

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

MEMORANDUM

Date: March 11, 2011

SUBJECT: Review of Agricultural Handler Exposure Task Force (AHETF) Open Cab Airblast Applicator Exposure Monitoring Studies: AHE62, AHE63, AHE64

PC Code: --Decision No.: --Petition No.: --Risk Assessment Type: --TXR No.: --MRID No.: 48289611, 48289612, 48289613 DP Barcode: D387287 Registration No.: --Regulatory Action: --Case No.: --CAS No.: --40 CFR: --

Ver.Apr.08

- **FROM:** Matthew Crowley, Biologist Chemistry and Exposure Branch Health Effects Division
- **THROUGH:** David J. Miller, Chief Chemistry and Exposure Branch Health Effects Division
- TO: Richard Dumas Pesticide Registration Division

This memorandum presents the Health Effects Division's primary reviews of the analytical and field phase reports for the following Agricultural Handler Exposure Task Force (AHETF) open cab airblast applicator studies: AHE62, AHE63, and AHE64. Details of a previously reviewed open cab airblast study (Smith, L., 2004; EPA Review: Dawson, J., 2006, D316628) is included as well, since these four studies will comprise a complete dataset. The open cab airblast applicator scenario monograph (AHETF, 2010; MRID 48326701) – incorporating these 4 studies into a single dataset and providing statistical analysis for benchmark analytical objectives – is reviewed separately (Crowley, 2011; D387287).

These studies meet EPA standards for occupational pesticide exposure monitoring and are considered acceptable and appropriate for use in occupational exposure assessments for open cab airblast applicators.

1.0 Executive Summary

The Agricultural Handler Exposure Task Force (AHETF) monitored exposure for 28 workers¹ applying liquid spray pesticides using open cab airblast equipment. Four separate field studies, summarized in Table 1 below, were conducted, each monitoring different workers while spraying tree or trellis crops in 5 different states in the U.S where open cab airblast equipment is commonly used in production agriculture.

	Table 1. Study Summary											
Study ID	Study ID State Crop No. Monitored Workers											
	GA	peach	5	Male	49-56							
AHE07	ID apple & pea		6	Male	40-61							
	FL	orange	4	Male	33-72							
AHE62	CA	grape	3	Male	43-79							
AHE63	NY	grape	5	Male	28-66							
AHE64	OK	pecan	5	Male	47-59							

Monitored on actual days of work, participants handled from 5 to 90 lbs of active ingredient (carbaryl or malathion), spraying 3 to 30 acres in 1.4 to 10.6 hours. Dermal exposure was measured using hand washes, face/neck wipes, whole body dosimeters (100% cotton union suits) for the remainder of the body (torso, arms, and legs), and gauze patches on the inside and outside of chemical-resistant (CR) hats for exposure to the head. Inhalation exposure was measured using personal air sampling pumps and OSHA Versatile Samplers (OVS) mounted on the shirt collar. Results represent dermal exposure with and without chemical-resistant hats while wearing a long-sleeved shirt, pants, shoes/socks, and chemical-resistant gloves, and inhalation exposure without respiratory protection.

All studies followed the applicable and most up-to-date AHETF standard operating procedures (SOPs) and their corresponding protocols with deviations appropriately recorded with none considered to have compromised the overall research. Field and laboratory fortification samples were acceptable, generally averaging between 70 and 120% recovery, with no systematic deviations. All field samples were appropriately adjusted for the corresponding recovery adjustment factors.

Table 2 below summarizes the results, presenting the full range and a simple average of dermal exposure with and without chemical-resistant hats and inhalation exposure without respiratory protection.

		Table 2. AHETF Open Cab Airblast Exposure Data Summary											
		Dermal Exposure											
		with CR Hats	ats	11113	alation E	xposure							
Statistic	μg	μg/kg	μg/lb ai	μg	µg/kg	µg/lb ai	μg	µg/kg	µg/lb ai				

¹ Execution of Study AHE07 resulted in 25 total measurements (after accounting for a repeated measure on the same worker, an aborted sample due to equipment failure, and an unanalyzed sample due to a worker switching headgear midday). However, 10 of these workers wore chemical-resistant jackets with hoods and are not included in this scenario since the jacket would constitute a "double layer" and would not meet the AHETF personal protection equipment (PPE) definition for this scenario. Thus, the total of 15 monitored workers for this scenario adopted from AHE07.

Minimum	60.3	0.66	4	69.8	0.81	3.8	0.294	0.003	0.00026	
Maximum	80702	877	3202	233089	2534	9355	529	5.34	7.13	
Average	7511	86.7	281	35930	425	1227	61.0	0.72	1.71	
Note: For dermal exposure for workers wearing chemical-resistant hats, the average contribution of hand rinse and										
face/neck wipe	residues to	the total derma	l exposure w	as approxi	mately 30%	6. Per Agen	cy polic	y, this trig	ggers a 2X	
adjustment on	hand rinse a	nd face/neck w	ripe measuren	nents to ac	count for a	ssumed resid	due colle	ection me	thod	
inefficiencies. No adjustment was used for dermal exposure values for workers without chemical-resistant hats, as										
the contribution to total dermal exposure averaged 7%. See Section 3.3.										

2.0 Summary of Field Study Characteristics

This section provides summary characteristics of the five open-cab airblast exposure studies. Attached supplemental tables (Tables S1-8) containing supporting details are cited in each subsection.

2.1 Administrative Summary (Table S – 1)

All studies were sponsored by the AHETF and followed both the study-specific protocols and the AHETF Governing Document (AHETF, 2008-a). Additionally, they were in substantial compliance with Good Laboratory Practice Standards (GLPS) (40 CFR §160)² and met EPA Test Guidelines in Series 875 – Occupational and Residential Exposure (875.1100 – dermal exposure; 875.1300 – inhalation exposure). Signed copies of acceptable Quality Assurance and Data Confidentiality statements were provided for each study.

2.2 Test Materials (Table S – 2)

All studies used liquid formulation pesticides containing carbaryl or malathion.

2.3 Sample Size, Monitored Workers, and Locations (Table S – 3)

According to the AHETF Governing Document (AHETF, 2008-a) and the Open Cab Airblast Scenario Construction Plan (AHETF, 2008-b), an additional 15 monitored workers (in a "5 workers x 3 site" configuration) combined with the 15 existing monitored workers from AHE07 were considered adequate to complete the open cab airblast application exposure scenario. That is, a total of 30 "monitoring units" (MU), obtained via monitoring exposure from 6 spatially distinct study locations across the U.S. would likely to satisfy pre-defined accuracy benchmarks. However, due to recruitment problems in AHE62 (CA-grape) – where only 3 workers were able to be monitored³ – the total sample was 28 workers. The locations and crops monitored were: Georgia pecans (6 workers), Idaho apples and pears (5 workers), Florida oranges (4 workers), New York grapes (5 workers), California grapes (3 workers), and Oklahoma pecans (5 workers).

² Minor GLPS deviations were noted for all studies, including: test substance was not characterized before use; scales used to weigh subjects and weather monitoring devices were not maintained and calibrated according to GLPS specifications. These deviations do not have any substantive impact on the study results.

³ A total of only 4 grape growers were found eligible to participate in study AHE62 (CA-grape). Only 3 workers were ultimately monitored because the 4th grower sprayed a different pesticide than the surrogate for this study (malathion).

While AHE07 (GA-pecan, ID-apple/pear, and FL-orange) actually monitored a total of 25 workers, only 15 were selected to populate the open cab airblast scenario because 10 workers wore chemical-resistant hooded jackets – a PPE-level (i.e., a second protective layer provided by the jacket) the AHETF considered outside the definition of the open cab airblast scenario.

2.4 Environmental Conditions (Table S – 4)

Temperature, humidity, wind speed and direction, cloud cover, and rainfall were all reported. The maximum reported temperature was 87° F (AHE62 – CA-grape) and the lowest reported temperature was 33° F (AHE07 – ID-apple/pear). Heat index values were not directly reported in the study report, but provided separately to the Agency. The maximum reported heat index value was 95° F (AHE62 – CA-grape). In no case did the heat index exceed the pre-defined threshold of concern for potential heat-related injury. No significant rainfall was reported.

2.5 Clothing and Personal Protective Equipment (PPE) (Table S – 5)

Per the stated goals of the AHETF, monitoring of open cab airblast applicators was conducted to represent exposure for workers wearing long-sleeve shirts, pants, shoes/socks, chemical-resistant gloves, with or without chemical-resistant hats, and no respiratory protection. So long as the work clothing met the standards of the EPA Worker Protection Standard (WPS), monitoring was conducted with the clothing worn by the worker on the scheduled monitoring day. In two instances – MU 3 and MU 12 in study AHE07 (ID-apple/pear) – the AHETF supplied replacement garments. Per protocol, new chemical-resistant gloves were supplied by the AHETF to all workers at the beginning of the day and were available throughout the day according to WPS requirements. Additionally, some workers, of their own accord, wore protective eyewear, and others wore half-face respirators. In these cases, the exposure measurements were adjusted (according to AHETF SOP 9.K) to extrapolate deposited residue to those portions of the face/head covered by the eyewear or the respirator (see Section 3.3.3).

2.6 Application Characteristics (Table S – 6)

For these studies, only the airblast application activity was monitored – monitoring was not conducted for those workers responsible for mixing and loading the pesticide. The applications were made by trucks or tractors with open cabs hauling airblast sprayers⁴. Rigs were inspected by the study director to ensure compliance with EPA WPS requirements. Application characteristics including crop height and row spacing, truck/tractor and airblast sprayer brands and models, nozzle characteristics, and driving speed are also reported in Table S-6.

2.7 Application Rates (Table S – 7)

Per the AHETF Governing Document (AHETF, 2008-a) and the OCAB Scenario Construction Plan (AHETF, 2008-b), the total amount of active ingredient applied should be diversified across the scenario and within each study to provide adequate analytical power for certain statistical procedures. Specifically, amounts of active ingredient handled within a study should be

⁴ Six of the 28 workers drove open cab vehicles with a canopy (see Table S-6). However, the presence of a roof does not appear to reduce exposure. Section 3.4.1 provides more details.

separated logarithmically for each MU and span at least an order of magnitude. Because AHE07 was completed before initiation of this sampling strategy modification, the span of amounts of active ingredient handled does not meet this standard. Table 3 below presents the amount handled for each worker (total amount handled ranged from 5 to 90 lb active ingredient). For AHE62, 63, and 64, which were subject to this strategy, the amount handled was slightly out of the range in three instances (indicated by italics).

	Table 3. Summary of Amount Handled (lbs ai)													
Desired	Actual Amount Handled (lbs ai) & MU ID (#)													
Stratum of		AHE07		AHE62	AHE63	AHE64 (OK-pecan)								
Amount Handled (lbs ai)	(GA- peach)	(ID- apple/pear)	(FL-orange)	(CA-grape)	(NY-grape)									
5-9				5 (A2)	6.1 (A5)	10.1 (A2)								
10-17				10.4 (A3)	15.2 (A4)	18.2 (A5)								
18-30	24 (15)				24.4 (A3)	25.2 (A4)								
31-55	45 (3) 52 (8)	32 (10) 33 (12) 34 (17) 36 (13) 40 (16)		34.3 (A1)	35.6 (A2)	35.3 (A3)								
56-100	60 (6) 75 (1) 75 (4)		60 (22) 90 (23) 90 (26) 90 (27)		48.4 (A1)	63.1 (A1)								

In order to help achieve the range of amount of active ingredient handled as well as to avoid nondetectable exposures, the study design called for workers to apply at least 3 tank loads and/or work for at least 4 hours per day. In a few cases, work days were less than 4 hours (monitoring durations ranged from 1.4-10.6 hours); however these instances did not result in failure to capture the desired amount of active ingredient handled or non-detectable exposures.

2.8 Exposure Monitoring and Analytical Methods (Table S – 8)

Passive dosimetry methods were utilized for all monitoring – no biomonitoring samples were collected. Dermal exposure to the hands was measured using a hand rinse method administered at the end of the workday as well as at lunch, restroom breaks, or other instances where workers would otherwise wash their hands as outlined in AHETF SOP 8.B. Dermal exposure to the face/neck was measured using a wipe technique as outlined in AHETF SOP 8.C and extrapolated to non-wiped portions of the head (i.e., those parts covered by goggles or a respirator or covered by hair) according to AHETF SOP 9.K. Exposure to the head inside and outside of chemicalresistant hats was measured using 50 and 100 cm^2 gauze patches, respectively, which were then used to extrapolate to the whole head based on the surface area of the patch and the surface area of the head. Dermal exposure to the remainder of the body (torso, arms, legs) was measured using whole body dosimeters (100% cotton union suits), analyzed as 6 separate sections: upper arm, lower arm, front torso, rear torso, upper leg and lower leg, per according to AHETF SOP 8.A. Additionally, in AHE07, exposure to the feet was measured using cotton socks; however this method was not utilized in AHE62-64 due to the relatively small contribution to exposure seen in AHE07. All these measurements combine to reflect dermal exposure underneath a single layer of work clothing (long-sleeve shirt, pants, shoes/socks), chemical-resistant gloves, and with or without a chemical-resistant hat. Inhalation exposure was measured using OVS tubes mounted on the worker's collar and personal sampling pumps (set at 2 liters per minute) according to AHETF SOP 8.D. The concentrations measured represent the chemical available in each worker's breathing zone.

Validated analytical methods specific to each type of monitoring matrix were used to extract residues followed by quantification with gas chromatography (GC) employing flame photometric detection in phosphorous mode (FPD/P). Modifications to analytical methods are outlined in the submitted analytical reports. Limits of quantification and detection (as defined in AHETF SOP 9.A) are presented in Table 4 below.

Table 4. Analytical Limits (ug/sample) for AHE07 and AHE62-64											
Manitaning Mate		Limit of	Detection	Limit of Qu	antification						
Wionitoring Wati	rix	Carbaryl	Malathion	Carbaryl	Malathion						
Innar Degimator	AF	HE07		NA	0.25	NA					
Inner Dosimeter	AHI	E62-64	0.3	0.3	1.0	1.0					
Houd Dines	AF	HE07		NA	1.0	NA					
Hand Kinse	AHI	E62-64	0.3	0.3	1.0	1.0					
Ease/Mash Wine	AF	HE07		NA	1.0	NA					
Face/Neck wipe	AHI	E62-64	0.3	0.3	1.0	1.0					
Socks (AHE07 on	ly)			NA	0.25	NA					
Hand notabag	AF	HE07		NA	0.25	NA					
Head patches	AHI	E62-64	0.075	0.075	0.25	0.25					
	ALIE07	GA & ID		NA	0.01	NA					
OVS air sampler	ALE0/	FL		NA	0.05	NA					
	AHI	0.0015	0.0015	0.005	0.005						
Note: no LOD was derived in AHE07	for any ma	trix.									
NA = not applicable, chemical not use	d.										

