratory (Date)				
A 11E55	Sevin® brand XLR Plus	Liquid Flowable	Bayer CropScience	2.5 gallon plastic jug	Carbaryl	44.1% by weight	43.7% by weight	E1H0189- JH122	Morse Laboratories (3/6/09)				
AILUU	Fyfanon®	Emulsifiable Concentrate	Helena Chemical Company	2.5 gallon plastic jug	Malathion	56.44% by weight	59.6% by weight	CG7L0523	Morse Laboratories (3/6/09)				
A HE56	Fyfanon® 5E	Emulsifiable Concentrate	Helena Chemical Company	2.5 gallon plastic jug	Malathion	56.44% by weight	59.3% by weight	CG7L0523	Morse Laboratories (3/16/09)				
АПЕЗО	Sevin XLR Plus	Aqueous suspension / flowableBayer CropScience2.5 gal plastic		2.5 gallon plastic jug	Carbaryl	44.1% by weight	44.5% by weight	208006 JH164	Morse Laboratories (3/6/09)				
AHE57	Bravo Weather Stik	Aqueous suspension / flowable	Sygenta Crop Protection, Inc.	2.5 gallon plastic jug	Chlorothalonil	54% by weight	54.2% by weight	GBY8D1601	EPL Bio- Analytical Services (12/2/09)				
							75.87% by weight	30AK8003	EPL Bio- Analytical Services (2/26/10)				
A 11E 50	Gowan Malathion 8	Gowan Ialathion 8 Emulsifiable Gowan Concentrate Company	Gowan Company	2.5 gallon wide mouth plastic jug	Malathion	79.5% by weight	72.4% by weight	30AK8002	EPL Bio- Analytical Services (2/26/10)				
AHE58							68.35% by weight	30AK7005	EPL Bio- Analytical Services (2/26/10)				
	Gowan Malathion 8 Flowable	Emulsifiable Concentrate	Gowan Company	2.5 gallon wide mouth plastic jug	Malathion	79.5% by weight	67.52% by weight	30AK8010	EPL Bio- Analytical Services (2/26/10)				

			Ta	able S - 2. Sun	nmary of Pesticio	des Used			
			Product In	formation	•		Produ	ict Purity Analy	sis
Study ID	Trade Name	Formulation	Manufacturer	Packaging	Active Ingredient	Label % ai	Actual % ai	Lot / Batch #	Laboratory (Date)
							67.18% by weight	30AK8003	EPL Bio- Analytical Services (2/26/10)
	Malathion 8 Aquamul	Emulsifiable Concentrate	Loveland Products, Inc.	2.5 gallon wide mouth plastic jug	Malathion	81.8% by weight	78.2% by weight	531K004A-9	EPL Bio- Analytical Services (2/19/10)
AHE59	Sevin® Brand 4F Carbaryl Insecticide	Aqueous	Bayer	2.5 gallon	Cathorni	43% by	41.2% by weight	E160395- JF192	EPL Bio- Analytical Services (12/2/09)
		flowable	CropScience	plastic jug		weight	43% by weight	E160226- JF110	EPL Bio- Analytical Services (12/2/09)
	Carbaryl 4L Insecticide	Aqueous Suspension / flowable	Drexel Chemical Company	2.5 gallon plastic jug	Carbaryl	43.4% by weight	45.4% by weight	7KI211	EPL Bio- Analytical Services (12/2/09)
	Carbaryl 4L Insecticide	Aqueous Suspension / flowable	Loveland Products, Inc.	2.5 gallon plastic jug	Carbaryl	43% by weight	43.4% by weight	E18044- JH345	EPL Bio- Analytical Services (12/2/09)

	Table S - 3. Summary of Monitored Workers and Locations													
Study ID	MU ID	Age	Gender	Height (cm)	Weight (kg)	Yrs. Experience	State	County	Town	Date	Crop			
	A1	70	М	175	112	48	FL	Polk	Babson Park	10/29/08	Orange			
	A2	33	М	183	94	8	FL	Polk	Crews Lake	10/30/08	Tangerine			
AHE55	A3	20	М	188	106	10	FL	Orange	Winter Garden	10/31/08	Orange			
	A4	29	М	175	93	9	FL	Polk	Fort Meade	10/27/08	Orange			
	A5	30	М	175	92	3	FL	Orange	Labelle	10/28/08	Orange			
	A1	63	М	168	107	10	GA	Tift	Tifton	8/28/08	Pecan			
	A2	68	М	173	92	44	GA	Berrien	Alapaha	8/26/08	Pecan			
AHE56	A3	43	М	193	102	8	GA	Coffee	Douglas	8/27/08	Pecan			
	A4	49	М	180	95	7	GA	Irwin	Ocilla	8/25/08	Pecan			
	A5	51	М	173	91	8	GA	Irwin	Ocilla	8/25/08	Pecan			
	A1	53	М	165	70	24	MI	Leelanau	Cedar / Lake Leelanau	5/22/09	Cherry			
	A2	21	F	161 70 6 MI Grand Traverse Williamsburg / Traverse C		Williamsburg / Traverse City	5/15/09	Cherry						
AHE57	A3	58	М	175	103	50	MI	Grand Traverse	Mapleton	5/19/09	Cherry			
	A4	48	М	196	143	11	MI Grand Traverse Williamsburg / Trave		Williamsburg / Traverse City	5/15/09	Cherry			
	A5	46	М	183	91	30	MI	Leelanau	Cedar / Lake Leelanau	5/22/09	Cherry			
	A1	49	М	168	77	28	CA	Fresno	Selma	6/26/09	Grape			
	A2	42	М	168	72	20	CA	Fresno	Firebaugh	7/1/09	Grape			
AHE58	A3	43	М	165	76	8	CA	Sacramento	Walnut Grove	7/28/09	Grape			
	A4	31	М	185	83	5	CA	San Joaquin	Linden	8/7/09	Grape			
	A5	27	М	183	108	7	CA	San Joaquin	Lodi	8/10/09	Grape			
	A1	62	М	176	75	40	WA	Yakima	Sunnyside	4/30/09	Apple			
	A2	49	М	163	115	29	WA	Yakima	Wapato	5/7/09	Apple			
	A3	53	М	180	85	25	WA	Benton	Prosser	5/8/09	Apple			
	A4	26	М	175	67	5	WA	Yakima	Sunnyside	5/9/09	Apple			
AHE59	A5	Work • O: • A (c • A:	er monitor n the sched replaceme arbaryl) n identified	ing planne luled moni nt worker l backup g	ed but not e itoring day from anoth	executed becaus , only one field her eligible grow not have a work	e: studies te ver was n ting close	eam was available ar ot monitored becaus ed-cab (broken air co	nd already monitoring another work se the grower did not need to spray to onditioning)	er the surrogate	e chemical			

• The application window for surrogate chemical (carbaryl) ended before recruitment was possible.

	Table S - 4. Summary of Meteorological Conditions													
C4l		MII		M	Hum	nidity	Te	mp.		Win	d	Classi	II4	D
Study	State		Date	Nionitoring	(%	/0)	(°	F)	Speed	(mph)	Direction	Cloud Cover (%)	Heat Indov ^a	Kainiali (mm)
ID		ID		reriou	Max	Min	Max	Min	Max	Min	Direction	Cover (76)	muex	(11111)
		A1	10/29/08	1012-1449	53.8	26.8	65.7	54.0	7.1	3.7	NW	0-20	<80	0
		A2	10/30/08	1035-1453	54.3	41.3	70.3	59.4	10.0	5.4	Ν	0-20	<80	0
AHE55	FL	A3	10/31/08	0907-1343	76.8	42.3	77.4	63.5	6.6	2.9	Ν	0-20	<80	0
		A4	10/27/08	0932-1423	84.8	29.3	79.3	60.1	3.3	0.8	Ν	0-20	<80	0
		A5	10/28/08	1023-1808	45.3	20.8	66.2	55.2	8.3	2.9	NW	0-20	<80	0.01
		A1	8/28/08	0824-1249	89.0	49.6	88.5	74.7	4.10	0.10	NW	0-20	<120	0
		A2	8/26/08	0955-1443	84.7	61.0	86.2	78.4	8.30	0.30	S	0-40	<120	0
AHE56	GA	A3	8/27/08	0958-1553	77.2	47.3	90.5	80.2	5.20	0.00	W	20-60	<120	0.10
		A4	8/25/08	0036-0501	93.8	92.8	72.9	71.6	3.30	0.10	SE	80-100	<120	0
		A5	8/25/08	0548-1216	94.6	68.3	83.3	71.8	5.70	0.20	SE	80-100	<120	2.89
	MI	A1	5/22/09	1335-1533	49.8	27.7	66.9	62.4	7.6	0.3	SE	0-20	<105	0
		A2	5/15/09	0620-0958	97.5	70.2	52.7	35.4	8.0	0.1	Е	20-40	<105	0
AHE57		A3	5/19/09	1255-1655	66.4	56.5	62.1	56.3	10.4	0.5	NW	0-20	<105	0
		A4	5/15/09	1419-1834	55.6	37.3	69.4	62.4	13.4	0.3	SE	80-100	<105	0
		A5	5/22/09	0500-0942	96.0	60.1	58.3	47.5	6.2	0.1	NW	80-100	<105	0
		A1	6/26/09	0801-1346	55.6	12.5	93.9	64.4	3.7	1.0	W	0-20	<105	0
		A2	7/1/09	0650-1149	65.8	25.3	88.3	65.8	3.5	1.1	Ν	0-20	<105	0
AHE58	CA	A3	7/28/09	0641-1056	88.2	55.3	74.5	57.0	5.4	4.5	NR ^b	0-20	<105	0
		A4	8/7/09	0321-0921	88.9	35.0	71.2	53.2	3.2	< 0.1	Ν	0-20	<105	0
		A5	8/10/09	0726-1034	84.7	30.8	87.8	61.9	2.5	0.5	NW	0-20	<105	0
		A1	4/30/09	0732-1233	43.4	29.2	59.7	51.8	6.1	1.8	Ν	0-20	<80	0
411550	117 A	A2	5/7/09	0920-1313	39.3	27.8	60.8	55.3	8.3	5.0	W	0-20 20-40	<80	0
АПЕЗУ	WA	A3	5/8/09	0809-1328	59.3	33.3	60.8	47.5	4.2	2.1	S	0-20	<80	0
		A4	5/9/09	0707-1628	67.8	18.8	71.1	46.1	4.6	0.8	SW	0-20 20-40	<80	0

NΚ eportea

^a Heat index threshold set at 120 in 2008 and is applicable for AHE55 and AHE56. In 2009, it was revised down to 105 and applicable to AHE57, AHE58, and AHE59.

^b Report indicated that the pin holding the weather vane in place for storage was not removed, so readings are unreliable.