3.0 Results

This section provides a discussion of quality assurance and quality control sampling and the actual field monitoring measurements of workers. Corresponding supplemental tables providing additional detail are identified.

3.1 Quality Assurance

All phases of each study were subject to appropriate quality assurance processes according to EPA's GLPs and inspected/audited by the AHETF Quality Assurance Unit (QAU) per AHETF SOPs (AHETF SOP Chapter 5: A-K). The inspected phases were: Protocol, Field Phase, Field Data, Draft Report, Analytical Data, Final Report, and Post-Audit Report. Each study contains a signed quality assurance compliance statement as required by GLPs. Protocol amendments or deviations were addressed appropriately under GLP guidance and are described further in Section 4.0.

3.2 Quality Control

AHETF instituted various quality control measures to ensure proper field conduct including calibration of sprayers, preparation and handling of exposure measurement matrices, evaluation

of test material, and field observations (AHETF SOP Chapter 10: A-G). Analytical quality control measures for ensuring the integrity of measurements captured in the research were also instituted according to AHETF SOP 9.J. Exposure monitoring matrices (inner whole body dosimeters, hand washes, face/neck wipes, OVS tubes) were fortified with known amounts of active ingredient to assess their stability during field, transit, and storage conditions according to AHETF SOP 8.E. Laboratory control samples were also fortified at the level of quantification and at levels capturing the range of expected field exposures for each matrix. Generally, field fortification samples were collected in triplicate at each of 3 levels (high, middle, and low) on each sampling day. Travel fortifications were generally conducted on each day of sampling in duplicate at the high fortification level only. Untreated control samples were generally conducted in duplicate on each day of sampling. Deviations from this general sampling protocol are specified in the sub-sections below.

The following sections provide results for all quality control sampling across all exposure measurement matrices for all chemicals used. The identified supplemental tables should be referenced for chemical-specific results.

3.2.1 Control Samples (Table S – 9)

As expected, most non-fortified (blank) laboratory and field control samples were below the LOQ. For AHE62-64, in no instance was an untreated laboratory control found to contain residues. However, for AHE07, residues were detected in untreated laboratory control samples for 5 of 25 inner dosimeter samples, all (9 of 9) OVS samples, and 1 of 9 sock samples. Potential reasons for these findings were not addressed, nor were any corrections made to samples based on these results.

For control samples in the fields, most had non-detectable residues, as would be expected. However, particularly for the OVS air sampler field controls, there were some found to have detectable residues. No summary of these results was provided in the study report. Detected residues in field control samples is a potentially notable finding, since they may impact field fortification recovery estimates, which in turn could alter actual field sample measurements. Despite the findings in these studies, no action is deemed necessary because only trace amounts were found (most samples were below the LOQ, with some only slightly above the LOQ) which do not significantly impact the results. However, for future AHETF studies, residues found in field control or laboratory control samples should be systematically summarized and reasons for accounting for them (or not) should be described in the study reports.

3.2.2 Laboratory Fortification Recoveries (Table S – 10)

Along with one untreated control, two fortified samples served as additional laboratory recovery samples – one at the LOQ and the other at a level designated to encompass the range of anticipated residues. Average recoveries for each sampling media were > 90% thus no corrections were made to the field sampling measurements based on this aspect of the analytical process.

3.2.3 Field Fortification Recoveries

Field fortification sampling matrices are spiked with known amounts of chemical, then placed in the exposure monitoring area under similar conditions as those in which the actual sampling matrices used on the workers are handled (including drawing air through OVS samplers). Additional samples are fortified to assess degradation of the sample during transit from the field to the lab, but, per AHETF protocol, only analyzed if anomalous field fortification recoveries indicate potential degradation during transport. No storage or transport fortification samples were analyzed.

Field fortifications are conducted at 3 levels (except for the inner and outer head patches which are fortified at 2 levels) to capture the expected range of results, with triplicate samples taken on each day at each fortification level⁵. Once analyzed, the average recovery results (expressed as a percentage of known amount applied) are used as multipliers to adjust, or correct, all measured field samples. As the fortification samples are conducted at levels to capture the range of expected field sample results, adjustments are done using the average percent recovery for the fortification level closest to the measured field sample. The mid-point between each fortification level is used as the threshold in determining the average recovery percentage to adjust the field sample.

With few exceptions, field fortification averages for each fortification level and each monitoring matrix were in the range of 70-120%. A summary of field fortification results for each matrix is provided below in Sections 3.2.3.1 - 3.2.3.4.

3.2.3.1 Inner Dosimeters (Table S – 11a and Table S – 11b)

Most results for inner whole body dosimeter (WBD) field fortification samples were acceptable, with recoveries ranging from 75% to 110%. Unusually low recoveries were observed at the 5 ug fortification level on the first day of sampling in AHE62 (43%, 37% and 32%). Additionally, fortification samples on the first day of sampling in AHE63 were not used to calculate average recoveries as abnormally high and low recoveries were observed at all fortification levels.

3.2.3.2 Face/Neck Wipes (Table S – 12a and Table S – 12b)

Results for face/neck wipe field fortification samples were acceptable, with average recoveries ranging from approximately 84.7% to 106%.

3.2.3.3 Hand Washes (Table S – 13a and Table S – 13b)

Results for hand wash field fortification samples were acceptable, with average recoveries ranging from 93.3% to 113%.

3.2.3.4 OVS Air Samplers (Table S – 14a and Table S – 14b)

⁵ As it was conducted a few years prior to current AHETF protocols, AHE07 had a slightly different strategy for fortification sampling: 4 fortification levels for inner dosimeters and 2 fortification levels for the face/neck wipes, hand washes, head patches, socks, and OVS tubes.

The results for OVS field fortification samples were acceptable, with average recoveries ranging from approximately 99% to 122%. Unusually high recovery results were observed at fortification levels on the second day of sampling in AHE62 (low level: 2014%, 570%, and 1103%; mid-level: 195%, 171%, 192% – contamination suspected) and the results were not used in calculating average recoveries. Additionally, per AHETF standard procedures, samples for the highest fortification level (1000 ug) went unanalyzed as no OVS air sample in the field exceeded 100 ug.

3.2.3.5 Head Patches

3.2.3.5.1 Outer Patches (Table S – 15)

The results for outer head patch samples were acceptable, with average recoveries ranging from approximately 54% to 122%. Abnormally low recoveries were observed at the 5 ug fortification level on the second day of sampling in AHE63 (54.8%, 59.5%, and 61.6%).

3.2.3.5.2 Inner Patches (Table S – 16a and Table S – 16b)

The results for outer head patch samples were acceptable, with average recoveries ranging from approximately 52.4% to 109%, though abnormally low recoveries (< 70%) were observed for most of the samples in AHE63.

3.2.3.6 Socks (Table S – 17)

The results for field fortification of sock matrices (in AHE07 only) samples were acceptable, with average recoveries ranging from approximately 69% to 93%. Some abnormally low results were observed at the low fortification level (5 ug): the third through the sixth sampling day ranged from 48%-71%.

3.3 Field Measurements

The following sections summarize the exposure monitoring results, conducted as described in Section 2.8. All measurements were appropriately adjusted for field fortification recoveries. Face/neck wipe measurements reflect extrapolation to un-wiped portions of the face covered by protective eyewear or a respirator according to AHETF SOP 9.K. For samples below the LOQ or LOD, $\frac{1}{2}$ LOQ or $\frac{1}{2}$ LOD was used.

Additionally, in order to account for potential residue collection method inefficiencies per EPA policy, the AHETF has made adjustments to hand and face/neck field study measurements as follows⁶:

⁶ This directive was discussed and presented at a meeting of the Human Studies Review Board (June 2007). The terminology used to describe this are "method efficiency adjusted" (MEA) or "method efficiency corrected" (MEC). For this scenario, adjustments are made to face/neck wipe and hand wash measurements for exposures to workers while wearing chemical-resistant hats only. For exposures without chemical-resistant hats, because the contribution to total dermal exposure by the face/neck and hands is less than 20%, adjustments are unnecessary.

- if measured exposures from hands, face and neck contribute less than 20% as an average across all workers, no action is required;
- if measured exposure contribution from hands and face/neck represents between 20% and 60% of total, the measurements shall be adjusted upward by 50%, or submission of a validation study to support the residue collection method
- if measured exposure contribution from hands and face/neck represents is greater than 60%, a validation study demonstrating the efficiency of the residue collection methods is required.

3.3.1 Inner Dosimeters (Table S – 18a, Table S – 18b, and Table S – 18c)

Inner whole body dosimeters were sectioned and analyzed separately in six sections. Out of a total of 158 inner dosimeter sample sections, only 5 were below the LOQ or LOD (all 5 were from AHE64). After adjusting for field fortification recoveries (see Section 3.2.3.1), the ranges for each body part were as follows:

- Lower arms: $2.0 5631 \ \mu g$
- Upper arms: 0.5 2888 μg
- Front torso: $0.5 3559 \ \mu g$
- Rear torso: 0.5 5492 μg
- Lower leg: 0.5 7080 μg
- Upper leg: 0.5 50638 μg

3.3.2 Head Patches (Table S – 19)

Gauze patches were placed inside and outside chemical-resistant hats to evaluate exposure to the head with the hats. Out of a total of 28 inner head patch values, 6 were below the LOQ or LOD. All outer head patches contained quantifiable residues. After adjusting for field fortification recoveries (see Section 3.2.3.5), the ranges for each body part were as follows:

- Outer head patches: 0.73 13,080 µg
- Inner head patches: 0.04 58.1 µg

3.3.3 Face/Neck Wipes (Table S – 20)

Because some workers wore protective eyewear or a respirator, extrapolations from those portions of the face/neck that are wiped need to be made to portions of the head that are not measured. Specifics on these adjustment factors can be found in AHETF SOP 9.K. Additionally, to account for potential inefficiencies in residue collection by the wipe technique, the measurements are further adjusted by a factor of 2 (i.e., assuming 50% inefficiency).

After adjusting for field fortification recoveries (see Section 3.2.3.2) and extrapolating to nonwiped portions of the head described above, face/neck exposure ranged from $3.3 - 3417 \mu g$. Including adjustments for potential method collection inefficiencies (i.e., doubling the measurements), total head exposure ranged from $6.6 - 6834 \mu g$. All face/neck wipe field samples had quantifiable residues.

3.3.4 Hand Washes (Table S – 21)

Per protocol, hand washes were collected at the end of each work day and during restroom or lunch breaks. Only two hand washes were collected from each worker in AHE62-64, while in AHE07 two workers had 4 washes and another 4 workers had 3 washes. As for the face/neck wipe measurements, the hand wash measurements were also increased by a factor of 2 to reflect potential inefficiencies in the collection method.

After adjusting for field fortification recoveries (see Section 3.2.3.3) and summing each hand wash, the total hand exposure ranged from $0.5 - 4146 \mu g$. Including adjustments for potential method collection inefficiencies, total hand exposure ranged from $1.0 - 8292 \mu g$ (i.e., doubling the measurements). Out of a total of 54 hand wash samples, only 1 was below the LOQ or LOD.

3.3.5 Socks (Table S – 22)

In AHE07, the AHETF used sock dosimeters to measure exposure to workers' feet. After adjusting for field fortification recoveries (see Section 3.2.3.6), feet exposure ranged from $0.39 - 108 \mu g$. All sock samples had quantifiable residues. Because it was found that in AHE07 feet exposure contributed less 1% to the total dermal exposure for all workers⁷, the AHETF did not monitor exposure to the feet in AHE62-64.

3.3.6 OVS Air Samplers (Table S – 25)

Front and back sections of the OVS tube were analyzed separately for AHE62-64, with all but one back section sample was less than the LOQ or LOD and all front section samples having quantifiable residues. After adjusting for field fortification recoveries (see Section 3.2.3.4) the total (front section + back section) collected chemical amounts ranged from $0.07 - 28.7 \mu g$.

3.4 Exposure Calculations (Tables S – 23 to S – 26)

This section provides total exposures (expressed as mass active ingredient), as well as exposures normalized to (i.e., dividing by) body weight and amount of active ingredient handled (AaiH).

3.4.1 Dermal Exposures⁸

Total dermal exposure is calculated by summing the results for inner dosimeters, hand washes, face/neck wipes, and head patches. Note that both the face/neck wipes and head patches are extrapolated using surface area adjustments to non-measured portions of the head. Additionally,

⁷ Calculated as a percentage of dermal exposure with chemical-resistant hats. The contribution would be even less when compared with dermal exposure without chemical-resistant hats.

⁸ Dermal exposures reflect the 50% method efficiency assumption (i.e., a 2X upward adjustment) for hand rinse and face/neck wipe measurements ("MEA" = method efficiency adjustment) for exposures with chemical-resistant hats only. As previously stated, it is unnecessary to adjust these measurements for dermal exposures without chemical-resistant hats.

the inner and outer head patches provide the ability to express dermal exposures for workers with and without chemical resistant hats.

As outlined in Table S-6, six of the 28 monitored workers used an open cab vehicle that also had a canopy or roof. Figure 1 below presents dermal unit exposures without CR hats for each study and indicates the 6 monitored workers that used an open cab vehicle with a canopy. It does not appear that the presence of a canopy above the workers offers any additional dermal protection. Thus, no differentiation with respect to using the data needs to be made. This was first addressed in the study review for AHE07 (D316628) and can be referenced for additional detail.

Dermal exposures with chemical-resistant hats ranged from $60.3 - 80,702 \mu g$. Normalized to each worker's body weight, dermal exposures ranged from $0.66 - 877 \mu g/kg$. Normalized by the amount of active ingredient handled, dermal "unit exposures" ranged from $4 - 3,202 \mu g/lb$ ai.

Dermal exposures without chemical-resistant hats ranged from $69.8 - 233,089 \ \mu g$. Normalized to each worker's body weight, dermal exposures ranged from $0.81 - 2,534 \ \mu g/kg$. Normalized by the amount of active ingredient handled, dermal "unit exposures" ranged from $3.8 - 9,355 \ \mu g/lb$ ai.