	Table S - 5. Summary of Work Clothing and PPE Long slowed Shirt Pants Shee type													
Study ID	MU ID	Long-sleev Style	ved Shirt Material	Style	Pants Material	Gloves ²	Eye Protection ⁴	Shoe type (over socks)	Сар	Respirator Type ⁴				
	A1	Button-front	Cotton	Work	Cotton/Polyester	Rubber	Goggles	Tennis shoes						
	A2	Button-front	Cotton	Denim jeans	Cotton	Rubber	Sunglasses Goggles	Leather shoes						
AHE55	A3	Button-front ¹	Cotton	Denim jeans	Cotton	Rubber	Sunglasses	Leather boots	Base <u>ba</u> ll					
	A4	Button-front ¹	Cotton	Denim jeans	Cotton	Rubber	Goggles	Water- resistant boots						
	A5	Button-front	Cotton/Polyester	Work	Cotton/Polyester	Rubber	Goggles	Leather boots	Baseball					
	A1	Button-front	Cotton	Denim jeans	Cotton	Latex		Leather boots	Baseball					
	A2	Button-front	Cotton	Denim jeans	Cotton	Latex	Yes	Leather shoes	Baseball					
AHE56	A3	Button-front	front Cotton		Cotton	Latex		Leather boots						
	A4	Button-front	Cotton	Denim jeans	Cotton	Latex		Leather shoes						
	A5	Button-front	Cotton	Denim jeans	Cotton	Latex		Tennis shoes	Base <u>ba</u> ll					
	A1	Button-front	Cotton	Denim jeans	Cotton	Nitrile	Yes	Leather shoes	Base <u>b</u> all					
	A2	T-shirt	Cotton	Knit Pull-on	Cotton	Nitrile	Yes	Tennis shoes						
AHE57	A3	Button-front	Cotton	Work (slacks)	Cotton	Nitrile		Leather shoes	Baseball					
	A4	Sweatshirt	Cotton	Denim jeans	Cotton	Nitrile		Leather shoes						
	A5	Sweatshirt	Cotton	Denim jeans	Cotton	Nitrile		Tennis shoes						
AHE58	A1	Button, collar	65% polyester, 35% cotton	Jeans, white	100% cotton	Nitrile	Goggles	Leather boots	Base <u>ba</u> ll	Dust/mist ⁵				
	A2	Button, collar	Cotton	Jeans,	100% cotton	Nitrile	Eyeglasses	Leather	Baseball					

			Та	ble S - 5. S	ummary of Work (Clothing and	PPE				
Study	MU	Long-sleev	ved Shirt		Pants	Cloves ²	Eye	Shoe type	Can	Respirator	
ID	ID	Style	Material	Style	Material	Giuves	Protection ⁴	socks)	Cap	Type ⁴	
				blue				boots			
	A3	Long-sleeve	100% cotton	Blue jeans	Cotton	Nitrile	Eyeglasses	Leather shoes	Baseball		
	A4	Button-up	100% cotton	Blue jeans	100% cotton	Nitrile	Eyeglasses	Leather boots	Baseball		
	A5	Long sleeved T- shirt	Cotton	Jeans	Denim=cotton	Nitrile	Eyeglasses	Leather boots	Baseball		
	A1	Button-front	Cotton	Denim jeans	Cotton	Nitrile	Eye/sunglasses	Rubber boots	Baseball		
	A2	Pull over	Cotton	Denim jeans	Cotton	Rubber	Sunglasses	Leather boots	Baseball		
AHE59	A3	Button-front	Cotton	Denim jeans	Cotton	Rubber and Cloth ³	Sunglasses	Leather boots	Baseball		
	A4 Button-front Cotton Denim jeans Cotton Rubber Tennis shoes										
¹ Per stuc ² Gloves ³ Non-pr	dy proto worn w otective	cool, AHETF replaced while outside the cab o e, worn while inside th	l a non-WPS compl only. ne cab.	iant shirt wo	orn by worker.						

⁴ Per AHETF SOP 9.K, exposure is extrapolated to portions of face covered by eyewear or respiratory protection. ⁵ Though not label-required, worker elected to wear a dust/mist face mask.

	-	-]	fable S - 6. Summa	ry of Application C	Characteristic	cs		-		
			Crop)			Application Eq	luipment					Application /
Study	MI			Spac	ing (ft)			Airblast			Speed	Tank	Exposure
ID	ID	Type	Height		In_	Tractor/truck			Nozzle		(mph	Size	Monitoring
		турс	(ft)	Full	row	Tractor/truck	Brand	Туре	# used	Pressure (nsi))	(gal)	Time
	A1	Orange	8-16	25	15	John Deere 6615	Rears Power Blast	Albuz ATR80	24	NR	NR	500	4.6
	A2	Tan- gerine	12-14	22	8-9	Kubota M9540	Hogan	Hogan ATR80	35	NR	NR	500	4.3
AHE55	A3	Orange	5-8	25	12.5	John Deere 7410	Rears Power Blast	Albuz ATR80	16	NR	NR	1000	4.6
	A4	Orange	10-12	30	12-15	John Deere 7330	Rears Power Blast	Albuz	24	NR	NR	1000	4.9
	A5	Orange	8-12	25	15	John Deere 6615	Durand Wayland Super Spray	Ceramic	18	NR	NR	1000	7.8
	A1	Pecan	30-40	60	60	Massey Ferguson 3630	Savage 5540	Flood jet	8	70	3-4	500	4.4
ALIES	A2	Pecan	45-65	40	40	John Deere 7420	Savage 500	NR	7	40	2.5-3	500	4.8
AHE30	A3	Pecan	80	60	50	Flatbed truck	NR	NR	14	200	3-5	500	5.9
	A4	Pecan	40-60	50	50	John Deere 5603	Savage 5534	NR	7	40	2.1	500	4.4
	A5	Pecan	40-60	50	50	Flatbed truck	NR	NR	15	200	3	500	6.5
	A1	Cherry	15	22	16	John Deere 6330	Ag-Tec	NR	12	40	3.5	400	2
	A2	Cherry	18	23	18	John Deere 5525	Ag Superior Spray Blast	NR	8	50	3	300	3.6
AHE57	A3	Cherry	14-18	22	20	Case 1394	Speed Sprayer LV500	2.5-3	500	Cone	12	450	4
	A4	Cherry	23	23	23	Massey Ferguson 3435F	John Bean 393CPB	3	500	NR	12	NR	4.25
	A5	Cherry	25	24	20-25	Massey Ferguson 4355	Rears Pul	3	400	Cone	8	200	4.7
	A1	Grape	5	10- 12	6-7	New Holland TS110A	D&M dual-row	Porcelain	20	125	3-3.5	600	5.75
	A2	Grape	7	11	7	John Deere 4430	Int. Man. 256	Plastic	8	~ 90	3-4	600	5
AHE58	A3	Grape	7	12	8	John Deere 6715	Aer-O-Fan dual- row	Cone, hollow	16	80	2.8	600	4.25
	A4	Grape	7	11	8	Kubota M8200 Narrow	Lectro Blast dual-row	Air sheer	20	25	3.5	400	6

					Т	Cable S - 6. Summa	ry of Application (Characteristic	es				
Study	MI		Crop				Application Ec	quipment			Speed	Tank	Application /
ID	ID	Type	Height	Spac	ing (ft)	Tractor/truck		(mph	Size	Exposure			
10	п	турс	(ft)	Full	In-	11 actor/truck	Brand	Nozzle)	(gal)	Monitoring
	A5	Grape	8	10	7	John Deere 5525N	Rears dul-row	Teejet cera-mic, 8's and 5's tip	18	~ 100	3.1	500	3.1
	A1	Apple	8-14	15- 20	10	John Deere 5500N	Rears	NR	14	140	NR	400	5
AHE59	A2	Apple	13-15	18	12	New Holland T75F	Rears	NR	16	40	2.6	400	3.9 ^a
	A3	Apple	10-12	16	6	John Deere 5510N	Rears	NR	14	150	NR	400	5.3
	A4 Apple 10 13 4 John Deere 5525 Rears NR 8 145 5.2 400 9.4												
NR = not ^a Inhalati	NR = not reported ^a Inhalation monitoring time = 3.4 hrs as pump was not running for up to 36 minutes from 1237 – 1313.												

				Table S - 7. S	ummary of A	Application H	Rate Informa	tion				
				Product					Application	Amount		
Study	MU	Course	Active	Conc.	# Loads	Area	Spra	ay	Prod	uct	Active Ing	gredient
ID	ID	Crop	ingredient	(lb ai /	applied	I reated	Per Acre	Total	Per Acre	Total	Per Acre	Total
			(al)	gallon)		(acres)	(gal)	(gal)	(gal)	(gal)	(lb)	(lb)
	A1	Orange	Malathion	5.3	3	12	125	1500	0.125	1.5	0.67	8
	A2	Tangerine	Carbaryl	4.0	3	6	200	1200	0.625	3.75	2.5	15
AHE55	A3	Orange	Carbaryl	4.0	3	9	333	3000	0.675	6.0	2.67	24
	A4	Orange	Carbaryl	4.0	4	20+	200	4000	0.5	10.0	2	40
	A5	Orange	Carbaryl	4.0	3	30+	100	3000	0.625	18.75	2.5	75
	A1	Pecan	Malathion	5.3	3	12	100	1200	0.125	1.5	0.66	7.9
	A2	Pecan	Malathion	5.3	3	18	83.3	1500	0.167	3	0.88	15.8
AHE56	A3	Pecan	Malathion	5.3	6	30	100	3000	0.157	4.7	0.82	24.6
	A4	Pecan	Carbaryl	4.0	4	20	100	2000	0.625	12.5	2.53	50.5
	A5	Pecan	Carbaryl	4.0	6	30	100	3000	0.625	18.75	2.53	75.7
	A1	Cherry	Chlorothalonil	6.0	2	4	40	190	0.448	1.79	2.7	10.8
	A2	Cherry	Chlorothalonil	6.0	3	7.5	60	450	0.373	2.8	2.25	16.9
AHE57	A3	Cherry	Chlorothalonil	6.0	3	12	62.5	750	0.383	4.59	2.3	27.6
	A4	Cherry	Chlorothalonil	6.0	3	19.75	100	1500	0.346	6.75	2.1	40.7
	A5	Cherry	Chlorothalonil	6.0	3	24	50	1200	0.625	15	3.76	90.3
	A1	Grape	Malathion	7.27	4	35	60	2100	0.25	8.73	1.81	63.5
	A2	Grape	Malathion	6.88	4	20	100	2000	0.25	5.0	1.72	34.4
AHE58	A3	Grape	Malathion	7.65	3	16	75	1200	0.19	3.0	1.44	23.0
	A4	Grape	Malathion	6.76	5	35	50	1750	0.25	8.75	1.69	59.2
	A5	Grape	Malathion	7.29	3	15	100	1500	0.07	1.0	0.49	7.3
	A1	Apple	Carbaryl	~ 4	4	8.5	165	1400	0.5-0.625	4.125	1.86	15.8
A 11E 50	A2	Apple	Carbaryl	~ 4	3	6	200	1200	0.625	2.25	1.57	9.4
АПЕЗУ	A3	Apple	Carbaryl	~ 4	4	12	108	1300	0.35	4.06	1.33	15.9
	A4	Apple	Carbaryl	~ 4	7	23.5	97.2	2285	0.375	8.565	1.47	34.5

	Table S - 8. Des	criptions of Exp	osure Monitoring and Analy	vtical Methods
	Exposure Monitoring Method		Ana	lytical Method
Matrix	Description	Active Ingredient	Identification	Description
		Carbaryl	ARTF-AM-012 ["Determination of Carbaryl in Hand Wash Solutions" (6/98)]	Carbaryl was extracted from hand wash solutions with dichloromethane, using multiple extractions. An aliquot of the extract was evaporated to dryness, reconstituted in acetonitrile:water (50:50 v/v), then submitted to HPLC analysis using post column derivatization/fluorescence detection. The method provided for an optional Florisil SPE purification step that was not needed for this study.
Hand Rinse	Exposure to the hands was measured using a 500 mL aliquot of 0.01% v/v AOT solution. First, 400 mL AOT solution was poured over a worker's hand while rubbing them together over a glass bowl for approximately 30 seconds; the remaining 100 mL was then poured over the worker's hands into the bowl. The bowl of 500 mL solution (now with hand residue) is transferred to a clear glass iar	Malathion	ARTF-AM-006, Revision 3, ["Determination of Diazinon and Malathion in Hand Wash Solutions"]	Malathion residues in AOT hand wash solutions were retained on a conditioned C-18 reverse phase cartridge by passing an aliquot of hand wash sample through the cartridge. The cartridge was washed with water, air-dried, then washed with hexane. Malathion residues were eluted from the C-18 cartridge with dichloromethane. The eluate was evaporated to dryness, redissolved in acetone, then submitted to gas chromatographic (GC) analysis using flame photometric detection in the phosphorous mode (FPD/P).
	at any point a worker would normally wash their hands (e.g., during lunch breaks, before using restroom, etc.) and at the end of monitoring. Samples are analyzed separately, but summed to obtain a total daily hand exposure.	Chlorothalonil	ARTF-002 ["Determination of Chlorothalonil in Hand Wash Solutions", 10/17/97)]	Chlorothalonil was extracted from hand wash samples with 500 mL of 0.01% Aerosol®-OT. Each sample was added to separate separatory funnels with together with 10 mL of 20% NaCl, 2 mL of 10N H2SO4 and 50 mL of 1:1 petroleum ether:diethyl ether solution. The sample was shaken for ~2 minutes. The upper organic phase was collected in a evaporation flask. The extraction was repeated, the second organic phase was combined with the first one and then the samples were concentrated to ~2 mL by rotary evaporation and further concentrated to dryness with a stream of nitrogen. The samples were reconstituted with 10 mL of ethyl acetate and diluted depending on the type of sample (field measurement, recovery sample, etc.).