3.4.2 Inhalation Exposures

To calculate worker inhalation exposure – specifically, "breathing zone" exposure – the measured amounts are adjusted based on the pump flow rate (in liters per minute) and a typical worker's breathing rate for this type of activity. For these studies a breathing rate of 8.3 liters per minute was used, representing sedentary activities, like driving a tractor (NAFTA, 1998). The calculation is as follows:

Calculated inhalation exposures ranged from $0.294 - 529 \mu g$. Normalized to the worker's body weight, inhalation exposures ranged from $0.003 - 5.34 \mu g/kg$. Normalized by the amount of active ingredient handled, inhalation unit exposures ranged from $0.00026 - 7.13 \mu g/lb$ ai.

Worker ID A5 in study AHE64 (OK-pecan) has significantly less exposure than the other workers in AHE64 as well as the workers in the other open cab airblast studies. Consideration should be given during further analysis of this data whether it should be treated as an outlier and potentially excluded from the data.

3.5 Field Observations

For all studies, observers were employed to monitor each worker and record their behavior throughout the work day. Much of the observations detailed application procedures (e.g., AHE62 MU A3 @ 1101: "Sprays between final two rows on East end of lower block, 3-point turn to come down end row with left side only spraying."), while others indicated potential impacts on exposure such as spray drift (e.g., AHE63 MUA4 @ 1130: "Spray appears to slightly drift back towards the tractor). Field observations should be considered when analyzing this data.

4.0 **Protocol Amendments and Deviations (Table S – 27)**

Field and analytical phase deviations were minor. Reported field phase deviations included errors in measuring field fortification recovery levels and slight deviations from specified ranges of amount of active ingredient handled and monitoring time requirements. Analytical phase deviations included instances analytical method modifications and failure to verify field fortification concentrations. No protocol amendments or deviations were considered to adversely affect the results of exposure monitoring or compromise the overall research.

5.0 Conclusion

As the studies followed their corresponding protocols as well as EPA guidelines for occupational pesticide exposure monitoring, the results are considered useful for assessment of exposure and risk for open cab airblast applicators. Since these were collected with the intention to populate a generic pesticide exposure database, reviewers are directed to the additional information and statistical analyses in the AHETF Open Cab Airblast Scenario Monograph (AHETF, 2010; MRID 48326701) and recommendations for use of the data in its corresponding HED review (Crowley, 2011; D387287).

6.0 References

AHETF, (2008-a). Volume IV AHETF Revised Governing Document for a Multi-Year Pesticide Handler Worker Exposure Monitoring Program. Version Number: 1. April 7, 2008. Agricultural Handlers Exposure Task Force (AHETF). [MRID 47172401]

AHETF, (2008-b). Monitoring Unit Selection and Construction Plan for Scenario: Airblast Application of Liquids Sprays to Crops Using Open Cab Equipment. July 21, 2008. Agricultural Handlers Exposure Task Force (AHETF).

AHETF, (2010). Agricultural Handler Exposure Scenario Monograph: Open Cab Airblast Application of Liquid Sprays. Report Number AHE1006. December 14, 2010. [MRID 48326701]

Bruce, E. (2010-a). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Open Cab Equipment in California Trellis Crops. Study Number AHE62. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 283 p. November 3, 2010. MRID 48289611.

Crowley, M., 2011. Memorandum: Review of Agricultural Handler Exposure Task Force (AHETF) Monograph: Open Cab Airblast Application of Liquid Sprays. D387287. March 11, 2011.

Dawson, J., 2006. Memorandom: Carbaryl: Data Evaluation Record For MRID 464482-01; *Determination of Dermal and Inhalation Exposure to Workers during Application of a Liquid Pesticide Product by Open Cab Airblast Application to Orchard Crops*; PC Code 056801; DP Barcode 316628.

NAFTA - Dept. of Pesticide Regulation (DPR), California EPA, HSM-98014, April 24, 1998.

Smith, L. (2010-a). Amended Report – Determination of Dermal and Inhalation Exposure to Workers During Application of a Liquid Pesticide Product by Open Cab Airblast Application to Orchard Crops. Study Number AHE07. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 235 p. August 23, 2005 (Initial Report Date: December 30, 2004). MRID 46448201.

Smith, L. (2010-b). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Open Cab Equipment in New York Trellis Crops. Study Number AHE63. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 245 p. November 3, 2010. MRID 48289612.

Smith, L. (2010-c). Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Open Cab Equipment in Oklahoma Tree Nuts. Study Number AHE64. Unpublished study prepared by the Agricultural Handlers Exposure Task Force. 236 p. November 3, 2010. MRID 48289613.

Supplemental Tables S – 1-28

Table S - 1. Administrative Details	17
Table S - 2. Summary of Pesticides Used	18
Table S - 3. Summary of Monitored Workers and Locations	19
Table S - 4. Summary of Meteorological Conditions	20
Table S - 5. Summary of Work Clothing and PPE	21
Table S - 6. Summary of Application Characteristics	22
Table S - 7. Summary of Application Rate Information	24
Table S - 8. Descriptions of Exposure Monitoring and Analytical Methods	25
Table S - 9. Field Control Samples with Detected Residues	29
Table S - 10. Summary of Concurrent Laboratory Fortification Samples	30
Table S – 11a. Inner Whole Body Dosimeter Samples: Summary of Field Fortification	
Recovery Samples and Corresponding Adjustment Factors	31
Table S – 11b. AHE07 – Inner Whole Body Dosimeter Samples: Summary of Field	
Fortification Recovery Samples and Corresponding Adjustment Factors	32
Table S – 12a. Face/Neck Wipe Samples: Summary of Field Fortification Recovery	
Samples and Corresponding Adjustment Factors	33
Table S – 12b. AHE07 – Face/Neck Wipe Samples: Summary of Field Fortification	
Recovery Samples and Corresponding Adjustment Factors	34
Table S – 13a. Hand Wash Samples: Summary of Field Fortification Recovery Samples	S
and Corresponding Adjustment Factors	35
Table S – 13b. AHE07 – Hand Wash Samples: Summary of Field Fortification Recover	ſY
Samples and Corresponding Adjustment Factors	36
Table S – 14a. OVS Air Samples: Summary of Field Fortification Recovery Samples an	ıd
Corresponding Adjustment Factors	37
Table S – 14b. AHE07 – OVS Air Samples: Summary of Field Fortification Recovery	
Samples and Corresponding Adjustment Factors	38
Table S - 15. Outer Head Patches: Summary of Field Fortification Recovery Samples a	nd
Corresponding Adjustment Factors	39
Table S – 16a. AHE62 – Inner Head Patches: Summary of Field Fortification Recovery	7
Samples and Corresponding Adjustment Factors	41
Table S – 16b. Inner Head Patches: Summary of Field Fortification Recovery Samples	
and Corresponding Adjustment Factors	42
Table S - 17. Socks (AHE07 only): Summary of Field Fortification Recovery Samples a	ind
Corresponding Adjustment Factors	44
Table S – 18a. Inner Dosimeter (Arms): Field Sample Results	45
Table S – 18b. Inner Dosimeter (Torso): Field Sample Results	46
Table S – 18c. Inner Dosimeter (Legs): Field Sample Results	47
Table S - 19. Head Patch (Inner and Outer): Field Sample Results	48
Table S - 20. Face/Neck Wipe Field Sample Results	49
Table S - 21. Hand Wash Field Sample Results	51
Table S - 22. Socks (AHE07 only): Field Sample Results	53

Table S - 23. Head Exposure with and without Chemical-Resistant Hats (Face/	Neck Wipes
plus Inner and Outer Head Patches)	
Table S - 24. Total Dermal Exposures	
Table S - 25. OVS Air Sample Field Results and Inhalation Exposure	
Table S - 26. Dermal and Inhalation Unit Exposures	
Table S - 27. Protocol Amendments and Deviations	61

		Table S - 1	. Administrative D	etails		
Stu	udy ID			Report	Field Principal	
AHE#	EPA MRID	Title	Author		Investigator	Analytical Facility
AHE07	46448201	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of a Liquid Pesticide Product by Open Cab Airblast Application to Orchard Crops	Larry D. Smith, Ph.D.	12/30/04	Tami Belcher	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825
AHE62	48289611	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Open Cab Equipment in California Trellis Crops	Eric Bruce	11/3/10	Brian D. Lange	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825
AHE63	48289612	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Open Cab Equipment in New York Trellis Crops	Larry D. Smith, Ph.D.	11/3/10	Aaron Rotondaro	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825
AHE64	48289613	Determination of Dermal and Inhalation Exposure to Workers During Airblast Applications of Liquid Sprays Using Open Cab Equipment in Oklahoma Tree Nuts	Larry D. Smith, Ph.D.	11/3/10	Aaron Rotondaro	Morse Laboratories, Inc. 1525 Fulton Ave. Sacramento, CA 95825

			Т	able S - 2. Sun	nmary of Pestici	des Used			
			Product In	formation			Produ	ict Purity Analy	vsis
Study ID	Trade Name	Formulation	Manufacturer	Packaging	Active Ingredient	Label % ai	Actual % ai	Lot / Batch #	Laboratory (Date)
AHE07	Sevin® XLR Plus	Suspension concentrate	Bayer CropScience	2.5 gallon plastic jug	Carbaryl	44.1% by weight	44.15% by weight	60702302	Morse Laboratories (date unknown)
	Gowan Malathion 8	Emulsifiable concentrate	Gowan Company	2.5 gallon plastic jug	Malathion	79.5% by weight	68.35% by weight	30AK7005	EPL Bio- Analytical Services (4/20/09)
AHE62	Gowan Malathion 8 Flowable	Emulsifiable concentrate	Gowan Company	2.5 gallon plastic jug	Malathion	79.5% by weight	65.70% by weight	30AK8003	EPL Bio- Analytical Services (4/20/09)
	Gowan Malathion 8 Flowable	Emulsifiable concentrate	Gowan Company	2.5 gallon plastic jug	Malathion	79.5% by weight	67.26% by weight	30AK9003	EPL Bio- Analytical Services (4/20/09)
AHE63	Sevin® XLR Plus	Aqueous suspension / flowable	Bayer CropScience	2.5 gallon plastic jug	Carbaryl	44.1% by weight	44.8% by weight	E180426- JH312	EPL Bio- Analytical Services (1/23/09)
AHE64	Sevin® XLR Plus	Aqueous suspension / flowable	Bayer CropScience	2.5 gallon plastic jug	Carbaryl	44.1% by weight	44.5% by weight	K492074- JI148	EPL Bio- Analytical Services (1/23/09)

	Table S - 3. Summary of Monitored Workers and Locations													
Study ID	MU ID	Age	Gender	Height (in)	Weight (kg)	Yrs. Experience	State	County	Town	Date	Сгор			
	1	50	М	66	51	19	GA	Brooks	Morven	10/07/03	peach			
	3	53	М	69.2	73	2	GA	Brooks	Morven	10/08/03	peach			
	4	55	М	72	118	3	GA	Brooks	Morven	10/08/03	peach			
	6	49	М	70	68	2	GA	Brooks	Morven	10/09/03	peach			
	8	56	М	71.2	64	15	GA	Brooks	Morven	10/09/03	peach			
	10	55	М	71.2	94	15	ID	Payette	Payette	10/22/03	apple			
	12	61	М	73.2	93	20	ID	Payette	Payette	10/24/03	apple			
AHE07	13	40	М	71.2	77	20	ID	Payette	Payette	10/24/03	apple			
	15	55	М	68	67	35	ID	Payette	Payette	10/24/03	apple			
	16	60	М	72	109	40	ID	Payette	Payette	10/25/03	apple			
	17	48	М	73.2	89	30	ID	Payette	Fruitland	10/25/03	apple & pear			
	22	65	М	69.2	96	30	FL	Polk	Winter Haven	12/10/03	orange			
	23	33	М	71.2	127	12	FL	Polk	Winter Haven	12/10/03	orange			
	26	72	М	72	77	35	FL	Polk	Winter Haven	12/11/03	orange			
	27	47	М	72	99	25	FL	Polk	Winter Haven	12/11/03	orange			
	A1	43	М	66	73	15	CA	Fresno	Firebaugh	07/02/09	grape			
	A2	53	М	71	83	8	CA	San Joaquin	Lodi	07/20/09	grape			
AHE62	A3	79	М	69	89	30	CA	El Dorado	Camino	07/24/09	grape			
	A4 A5	-		AHET	F planned	to monitor 5 w	orkers in	this study, but only	3 were able to be recruited and m	nonitored.				
	A1	52	М	68	114	30	NY	Chautauqua	Not reported	7/28/200	9 grape			
	A2	66	М	68	79	39	NY	Chautauqua	Not reported	7/30/200	9 grape			
AHE63	A3	45	М	71	83	24	NY	Chautauqua	Not reported	8/3/2009	grape			
	A4	58	М	70	93	20	NY	Chautauqua	Not reported	8/5/2009	grape			
	A5	28	М	69	89	4	NY	Chautauqua	Not reported	8/6/2009) grape			
	A1	59	М	67	90	10	OK	Okmulgee	Not reported	8/22/200	9 pecan			
	A2	74	М	71	75	26	OK	Okfuskee	Not reported	8/24/200	9 pecan			
AHE64	A3	47	М	73	96	30	OK	Osage	Not reported	8/25/200	9 pecan			
	A4	69	М	70	92	3	OK	Rogers	Not reported	8/28/200	9 pecan			
	A5	67	М	68	86	40	OK	Rogers	Not reported	8/29/200	9 pecan			

	Table S - 4. Summary of Meteorological Conditions Humidity													
C4		MIT		Manifest	Hun	nidity	Те	mp.		Win	d	Classi	II4	D
Study	State		Date	Nonitoring	()	⁄o)	(°	F)	Speed	(mph)	Direction	Cloud Cover (%)	Heat Indox ^a	Kainfall (in)
ID		ID		reriou	Max	Min	Max	Min	Max	Min	Direction	Cover (%)	muex	(111)
		1	10/07/03	0954-1522	95.9	68.4	79.2	68.8	2.5	0.3	NE	varied	NR	0.1
		3	10/08/03	0928-1606	97.3	62.1	82.6	66.0	1.6	0.7	Е	varied	NR	0.1
	GA	4	10/08/03	0907-1455	97.3	62.1	82.6	66.0	1.6	0.7	Е	varied	NR	0.1
		6	10/09/03	0836-1642	97.4	58.6	81.7	63.5	2.4	1.2	NE	varied	NR	0.0
		8	10/09/03	0840-1659	97.4	58.6	81.7	63.5	2.4	1.2	NE	varied	NR	0.0
		10	10/22/03	0914-1654	97.3	22.0	79.9	34.7	3.2	1.0	W	varied	NR	0.0
		12	10/24/03	0850-1645	82.1	14.1	65.5	33.1	7.0	0.6	SW	varied	NR	0.0
AHE07	ID	13	10/24/03	0915-1547	82.1	14.1	65.5	33.1	7.0	0.6	SW	varied	NR	0.0
	ID	15	10/24/03	0956-1705	82.1	14.1	65.5	33.1	7.0	0.6	SW	varied	NR	0.0
		16	10/25/03	0830-1514	88.6	17.6	64.4	25.52	3.8	0.8	SW	varied	NR	0.0
		17	10/25/03	0932-1543	88.6	17.6	64.4	25.52	3.8	0.8	SW	varied	NR	0.0
		22	12/10/03	0922-1408	90.3	64.5	76.8	63.3	6.5	2.8	S	varied	NR	trace
	ГI	23	12/10/03	0947-1644	90.3	64.5	76.8	63.3	6.5	2.8	S	varied	NR	trace
	ГL	26	12/11/03	0905-1427	74.9	43.5	65.1	50.9	6.9	5.2	W	varied	NR	0.0
		27	12/11/03	0846-1607	74.9	43.5	65.1	50.9	6.9	5.2	W	varied	NR	0.0
		A1	07/02/09	0621-1125	69.3	29.3	86.0	63.3	3.1	1.8	NW	0-20	< 105	0.0
AHE62	CA	A2	07/20/09	0547-0841	84.1	30.3	79.5	56.8	2.4	0.6	SE	0-20	< 105	0.0
		A3	07/24/09	0638-1112	79.6	26.8	87.4	55.4	4.4	1.4	ENE	0-20	< 105	0.0
		A1	7/28/2009	0817-1850	71.4	46.3	81.7	72.0	17	0.5	SW	0-100	< 105	0.0
		A2	7/30/2009	0653-1346	94.7	58.1	76.1	63.0	8.3	0.1	SSW	0-100	< 105	0.0
AHE63	NY	A3	8/3/2009	0647-1257	78.3	44.9	74.7	60.6	11.5	0.2	SW	0-20	< 105	0.0
		A4	8/5/2009	0749-1201	93.6	48.2	68.2	57.0	6.3	0.1	Ν	0-40	< 105	0.0
		A5	8/6/2009	0810-0934	77.9	67.4	66.9	63.0	5.3	0.3	SSW	0-100	< 105	0.0
		A1	8/22/2009	0659-1444	84.0	36.4	81.3	63.7	10.3	0.2	ENE	0-80	< 105	0.0
		A2	8/24/2009	0833-1112	71.0	54.7	79.3	70.9	11.3	0.3	SE	0-20	< 105	0.0
AHE64	FL	A3	8/25/2009	1005-1302	72.2	57.3	84.5	76.6	11.2	0.6	SSE	0-60	< 105	0.0
		A4	8/28/2009	0723-1041	92.0	68.2	72.3	65.1	10.6	0.2	NNW	0-40	< 105	0.0
		A5	8/29/2009	0811-1040	95.9	76.8	72.0	64.2	6.1	0.1	NW	20-100	< 105	0.0
NR = not	reported													

			Tab	le S - 5. Su	mmary of Work Cl	othing and	PPE			
Study	MU	Habe S - S. Summary of work Clothing and FFE MU Long-sleeved Shirt Pants Gloves Eye Sho				Shoe type	Car	Respirator		
ID	ID	Style	Material	Style	Material	Gloves	Protection ³	(over socks)	Cap	Type ³
	1	Button-front	Cotton	Pleated	Cotton	Rubber		Rubber boots	CR hat	
	3	Button-front ¹	Cotton/Polyester	Jeans	Cotton	Rubber	Eyeglasses	Leather boots	CR hat	
	4	Button-front	Cotton/Polyester	Pleated	Cotton	Rubber		Leather boots	CR hat	
	6	T-shirt	Cotton	Pleated	Cotton	Rubber		Leather boots	CR hat	
	8	Polo	Cotton/Polyester	Jeans	Cotton	Rubber		Rubber boots	CR hat	
	10	Button-front	Cotton	Jeans	Cotton	Rubber	Eyeglasses	Leather boots	CR hat	
A HE07	10	Button-front	Light Wt Wool	Disstad	Catton/Dalmastan	Dachhan		Leather/Cloth	CD hat	
	12	Button-front ^{1,2}	Cotton/Polyester	Pleated	Cotton/Polyester	Rubbel		upper boots	CK nat	
ALE0/	13	T-shirt	Cotton	Jeans	Cotton	Rubber		Rubber boots	CR hat	
	15	Button-front	Cotton	Jeans	Cotton	Rubber		Leather boots	CR hat	
	16	Coverall	Cotton	Coverall	Cotton	Rubber		Leather boots	CR hat	
	17	Button-front	Cotton	Jeans	Cotton	Rubber		Leather boots	CR hat	
	22	Button-front	Cotton/Polyester	Uniform	Cotton/Polyester	Rubber		Leather boots	CR hat	
	23	Button-front	Cotton/Polyester	Uniform	Cotton/Polyester	Rubber		Leather boots	CR hat	
	26	Button-front	Cotton/Polyester	Jeans	Cotton	Rubber		Leather boots	CR hat	
	27	Button-front	Cotton	Jeans	Cotton	Rubber	Eyeglasses	Leather boots	CR hat	
	A1	1 Button, collar 100% cotton		Dickies	cotton	Nitrile	Protective eyewear	Leather boots	CR hat	
AHE62	A2	Button-up	cotton	Jeans	cotton	Nitrile	Protective eyewear	Leather boots	CR hat	
	A3	Button-up	cotton	Jeans	cotton	Nitrile	Goggles	Leather shoes	CR hat	
	A1	Button-Down	Cotton/Polyester	Jeans	Cotton	Nitrile	Eyeglasses	Leather shoes	CR hat	
	A2	Button-Down	Cotton/Polyester	Jeans	Cotton	Nitrile	Eyeglasses	Leather boots	CR hat	Half-face
AHE63	A3	Button-Down	Cotton	Jeans	Cotton	Nitrile		Leather boots	CR hat	
	A4	Button-Down	Cotton	Jeans	Cotton	Nitrile	Eyeglasses	Leather boots	CR hat	
	A5	Button-Down	Cotton	Jeans	Cotton	Nitrile		Tennis shoes	CR hat	
	A1	Button-Down	Cotton	Jeans	Cotton	Nitrile		Leather boots	CR hat	
	A2	Button-Down	Cotton/Polyester	Jeans	Cotton	Nitrile	Eyeglasses	Leather shoes	CR hat	
AHE64	A3	Button-Down	Cotton	Jeans	Cotton	Nitrile	Eyeglasses	Leather boots	CR hat	Half-face
	A4	Button-Down	Cotton	Work	Cotton	Nitrile		Leather boots	CR hat	
	A5	Button-Down	Cotton/Polyester	Jeans	Cotton	Nitrile	Eyeglasses	Leather shoes	CR hat	Half-face
¹ Clothin	g provi	ded by AHETF due	to non-compliant cloth	ning worn by	worker.					•

² Initial shirt worn by worker was compliant – shirt replaced by AHETF after being torn by a tree branch.
 ³ Per AHETF SOP 9.K, exposure is extrapolated to portions of face covered by eyewear or respiratory protection.

					1	able S - 6. Summa	ry of Application C	Characterist	ics		-		-
			Crop				Application Ec	luipment					Application /
Study	MI			Spac	ing (ft)			Airblast			Speed	Tank	Exposure
ID		Type	Height		In	Traatar/truak			Nozzle		(mph	Size	Monitoring
10	II.	туре	(ft)	Full	row		Brand	Type	#	Pressure)	(gal)	Time
					100			турс	used	(psi)			
	1	peach	NR	NR	10-15	NR	Duran Wayland	NR	14	NR	2-4	500	5.5
	3	peach	NR	NR	10-15	NR	Agri Dynamic	NR	12	NR	2-4	500	6.6
	4	peach	NR	NR	10-15	NR	Duran Wayland	NR	14	NR	2-4	500	5.8
	6	peach	NR	NR	10-15	NR	Agri Dynamic	NR	12	NR	2-4	500	8.1
	8	peach	NR	NR	10-15	NR	Ag Tech	NR	16	NR	2-4	425	8.3
	10	apple	NR	NR	10-15	Ford 4230	GB Mistair	NR	7	NR	2-4	400	7.7
	12	apple	NR	NR	10-15	Kubota L4150	Turbomist / Victair	NR	12	NR	2-4	183	7.9
	13	apple	NR	NR	10-15	NR	Victair / Mistifier	NR	28	NR	2-4	300	6.5
AHE07	15	apple	NR	NR	10-15	NR	Duran Wayland	NR	12	NR	2-4	400	7.2
	16	apple	NR	NR	10-15	NR	FMC	NR	16	NR	2-4	500	6.7
	17	apple & pear	NR	NR	10-15	John Deere 2255	Meyers	NR	14	NR	2-4	480	6.2
	22	orange	NR	NR	15-24	John Deere 6405 ^b	Rears Power Pull	NR	24	NR	2-4	1000	4.8
	23	orange	NR	NR	15-24	John Deere 6405 ^b	Rears Powerblast	NR	22	NR	2-4	1000	7.0
	26	orange	NR	NR	15-24	NR ^b	FMC 957	NR	22	NR	2-4	1000	4.8
	27	orange	NR	NR	15-24	John Deere 6405 ^b	Rears Power Pull	NR	24	NR	8	1000	7.4
	A1	grape	NR	NR	11	John Deere 2950 ^b	International Manf. Co.	Plastic	10	90	3-3.5	600	5.1
AHE62	A2	grape	NR	NR	10	Kubota M5400	Gearmore	Spinning disc	6	40	4	150	2.9
	A3	grape	NR	NR	10	Kubota M7030N	Rears Pul-Blast	Cone	6	120	2.5	400	4.6
	A1	grape	NR	NR	9	Case IH 2140	Turbo Mist Slimline	NR	10	100	4	400	10.6
АНЕ03	A2	grape	NR	NR	8-10	John Deere 2355N	Berthoud Arbo AX LT600	NR	5	600	3.9	160	6.9

					т		C A 1' 4' C	NI					
					1	able S - 6. Summa	ry of Application C	haracterist	ICS				
Standar	NIT		Crop				Application Eq	uipment			Speed	Tank	Application /
Study		Tuna	Height	Space	ing (ft)	Tractor/truels		Airblast			(mph	Size	Exposure
ID	ID	rype	(ft)	Full	In-	I ractor/truck	Brand		Nozzle)	(gal)	Monitoring
	A3	grape	NR	NR	8.5	Massey Ferguson 265	CIMA Blitz 45 T100	NR	10	26	3	300	6.2
	A4	grape	NR	NR	7-9	John Deere 830	Holland Windmill 350	NR	9	22	3-3.5	280	4.2
	A5	grape	NR	NR	8-9	International Case 485	Berthoud Arbo 1000	Hollow cone	12	350	2.5-3	300	1.4
	A1	pecan	NR	NR	^a	John Deere 300B	FMC Bean	Cone	11	20-25	2-2.5	500	7.8
	A2	pecan	NR	NR	^a	Ford 6600	Savage 5534	Floodjet	7	25-30	3-5	500	2.7
AHE64	A3	pecan	NR	NR	^a	John Deere 2940 ^b	Savage 5528	Floodjet	7	20-25	3-4	500	3.0
	A4	pecan	NR	NR	^a	Massey Ferguson 360	Savage 5525	Floodjet	7	20	1.2	500	3.3
	A5	pecan	NR	NR	30	Kubota M4900	Savage 50	Floodjet	7	70-80	~2	500	2.5
NR = not	reporte	ed											

^a Trees not in rows (non-systematic planting) ^b Open cab vehicle with a canopy/roof.

				Table S - 7. S	ummary of A	pplication F	Rate Informa	tion				
				Product					Application	Amount		
Study	MU	Cron	Active	Conc.	# Loads	Area	Spra	ıy	Prod	uct	Active Ing	gredient
ID	ID	Сгор	Ingredient	(lb ai /	applied	(corres)	Per Acre	Total	Per Acre	Total	Per Acre	Total
			(al)	gallon)		(acres)	(gal)	(gal)	(gal)	(gal)	(lb)	(lb)
	1	peach	Carbaryl	4.0	5	25	100	2500	0.75	19	3.0	75
	3	peach	Carbaryl	4.0	3	15	100	1500	0.75	11	3.0	45
	4	peach	Carbaryl	4.0	5	25	100	2500	0.75	19	3.0	75
	6	peach	Carbaryl	4.0	4	20	100	2000	0.75	15	3.0	60
	8	peach	Carbaryl	4.0	5	17	123	2091	0.76	13	3.1	52
	10	apple	Carbaryl	4.0	4	16	100	1600	0.50	8	2.0	32
	12	apple	Carbaryl	4.0	9	16	100	1600	0.52	8	2.1	33
AHE07	13	apple	Carbaryl	4.0	6	18	100	1800	0.50	9	2.0	36
	15	apple	Carbaryl	4.0	4	12	133	1596	0.50	6	2.0	24
	16	apple	Carbaryl	4.0	4	20	100	2000	0.50	10	2.0	40
	17	apple & pear	Carbaryl	4.0	14	17	400	6800	0.50	9	2.0	34
	22	orange	Carbaryl	4.0	2	20	100	2000	0.75	15	3.0	60
	23	orange	Carbaryl	4.0	3	30	100	3000	0.75	23	3.0	90
	26	orange	Carbaryl	4.0	6	30	200	6000	0.75	23	3.0	90
	27	orange	Carbaryl	4.0	3	30	100	3000	0.75	23	3.0	90
	A1	grape	Malathion	6.88	4	20	100	2000	0.25	5	1.7	34.3
AHE62	A2	grape	Malathion	6.61	3	12	38	450	0.06	1	0.4	5.0
	A3	grape	Malathion	6.77	3	9.5	61	575	0.16	2	1.1	10.4
	A1	grape	Carbaryl	4.06	3	24	50	1200	0.50	12	2.0	48.4
	A2	grape	Carbaryl	4.06	7	17.5	63	1100	0.50	9	2.0	35.6
AHE63	A3	grape	Carbaryl	4.06	3	12	75	900	0.50	6	2.0	24.4
	A4	grape	Carbaryl	4.06	3	7.5	100	750	0.50	4	2.0	15.2
	A5	grape	Carbaryl	4.06	2	3	100	300	0.50	2	2.0	6.1
	A1	pecan	Carbaryl	4.04	3	15	83	1250	1.04	16	4.2	63.1
	A2	pecan	Carbaryl	4.04	2	5	100	500	0.50	3	2.0	10.1
AHE64	A3	pecan	Carbaryl	4.04	2	7	86	600	1.25	9	5.0	35.3
	A4	pecan	Carbaryl	4.04	2	5	150	750	1.25	6	5.0	25.2
	A5	pecan	Carbaryl	4.04	2	9	33	300	0.50	5	2.0	18.2