	Table S - 8. Des	criptions of Exp	osure Monitoring and Analy	tical Methods
	Exposure Monitoring Method		Ana	lytical Method
Matrix	Description	Active Ingredient	Identification	Description
		Carbaryl	ARTF-AM-014 ["Determination of Carbaryl in Cotton Facial/Neck Wipes" (4/98)]	Carbaryl was extracted from cotton face/neck wipes with acetone. The aluminum foil used to wrap each sample was also rinsed with acetone to remove any residues. An aliquot of the extract was concentrated, subjected to Florisil SPE cleanup (most extracts), then submitted to high performance liquid chromatographic (HPLC) analysis using post column derivatization/fluorescence detection.
Face/neck Wipe	The face/neck wipes consisted of two 4" x 4", 100% cotton gauze Kendall Curity sponges moistened with 4 mL of 0.01% (v/v) Aerosol® OT solution (sodium dioctyl sulfosuccinate in distilled water), used sequentially. Face/neck wipes were conducted prior to breaks and at the end of monitoring. Samples were combined for	Malathion	ARTF-AM-010, Revision 2, ["Determination of Diazinon and Malathion in Cotton Facial/Neck Wipes"]	Malathion was extracted from cotton facial/neck wipes with an aqueous AOT solution. The aluminum foil used to wrap each sample was also rinsed with aqueous AOT to remove any residues. An aliquot of the extract was subjected to C-18 cleanup. After the sample was passed through the cartridge, retaining the analyte, the cartridge was washed with water, then air- dried. Malathion residues were eluted from the C-18 cartridge with dichloromethane:methanol (50:50, v/v). The eluate was evaporated to dryness and redissolved in acetone.
		Chlorothalonil	ARTF-004 ["Determination of Chlorothalonil in Facial/Neck Wipes", (10/17/97)]	For the concurrent recoveries eight milliliters of 0.01% Aerosol®-OT were added to the gauze pads to simulate field conditions and chlorothalonil residues were extracted with 100 mL ethyl acetate. For field samples the aluminum foil in which the samples were wrapped was placed in 250 mL Teflon® capped jars with the samples and brought to a total volume of 100 mL with ethyl acetate. Samples were shaken for 30 minutes and further diluted depending on the type of sample (field measurement, recovery sample, etc.).
Inner Dosimeters	Whole body dosimeters – white, long underwear, 100% cotton one-piece Carolina Mills, Inc. union suits worn underneath the workers' outer clothing – served to represent the workers' skin on their arms, legs and torso. Following each monitoring period, the inner whole body	Carbaryl	AHETF-AM-031 ["Determination of Carbaryl in Cotton Inner Dosimeters Sectioned into Two Parts" (6/5/08)]	Carbaryl was extracted from cotton inner dosimeter sections (upper and lower) with acetone. Each section was considered one analytical sample. An aliquot of the sample extract was subjected to Florisil SPE cleanup, then submitted to high performance liquid chromatographic analysis using post column derivatization/fluorescence detection. The method,

	Table S - 8. Des	criptions of Exp	osure Monitoring and Analy	vtical Methods
	Exposure Monitoring Method		Ana	lytical Method
Matrix	Description	Active Ingredient	Identification	Description
	dosimeters were carefully removed and sectioned into two pieces: lower body (below the waist) and upper body (above the waist).			incorporating Florisil cleanup, is applicable to samples containing residue levels ranging from 1.0 μ g/sample to 500 μ g/sample for inner dosimeters. A provision was made to extend the range of applicability by eliminating the Florisil cleanup.
		Malathion	AHETF-AM-018 ["Determination of Diazinon/Malathion in Cotton Inner Dosimeters Sectioned into Two Parts" Revised, 3/07]	Malathion was extracted from cotton inner dosimeter sections with acetone. The aluminum foil used to wrap each sample was also rinsed with acetone to remove any residues. Following evaporation of the solvent from an aliquot of the extract, the residues were suspended in water, then partitioned into hexane; the hexane was back-extracted against water. An aliquot of the hexane extract was subjected to Florisil Bond Elut cleanup.
		Chlorothalonil	ARTF-0001 ["Determination of Chlorothalonil In Dermal Dosimeters, (10/17/97)"]	Chlorothalonil residues were extracted from individual fabric segments with 2500 mL of hexane. The aluminum foil pieces used to wrap each sample were also rinsed with the solvent to remove any residues. The samples were shaken on a platform shaker for approximately 30 minutes, and then stored ≥ 8 hours at ambient temperature. 500 mL was decanted from each sample disposing of the initial 70 mL. From the remaining 430 mL the samples were processed depending on the type of sample (field measurement, fortification sample, etc.).
OVS tubes	Air sampling was conducted using OSHA Versatile Sampler (OVS) tubes connected by Tygon®-type tubing to a SKC model 110-100 personal air sampling pump set to approximately 2 liters per minute. The sample collector consisted of a glass fiber filter and two sections of XAD-2 sorbent housed in a 13 mm diameter glass tube. The sampler was clipped to the worker's collar (intake facing downward) and the tuba ettached to their balt. Pump car/off	Carbaryl	AHETF-AM-013 ["Determination of Carbaryl in OVS Air Sampling Tubes" Revision #1 (3/18/04)]	Air sampling tube contents were divided into front and back sections and the sections were analyzed separately. Carbaryl was extracted from the contents of each section of sorbent tube with acetonitrile. An aliquot of the extract was evaporated to dryness, reconstituted in acetonitrile:water (50:50, v/v) then submitted to HPLC analysis using post column derivatization/fluorescence detection. The method provided for an optional Florisil SPE purification step that was not needed for this study.
	tube attached to their belt. Pump on/off	Malathion	AHEIF-AM-009,	Air sampling tube contents were divided into front

	Table S - 8. Des	scriptions of Exp	osure Monitoring and Analy	tical Methods
	Exposure Monitoring Method		Ana	lytical Method
Matrix	Description	Active Ingredient	Identification	Description
	times and starting and ending flow rates were recorded.		Revision 4, ["Determination of Diazinon and Malathion in OVS Air Sampling Tubes"]	and back sections and the sections were analyzed separately. Malathion was extracted from the contents of each section of sorbent tube with acetone. An aliquot of the extract was evaporated to dryness, then reconstituted in acetone. Samples were submitted to gas chromatographic (GC) analysis using flame photometric detection in the phosphorous mode (FPD/P).
		Chlorothalonil	ARTF-003 ["Determination of Chlorothalonil in OVS Air Sampling Tubes" (10/17/97)]	Tube contents were divided into front and back sections and analyzed separately. After front and back sections were separated 3.5 mL of toluene was used to rinse the glass portion and extract each sample. The extraction was completed by shaking each sample for ~2 minutes. Aliquots/dilutions were taken/made depending on the type of sample (field measurement, recovery sample, etc.).

		Table S - 9. Field Co	ntrol Samples with Detecte	ed Residues		
Study	Control Sample Type	# with detected residues	Sample ID	Residue Found (ug/sample)	LOQ (ug/sample)	Comparison to LOQ
ALIE55	OVS tube (front goation)	2 of 6	55-F2-03-AR-C1 (F)	0.0363	0.01	3.6X > LOQ
АПЕЗЗ	OVS tube (front section)	2 01 0	55-F2-03-AR-C2 (F)	0.0404	0.01	4X > LOQ
			57-F1-01-AR-C1 (F)	0.02006	0.005	4X > LOQ
	OVS tube (front spatian)	1 of 1	57-F1-AR-C2 (F)	0.00560	0.005	1X > LOQ
A LIE 57	Ovs tube (front section)	4 01 4	57-F1-03-AR-C1 (F)	0.01845	0.005	3.7X > LOQ
ALES/			57-F1-03-AR-C2 (F)	0.01964	0.005	4X > LOQ
	OVS type (healt section)	2 of 4	57-F1-03-AR-C1 (B)	0.00215	0.005	2.5X < LOQ
	OVS tube (back section)	2 01 4	57-F1-03-AR-C2 (B)	0.00855	0.005	1.7X > LOQ
			58-FF-02-ID-C1	0.76	1.0	1.3X < LOQ
	Inner Dosimeter	3 of 8	58-FF-02-ID-C2	1.2	1.0	1.2X > LOQ
			58-FF-03-ID-C2	0.32	1.0	3X < LOQ
			58-FF-02-ID-C1	1.2	1.0	1.2X > LOQ
	Inner Dosimeter (confirmatory samples)		58-FF-02-ID-C1	1.1	1.0	1.1X > LOQ
		5 of 5	58-FF-02-ID-C2	0.89	1.0	1.1X < LOQ
			58-FF-02-ID-C2	1.3	1.0	1.3X > LOQ
AHE58			58-FF-03-ID-C2	0.21	1.0	4.8X < LOQ
			58-FF-02-AR-C1 (F)	0.0793	0.005	16X > LOQ
			58-FF-02-AR-C2 (F)	0.0634	0.005	13X > LOQ
	OVE to be (front costion)	(58-FF-03-AR-C1 (F)	0.0119	0.005	2.4X > LOQ
	OVS tube (front section)	0 01 8	58-FF-03-AR-C2 (F)	0.0019	0.005	2.6X < LOQ
			58-FF-04-AR-C1 (F)	0.0063	0.005	1.3X > LOQ
			58-FF-04-AR-C2 (F)	0.0089	0.005	1.8X > LOQ
	OVS tube (back section)	1 of 8	58-FF-02-AR-C2 (B)	0.001615	0.005	3X < LOQ
			59-FF-01-AR-C2 (F)	0.003176	0.01	3.1X < LOQ
			59-FF-02-AR-C1 (F)	0.024228	0.01	2.4X > LOQ
AHE59	OVS tube (front section)	5 of 6	59-FF-02-AR-C2 (F)	0.015651	0.01	1.6X >LOQ
		[59-FF-04-AR-C1 (F)	0.021984	0.01	2.2X >LOQ
			59-FF-04-AR-C2 (F)	0.013675	0.01	1.4X > LOQ
Note: as or presented in	nly negative controls for matric	es with detected residues are s ed residues (i.e., only a small p	hown in this table, it follows	s that all other negating that all other negation that detected reading the second second second second second	ve controls for t sidues).	hose matrices not