	Table S - 8. Des	criptions of E	xposure Monitoring and Anal	ytical Methods
	Exposure Monitoring Method		Ana	alytical Method
Matrix	Description	Active Ingredient	Identification	Description
	Exposure to the hands was measured using a 500 mL aliquot of 0.01% v/v AOT solution. First, 400 mL AOT solution was poured over a worker's hand while rubbing them together over a glass bowl for approximately 30 seconds; the remaining 100 mL was then poured over the worker's hands into the bowl. The bowl of 500 mL	Carbaryl	ARTF-AM-012, Revision #2 ["Determination of Carbaryl in Hand Wash Solutions" (6/98)]	Carbaryl was extracted from hand wash solutions with dichloromethane, using multiple extractions. An aliquot of the extract was evaporated to dryness, reconstituted in acetonitrile:water (50:50 v/v), then submitted to HPLC analysis using post column derivatization/fluorescence detection. The method provided for an optional Florisil SPE purification step that was not needed for this study.
Hand Rinse	solution (now with hand residue) is transferred to a clear glass jar and frozen for storage. Samples are taken at any point a worker would normally wash their hands (e.g., during lunch breaks, before using restroom, etc.) and at the end of monitoring. Samples are analyzed separately, but summed to obtain a total daily hand exposure.	Malathion	ARTF-AM-006, Revision 3, ["Determination of Diazinon and Malathion in Hand Wash Solutions"]	Malathion residues in AOT hand wash solutions were retained on a conditioned C-18 reverse phase cartridge by passing an aliquot of hand wash sample through the cartridge. The cartridge was washed with water, air- dried, then washed with hexane. Malathion residues were eluted from the C-18 cartridge with dichloromethane. The eluate was evaporated to dryness, redissolved in acetone, then submitted to gas chromatographic (GC) analysis using flame photometric detection in the phosphorous mode (FPD/P).
Face/neck Wipe	The face/neck wipes consisted of two 4" x 4", 100% cotton gauze Kendall Curity sponges moistened with 4 mL of 0.01% (v/v) Aerosol® OT solution (sodium dioctyl sulfosuccinate in distilled water),	Carbaryl	ARTF-AM-014, Revision 2 ["Determination of Carbaryl in Cotton Facial/Neck Wipes" (4/98)]	Carbaryl was extracted from cotton face/neck wipes with acetone. The aluminum foil used to wrap each sample was also rinsed with acetone to remove any residues. An aliquot of the extract was concentrated, subjected to Florisil SPE cleanup (most extracts), then submitted to high performance liquid chromatographic (HPLC) analysis using post column derivatization/fluorescence detection.
	conducted prior to breaks and at the end of monitoring. Samples were combined for analysis.	Malathion	ARTF-AM-010, Revision 2, ["Determination of Diazinon and Malathion in Cotton Facial/Neck Wipes"]	Malathion was extracted from cotton facial/neck wipes with an aqueous AOT solution. The aluminum foil used to wrap each sample was also rinsed with aqueous AOT to remove any residues. An aliquot of the extract was subjected to C-18 cleanup. After the sample was passed through the cartridge, retaining the

	Table S - 8. Des	criptions of Ex	posure Monitoring and Analy	ytical Methods		
	Exposure Monitoring Method		Ana	lytical Method		
Matrix	Description	Active Ingredient	Identification	Description		
				analyte, the cartridge was washed with water, then air- dried. Malathion residues were eluted from the C-18 cartridge with dichloromethane:methanol ($50:50$, v/v). The eluate was evaporated to dryness and redissolved in acetone.		
Inner Dosimeters	Whole body dosimeters – white, long underwear, 100% cotton one-piece Carolina Mills, Inc. union suits worn underneath the workers' outer clothing – served to represent the workers' skin on their arms, legs and torso. Following each monitoring period, the inner whole body	Carbaryl	ARTF-AM-011, Revision 4 ["Determination of Carbaryl in Dermal Dosimeters", (9/29/03)]	Carbaryl was extracted from cotton inner dosimeter sections (upper and lower) with acetone. Each section was considered one analytical sample. An aliquot of the sample extract was subjected to Florisil SPE cleanup, then submitted to high performance liquid chromatographic analysis using post column derivatization/fluorescence detection. The method, incorporating Florisil cleanup, is applicable to samples containing residue levels ranging from 1.0 µg/sample to 500 µg/sample for inner dosimeters. A provision was made to extend the range of applicability by eliminating the Florisil cleanup.		
	dosimeters were carefully removed and sectioned into two pieces: lower body (below the waist) and upper body (above the waist).	Malathion	ARTF-AM-005, Revision 4 (by ABC Laboratories, Inc.) ["Determination of Diazinon/Malathion Inner Dermal Dosimeters", 3/98]	Malathion was extracted from cotton inner dosimeter sections with acetone. The aluminum foil used to wrap each sample was also rinsed with acetone to remove any residues. Following evaporation of the solvent from an aliquot of the extract, the residues were suspended in water, then partitioned into hexane; the hexane was back-extracted against water. An aliquot of the hexane extract was subjected to Florisil Bond Elut cleanup.		

	Table S - 8. Des	criptions of Ex	xposure Monitoring and Anal	ytical Methods
	Exposure Monitoring Method		Ana	alytical Method
Matrix	Description	Active Ingredient	Identification	Description
OVS tubes	Air sampling was conducted using OSHA Versatile Sampler (OVS) tubes connected by Tygon®-type tubing to a SKC model 110-100 personal air sampling pump set to approximately 2 liters per minute. The sample collector consisted of a glass fiber filter and two sections of XAD-2 sorbent	Carbaryl	ARTF-AM-013, Revision 2, ["Determination of Carbaryl in OVS Air Sampling Tubes" (12/17/09)]	Air sampling tube contents were divided into front and back sections and the sections were analyzed separately. Carbaryl was extracted from the contents of each section of sorbent tube with acetonitrile. An aliquot of the extract was evaporated to dryness, reconstituted in acetonitrile:water (50:50, v/v) then submitted to HPLC analysis using post column derivatization/fluorescence detection. The method provided for an optional Florisil SPE purification step that was not needed for this study.
	The sampler was clipped to the worker's collar (intake facing downward) and the tube attached to their belt. Pump on/off times and starting and ending flow rates were recorded.	Malathion	ARETF-AM-009, Revision 5, ["Determination of Diazinon and Malathion in OVS Air Sampling Tubes"]	Air sampling tube contents were divided into front and back sections and the sections were analyzed separately. Malathion was extracted from the contents of each section of sorbent tube with acetone. An aliquot of the extract was evaporated to dryness, then reconstituted in acetone. Samples were submitted to gas chromatographic (GC) analysis using flame photometric detection in the phosphorous mode (FPD/P).
Head Patch	The inner head patch consisted of one layer of inner dosimeter material (a one- piece, white, long-underwear union suit constructed of 100% cotton) measuring 100 square centimeters. Extra material was used for the attachment of strings, which ran under the chin of the worker to hold the patch in place. The patch was	Carbaryl	ARTF-AM-011, Revision 4 ["Determination of Carbaryl in Dermal Dosimeters", (9/29/03)]	Carbaryl was extracted from head patch samples with acetone. Each section was considered one analytical sample. An aliquot of the sample extract was subjected to Florisil SPE cleanup, then submitted to high performance liquid chromatographic analysis using post column derivatization/fluorescence detection. The method, incorporating Florisil cleanup, is applicable to samples containing residue levels ranging from 1.0 μ g/sample to 500 μ g/sample for inner dosimeters. A provision was made to extend the range of applicability by eliminating the Florisil cleanup.
	worn on the crown of the head, under the chemical-resistant hat for the duration of the monitoring period.	Malathion	ARTF-AM-005, Revision 4, modifications dated 11/16/09, ["Determination of Diazinon/Malathion Inner Dermal Dosimeters", 3/98]	Malathion was extracted from head patch samples with acetone. The aluminum foil used to wrap each sample was also rinsed with acetone to remove any residues. Following evaporation of the solvent from an aliquot of the extract, the residues were suspended in

	Table S - 8. Des	criptions of Ex	xposure Monitoring and Analy	ytical Methods
	Exposure Monitoring Method		Ana	alytical Method
Matrix	Description	Active Ingredient	Identification	Description
				water, then partitioned into hexane; the hexane was back-extracted against water. An aliquot of the hexane extract was subjected to Florisil Bond Elut cleanup.

G4 1			a l D	Residue Found	LOO	a			
Study	Control Sample Type	# with detected residues	Sample ID	(ug/sample)	(ug/sample)	Comparison to LOQ			
	Face/Neck wipe	1 of 12	07-FF-02-FW-C1	1.08	0.05	1.1X > LOQ			
A LIE07			07-FF-05-AR-C1	0.0127	0.01	1.3X > LOQ			
AHEU/	OVS tube (both sections)	3 of 12	07-FF-05-AR-C2	0.0143	0.01	1.4X > LOQ			
		Γ	07-FF-04-AR-C1	0.0210	0.01	2X > LOQ			
			62-FF-01-IH-C3	0.2145	0.25	1.2 X < LOQ			
			62-FF-01-IH-C4	0.1862	0.25	1.3 X < LOQ			
	Head patch (inner and outer)	5 of 8	62-FF-02-IH-C1	0.1460	0.25	1.7 X < LOQ			
			62-FF-02-IH-C2	0.1225	0.25	2 X < LOQ			
AHE62			62-FF-02-OH-C2	0.1730	0.25	1.4X < LOQ			
			62-FF-02-AR-C1	0.00658	0.005	1.3X > LOQ			
	OVE take (front costion)	4	62-FF-02-AR-C2	0.01497	0.005	3X > LOQ			
	OVS tube (front section)	4 01 4	62-FF-02-AR-C1	0.67812	0.005	136X > LOQ			
		Γ	62-FF-02-AR-C2	0.75075	0.005	150X > LOQ			
			63-FF-01-ID-C2	0.10	1.0	10X < LOQ			
	Inner Desimator	2 of 5	63-FF-01-ID-C2	0.11	1.0	0V < I 0 O			
	Inner Dosimeter	5 01 5	(confirmatory)	0.11	1.0	9X < LOQ 10X < LOO			
			63-FF-04-ID-C1	0.10	1.0	10X < LOQ			
			63-FF-01-IH-C1	0.119	0.25	2X < LOQ			
	Head patch (inner and outer)	3 of 8	63-FF-01-IH-C2	0.087	0.25	3X < LOQ			
AHE63			63-FF-04-IH-C2	0.059	0.25	4X < LOQ			
			63-FF-02-AR-C1	0.03652	0.005	7 > LOQ			
	OVS tube (front section)	4 of 4	63-FF-02-AR-C2	0.02751	0.005	5.5 > LOQ			
	OVS tube (nont section)	4 01 4	63-FF-02-AR-C1	0.00219	0.005	2.3 < LOQ			
			63-FF-02-AR-C2	0.00416	0.005	1.2 < LOQ			
	Face/Neck wipe	1 of 4	63-FF-01-FW-C2	0.32	1.0	3X < LOQ			
	Hand Wash	1 of 4	63-FF-01-HW-C1	0.33	1.0	3X < LOQ			
	Inner Dosimeter	1 of 4	64-FF-04-ID-C2	0.04	1.0	25X < LOQ			
	Head notab (inner and outer)	2 of 9	64-FF-04-OH-C1	0.121	0.25	2X < LOQ			
	Head patch (inner and outer)	2 01 8	64-FF-04-OH-C2	0.098	0.25	2.6X < LOQ			
A UE64	Hand wash	1 of 4	64-FF-02-HW-C2	0.18	1.0	5.6X < LOQ			
ALE04			64-FF-02-AR-C1	0.0153	0.005	3X > LOQ			
	OVS tube (front costion)	1 of 4	64-FF-02-AR-C2	0.01124	0.005	2.2X > LOQ			
	Ov S tube (front section)	4 01 4	64-FF-02-AR-C1	0.00238	0.005	2X < LOQ			
		F	64-FF-02-AR-C2	0.00234	0.005	2X < LOQ			
Note: as c	only negative controls for matrice	es with detected residues are sh	nown in this table, it follow	s that all other negati	ve controls for t	hose matrices not			