			Recovery Results
Study ID	Exposure Matrix	Fortification Range	$(mean \pm standard deviation)$
	Inner Dosimeters	1.0 – 2000 ug/sample	98.9% ± 2.8% (n=6)
A LIE 5 5	Face/Neck Wipes	1.0 – 2000 ug/sample	92.9% ± 4.6% (n=6)
АПЕЗЗ	Hand Washes	1.0 – 2000 ug/sample	$101\% \pm 6.5\%$ (n=6)
	OVS Air Samplers	0.01 – 100 ug/sample	$103\% \pm 6.2\%$ (n=10)
	Inner Dosimeters	1.0 – 2000 ug/sample	$102\% \pm 17.8\%$ (n=5)
	Face/Neck Wipes	1.0 – 2000 ug/sample	$84.3\% \pm 6.7\%$ (n=4)
АПЕЗО	Hand Washes	1.0 – 2000 ug/sample	90.8% ± 4.3% (n=4)
	OVS Air Samplers	0.01 – 100 ug/sample	92.0% ± 6.7% (n=4)
	Inner Dosimeters	1.0 – 2500 ug/sample	102.9% ± 13% (n=6)
A LIE 57	Face/Neck Wipes	1.0 – 2500 ug/sample	93.4% ± 11.7% (n=6)
AHE3/	Hand Washes	1.0 – 2500 ug/sample	$108.5\% \pm 8.2\%$ (n=6)
	OVS Air Samplers	0.01 – 1500 ug/sample	98.1% ± 13.4% (n=9)
	Inner Dosimeters	1.0 – 2000 ug/sample	$104\% \pm 13.3\%$ (n=13)
ALLESOD	Face/Neck Wipes	1.0 – 2000 ug/sample	102% ± 8.0% (n=8)
AHE38	Hand Washes	1.0 – 2000 ug/sample	101% ± 7.9% (n=8)
	OVS Air Samplers	0.005 – 250 ug/sample	$104\% \pm 6.6\%$ (n=10)
	Inner Dosimeters	1.0 – 2000 ug/sample	$108\% \pm 8.6\%$ (n=13)
A LIE 50°	Face/Neck Wipes	1.0 – 2000 ug/sample	$103\% \pm 9.9\%$ (n=10)
АПЕЗУ	Hand Washes	1.0 – 2000 ug/sample	99.7% ± 9.6% (n=12)
	OVS Air Samplers	0.01 – 100 ug/sample	$101\% \pm 10.2\%$ (n=18)
ner dosimeter (133%), 2 OVS ai VS air samples (325% and 311%	r samplers (318% and 337% - excluded fro 6 - contamination likely)	om any analysis due to likely contaminat	ion)

64 d ID	dy ID Active Monitoring Date Field Fortification Recovery (% Ingredient Monitoring Date (5 ug) (100 ug) (2000						Fie by	ld Recovery Adjustment Fa Measured Residue Range (actor (ug) ^a
Study ID	Ingredient	Monitorin	g Date	Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to \leq 1050 ug	> 1050 ug
				77.0	90.6	90.0			
		10/28/	08	83.1	89.9	94.1			
				86.0	82.6	106]		
				75.2	84.6	97.5]		
	Carbaryl	10/30/08		73.4	84.0	106	0.778	0.852	1.00
				72.0	79.6	108			
		C	Mean	77.8	85.2	100			
AHE55		Summary	SD	5.57	4.28	7.45			
AILSS		Statistics	CV (%)	7.2	5.0	7.5			
				108	97.2	101			
		10/29/	08	97.8	93.0	97.0]	0.929 0.97.	
	Molathian			101	88.6	93.8	1.02	0.020	0.072
	Malaunon	Summorry	Mean	102	92.9	97.3	1.02	0.929	0.975
		Statistics	SD	5.22	4.30	3.61			
		Statistics	CV (%)	5.1	4.6	3.7			
		8/25/08		92.8	81.6	81.4			
				92.3	74.6	89.5			
	Carbaryl		92.1 80.6 92.3 0.924		0.924	0.789	0.877		
	Carbaryi	Summary	Mean	92.4	78.9	87.7	0.924	0.789	0.877
		Statistics	SD	0.4	3.8	5.7			
AHE56		Statistics	CV (%)	0.43	4.8	6.5			
AIILO				87.2	99.8	110			
		8/27/0)8	85.4	111	108			
	Malathion			88.6	126	103	0.871	1.12	1.07
	Walaunon	Summary	Mean	87.1	112	107	0.071	1.12	1.07
		Statistics	SD	1.6	13.2	3.8			
		Statistics	CV (%)	1.8	11.8	3.6			
				87.8	86.0	111			
	Chloro	5/15/0)9	93.0	87.8	107			1.10
AHE57	thalonil			92.3	99.5	105	0.926	1.01	
	unuronni	5/29/()9	92.8	117	106	1		
		5/29/(<i>,</i> ,	97.5	101	114			

Table S	-11. Inner Wh	ole Body Dosimo	eter Sample	s: Summary	of Field Fortif	fication Recover	y Samples and	Corresponding Adjustme	nt Factors
Study ID	Active	Monitorin	a Data	Field Fo	ortification Re	covery (%)	Fiel by	ld Recovery Adjustment Fa Measured Residue Range (ictor ug) ^a
Study ID	Ingredient	Monitoring Date		Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to ≤ 1050 ug	> 1050 ug
			G Mean		111	116			
		Comment	SummaryMeanStatisticsSD		101	110			
		Summary			12.5	4.4			
		Statistics	CV (%)	3.9	12.3	4.0			
				87.0	101	109			
		4/30/09		90.6	99.4	106			
				83.5	95.4	105			
		5/7/09		102	109	96.6			
				91.2	92.6	102			
				100	103	97.6	0.007	0.007	1.02
AHE59	Carbaryl			75.3	111	97.0	0.897	0.996	1.02
		5/9/09)	85.1	95.7	106			
				92.9	89.2	99.6			
		G	Mean	89.7	99.6	102			
		Summary	SD	8.3	7.3	4.6			
Statistics $\frac{CV}{(\%)}$ 9.3 7.3 4.5									
^a Adjustmen	^a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level.								
Example: 5	2.5 is the midpoin	nt between 5 and	100 ug. Fie	eld sample resi	due results ≤ 52	2.5 ug would use	the adjustment	factor corresponding to the	low level
recovery me	an		0	1		0	5	1 5	

Table	S - 12. AHE58	8 – Inner Wi	iole Body	⁷ Dosimet	er Samp	les: Sum	mary of Factor	Field Fo	ortificati	on Recov	ery Samp	oles and C	orrespon	ling Adjus	tment
				-	Field Fo	rtificatio	n Recov	ery (%)			Field I by Me	Recovery easured R	Adjustme esidue Ra	nt Factor nge (ug) ^a	
Study ID	Active Ingredient	Monitorin	g Date	Low level (ug)	Mid le	vel (ug)	Hiş	gh level ((ug)	≤52.5	>52.5 to	>175 to	>1125 to	nt Factor inge (ug) ^a >2100 to ≤3600 1.2 fortificatic evel recove	>3600
				5	100	250	2000	2200	5000		51/5	51125	<u>S2100</u>	22000	
				67.4		89.8			107						
		6/26/0	09	66.4		94.9			117						
				82.8		100			42.7						
				138		98.4		108						ent Factor ange (ug) ^a >2100 to ≤3600	
		7/1/0	9	126		101		233							
				167		87.5		104							
				132	88.2		121			-					
AHE58	Malathion	7/28/0	09	112	91.2		136			1 1 4	0.966	0.953	12	12	0.889
7111230	Wididution			114	102		119			1.17	0.900	0.755	1.2	1.2	0.007
				119	92.2		117								
		8/7/0	9	124	105		111								
				123	101		124								
			Mean	114	96.6	95.3	121 °	148	88.9						
		Summary	SD	29.3	6.9	5.9	8.4	73.4	40.3	-					
Statistics CV (%) 26 7.1 6.2 6.9 50 45															
^a Adjustm	ent factor corre	esponds to me	ean recove	ery percen	tage for	each reco	very lev	el. Resic	lue range	correspon	nds to mic	lpoint betw	ween each	fortification	n level.
Example:	52.5 is the mi	dpoint betwee	en 5 and 1	00 ug. R	esidue re	sults ≤ 52	2.5 ug wo	ould use	the adjus	tment fact	or corresp	oonding to	the low le	vel recover	y mean.
^b Per stan	dard AHETF p	rocedures, for	r average	recoveries	s greater	than 120%	%, field r	neasurer	nents are	adjusted l	oy a maxi	mum facto	or of 1.2.		

64d ID	Active	Monitoria	a Data	Field Fo	ortification Re	covery (%)	Fie by	ld Recovery Adjustment F Measured Residue Range	acto (ug`
Study ID	Ingredient	Wionitorin	ig Date	Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to \leq 1050 ug	:
				72.7	83.3	93.0			
		10/28/	/08	63.3	81.6	92.4			
				79.1	81.7	87.8			
				69.7	88.7	99.8			
	Carbaryl	10/30/	/08	83.9	89.8	104	0.760	0.841	
				87.3	79.4	110			
		Summary	Mean	76.0	84.1	97.9			
AHE55		Statistics	SD	9.07	4.20	8.29			
		Statistics	CV (%)	11.9	5.0	8.5			
				118	96.6	107			
		10/29/	/08	116	111	110]		
	Malathion			118	109	107	1 1 7	1.06	
		Summary	Mean	117	106	108	1.17	1.00	
		Statistics	SD	1.15	7.8	1.73			
		Statistics	CV (%)	9.8	7.4	1.6			_
				86.9	89.3	102]		
		8/25/	08	89.2	79.4	100	1		
	Carbaryl		•	87.0	92.8	91.6	0.877	0.872	
	Curburyi	Summary	Mean	87.7	87.2	97.9	0.077	0.072	
		Statistics	SD	1.3	7.0	5.5	_		
AHE56		Statistics	CV (%)	1.5	8.0	5.6			_
7 HILDO				105	81.2	81.0	1		
		8/27/	08	101	73.4	71.4	1		
	Malathion		-	107	78.0	65.6	1.04	0 775	
	1. Tututinon	Summary	Mean	104	77.5	72.7	1.01	0.170	
		Statistics	SD	3.2	3.9	7.8	_		
		Statistics C 5/15/09	CV (%)	3.1	5.0	10.7			_
				101	80.3	81.2			
	Chloro-		09	101	79.1	84.1			
AHE57	thalonil			109	79.6	80.0	0.967	0.773	1
		5/29/	09	94.7	74.9	88.0	4		1
		0,201		92.4	76.0	91.3			1

> 1050 ug

0.979

1.08

0.979

0.727

0.857

T	able S - 13. Fac	e/Neck Wipe Sa	mples: Sun	nmary of Fiel	d Fortification	n Recovery Sam	ples and Corre	sponding Adjustment Fact	ors
Study ID	Active	Monitoring	, Data	Field Fo	rtification Re	covery (%)	Fiel by	d Recovery Adjustment Fa Measured Residue Range (ctor ug) ^a
Study ID	Ingredient	wionitoring	g Date	Low level (5 µg)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to ≤ 1050 ug	>1050 ug
				82.3	73.5	89.9			
		Cummon	Mean	96.7	77.3	85.7			
		Summary	SD	9.1	2.8	4.7			
		Statistics	CV (%)	9.4	3.6	5.5			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	95.8	103			
				103	97.9	99.9			
				103	103	86.0			
		5/7/09)	101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
AHE59	Carbaryl			109	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			994	1.06
THE57	Carbaryr			96.2	100	114	1.01	.774	1.00
		5/9/09)	97.8	93.6	124			
				98.3	97.6	124			
		Summary	Mean	101	99.4	106			
		Statistics	SD	4.0	5.0	12.6			
		Statistics	CV (%)	4.0	5.0	11.9			
^a Adjustmen	t factor correspor	nds to mean recov	very percent	age for each re	ecovery level.	Residue range co	rresponds to m	idpoint between each fortific	ation level.
Example: 5	2.5 is the midpoin	nt between 5 and	100 ug. Re	sidue results \leq	52.5 ug would	l use the adjustme	ent factor corres	sponding to the low level rec	overy mean.

Tab	le S - 14. AHI	E58 – Face/N	eck Wip	e Samples	s: Sumn	nary of F	ield For	tificatio	n Recove	ry Sampl	es and Co	orrespond	ling Adju	stment Fac	tors
				-	Field Fo	rtificatio	n Recov	ery (%)			Field I by Me	Recovery easured R	Adjustme esidue Ra	ent Factor ange (ug) ^a	
Study ID	Active Ingredient	Monitorin	g Date	Low level (ug)	Mid le	vel (ug)	Hi	gh level ((ug)	≤52.5	>52.5 to	>175 to	>1125 to	>2100 to	>3600
				5	100	250	2000	2200	5000		≤1/5	<u>≤1125</u>	<u>≤</u> 2100	≤3600	
$6/26/09 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$				104											
		6/26/	09	102		100			104						
	81.8 93.3 106 95.0 100 104 7/1/09 94.2 101 99.3			81.8		93.3			106						
		7/1/0	19	94.2		101		99.3						ent Factor ange $(ug)^a$ >2100 to ≤ 3600 1.01	
				91.8		104		100							
				124	92.8		110								
AHE58	Malathion	7/28/0	09	123	94.2		115			1 04	0 9 1 4	0 992	1 09	1 01	1.05
1111111111111111				123	97.8		112			1.0	0.91	0.772	1.09	stment Factor inge (ug) ^a >2100 to ≤3600	1.00
				105	78.4		109								
		8/7/0	19	110	94.0		102							nent Factor Range $(ug)^a$ 5 >2100 to 0 \leq 3600 1.01	
				0	91.2		106								
		~	Mean	104	91.4	99.2	109	101	105						
		Summary	SD	14.4	6.7	3.7	4.6	2.5	1.2						
		Statistics	CV (%)	13.8	7.3	3.7	4.2	2.5	1.1						

^a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level. Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low level recovery mean. ^b Sample not taken.

	Table S - 15. H	Hand Wash Sam	ples: Sum	nary of Field	Fortification I	Recovery Sample	es and Corresp	onding Adjustment Factor	'S
64 J ID	Active	Manitanin	a Da4a	Field Fo	ortification Re	ecovery (%)	Fie by	ld Recovery Adjustment Fa Measured Residue Range (ictor ug) ^a
AHE55 AHE56 -	Ingredient	Wionitorin	g Date	Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to \leq 1050 ug	> 1050 ug
				95.4	83.0	108			
		10/28/	08	89.3	101	107			
				97.3	97.5	106			
				77.4	82.9	106			
	Carbaryl	10/30/	08	90.3	99.8	105	0.891	0.914	1.04
			-	85.2	84.3	90.0			
		Summary	Mean	89.1	91.4	104			
AHE55		Statistics	SD	7.21	8.87	6.77			
		Statistics	CV (%)	8.1	9.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
				85.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
M		10/29/	08	103	98.4	94.4			
	Malathion		-	102	103	103	0.969	0.987	0.969
	Wididthion	Summary	Mean	96.9	98.7	96.9	0.909	0.907	0.909
		Statistics	SD	9.65	4.3	5.35		0.987 0	
		Statistics	CV (%)	10.0	4.4	5.5			
				93.4	94.1	106			
		8/25/0)8	96.5	95.1	85.6			
	Carbaryl		-	97.7	96.2	111	0.958	0.952	1.01
	Carbaryi	Summary	Mean	95.8	95.2	101	0.958	0.932	1.01
		Statistics	SD	2.2	1.1	13.3			
A HE56		Statistics	CV (%)	2.3	1.2	13.2			
AIILSU				96.2	103	89.4			
		8/27/0)8	107	101	90.8			
	Malathion		-	105	110	92.8	1.02	1.05	0.910
	WidiatiiiOii	Summary	Mean	102	105	91.0	1.02	1.05	0.910
		Statistics	SD	5.5	4.9	1.7			
		Statistics	CV (%)	5.4	4.7	1.9			
				117	120	105			
	Chloro	5/15/0)9	115	106	102			
AHE57	thalonil			113	117	110	1.17	1.16	1.07
	uiaioiiii	5/20/0	0	119	121	108			
	thaionn	5/29/(119	118	109			

	Table S - 15. H	land Wash Samj	ples: Sumn	nary of Field I	Fortification F	Recovery Sample	es and Corresp	onding Adjustment Factor	'S	
Study ID	Active	Monitorin	x Doto	Field Fo	ortification Re	covery (%)	Fie by	ld Recovery Adjustment Fa Measured Residue Range (ictor ug) ^a	
Study ID	Ingredient	wionitoring	g Date	Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to ≤ 1050 ug	> 1050 ug	
				118	116	110				
		C	Mean	117	116	107				
		Summary	hitoring Date Lo ($($ $($ $)$ $()$		5.4	3.2				
		CV (%)	1.9	4.7	3.0					
				113	109	110				
		4/30/0	9	110	104	107				
				110	99.0	108				
				107	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		5/7/09)	109	107	91.4		ug > 52.5 ug to ≤ 1050 ug > 1050 ug 1.04 1.06		
A HE 50	Carbaryl			103	107	97.2	≤ 52.5 ug > 52.5 ug to ≤ 1050 ug > 105 $ 1.08 1.04$	1.06		
AIIE39	Carbaryi			107	102	109	1.08	1.04	1.00	
		5/9/09)	110	109	113				
				104	90.5	120				
		Summary	Mean	108	104	106				
		Statistics	SD	3.2	5.9	8.8	06 3.8			
		Statistics	CV (%)	3.0	5.7	8.3				
^a Adjustmer Example: 5	nt factor correspondent factor correspondent factor correspondent factor	nds to mean recover nt between 5 and	very percent 100 ug. Re	age for each residue results \leq	ecovery level. 52.5 ug would	Residue range co l use the adjustme	rresponds to m ent factor corre	idpoint between each fortific sponding to the low level rec	ation level.	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Т	abla S 16 A	HE58 Hon	d Wash S	amplas	Summa	ry of Fiol	d Fortif	ination I	Dogovoru	Samplas	and Cor	rospondin	a Adjusti	nont Footo	F 6
$ \frac{\text{Study ID}}{\text{ID}} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		abic 5 - 10. A		<u>u wasii s</u>	ampics.	Field Fo	ortificatio	n Recov	ery (%)	<u>xecover y</u>	Samples	Field I by Me	Recovery asured R	Adjustme esidue Ra	nt Factor nge (ug) ^a	15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Study ID	Active Ingredient	Monitorin	g Date	Low level (ug)	Mid le	evel (ug)	Hi	gh level	(ug)	≤52.5	>52.5 to	>175 to	>1125 to	>2100 to	>3600
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					5	100	250	2000	2200	5000		≤1/5	<u>≤1125</u>	≤2100	≤3600	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					103		87.8			62.3						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6/26/0)9	108		90.9			65.1	-					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					105		82.2			60.0	-					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			- /1 /0		93.2		109		119							
AHE58 Malathion 124 103 120 $7/28/09$ 128 87.4 111 126 85.8 111 126 85.8 111 $8/7/09$ 115 76.2 96.8 $8/7/09$ 115 76.2 96.8 $8/7/09$ 115 76.2 96.8 $8/7/09$ 115 76.2 96.8 $8/7/09$ 113 86.3 86.9 103 122 62.5 Summary SD 13.0 5.7 21.2 8.5 3.8 2.6			7/1/0	9	122		48.6		126		-				1.22	
AHE58 Malathion $7/28/09$ 89.8 92.2 $$ 89.8 $$ $$ 128 87.4 $$ 111 $$					124		103		120		-					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			7/20/	20	89.8	92.2		89.8								
$\frac{126}{85.8} = 111 = -2 = -2$ $\frac{112}{85.2} = -107 = -2$ $\frac{112}{85.2} = -26.8 = -2$ $\frac{112}{115} = 76.2 = -26.8 = -2$ $\frac{112}{-2^{\circ}} = 91.0 = -26.8 = -26.8$	AHE58	Malathion	//28/0	J9	128	8/.4		111			1.11	0.863	0.869	1.03	1.22	0.625
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					126	85.8		107			-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8/7/0	0	112	85.2		10/			-					
Mean 111 86.3 86.9 103 122 62.5 Summary SD 13.0 5.7 21.2 8.5 3.8 2.6			8/ //0	9	c 115	70.2		90.8								
Summary SD 13.0 5.7 21.2 8.5 3.8 2.6				Mean	111	91.0	86.0	101	122	62.5	-					
Statistics CV Statistics Statistic			Summary	SD	13.0	57	21.2	85	3.8	2.5	-				nge (ug) ^a >2100 to ≤3600 1.22 fortificatio	
			Statistics	CV (%)	11.7	6.6	24.4	8.3	3.1	4.2					ange (ug) ^a >2100 to ≤3600 1.22	

^a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level. Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low level recovery mean. ^b Sample is unusually low, though without clear explanation – thus, it was included in calculation of the 250 ug level average. ^c Sample not taken.

	Table S - 17.	OVS Air Samp	les: Summa	ry of Field	l Fortificati	ion Recover	ry Samples	and Correspo	onding Adjustment Factors	
				Field	Fortificati	on Recover	·y (%)	Fie	ld Recovery Adjustment Fa by Measured Residue Rang	e ^a
Study ID	Active Ingredient	Monitorin	g Date	Low level (0.05 ug)	Mid level (0.5 ug)	High level (100 ug)	Highest level (1000 ug)	≤0.275 ug	> 0.275 ug to \leq 50.25 ug	> 50.25 ug
				112	90.9	106				
		10/28/	08	104	89.9	108				
				97.8	91.6	105				
				90.6	93.1	111				
	Carbaryl	10/30/	08	94.0	90.8	89.3		0.99	0.913	1.04
				97.8	91.6	104				
	y IDActive IngredientMonitoring Da355 $10/28/08$ $10/28/08$ Carbaryl $10/30/08$ Summary Statistics N 355 $10/29/08$ Malathion $10/29/08$ Malathion $10/29/08$ Summary Statistics N 359Carbaryl259Carbaryl5/7/09 $5/7/09$ 359Summary Statistics5/7/09 $5/9/09$ Summary Statistics N Summary Statistics N 5/9/09 $5/9/09$		Mean	99.4	91.3	104				
AHE55		Statistics	SD	7.6	1.08	7.56				
			CV (%)	7.6	1.2	7.3				
				203	88.3	99.6				
		10/29/	08	<u>157</u> ^b	80.8	91.0				
	Malathion			150 ^b	86.8	88.3		c	0.853	0.930
	101ulullion	Summary	Mean		85.3	93.0			0.000	0.950
		Statistics	SD		3.97	5.90				
			CV (%)		4.7	6.3				
				84.1	110	104				
		4/30/0)9	92.7	110	110				
				96.7	11.8ª	105				
				134	97.2	94.8				
		5/7/0	9	130	107	108				
AHE59	Carbaryl			141	109	103		12	1.07	1 04
ATTES /	Carbaryı			133	115	106		1.2	1.07	1.04
		5/9/0	9	184	104	101				
				163	101	103				
		Summary	Mean	129	107	104				
		Statistics	SD	33.1	5.7	4.4				
		Statistics	CV (%)	25.7	5.3	4.2				
^a Adjustmer	t factor correspon	nds to mean reco	very percent	age for eac	h recovery	level. Resid	lue range co	rresponds to m	idpoint between each fortific	ation level.
Example: 0	0.275 is the midpo	oint between 0.05	and 0.5 ug.	Residue re	esults ≤ 0.27	5 ug would	use the adju	istment factor	corresponding to the low leve	el recovery
mean.										

^b Contamination suspected, thus results not used.

	Table S - 17.	OVS Air Samples: Summa	ary of Field	Fortificati	ion Recover	ry Samples	and Correspo	nding Adjustment Factors				
			Field	Fortificati	on Recover	y (%)	Fie I	ld Recovery Adjustment Fa by Measured Residue Rang	ictor e ^a			
Study ID	Active Ingredient	Monitoring Date	Low level (0.05 ug)	Mid level (0.5 ug)	High level (100 ug)	Highest level (1000 ug)	≤0.275 ug	> 0.275 ug to \leq 50.25 ug	> 50.25 ug			
Due to suspected contamination of fortification samples, samples ≤ 0.275 ug will be adjusted using the mid-level fortification adjustment factor.												
^d Excluded f	Excluded from calculation of average recovery due to improper sample preparation.											