	Table S - 10. Sur	mmary of Concurre	ent Laboratory Fortification Samples	
Study ID	Exposur	e Matrix	Fortification Range	Recovery Results (mean ± standard deviation)
	Inner Do	osimeters	0.25 – 10000 ug/sample	$101 \pm 7.6\%$ (n=58)
	Face/Nee	ck Wipes	1.0 – 5000 ug/sample	$93.0\% \pm 9.2\%$ (n=21)
	Haad Datak	Inner	0.25 – 500 ug/sample	$96.6\% \pm 8.4\%$ (n=19)
AHE07 ^a	Head Patch	Outer	0.25 – 10000 ug/sample	96.7% ± 7.2% (n=20)
	Hand V	Washes	1.0 – 5000 ug/sample	$104\% \pm 6.2\%$ (n=26)
	OVS Air	Samplers	0.05 – 200 ug/sample	93.7% ± 11% (n=16)
	So	cks	0.25 – 500 ug/sample	102% ± 8.0% (n=21)
	Inner Do	osimeters	1.0 – 2000 ug/sample	102% ± 7.3% (n=6)
	Head Datab	Inner	0.25 – 100 ug/sample	105% ± 9.2% (n=4)
AHE62	Head Fatch	Outer	0.25 – 5000 ug/sample	107% ± 8.6% (n=4)
Aneoz	Face/Nee	ck Wipes	1.0 – 2000 ug/sample	$108\% \pm 14\%$ (n=4)
	Hand V	Washes	1.0 – 2000 ug/sample	106% ± 6.9% (n=6)
	OVS Air	Samplers	0.005 – 100 ug/sample	$111\% \pm 6.8\%$ (n=6)
	Inner Do	osimeters	1.0 – 2500 ug/sample	$95.2\% \pm 10.8\%$ (n=13)
	Lload Datab	Inner	0.25 – 100 ug/sample	93.7% ± 18.6% (n=4)
ALLE 62 ^b	Head Patch	Outer	0.25 – 6000 ug/sample	95.6% ± 12.3% (n=7)
АПЕОЗ	Face/Ne	ck Wipes	1.0 – 2000 ug/sample	$101\% \pm 6.8\%$ (n=8)
	Hand V	Washes	1.0 – 2000 ug/sample	104% ± 6.5% (n=8)
	OVS Air	Samplers	0.005 – 100 ug/sample	94.9% ± 14.9% (n=12)
	Inner Do	osimeters	1.0 – 55000 ug/sample	$105\% \pm 11.1\%$ (n=15)
	Haad Datak	Inner	0.25 – 100 ug/sample	$100\% \pm 28.2\%$ (n=4)
	Head Patch	Outer	0.25 – 15000 ug/sample	$101\% \pm 6.4\%$ (n=7)
АПЕ04	Face/Nee	ck Wipes	1.0 – 4000 ug/sample	98.6% ± 10.2% (n=7)
	Hand V	Washes	1.0 – 2000 ug/sample	$102\% \pm 7.1\%$ (n=6)
	OVS Air	Samplers	0.005 – 100 ug/sample	99.5% ± 13.6% (n=12)
^a Anomalous samples: 1 sock (193%),	1 OVS air samplers ((267%), 1 inner dosi	meter (58%)	
^b Anomalous samples: 1 OVS air samp	le (278%)			

	Table S	<u>– 11. Inner</u>
IN	Study ID	Active Ingredie
DOCUME	AHE62	Malathio
	AHE63	Carbary
EPA AR	AHE64	Carbary
S	^a Adjustmer Example: 5 recovery me ^b Study day ³	t factor corre 2.5 is the mi ean. 's results not

Table S	<u>– 11. Inner Wh</u>	<u>ole Body Dosimeter Sam</u>	<u>ples: Summary</u>	of Field Forti	fication Recover	y Samples and	l Corresponding Adjustme	nt Factors	
tudu ID	Active	Monitoring Data	Field Fo	ortification Re	covery (%)	Fiel by	ld Recovery Adjustment Fa Measured Residue Range (ector ug) ^a	
otudy ID	Ingredient	Monitoring Date	Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to \leq 1050 ug	> 1050 ug	
			43.0	105	101				
		7/02/09	36.8	87.2	98.0				
			31.8	92.8	101				
			118	65.0	126]			
AHE62	Malathion	7/20/09	105	112	117	0.746	0.958	1.10	
			113	113	118				
		Mean	74.6	95.8	110				
		Summary Statistics SD	41.3	18.3	11.6				
		CV (%) 55	19	11				
			77.3	16.3	50.0				
		7/28/09 ^b	83.7	89.4	136				
			25.2	51.5	163]			
			92.8	92.8	126				
AHE63	Carbaryl	8/5/09	88.5	94.6	88.0	0.912	0.834	0.882	
	-		92.3	62.8	50.6			0.882	
		Mean	91.2	83.4	88.2				
		Statistics SD	2.4	17.9	37.7				
		CV (%) 2.6	21	43				
			77.2	91.8	102				
		8/24/09	81.6	78.7	103				
			95.4	71.1	99.4				
			95.0	94.1	88.5				
AHE64	Carbaryl	8/28/09	77.0	107	98.1	0.843	0.899	0.992	
			79.5	96.7	104				
		Mean	84.3	89.9	99.2]			
		Summary SD	8.62	13.0	5.68]			
		CV (%	10	14	5.7				
A 1º /		1 (· · · · · · · · · · · · · · · · · · ·	1 1	D 1	1 /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1 1	

Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level. Example: 52.5 is the midpoint between 5 and 100 ug. Field sample residue results \leq 52.5 ug would use the adjustment factor corresponding to the low level ecovery mean.

tudy day's results not used. The cause of the abnormally low and high results reported as unknown.

Monitorir 10/07, 10/08, 10/22,	ng Data /03 /03
10/07/ 10/08/ 10/22/	/03 /03 /03
10/08,	/03
10/22	/03
10/24	/03
12/09/	/03
12/11	/03
Summary Statistics	Mea SD CV (%)
esponds to m dpoint betwe	ean rec en 5 ai
e	12/09/ 12/11/ Summary Statistics esponds to me dpoint betwe

					Field	Fortification Reco	overv (%)			Field Recovery A	djustment Factor	,
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Study	Active	Monitorin	g Date						by Measured Re	sidue Range (ug) ^a	[
$ \text{AHE07} \text{Carbaryl} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ID	Ingredient		8	Low level (ug)	Mid level (ug)	High l	evel (ug)	≤52.5	>52.5 to ≤300	>300 to ≤2750	>2750
$ \mbox{ME07} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					5	100	500	5000				
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					100	99.6	104.8	113.2				
$ HE07 Carbaryl \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10/07/	03	94.2	96.0	97.2	114.4				
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			10/07/	05	90	101.0	97.4	113.5				
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								104.6				
$ \text{AHE07} \text{Carbaryl} \left \begin{array}{cccccccccccccccccccccccccccccccccccc$					101.6	101.0	101.2	108.2				
$ \text{AHE07} \text{Carbaryl} \boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$			10/08/	03	93.0	104.0	94.8	103.6				
$ \text{AHE07} \text{Carbaryl} \begin{array}{ c c c c c c c c c c c c c c c c c c c$					89.2	105.0	104.6	105.6				
$ AHE07 \ Carbaryl \ \begin{array}{c c c c c c c c c c c c c c c c c c c $					75.2	100.0	96.4	112.6				
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			10/22/	03	74.8	99.7	98.2	109.4				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					76.0	96.7	98.6	118.6				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					70.8	92.5	98.6	107.2				
$\frac{73.0}{12/09/03} \frac{101.0}{85.0} \frac{103.0}{99.4} \frac{107.8}{100.0}$ $\frac{12/09/03}{85.0} \frac{85.0}{99.4} \frac{97.4}{100.2} \frac{101.0}{101.0}$ $\frac{80.2}{97.0} \frac{94.6}{94.6} \frac{103.4}{103.4}$ $\frac{66.6}{92.5} \frac{92.2}{95.0} \frac{100.8}{100.8}$ $\frac{83.2}{92.2} \frac{92.2}{93.2} \frac{104.4}{104.4}$ $\frac{12/11/03}{80} \frac{100}{84.5} \frac{84.5}{97.7} \frac{97.7}{98.0} \frac{107.3}{107.3}$ $\frac{100}{90.6} \frac{100}{90.6} \frac{100}{100} \frac{100}$	AHE07	Carbaryl	10/24/	03	67.6	101.0	103.2	105.6	0.845	0.977	0.98	1.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			73.0	101.0	103.0	107.8				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					116.6	87.4	97.4	100.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			12/09/	03	85.0	99.4	100.2	101.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					80.2	97.0	94.6	103.4				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					66.6	92.5	86.2	105.2				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			12/11/	03	83.8	91.7	95.0	100.8				
Mean84.597.798.0107.3Summary StatisticsSD13.24.74.65.1 CV (%)164.84.75.3					83.2	92.2	93.2	104.4				
Summary Statistics SD 13.2 4.7 4.6 5.1 CV (0) 16 4.8 4.7 5.3				Mean	84.5	97.7	98.0	107.3				
Statistics $\begin{array}{c c} CV \\ (\%) \end{array}$ 16 4.8 4.7 5.3			Summary	SD	13.2	4.7	4.6	5.1				
			Statistics	CV (%)	16	4.8	4.7	5.3				

Table S – 13. Face/Neck Wipe Samples: Summary of Field Fortification Recovery Samples and Corresponding Adjustment Factors Field Recovery Adjustment Factor									tors
Study ID	Active	Monitorin	g Data	Field Fo	ortification Re	covery (%)	Fie by	ld Recovery Adjustment Fa Measured Residue Range (uctor (ug) ^a
	Ingredient	Monitor ing Date		Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to \leq 1050 ug	> 1050 ug
				87.6	79.4	81.2			
		7/02/0	9	89.4	76.4	82.4			
				87.4	86.0	72.6			
					103	101			
AHE62 Malathion		7/20/0	19	115	106	108	1.02	0.928	0.924
			•	116	106	109	_		
		Summary	Mean	102	92.8	92.4	-		
		Statistics	SD	15.3	13.8	15.6	-		
		Statistics	CV (%)	15	15	17			
				104	100	105			
AHE63	Carbaryl	7/28/09		97.5	88.5	94.9			
				98.9	102	95.6			
				97.0	87.4	129			
		8/5/0	9	98.2	78.1	101	0.983	0.899	1.06
		Summary		94.2	83.4	111			
			Mean	98.3	89.9	106			
			SD	3.2	9.4	12.7			
		Statistics	CV (%)	3.3	10	12			
				89.7	88.7	88.5			
		8/24/0	19	91.9	92.2	96.4			
				92.5	86.3	53.3			
				83.7	80.8	111			
AHE64	Carbaryl	8/28/09		82.2	75.4	103	0.878	0.847	0.917
				86.5	84.9	97.7			
		Summer	Mean	87.8	84.7	91.7			
		Summary Statistics	SD	4.30	5.94	20.2			
		Statistics	CV (%)	5	7	22			
^a Adjustmen Example: 5	t factor correspondent factor correspondent factor correspondent factor	nds to mean reconnt between 5 and	very percent 100 ug. Re	age for each results \leq	ecovery level. 52.5 ug would	Residue range co l use the adjustme	prresponds to ment factor corre	hidpoint between each fortific sponding to the low level rec	ation level.

Tab	le S – 14. AHI	E07 – Face/Neck Wipe S	amples: Summ	ary of Field Fortification	Recovery Samples an	d Corresponding Adju	istment Factors
Study	Active	Monitoring	Data	Field Fortification	Recovery (%)	Field Recovery Ad by Measured Resi	ljustment Factor due Range (ug) ^a
ID	Ingredient	Monitoring	Date	Low level (ug)	High level (ug)	<52.5	<u>\525</u>
				5	100	<u></u>	~52.5
				89.8	79.4		
		10/07/03		87.4	89.6		
				80.6	81.4		
				92.8	91.7		
		10/08/03		69.8	88.4		
				77.0	87.7		
AHE07				94.6	101.0		
		10/22/03		88.4	103.0		
				85.6	104.0		
	Carbaryl			93.4	94.8		
		10/24/03		89.4	93.4	0.849	0.955
				95.0	109.0		
				76.8	93.5		
		12/09/03		83.2	97.7		
				73.8	95.6		
				86.4	100.0		
		12/11/03		82.0	103.0		
				81.6	105.0		
			Mean	84.9	95.5		
		Summary Statistics	SD	7.3	8.2		
			CV (%)	8.6	8.6		
^a Adjustr	ent factor corre	esponds to mean recovery	percentage for e	ach recovery level. Reside	ue range corresponds to	midpoint between each	fortification level.

Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low level recovery mean.

64 d ID	Active	Manitanin	Data	Field Fo	ortification Re	covery (%)	Fie by	ld Recovery Adjustment Fa Measured Residue Range (uctor ug) ^a
Study ID AHE62 AHE63	Ingredient	Monitoring Date		Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to \leq 1050 ug	> 1050 ug
				93.0	91.0	103			
		7/02/0	9	92.6	90.2	106			
				93.8	96.6	92.8]		
				106	100	95.6]		
AHE62	Malathion	7/20/0	9	105	90.4	93.6	0.984	0.933	0.982
				100	91.8	98.0]		
		G	Mean	98.4	93.3	98.2	1		
		Summary	SD	6.1	4.0	5.3			
		Statistics	CV (%)	6.2	4.3	5.4			
				106	113	113			
		7/28/09		106	112	106	1		
				105	98.9	110			
				113	108	114			
AHE63	Carbaryl	8/5/09)	113	112	109	1.11	1.10	1.13
	2			121	114	123	1		
		G	Mean	111	110	113	1		
		Summary	SD	6.2	5.6	5.9			
		Statistics	CV (%)	5.6	5.1	5.2	1		
				105	106	114			
		8/24/0	9	109	107	113	1		
				105	106	113	1		
				100	98.2	110	1		
AHE64	Carbaryl	8/28/0	9	103	102	111	1.05	1.03	1.12
	5			106	98.7	111	1		
		q	Mean	105	103	112	1		
		Summary	SD	3.01	3.91	1.55	1		
		Statistics	CV (%)	2.9	3.8	1.4	1		

Study ID	Active	Monitoria	a Data	Field Fortificat	tion Recovery (%)	Field Recovery Adjustment Factor by Measured Residue Range (ug) ^a			
	Ingredient	Monitorin	g Date	Low level (ug)	High level (ug)	~52 5	52 5		
				5	100	≥32.3	~32.5		
				91.4	106.0				
		10/07/	03	98.2	105.0				
				101.8	100.0				
				96.6	106.0				
		10/08/	03	102.2	89.1				
				104.4	91.5				
		10/22/03		104.2	109.0				
AHE07	Carbaryl			108.8	86.4				
				107.4	98.6				
				112.4	85.0				
		10/24/03	03	101.8	107.0	0.997	0.966		
				104.2	106.0	0.997	0.900		
				98.2	81.1				
		12/09/	03	89.2	89.9				
				97.4	83.5				
				93.4	90.6				
		12/11/	03	92.2	104.0				
				90.0	100.0				
			Mean	99.7	96.6				
		Summary	SD	6.7	9.4				
		Statistics	CV (%)	6.7	9.7				

	Table S – 17.	OVS Air Samp	les: Summa	ary of Field F	ortification Re	covery Samples	and Correspo	onding Adjustment Factors	
				Field Fo	ortification Red	covery (%)	Fie	ld Recovery Adjustment Fa by Measured Residue Rang	ictor e ^a
Study ID	Active Ingredient	Monitoring Date		Low level (0.05 ug)	Mid level (0.5 ug)	High level (100 ug)	≤0.275 ug	> 0.275 ug to \leq 50.25 ug	> 50.25 ug
				133	114	134			
		7/02/0	9	101	101	114			
				119	101	117			
				2014	195	112			
AHE62	Malathion	7/20/0	9 ⁶	570	171	104	1.18	1.05	1.20
			1	1103	192	103	_		
		Summary	Mean	118	105	122	_		
		Statistics	SD	16.0	7.5	10.8	-		
		Statistics	CV (%)	14	7	9			
		= (2 ,) (2 ,)		90.4	87.2	116			
		7/28/0	9	127	92.4	113			
				130	90.6	109			
				95.7	104	101			
AHE63	Carbaryl	8/5/0)	107	111	106	1.08	0.990	1.07
			1	95.3	109	95.6	-		
		Summary	Mean	108	99.0	107			
		Statistics	SD	17.1	10.2	7.6	-		
			CV (%)	16	10	7			
				120	90.7	106			
		8/24/0	9	147	94.8	108			
				108	104	124			
				103	112	113			
AHE64	Carbaryl	8/28/0	9	106	107	114	1.16	1.04	1.13
_				113	115	110	-		
		Summary	Mean	116	104	113	-		
		Statistics	SD	16.2	9.54	6.38	-		
2			CV (%)	14	9	6			
" Adjustmer Example: 0 mean.	1.275 is the midpo	nds to mean reco bint between 0.05	very percent and 0.5 ug.	tage for each r Residue resu	ecovery level. Its ≤ 0.275 ug v	Residue range co yould use the adj	rresponds to m ustment factor	adpoint between each fortific corresponding to the low leve	el recovery

^b Contamination suspected, thus results not used.