				Field	Fortificatio	on Recover	ry (%)	s and Corresponding Adjustment Field Recovery Adjust by Measured Residu \leq 0.275 ug > 0.275 ug to \leq 2. - 0.975 0.914 - 0.784 0.832 - 0.979 0.803	ld Recovery Adjustment Fa by Measured Residue Rang	e ^a	
Study ID	Active Ingredient	Monitorin	g Date	Low level (0.05 ug)	Mid level (0.5 ug)	High level (5 ug)	Highest level (1000 ug)	≤0.275 ug	> 0.275 ug to \leq 2.75 ug	> 2.75 ug	
				96.0	94.7	78.8					
		8/25/0	8	$ \begin{array}{ c c c c c c c } \hline Low \\ level \\ (0.05 \\ ug) \end{array} & Mid \\ level \\ (0.5 ug) \end{array} & High \\ level \\ (5 ug) \end{array} & High \\ level \\ (1000 \\ ug) \end{array} & \leq 0.275 ug \end{cases} > 0.275 ug to \leq 2.75 ug > 2.75 ug \\ \hline > 0.275 ug to \leq 2.75 ug > 2.75 ug \\ \hline > 0.275 ug to \leq 2.75 ug > 2.75 ug \\ \hline > 0.275 ug to \leq 2.75 ug > 2.75 ug \\ \hline 98.0 & 89.7 & 86.5 & \\ \hline 98.0 & 89.7 & 86.5 & \\ \hline 98.0 & 89.7 & 86.5 & \\ \hline 98.6 & 89.9 & 74.1 & \\ \hline 99.1 & 1 & 93.6 & \\ \hline 75.2 & 72.2 & 85.5 & \\ \hline 84.6 & 84.3 & 81.9 & \\ \hline 120 & 82.1 & 96.0 & \\ \hline 91.1 & 86.9 & 91.8 & \\ \hline 91.1 & 86.9 & 91.8 & \\ \hline 94.1 & 82.8 & 91.8 & \\ \hline 96.7 & 68.6 & 98.5 & \\ \hline 0.979 & 0.803 & 0.878 \\ \hline \end{array}$							
	Carbaryl		_	98.6	89.9	74.1		0.975	0.914	0 798	
	Carbaryi	Summory	Mean	97.5	91.4	79.8		0.975	0.914	0.798	
		Statistics	SD	1.4	2.8	6.2					
A HE 56		Statistics	CV (%)	1.4	3.1	7.8					
AIIE30				75.4	93.1	93.6					
		8/27/0	8	75.2	72.2	85.5					
	Malathian			84.6	84.3	81.9		0.784	0.832	0.870	
	Walaunon	Summory	Mean	78.4	83.2	87.0		0.784	0.852	0.870	
		Statistics	SD	5.4	10.5	6.0					
		Statistics	CV (%)	6.9	12.6	6.9					
				120	82.1	96.0					
		5/15/0	9	91.1	86.9	91.8					
				86.9	79.7	72.9					
	Chloro			94.1	82.8	91.8					
AHE57	thalonil	5/29/0	9	96.7	68.6	98.5		0.979	0.803	0.878	
	ulaioiiii			98.7	81.4	76.1					
		Summary	Mean	97.9	80.3	87.8					
		Statistics	SD	11.6	6.2	10.7					
		Statistics	CV (%)	11.8	7.7	12.2					

64 J	A			Field l	Fortification Re	covery (%	(0)		Field Recovery Adj by Measured Res	ustment Factor sidue Range ^a	
ID	Ingredient	Monitorin	g Date	Low level (ug)	Mid level (ug)	High l	evel (ug)	≤0.275	>0.275 to ≤50.25	>50.25 to ≤175	>175
				0.05	0.5	100	250 ^b				
				683°	114		91.7				
		6/26/0)9	272°	87.6		74.8				
				96.3°	86.2		102				
				205°	100		d				
		7/1/09		197 ^c	103		185 ^e				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
				106	95.6	109				iustment Factors istment Factor idue Range ^a >50.25 to ≤175 1.08	
A LIE 5 9	Malathian	7/28/0)9	115	90.6	90.6		1 1 1	0.052	1.09	0.805
АПЕЗО	Malatinon			103	92.7	110		1.11	0.932	ustment Factors istment Factor idue Range ^a >50.25 to ≤175 1.08	0.895
				118	80.6	113					
		8/7/0	9	104	98.5	112					
				117	104	111					
			Mean	111	95.2	108	89.5				
		Summary	SD	6.9	9.2	8.4	13.7				
		Statistics	CV (%)	6.2	9.7	7.8	15.3				

^a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level. Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low level recovery mean. ^b High-level samples prepared with 250 ug, but were supposed to have been prepared with 100 ug. This does not compromise results.

^c Due to improper fortification sample preparation these results were excluded from calculating the recovery average.

^d Sample lost during analysis.

^e Due to improper fortification sample preparation these results were excluded from calculating the recovery average.

				Table S	- 20. Inner D	osimeter Field S	ample Result	5			
			Analytic	al Method		Lower Body			Upper Body		
Study	MU	Active	Le (ug/sa	evels ample) ^a	Raw	Field Fort	ification	Raw	Field Fort	ification	Total
ID	ID	Ingredient	LOQ	LOD	Exposure (ug) ^b	Adjustment Factor ^c	Adjusted Exposure (ug) ^d	Exposure (ug) ^b	Adjustment Factor ^c	Adjusted Exposure (ug) ^d	(ug) ^e
	A1	Malathion	1.0	0.3	9.0	1.02	8.824	121	0.929	130.3	139.1
	A2				1.7	0.778	2.185	35.6	0.778	45.76	47.9
AHE55	A3	Carbaryl	1.0	0.3	53.0	0.852	62.21	8.9	0.778	11.44	73.7
	A4	Carbaryi	1.0	0.5	< LOQ		0.5	< LOQ		0.5	1.0
	A5				20.8	0.778	26.74	9.5	0.778	12.21	39.0
	A1				34.6	0.871	39.72	< LOQ		0.5	40.2
	A2	Malathion	1.0	0.3	12.2	0.871	14.01	15.3	0.871	17.57	31.6
AHE56	A3				26.6	0.871	30.54	12.3	0.871	14.12	44.7
	A4	Carbaryl	1.0	0.3	7.8	0.924	8.442	2.0	0.924	2.165	10.6
	A5	Carbaryi	1.0	0.5	27.8	0.924	30.09	1324	0.877	1510	1540
	A1				2.749	0.926	2.916	9.113	0.926	9.827	12.7
	A2				6.758	0.926	7.343	< LOD		0.15	7.5
AHE57	A3	Chlorothalonil	1.0	0.3	16.83	0.926	18.14	23.8	0.926	25.70	43.8
	A4				11.88	0.926	12.85	4.285	0.926	4.644	17.5
	A5				15.04	0.926	16.20	41.84	0.926	45.14	61.3
	A1				1.75	1.14	1.579	48.1	1.14	42.19	43.8
	A2				2.51	1.14	2.193	5.07	1.14	4.474	6.7
AHE58	A3	Malathion	1.0	0.3	2.93	1.14	2.544	1.96	1.14	1.754	4.3
	A4				1.38	1.14	1.228	9.2	1.14	8.07	9.3
	A5				101.4	0.966	104.6	12.32	1.14	10.79	115.4
	A1				< LOQ		0.5	1.164	0.897	1.338	1.8
AHE50	A2	Carbaryl	1.0	0.3	< LOD		0.15	< LOQ		0.5	0.7
AILUS	A3	Carbaryi	1.0	0.5	47.78	0.897	53.29	29.25	0.897	32.55	85.8
	A4				2.318	0.897	2.564	11.81	0.897	13.15	15.7
^a When <	LOQ or	<pre>COD is reported,</pre>	1/2 LOQ or	1/2 LOD is us	ed.						

^b Calculated from chromatogram peak response (e.g., ug/mL)

^c From Supplemental Tables K-L. ^d Adjusted Exposure = Raw exposure ÷ Field Fortification Adjustment Factor

^e Total = Lower Body Adjusted Exposure + Upper Body Adjusted Exposure

	Table S - 21. Face/Neck Wipe Field Sample Results											
			Analy	tical		Face/Neck	Exposure Adju	stments	Estimated	Head I	Tunoguno	
Study	MU ID	Active Ingredient	Method Levels (ug/sample) ^a		Raw Exposure	Field Fortification	PPE A diustment	Adjusted	Exposure to Non- Wiped Portion of	neau r	ug)	
			LOQ	LOD	(ug)"	Adjustment Factor ^c	Factor ^d	(ug) ^e	Head (ug) ^f	Total ^g	Total (MEA) ^h	
	A1	Malathion	1.0	0.3	< LOQ		1.1	0.55	0.34	0.89	1.78	
	A2				< LOQ		1.1	0.55	0.34	0.89	1.78	
AHE55	A3	Carboryl	1.0	0.3	3.4	0.760	1.0	4.474	2.7	7.17	14.40	
	A4	Calbalyi	1.0		< LOD		1.1	0.17	0.10	0.27	0.54	
	A5				< LOQ		1.1	0.55	0.34	0.89	1.78	
	A1			0.3	< LOD		1.0	0.15	0.09	0.24	0.48	
AHE56	A2	Malathion	1.0		< LOQ		1.0	0.50	0.30	0.8	1.60	
	A3				< LOQ		1.0	0.50	0.30	0.8	1.60	
	A4	Carboryl	1.0	0.3	< LOD		1.0	0.15	0.09	0.24	0.48	
	A5	Carbaryi	1.0		< LOQ		1.0	0.50	0.30	0.8	1.60	
	A1			0.3	< LOD		1.0	0.15	0.09	0.24	0.48	
	A2				< LOD		1.0	0.15	0.09	0.24	0.48	
AHE57	A3	Chlorothalonil	1.0		1.55	0.967	1.0	1.655	1.009	2.66	5.40	
	A4				< LOD		1.0	0.15	0.09	0.24	0.48	
	A5				< LOQ		1.0	0.50	0.30	0.8	1.60	
	A1				2.37	1.04	1.3	2.963	1.83	4.79	9.60	
	A2				< LOQ		1.0	0.5	0.30	0.80	1.60	
AHE58	A3	Malathion	1.0	0.3	< LOD		1.0	0.15	0.09	0.24	0.48	
	A4				1.6	1.04	1.0	1.538	0.91	2.45	4.80	
	A5				< LOD		1.0	0.15	0.09	0.24	0.48	
	A1			0.3	< LOD		1.0	0.15	0.09	0.24	0.48	
AHE50	A2	Carbaryl	1.0		< LOQ		1.0	0.5	0.30	0.80	1.60	
AHE59	A3	Carbaryi	1.0		< LOQ		1.0	0.5	0.30	0.80	1.60	
	A4				< LOQ		1.0	0.5	0.30	0.80	1.60	

^a When \leq LOQ or \leq LOD is reported, $\frac{1}{2}$ LOQ or $\frac{1}{2}$ LOD is used.

^b Calculated from chromatogram peak response (e.g., ug/mL)

^c From Supplemental Tables M-N.

^d PPE characterized in Supplemental Table E. PPE Adjustment Factor discussed in Section 3.2.2.

^e Adjusted Exposure = Raw Exposure ÷ FF Adjustment Factor * PPE Adjustment Factor

^f Exposure to non-wiped portion of head = Adjusted Exposure * (2.95/4.84, for males) or (3.05/5.01, for females). MU-specific gender in Supplemental Table C.