Study ID	Active Ingredient	NF 1 (1	D (Field Fortificat	tion Recovery (%)	Field Recovery A by Measured I	djustment Factor Residue Range ^a
		Monitoring	g Date	Low level (ug)	High level (ug)	< 25 025	> 25.025
				0.05	50	≤ 25.025	25.025
				116.2	103.4		
		10/07/0	3	109.2	110.8		
				113.8	106.6		
				112.6	112.4		
		10/08/0	3	114.2	109.2		
	Carbaryl			113.0	109.0		
		10/22/03		116.8	109.8		
				119.4	99.4		
AHE07				125.2	101.8		
				135.6	99.4		
		10/24/03	3	120.0	100.2	1.00	1.01
				196.2 ^b	98.6	1.09	1.01
				88.2	99.4		
		12/09/03	3	94.6	98.2		
				94.8	95.8		
				100.6	95.6		
		12/11/0	3	102.8	72.6		
				82.6	98.6		
			Mean	109.4	101.2		
		Summary	SD	13.8	9.0		
		Statistics	CV (%)	13	9		

^a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level. Example: 25.025 is the midpoint between 0.05 and 50 ug. Residue results \leq 25.025 ug would use the adjustment factor corresponding to the low level recovery mean.

^b Sample excluded as a statistical outlier.

		Table S - 1	9. Out
IN	Study ID	Active Ingredient	
ARCHIVE DOCUME	AHE07	Carbaryl	Sun
S EPA A	AHE62	Malathion	Sum
	AHE63	Carbaryl	

	Table S - 1	9. Outer Head Patches:	Summary of Fi	eld Fortification Recove	ery Samples and Corre	sponding Adjustment F	Factors
Study	Active	Monitoring D	ata	Field Fortificatio	n Recovery (%)	Field Recovery Ad by Measured Ro	justment Factor esidue Range ^a
ID	Ingredient	Monitoring D	ate	Low level (ug)	High level (ug)	< 2550	> 2550
				100	5000	≥ 2 5 50	- 2550
				93.9	91.6		
		10/07/03		95.7	106.8		
Study ID A Ing AHE07 Ca AHE62 Ma				102.0	108.6		
Study ID Au Ingr AHE07 Ca AHE07 Ca		10/08/03		100.0	107.8		
Study ID Add Ingr AHE07 Car AHE62 Mal		10/08/03	10/08/03		104.4		
Study ID Act Ingres AHE07 Cart AHE62 Mala				97.3	108.6		
Study ID Active Ingredie AHE07 Carbary AHE62 Malathia				85.6	105.8		
		10/22/03		92.3	107.6		
				74.4	104.8		
				84.5	104.8		
AHE07	Carbaryl	10/24/03		85.2	102.8	0.869	1.02
AHE07 (AHE62 N				81.9	98.8		
AHE07 Carba				75.8	97.0		
		12/09/03		78.9	97.2		
				84.5	96.2		
				83.9	96.6		
		12/11/03		78.0	97.2		
				79.3	94.2		
			Mean	86.9	101.7		
		Summary Statistics	SD	8.4	5.5		
			CV (%)	10	5.4		
				92.2	124		
		7/02/09		107	125		
				^b	^b		
AHE62 M				112	122		
	Malathion	7/20/09		103	116	1.06	1.20 ^c
				114	123		
			Mean	106	122		
		Summary Statistics	SD	8.7	3.5		
			CV (%)	8.2	3		
	Carborni	00/00/T		43.7	91.5	0.544	0.071
ALEOS	Carbaryi	1/28/09		50.1	102	0.344	0.971

	Table S - 1	9. Outer Head Patches:	Summary of Fi	eld Fortification Recove	ery Samples and Corres	ponding Adjustment F	actors			
Study	Active	Monitoring Data		Field Fortificatio	n Recovery (%)	Field Recovery Adj by Measured Re	justment Factor sidue Range ^a			
ID	Ingredient	Monitoring D	ate	Low level (ug)	High level (ug)	> 2550				
	-			100	5000	≤ 2 5 50	> 2550			
				56.8	91.4					
				54.8	104					
		8/5/09		59.5	104					
8/5/09				61.6	89.9					
			Mean	54.4	97.1					
		Summary Statistics	SD	6.6	6.9					
			CV (%)	12	7.1					
				63.3	84.3					
<u>63.3</u> <u>84.3</u> 8/24/09 <u>61.7</u> <u>95.7</u>										
				63.7	101					
				104	92.9					
AHE64	Carbaryl	8/28/09		94.7	100	0.796	0.952			
				90.2	97.5					
			Mean	79.6	95.2					
		Summary Statistics	SD	18.8	6.10					
	CV (%) 24 6.4									
^a Adjustm	Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level.									
Example:	2550 is the mi	dpoint between 100 and 50	00 ug. Residue	$results \leq 2550 \text{ ug would}$	use the adjustment facto	r corresponding to the lo	w level recovery			

^b Sample not taken.

^c Per AHETF SOPs, recovery means greater than 120% will use a maximum adjustment factor of 1.2

Tal	ble S – 20. AHE	62 – Inner Head	Patches: S	ummary o	f Field Fort	ification Recovery S	amples and Co	rresponding Adjustment Fa	actors	
		Monitoring Date		Field	Fortificatio	on Recovery (%)	Fie	Field Recovery Adjustment Factor by Measured Residue Range ^a		
AHE62 ^a Adjustment f Example: 52.	Active Ingredient			Low level (5 ug)	Mid level (100 ug)	High level (2000 ug)	≤ 52.5 ug	> 52.5 ug to ≤ 1050 ug	> 1050 ug	
				88.0		99.3				
		7/02/0	9	97.1		110				
				^b		^b				
				104	108					
AHE62	Malathion	7/20/0	9 ^b	103	108		1.01	1.09	1.05	
				115	111					
		G	Mean	101	109	105				
		Summary	SD	9.9	1.7	7.6				
		Statistics	CV (%)	10	16	7.2				
^a Adjustmer Example: 5 ^b Sample po	nt factor correspondent factor correspondent factor correspondent factor	nds to mean reco nt between 5 and	very percent 100 ug. Re	age for eac	h recovery let $s \le 52.5$ ug	evel. Residue range c would use the adjustn	corresponds to m nent factor corre	idpoint between each fortific sponding to the low level rec	cation level.	

		Table S – 2	21. I
IN	Study ID	Active Ingredient	
ARCHIVE DOCUM	AHE07	Carbaryl	
S EPA A	AHE63	Carbaryl	S
	AHE64	Carbaryl	

Study	Table S – 2	21. Inner Head Patches:	Summary of Fi	eld Fortification Recove	ery Samples and Corre	sponding Adjustment F	actors
				Field Fortificatio	n Recovery (%)	Field Recovery Ad	justment Factor
Study	Active	Monitoring D	ate		H	by Measured Re	esidue Range [*]
ID	Ingredient	U		Low level (ug)	High level (ug)	≤ 52.5	> 52.5
				5	100		
		10/07/02		94.6	108.0		
		10/07/05		90.0	103.0		
				99.8	107.0		
		10/08/03		99.2	112.0		
		10/08/03		93.0	108.0		
				75.0	85.0		
		10/22/03		79.4	83.2		
		10/22/05		76.4	105.0		
				78.0	92.1		
AHE07	Carbaryl	10/24/03		83.8	85.8	0.837	0 981
THIL:	Curouryr	10/21/05		72.4	92.9	0.007	0.901
				71.6	84.3		
		12/09/03		72.2	87.4		
				73.2	90.1		
				75.6	129.0		
		12/11/03		76.4	89.9		
				92.8	90.4		
			Mean	83.7	98.1		
		Summary Statistics	SD	10.6	12.7		
		-	CV (%)	13	13		
				93.6	57.5		
		7/28/09		74.2	65.6		
				81.4	61.1		
				59.7	50.0		
AHE63	Carbaryl	8/5/09		48.0 ^b	43.1 ^b	0.692	0.524
				58.2	37.1 ^b		
			Mean	69.2	52.4		
		Summary Statistics	Summary Statistics SD	16.9	11.0		
			CV (%)	24	21		
AHE64	Carbaryl	8/24/09		75.1	97.1	0.810	0.870
	Surouryi	0,21,09		79.4	79.2	0.010	0.070

IDIngredientHomorring DateLow level (ug)High level (ug) ≤ 52.5 IDIngredientIDIDHigh level (ug) ≤ 52.5 ID <td id<="" rowspan="4" t<="" th=""><th>Study</th><th>Active</th><th>Monitoring D</th><th>late</th><th>Field Fortificatio</th><th>on Recovery (%)</th><th>by Measured R</th></td>	<th>Study</th> <th>Active</th> <th>Monitoring D</th> <th>late</th> <th>Field Fortificatio</th> <th>on Recovery (%)</th> <th>by Measured R</th>	Study	Active	Monitoring D	late	Field Fortificatio	on Recovery (%)	by Measured R
5100 ≤ 32.3 69.884.386.31008/28/0992.682.673.282.673.2Summary StatisticsSDSD8.1010.3CV (%)101012a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each for Example: 52.5 is the midpoint between 5 and 100 ug. Residue results ≤ 52.5 ug would use the adjustment factor corresponding to the low level b Cause of low recovery not known.		ID	Ingredient	Monitoring D	all	Low level (ug)	High level (ug)	< 52 5
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $						5	100	<u> </u>
$\frac{8/28/09}{8/28/09} \qquad \qquad$						69.8	84.3	
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $					86.3	100		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			8/28/09		92.6	88.3		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					82.6	73.2		
Summary Statistics SD 8.10 10.3 CV (%) 10 12 a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each for Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low lev b Cause of low recovery not known.				Mean	81.0	87.0		
CV (%)1012a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each for Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low level b Cause of low recovery not known.			Summary Statistics	SD	8.10	10.3		
^a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each for Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low lev ^b Cause of low recovery not known.			-	CV (%)	10	12		
	- Adjustr	: 52.5 is the mi	esponds to mean recovery p dpoint between 5 and 100 u not known	ercentage for ea 1g. Residue resu	ach recovery level. Residults ≤ 52.5 ug would use t	he adjustment factor con	rresponding to the low le	
	Example ^b Cause c	<u>niow recovery</u>						
	Example ^b Cause of	<u>or low recovery</u>						

Study	Active	Marita	· · · · D · f ·	Field F	Fortification Recov	very (%)	Field F by N	Recovery Adjustment Fa Measured Residue Rang	actor je ^a
ID	Ingredient	Monitor	ing Date	Low level (ug)	Mid level (ug)	High level (ug)	< 52 5	> 52.5 mm 4m < 200 mm	> 200
				5	100	500	≤ 52.5	$> 52.5 \text{ ug to} \leq 500 \text{ ug}$	> 300
				82.8	91.1	77.6			
		10/0	07/03	88.6	90.8	93.2			
				85.2	90.0	96.8			
				86.6	89.2	104.0			
		10/0	08/03	88.0	88.2	107.6			
				87.8	87.6	105.0			
				48.2 72.6 89.2					
		10/2	2/03	54.0	69.7	91.2			
				71.0	69.3	86.0			
				61.2	77.5	97.2			
AHE07	E07 Carbaryl	10/2	24/03	65.8	78.8	81.2	0.692	0.775	0.925
				64.2	79.3	111.4			
				58.2	70.3	88.4			
		12/0	9/03	58.8	71.1	71.6			
				57.6	67.1	83.8			
				58.0	67.2	93.2			
		12/1	1/03	64.4	69.9	91.0			
				65.0	64.6	86.8			
		Summory	Mean	69.2	77.5	92.5			
		Summary Statistics	SD 13.6 9.6 10.2						
		Statistics	CV (%)	20	12	11			

^a Adjustment factor corresponds to mean recovery percentage for each recovery level. Residue range corresponds to midpoint between each fortification level. Example: 52.5 is the midpoint between 5 and 100 ug. Residue results \leq 52.5 ug would use the adjustment factor corresponding to the low level recovery mean. ^b Cause of low recovery not known.