^g Total Head Exposure = Adjusted face/neck wipe exposure + Extrapolated non-wiped head exposure.

^h MEA = method efficiency adjustment. Total head measurement corrected by a factor of 50% to account for potential collection method inefficiencies.

Table S - 22. Hand Wash Field Sample Results												
			Anal	ytical	Hand Wash Sample ^b							
Study	MIT	A a4	Method		#	1	#	2		# 3	папа Е	xposure
ID	ID	Ingredient	Le	vels	Raw	Field	Raw	Field	Raw	Field Fort.	Total	Total
ID	10	ingreatent	(ug/sample) ^a		Exposure	Fort. Adj.	Exposure	Fort. Adj.	Exposure	Adj.	(119) ^e	$(MEA)^{f}$
		N 1 1	LOQ	LOD	(ug) ^c	Factor ^u	(ug) ^c	Factor ^u	(ug) ^c	Factor ^u	("5)	((()))
	A1	Malathion	1.0	0.3	136	0.987	72.2	0.986			211.2	422
	A2				34.9	0.891	41.0	0.892			85.09	170
AHE55	A3	Carbaryl	1.0	0.3	13.2	0.891	354	0.914			402.1	804
	A4		1.0		1.5	0.891	9.1	0.892			11.88	23.8
	A5				1.3	0.891	43.9	0.892			50.67	101
	A1	Malathion		0.3	1.2	1.03	< LOQ				1.67	3.4
AHE56	A2		1.0		19.5	1.03					18.93	37.8
	A3				< LOQ		7.2	1.03			7.49	15
	A4	Carbaryl	1.0	0.3	30.0	0.958					31.28	62.6
	A5	Carbaryi	1.0	0.5	773	0.952					812.8	1626
	A1			0.3	8.383	1.17					7.16	14.4
	A2	Chlorothalonil	1.0		< LOD		< LOQ				0.65	1.3
AHE57	A3				10.865	1.17					9.29	18.6
	A4				19.751	1.17					16.88	33.8
	A5				24.126	1.17					20.62	41.2
	A1				79.3	0.863					91.89	184
	A2				32.85	1.11					29.59	59.2
AHE58	A3	Malathion	1.0	0.3	2.92	1.11					2.63	5.2
	A4				11.84	1.11					10.67	21.2
	A5				23.65	1.11					21.31	42.8
	A1			0.3	9.301	1.08					8.61	17.2
	A2	Carborri	1.0		20.33	1.08	3.807	1.08			22.35	44.6
AHE59	A3	Carbaryl	1.0		5.909	1.08	4.90	1.08	109.1	1.04	114.9	230
	A4				28.09	1.08	1363	1.06			1312	2624

^a When \leq LOQ or \leq LOD is reported, $\frac{1}{2}$ LOQ or $\frac{1}{2}$ LOD is used.

^b Hand washes were conducted prior to lunch or bathroom breaks and at the end of the day.

^c Calculated from chromatogram peak response (e.g., ug/mL)

^d From Supplemental Tables O-P.

^e Total Hand Exposure = [Hand Wash #1 ÷ FF Adjustment Factor] + [Hand Wash #2 ÷ FF Adjustment Factor] + [Hand Wash #3 ÷ FF Adjustment Factor]

^f MEA = method efficiency adjustment. Total hand measurement corrected by a factor of 50% to account for potential collection method inefficiencies.

]	Table S - 23	3. OVS Air S	Sample Fiel	d Results :	and Inhalatio	on Exposure					
			Ana	lytical		Measured Residue						Inhalation Exposure		
			Method Levels		Front Section Back Section						Dumn			
Study ID	MU ID	Active Ingredient	MU Active ID Ingredient	(ug/s LOQ	ample) ^a LOD	Raw Exposure (ug) ^b	Field Fort. Adj. Factor ^c	Adj. Exp. ^d	Raw Exposure (ug) ^b	Field Fort. Adj. Factor ^c	Adj. Exp. ^d	Breath. Rate (LPM)	Flow Rate (LPM)	Total (ug) ^e
	A1	Malathion	0.01	0.003	0.2472	0.853	0.2896	< LOD		0.0015	8.3	2.01	1.21	
	A2				0.1407	0.944	0.1419	< LOD		0.0015	8.3	2.01	0.59	
AHE55	A3	Carboryl	0.01	0.003	1.330	0.913	1.457	< LOD		0.0015	8.3	2.06	5.88	
	A4	Carbaryl	0.01		0.1086	0.994	0.1097	< LOD		0.0015	8.3	2.02	0.46	
	A5				0.3103	0.913	0.3395	< LOD		0.0015	8.3	2.02	1.41	
	A1				0.0267	0.784	0.0341	< LOD		0.0015	8.3	1.99	0.15	
	A2	Malathion	0.01	0.003	0.1900	0.784	0.2423	< LOD		0.0015	8.3	2.04	0.99	
AHE56	A3				0.3800	0.832	0.4567	< LOD		0.0015	8.3	2.04	1.87	
	A4	Corborri	0.01	0.002	0.0224	0.975	0.0227	< LOD		0.0015	8.3	1.97	0.10	
	A5	Carbaryi	0.01	0.005	0.4271	0.914	0.4379	< LOQ		0.005	8.3	2.04	1.92	
	A1				0.0364	0.979	0.0367	< LOD		0.00075	8.3	2.03	0.16	
	A2				0.0302	0.979	0.0304	< LOD		0.00075	8.3	1.99	0.13	
AHE57	A3	Chlorothalonil	0.005	0.0015	0.0273	0.979	0.0279	< LOD		0.00075	8.3	2.04	0.12	
	A4				0.1642	0.979	0.1652	< LOQ		0.0025	8.3	2.01	0.71	
	A5				0.315	0.803	0.3923	< LOQ		0.0025	8.3	2.05	1.60	
	A1				0.8096	0.952	0.8508	< LOD		0.00075	8.3	2.00	3.54	
	A2				1.471	0.952	1.544	< LOD		0.00075	8.3	2.00	6.39	
AHE58	A3	Malathion	0.005	0.0015	0.1092	1.11	0.0982	< LOQ		0.0025	8.3	1.95	0.43	
	A4				1.161	0.952	1.218	< LOD		0.00075	8.3	2.00	5.06	
	A5				0.0799	1.11	0.0720	< LOD		0.00075	8.3	2.00	0.30	
	A1				0.3517	1.07	0.3290	< LOD		0.0015	8.3	2.07	1.33	
A LIESO	A2		0.01	0.002			In	valid sample	- sample time	unknown.				
AHE59	A3	Carbaryi	0.01	0.005	0.3486	1.07	0.3262	< LOD		0.0015	8.3	2.02	1.35	
	A4]			0.3086	1.07	0.2888	< LOD		0.0015	8.3	2.02	1.20	
^a When <	LOO of	r < LOD is reporte	d. ½ LOO) or $\frac{1}{2}$ LOI) is used.									

^b Calculated from chromatogram peak response (e.g., ug/mL)

^c From Supplemental Tables Q-S. ^d Adjusted Exposure = Raw Exposure ÷ FF Adjustment Factor ^e Total Exposure = [Adjusted front section + Adjusted back section] * [Breathing Rate ÷ Pump Flow Rate]

						Table	S - 24. D	ermal a	ıd Inhala	ation Exp	osures						
]	Dermal ^{a,}	b					-	Inhalatio	n
	MU ID				Ца	nd	ц	ad		Total E	xposure		U	nit	To	tal	
Study		AaiH	BW	Inner				au (a)	(11)	a)q	(119/	ka) e	Exposure				UE
ID		(lbs) ^c	(kg)	WBD	(#5)			(#5)		·s) (μ		rg)	(ug/lb ai) ¹		(по) ^g	(µg/k	(ug/lb
				(µg)	Non- MEA	MEA	Non- MEA	MEA	Non- MEA	MEA	Non- MEA	MEA	Non- MEA	MEA	(ug)	g) °	ai)'
	A1	8	112	139.1	211.2	422	0.89	1.78	351	563	3.13	5.03	43.9	70.4	1.21	0.011	0.151
	A2	15	94	47.9	85.09	170	0.89	1.78	134	220	1.43	2.34	8.9	14.7	0.59	0.006	0.0396
AHE55	A3	24	106	73.7	402.1	804	7.17	14.40	483	892	4.56	8.42	20.1	37.2	5.88	0.055	0.245
	A4	40	93	1.0	11.88	23.8	0.27	0.54	13.2	25.3	0.14	0.27	0.33	0.63	0.46	0.005	0.0115
	A5	75	92	39.0	50.67	101	0.89	1.78	90.5	142	0.98	1.54	1.2	1.9	1.41	0.015	0.0187
AHE56	A1	7.9	107	40.2	1.67	3.4	0.24	0.48	42.1	44.1	0.39	0.41	5.3	5.6	0.15	0.001	0.0188
	A2	15.8	92	31.6	18.93	37.8	0.8	1.60	51.3	71.0	0.56	0.77	3.2	4.5	0.99	0.011	0.0628
	A3	24.6	102	44.7	7.49	15	0.8	1.60	52.9	61.2	0.52	0.60	2.2	2.5	1.87	0.018	0.0759
	A4	50.5	95	10.6	31.28	62.6	0.24	0.48	42.1	73.7	0.45	0.78	0.83	1.5	0.10	0.001	0.002
	A5	75.7	91	1540	812.8	1626	0.8	1.60	2354	3168	25.75	34.81	31.1	41.8	1.92	0.021	0.0254
	A1	10.8	70	12.7	7.16	14.4	0.24	0.48	20.1	27.6	0.29	0.39	1.9	2.6	0.16	0.002	0.0144
	A2	16.9	70	7.5	0.65	1.3	0.24	0.48	8.4	9.3	0.12	0.13	0.50	0.55	0.13	0.002	0.0078
AHE57	A3	27.6	103	43.8	9.29	18.6	2.66	5.40	55.8	67.8	0.54	0.66	2.0	2.5	0.12	0.001	0.0042
	A4	40.7	143	17.5	16.88	33.8	0.24	0.48	34.6	51.8	0.24	0.36	0.85	1.3	0.71	0.005	0.0173
	A5	90.3	91	61.3	20.62	41.2	0.8	1.60	82.7	104	0.90	1.14	0.92	1.2	1.60	0.018	0.0177
	A1	63.5	77	43.8	91.89	184	4.79	9.60	141	237	1.83	3.08	2.2	3.7	3.54	0.046	0.0557
	A2	34.4	72	6.7	29.59	59.2	0.80	1.60	37.1	67.5	0.51	0.94	1.1	2.0	6.39	0.089	0.186
AHE58	A3	23.0	76	4.3	2.63	5.2	0.24	0.48	7.1	10.0	0.09	0.13	0.31	0.43	0.43	0.006	0.0187
	A4	59.2	83	9.3	10.67	21.2	2.45	4.80	22.3	35.3	0.27	0.43	0.38	0.60	5.06	0.061	0.0855
	A5	7.3	108	115.4	21.31	42.8	0.24	0.48	138	159	1.28	1.47	18.9	21.8	0.30	0.003	0.0414
	A1	15.8	75	1.8	8.61	17.2	0.24	0.48	10.6	19.5	0.14	0.26	0.67	1.2	1.33	0.018	0.0840
AHE50	A2	9.4	115	0.7	22.35	44.6	0.80	1.60	23.8	46.9	0.21	0.41	2.5	5.0	In	valid san	nple
1111237	A3	15.9	85	85.8	114.9	230	0.80	1.60	202	318	2.38	3.74	12.7	20.0	1.35	0.016	0.0848
	A4	34.5	67	15.7	1312	2624	0.80	1.60	1329	2641	19.84	39.42	38.5	76.6	1.20	0.018	0.0347
^a See Sup	plement	al Tables	T-V.														

^b MEA = method efficiency adjusted; 50% method efficiency assumed – "Non-MEA" measurement multiplied by 2.

^c See Supplemental Table F. ^d Total Dermal Exposure = Inner Dosimeter + Hands + Head.

^e Total Exposure $(\mu g) \div$ Body Weight (kg)

^f Unit Exposure (μ g/lb ai) = Exposure (μ g) ÷ AaiH (lbs).

^g See Supplemental Table W.

			Table S - 25. Select Excerpts from Field Observations
Study ID	MU	Airblast cab	Observation
Study ID	ID	entrances/exits (#)	
			1113: "Worker in cab while mix/load is performed."
	Δ1	4	1231: "brushes up against treated foliage due to narrow rows"
		7	1322: "again brushing up against treated foliage."
			1422: "again brushing up against treated foliage"
			1207: "exits cab with gloves on, then turns valve"
	12	16	1232: "exits cab with gloves on, picks up a plastic pipe"
	A2	10	1245: "exits cab after putting gloves on"
A HE55			1412: "exits cab wearing gloves"
AIIE55			1032: "exits cabno gloves worn since no contact with equipment."
	A3	10	1144: "exits cab without glovesshuts the doorcontacting the side edge."
			1214: "opens door with bare hands"
		4	1032: "Mixing completed. Worker did not exit cab."
	A4		1124: "Worker remains inside cab as water was added, then test substance."
			1213: "Puts gloves on, then exits cab."
	۸.5	o	1032: "exits cab wearing gloves. Opens up back of sprayer"
	AS	0	1529: "exits cab. Not wearing gloves."
			0833: "Donning gloves while exiting cab"
	A1	12	0911: "Out of tractor with gloves on"
			0934: "Donned gloves while exiting tractor"
	12	14	1119: "exited cab, donned gloves."
	AZ		1149: "Exited cab, wearing fresh gloves"
			1137: "Climbed out of truck with gloves on"
			1141: "Climbed up on flat bed"
	12	16	1322: "donned clean gloves, exited cab."
	AS	10	1335: "Out of truck and puts on gloves to jump start the sprayer engine."
			1340: "Exited cab with gloves onleaning against sprayer"
AHE30			1347: "Out of cab, gloves onholds ontoother application equipment."
			0134: "at mixing/loading site. Stays inside cab"
			0300: "Exited tractor with gloves donned."
	A4	6	0346: "Waits inside the cabduring M/L."
			0405: "Donned gloves and exited cab."
			0447: "Donned gloves before exiting tractor."
			0640: "Waited inside truck during M/L."
	4.5	22	0710: "gets out of the truck to adjust spray pressure while wearing gloves."
	AS	22	0742: "Rain had started"
			0835-0843: "Donned clean gloves. Left shirt sleeve cuff is openstates that the button popped offclean out spray

Table S - 25. Select Excerpts from Field Observations								
Study ID	MU	Airblast cab	Observation					
Study ID	ID	entrances/exits (#)						
			nozzlesreached down into nozzle area with right arm up to arm pitlean on fan casingclean the top spray					
			nozzles"					
			1017: "out of truck wearing gloves."					
			1025: "continued to blow out spray nozzlesleft shirt sleeve opening near mid-forearm, exposing the dosimeter."					
			1059: "With only left glove on, climbed on flat-bed near sprayer"					
			1230: "left lower sleeve was soiled and the edge of the right lower sleeve was soiled."					
	A 1	4	1430: "Arrived at mix/load area and got out of the cab with fresh gloves."					
	AI	4	1528: "Put on clean gloves when he left the tractor"					
	12	Δ	0710: "stayed inside cab"					
	AZ	4	0829: "Dons gloves before entering cab and discards gloves outside the cab."					
			1403: "shirts sleeve unbuttonedalso unbuttonedabove waist."					
A 11E57	A3	6	1534: "exited the cab with clean gloves on."					
ALE?			1648: "drop of spraylanded on his handwiped his hand on right pant leg."					
			1534: "Donned nitrile gloves and stood near tractor"					
	A4	8	1710: "Exited tractor with clean glovesreentered cabagain exited tractorinner dosimeter is exposed on his					
			backnear his waist"					
	A 5	(0630: "exited tractor with clean gloves."					
	пл	0	0806: "got out of the cab with clean gloves."					
				1005-1012: "A1 stepped out of tractordonned face mask and glove and goggles."				
	A 1	1.4	1035: "got out to adjust nozzles."					
	AI	14	1122: "A1 occasionally opened back window of cab to give instructions to mixer."					
			1315: "Donned glove, goggles. Turned off nozzles"					
	A2	8	0948: "Mixer overfilled tank. Two-three gallons spilled at top of tank. Re-entered tractor. Did not step in spill."					
AHE58	A3	10	Nothing noteworthy.					
			0330: "Entered field for bathroom break. Refused hand wash."					
	A4	12	0338: "Adjusted agitationafter donning gloves."					
			0345: "got out of cabto check pressure and agitationWore safety glasses and gloves."					
		4	0814: "Turned off water near tank with bare hand"					
	AS	4	0930: "Touched inner dosimeter (cuff) with bare hand."					
			Gen. obs.: "did not wear the chemical resistant gloves during the mixing/loading process"					
	A 1	10	0858: "Climbed back into cab, opened door with bare hands."					
	AI	10	0951: "Opened cab door and tied ribbon marker to tree (observer unable to determine whether gloves worn during					
AHE59			this process)."					
			Gen. obs.: "The applicator was not observed to handle anything except the door and door handleDoor opened with					
	A2	4	bare hand."					
			1000: "Arrives at mixing/loading station remained sitting inside cab."					

			Table S - 25. Select Excerpts from Field Observations
Study ID	MU ID	Airblast cab entrances/exits (#)	Observation
		12	0821: "Put on chemical resistant gloves and goes to airblast sprayer"
			0828: "Remained in cab during loading."
	A3		0956: "Opened truck door with bare hands"
			1209: "Exited tractor cab and wiped nose with bare hand."
			1248: "Placed gloved hand on leverTouched another valve on spray tank with gloved hand."
			Gen. obs.: "Exchange of tractor and sprayer"
			0822: "Inner dosimeter cuff is observed at right wrist, out from right shirt sleeve. Long sleeve shirt is not tucked
			into pants.
			0833: "Spoke to mixer loader through opened back window of tractor cab. Closed window"
	A4	26	1102: "exited cab and with bare hands picked up a marker from ground"
			1320: "Exited cab, walked back to sprayer and with bare hands, turned lever"
			1432: "Walked to front of spray tank and with bare hand turned lever"
			1500: "Opened rear window"
			1549: "walked back to sprayer and with bare hands, turned off a couple nozzles"

	Table	S - 26. Protocol Amendments and Deviations	
Study	Summary of Amendments	Summary of Dev	iations
ID	Summary of Amendments	Field Phase	Analytical Phase
AHE55	The study report indicates that the protocol was amended/changed three times prior to execution of the field phase, however it did not summarize these changes. The IIRB Correspondence Report shows only one amendment, to address EPA and HSRB comments following the June 2008 HSRB meeting.	 Reported: On two occasions MUs were selected randomly using a coin flip rather than writing names and picking from hats, per AHETF protocol. Unreported: Rather than growers being reimbursed for the pesticide used in the study as required by section 2.4 of the protocol, the Local Site Coordinator purchased the product and delivered it to the application sites. The witness for the consent process for a non-reader was selected by the prospective subject, contrary to the protocol requirement that the witness should not have an association with the grower or worker. Despite protocol indicating that wearing chemical-resistant gloves while outside the cab would be enforced, observations indicate that this occurred. 4 of 5 MUs did not achieve 4 hours of "spray time". 	None reported
AHE56	The study report indicates that the protocol was amended/changed twice prior to execution of the field phase, however it did not summarize these changes. The IIRB Correspondence Report shows only one amendment, to address EPA and HSRB comments following the June 2008 HSRB meeting.	 Reported: The original list of eligible growers was exhausted before successfully recruiting enough workers for monitoring. Two growers ultimately monitored were referred to the AHETF by other growers, and did not appear on the eligible grower list. This was a reported deviation since the protocol did not provide guidance on recruitment beyond eligible growers list. Informed consent form signed by MU A5 after donning inner dosimeter garment. Travel fortification samples were not prepared until monitoring day 4. MU A4 took bathroom break without handwash 	 OVS sampling tubes Set 2 was above 15% criteria (reported 22.02%) for back-calculation value at 5.0 ng/mL standard. Travel spikes analyzed inadvertently. For Set 2a OVS samples, 3.0 mL aliquot was used instead of 4.0 mL (deviation reported in IIRB correspondence, but not within Appendix B of AHE56 study report).

	Table	- 26. Protocol Amendments and Deviations						
Study	Summary of Amondmonts	Summary of Dev	iations					
ID	Summary of Amendments	Field Phase	Analytical Phase					
		 sample being taken. Air flow rotometer measurement taken after removal of sampling gear from workers. Unreported: No MU achieved 4 hours of "spray time" 						
AHE57	The study report indicates that the protocol was amended/changed twice prior to execution of the field phase. One amendment was to address EPA and HSRB comments following the October 2008 HSRB meeting. The second amendment was to edit a sentence on purity analysis.	 Reported: One subject applied 10.68 lbs (1.68 lbs above stratum 5-9 lbs); was monitored for 2 hours (the protocol prescribes a minimum of 4 hours of application time); and applied only 2 tank loads (the protocol prescribes a minimum of 3 tank loads). Unreported: Two subjects applied amounts outside the desired AaiH stratum. No subject achieved 4 hours of "spray time". 	 Inner dosimeter controls and LOQ concurrent recovery samples were diluted to 5 mL while field samples were diluted to 10 mL (samples supposed to be treated in same manner). Protocol lists method titles that were not used. Aliquot deviation in Method ARTF-0001 for 2-piece cotton inner dosimeters. Back-calculated calibration standard values for the 0.001 ug/mL OVS sample and the 0.005 ug/mL face/neck wipe standard deviated from the theoretical value by more than 20% (reported in IIRB correspondence, not in study report). 					
AHE58	 Inclusion criteria added to allow for workers who normally wear two layers of clothing, provided the worker is willing to substitute the normally worn inner layer with the AHETF-provided one-piece dosimeter. Recruitment area expanded to any county in CA or WA if protocol-specified counties do not provide sufficient number of eligible growers. Removed efficient configuration requirement if recruitment area is 	 Reported: Inner dosimeters were not folded after administration of field fortifications and prior to covering with cloth. Low level field fortifications conducted in duplicate on day 4 instead of triplicate. MU A5 monitored for 3 hours 8 minutes (less than prescribed 4 hours). Field fortifications done at (known) levels different than specified in protocol. 	• Concentrations of some field fortification solutions corrected for volume based on density, not gravimetrically, resulting in incorrect field fortification concentrations.					

		Table							
Study		Summary of Amondmonts	Summary of Deviations						
ID		Summary of Amenuments	Field Phase	Analytical Phase					
	2 Tw	expanded. Added a malathion product to possible test substances	 Unreported: Despite protocol indicating that wearing chemical-resistant gloves while outside the cab would be enforced, observations indicate that this occurred. The following MUs handled amounts of active ingredient outside the desired range indicated in the protocol: MU A2, A3, A4. Reported: 	 Curve standard off by 25.89% more 					
AHE59	tes	t substances	 Post-monitoring photographs of worker clothing were not taken. Though use of two additional carbaryl products was approved by EPA and product risk statements (PRS) were IIRB approved before monitoring, the amendment (Amendment 1) adding the additional carbaryl products was not approved until after the monitoring had taken place. Unreported: Despite protocol indicating that wearing chemical-resistant gloves while outside the cab would be enforced, observations indicate that this occurred. The following MUs handled amounts of active ingredient outside the desired range indicated in the protocol: MU A2, A3. Only 1 of 4 MUs achieved 4 hours of "spray time" 	than 15% criteria) – not detailed in Appendix B of study report					