				Table S – 23. 1	Inner Dosimete	r (Arms): F	ield Sample Result	S		
Study	MU	Active	Analytical M (ug/sa	Aethod Levels (mple) ^a		teter (Arms): Field Sample ResultsLower ArmUpper Arm 2° FFAF ^c Adj. Exp. (ug) ^d Raw Exp. bFFAF ^c Adj. Ex 0.977 75.439.40.84546 0.98 12551680.97717 0.977 19736.40.84543 0.98 3551280.97712 0.98 9082370.97722 0.98 141517540.9817 0.977 235970.97722 0.98 7266600.9867 0.977 2352080.97722 0.98 7266600.9867 0.98 33359.40.97726 0.98 5322780.97722 0.98 10052850.97725 0.98 7995890.9860 1.07 502830901.0728 0.746 69.645.10.74628 0.746 69.645.10.74660 0.958 86.312.00.74628 0.912 5.02.70.91233 0.912 44.044.40.91248 0.899 11582210.89987 0.992 514733810.99234 0.899 38478.60.89987 0.992 563116470.99216 0.843 2.0		rm		
ID	ID	Ingredient	LOQ	LOD	Raw Exp. ^b	FFAF ^c	Adj. Exp. (ug) ^d	Raw Exp. ^b	FFAF ^c	Adj. Exp. (ug) ^d
	1				73.7	0.977	75.4	39.4	0.845	46.6
	3]			1230	0.98	1255	168	0.977	172
	4]			192	0.977	197	36.4	0.845	43.1
	6]			348	0.98	355	128	0.977	131
	8				890	0.98	908	237	0.977	243
	10				1387	0.98	1415	1754	0.98	1790
	12				230	0.977	235	97	0.977	99.3
AHE07	13	Carbaryl	0.25		230	0.977	235	208	0.977	213
	15				711	0.98	726	660	0.98	673
	16]			326	0.98	333	59.4	0.977	60.8
	17]			44.9	0.845	53.1	21.2	0.845	25.1
	22				521	0.98	532	278	0.977	285
	23				985	0.98	1005	285	0.977	292
	26				783	0.98	799	589	0.98	601
	27				5380	1.07	5028	3090	1.07	2888
	A1				25.28	0.746	33.9	20.92	0.746	28.0
AHE62	A2	Malathion	1.0	0.3	51.9	0.746	69.6	45.1	0.746	60.5
	A3				82.7	0.958	86.3	12.0	0.746	16.1
	A1]			1085	0.882	1230	1064	0.882	1206
	A2]			3069	0.882	3480	1520	0.882	1723
AHE63	A3	Carbaryl	1.0	0.3	244	0.834	293	48.5	0.912	53.2
	A4				4.6	0.912	5.0	2.7	0.912	3.0
	A5				40.1	0.912	44.0	44.4	0.912	48.7
	A1				1041	0.899	1158	221	0.899	246
	A2				5106	0.992	5147	3381	0.992	3408
AHE64	A3	Carbaryl	1.0	0.3	345	0.899	384	78.6	0.899	87.4
	A4				5586	0.992	5631	1647	0.992	1660
	A5				1.7	0.843	2.0	< LOQ		0.50
^a When < ^b Calcula ^c FFAF= ^d Adjuste	< LOQ or ited from field forti ed Exposi	Control Con	rted, ½ LOQ or peak response nent factor. Fr sure ÷ Field Fo	: ½ LOD is used (e.g., ug/mL) om Supplement ortification Adju	l. Note no LOD al Tables S – 11 stment Factor	was derived a-b.	for AHE07 for any	sampling matri	x.	

]	Table S – 24. In	ner Dosimeter	(Torso): Fi	eld Sample Results			
Study	MU	Active	Analytical M (ug/sa)	ethod Levels mple) ^a	Inner Dosimeter (Torso): Field Sample Results Is Front Torso Rear Torso Raw Exp. ^b FFAF ^c Adj. Exp. (ug) ^d Raw Exp. ^b FFAF ^c Adj. 1 20.2 0.845 23.9 21.6 0.845 353 0.98 360 152 0.977 87.9 0.977 90.0 37 0.845 157 0.977 161 101 0.977 417 0.98 426 270 0.977 232 0.977 237 547 0.98 97.6 0.977 182 158 0.977 704 0.98 718 368 0.98 207 0.977 212 69.5 0.977 31.5 0.845 37.3 12.8 0.845 485 0.98 495 304 0.98 539 0.98 550 501 0.98 50.2 0.746 67.3 54.9 0.988			*SO		
ID	ID	Ingredient	LOQ	LOD	Raw Exp. ^b	FFAF ^c	Adj. Exp. (ug) ^d	Raw Exp. ^b	FFAF ^c	Adj. Exp. (ug) ^d
	1				20.2	0.845	23.9	21.6	0.845	25.6
	3				353	0.98	360	152	0.977	156
	4				87.9	0.977	90.0	37	0.845	43.8
	6				157	0.977	161	101	0.977	103
	8				417	0.98	426	270	0.977	276
	10				232	0.977	237	547	0.98	558
	12				97.6	0.977	99.9	50.6	0.845	59.9
AHE07	13	Carbaryl	0.25		178	0.977	182	158	0.977	162
	15				704	0.98	718	368	0.98	376
	16				207	0.977	212	69.5	0.977	71.1
	17				31.5	0.845	37.3	12.8	0.845	15.1
	22				485	0.98	495	304	0.98	310
	23				593	0.98	605	895	0.98	913
	26				539	0.98	550	501	0.98	511
	27				3660	1.07	3421	2630	0.98	2684
	A1				44.2	0.746	59.2	17.3	0.746	23.2
AHE62	A2	Malathion	1.0	0.3	50.2	0.746	67.3	54.9	0.958	57.3
	A3				78.7	0.958	82.2	13.5	0.746	18.1
	A1				1985	0.882	2251	419	0.834	502
	A2				833	0.834	999	402	0.834	482
AHE63	A3	Carbaryl	1.0	0.3	153	0.834	183	79.9	0.834	96
	A4				2.2	0.912	2.4	5.5	0.912	6.0
	A5				49.3	0.912	54.1	23.0	0.912	25.2
	A1				427	0.899	475	280	0.899	311
	A2				3531	0.992	3559	3642	0.992	3671
AHE64	A3	Carbaryl	1.0	0.3	131	0.899	146	38.9	0.843	46.1
	A4				1561	0.992	1574	5448	0.992	5492
	A5				< LOQ		0.50	< LOQ		0.50
^a When <	$I \overline{OO} or$	$< I \cap D$ is repo	rted 1/ I OO or	1/ I OD is used	Note no LOD y	van derived f	for A HE07 for any se	mpling matrix		

^a When < LOQ or < LOD is reported, ¹/₂ LOQ or ¹/₂ LOD is used. Note no LOD was derived for AHE07 for any sampling matrix. ^b Calculated from chromatogram peak response (e.g., ug/mL)

^c FFAF=field fortification adjustment factor. From Supplemental Tables S – 11a-b.

^d Adjusted Exposure = Raw exposure ÷ Field Fortification Adjustment Factor

			,	Table S – 25. In	nner Dosimeter	(Legs): Field	d Sample Results			
Study	MU	Active	Analytical N	Aethod Levels		Lower Leg	J		Upper L	eg
Study ID M AHE07 - AHE07 - AHE62 - AHE63 - AHE64 - AHE64 -	INC	Ingradiant	(ug/sa	ample) ^a		Lower Log	,		opper E	~5
ID	ID	Ingreulent	LOQ	LOD	Raw Exp. ^b	FFAF ^c	Adj. Exp. (ug) ^d	Raw Exp. ^b	FFAF ^c	Adj. Exp. (ug) ^d
	1				24.6	0.845	29.1	82.7	0.977	84.6
	3				26.8	0.845	31.7	187	0.977	191
	4				9.3	0.845	11.0	67	0.977	68.6
	6				10	0.845	11.8	43.7	0.845	51.7
	8				109	0.977	112	531	0.98	542
	10				15.6	0.845	18.5	64.2	0.977	65.7
	12				12.5	0.845	14.8	41.7	0.845	49.3
AHE07	13	Carbaryl	0.25		97.2	0.977	99.5	204	0.977	209
	15				43.8	0.845	51.8	326	0.98	333
	16				165	0.977	169	319	0.98	326
	17				12.5	0.845	14.8	12.8	0.845	15.1
	22				98.6	0.977	101	532	0.98	543
	23				122	0.977	125	1000	0.98	1020
	26				64.8	0.977	66.3	66.2	0.977	67.8
	27				261	0.977	267	553	0.98	564
	A1				79.0	0.958	82.5	45.9	0.746	61.5
AHE62	A2	Malathion	1.0	0.3	10.8	0.746	14.5	7.4	0.746	9.9
	A3				15.6	0.746	20.9	11.6	0.746	15.5
	A1				31.5	0.912	34.5	115	0.834	138
	A2				44.9	0.912	49.2	48.5	0.912	53.2
AHE63	A3	Carbaryl	1.0	0.3	36.5	0.912	40.0	70.9	0.834	85.0
	A4				2.1	0.912	2.3	1.8	0.912	2.0
	A5				12.4	0.912	13.6	4.8	0.912	5.3
	A1				63.7	0.899	70.9	460	0.899	512
	A2				261	0.899	290	466	0.899	518
AHE64	A3	Carbaryl	1.0	0.3	38.3	0.843	45.4	65.2	0.899	72.5
	A4				7023	0.992	7080	50233	0.992	50638
	A5				< LOQ		0.5	< LOQ		0.50
^a When <	$I \cap O \text{ or } \leq$	LOD is report	ed $\frac{1}{1}$ I OO or	¹ / ₄ I OD is used	Note no LOD y	vas derived fo	r AHE07 for any sa	mpling matrix		

^a When < LOQ or < LOD is reported, ½ LOQ or ½ LOD is used. Note no LOD was derived for Al ^b Calculated from chromatogram peak response (e.g., ug/mL)

^c FFAF=field fortification adjustment factor. From Supplemental Tables S – 11a-b. ^d Adjusted Exposure = Raw exposure \div Field Fortification Adjustment Factor

			Tab	ole S - 26. Head	l Patch (Inner a	and Outer): I	Field Sample Resul	ts		
Study	MU	Active	Analytical N	Aethod Levels		h (Inner and Outer): Field Sample Results Inner Head Patch Outer Head Patch w Exp. ^b FFAF ^c Adj. Exp. (ug) ^d Raw Exp. ^b FFAF ^c Adj. Exp. (u 1.3 0.837 1.6 636 0.869 732 2.3 0.837 2.7 3750 1.017 3687 0.133 1 0.133 234 0.869 269 0.41 0.837 0.49 1340 0.869 1542 8.2 0.837 9.8 6730 1.017 6618 0.133 1 0.133 993 0.869 143 0.3 0.837 0.36 498 0.869 573 0.64 0.837 1.1 2130 0.869 2451 1.3 0.837 1.6 1330 0.869 1530 0.133 1 0.133 271 0.869 2037 0.38 0.837 58.1 1770 0.869 779 0.59		Patch		
ID	ID	Ingredient		ample)"	Daw Evn ^b	EE A E ^c	Ad: Even (ug) ^d	Dow Even ^b	EE A E ^c	Adi Eve (ug) ^d
	1		LUQ	LOD	1 2	<u> </u>	Auj. Exp. (ug)	каw Ехр. 626	FFAF	Auj. Exp. (ug)
	2	-			1.3	0.837	1.0	2750	0.809	2697
	3	-			2.3	0.837	2.7	3730	0.860	260
	4	-			0.135	0.827	0.133	1240	0.809	1542
	0	-			0.41	0.837	0.49	6720	0.809	6619
	0	-			0.122	0.857	9.8	0/30	1.017	1142
	10	-			0.135	1	0.155	993	0.809	572
ALIE07	12	Carlsarral	0.25		0.3	0.837	0.30	498	0.809	373
AHEU/	15	Carbaryi	0.25		0.04	0.837	0.70	4300	1.01/	4287
	15	-			0.96	0.837	1.1	2130	0.869	2451
	10	-			1.3	0.837	1.0	1330	0.869	1530
	1/				0.133	1	0.133	2/1	0.869	312
	22	-			1.3	0.837	1.6	1460	0.869	1680
	23	-			48.6	0.837	58.1	1770	0.869	2037
	26	-			0.38	0.837	0.45	677	0.869	7/9
	27				0.59	0.837	0.70	7520	1.017	7394
	Al				6.00	1.01	5.90	354	1.06	334
AHE62	A2	Malathion	0.25	0.075	0.60	1.01	0.59	94.5	1.06	89.2
	A3				0.98	1.010	0.97	236	1.06	223
	Al	-			9.3	0.692	13.4	5498	0.971	5662
	A2	-			2.0	0.692	2.9	1454	0.544	2673
AHE63	A3	Carbaryl	0.25	0.075	2.6	0.692	3.8	2253	0.544	4142
	A4	_			< LOQ		0.13	10.4	0.544	19.1
	A5				< LOD		0.04	71.6	0.544	132
	A1	-			0.89	0.81	1.1	1095	0.796	1376
	A2	-			1.1	0.81	1.4	5836	0.952	6130
AHE64	A3	Carbaryl	0.25	0.075	0.39	0.81	0.48	139	0.796	175
	A4				0.43	0.81	0.53	12452	0.952	13080
	A5				< LOD	NA	0.04	0.58	0.796	0.73
^a When <	IOOor <	I OD is report	$d \frac{1}{1} I 00 or$	1/ I OD is used	Note no LOD	vas derived fo	r AHE07 for any co	mpling motrix		

^a When < LOQ or < LOD is reported, ¹/₂ LOQ or ¹/₂ LOD is used. Note no LOD was derived for AHE07 for any sampling matrix. ^b Calculated from chromatogram peak response (e.g., ug/mL)

^c FFAF=field fortification adjustment factor. From Supplemental Tables S – 15-16a-b.

^d Adjusted Exposure = Raw exposure ÷ Field Fortification Adjustment Factor

				Table S	5 - 27. Face/Nec	k Wipe Field Sample Results			
					D	Face/N	Neck Exposure Adjustmen	its	
Study ID	MU ID	Active Ingredient	Analytical N (ug/sa	mple) ^a	Raw Exposure	Field Fortification	PPE Adjustment	Adjusted E (ug)	xposure ^e
		0	LOQ	LOD	(ug)	Adjustment Factor	Factor	Non-MEA	MEA ^f
	1				76.7	0.955	1.0	80.3	161
	3				155	0.955	1.0	162	324
	4				28.2	0.849	1.0	33.2	66.4
	6				88.6	0.955	1.0	92.8	186
	8				913	0.955	1.0	956	1912
	10				51.7	0.849	1.0	60.9	122
	12				47.7	0.849	1.0	56.2	112
AHE07	13	Carbaryl	1.0		45.2	0.849	1.0	53.2	106
	15				281	0.955	1.0	294	588
	16				43.3	0.849	1.0	51.0	102
	17				13.1	0.849	1.0	15.4	30.8
	22				325	0.955	1.0	340	680
	23				493	0.955	1.0	516	1032
	26				498	0.955	1.0	521	1042
	27				2420	0.955	1.0	2534	5068
	A1				12.04	1.02	1.1	13	26.0
AHE62	A2	Malathion	1.0	0.3	56.2	0.928	1.1	66.7	133
	A3				75.6	0.928	1.1	89.7	179
	A1				518	0.899	1.0	576	1152
	A2				37.9	0.983	1.2	46.3	92.6
AHE63	A3	Carbaryl	1.0	0.3	114	0.899	1.0	127	254
	A4				3.2	0.983	1.0	3.3	6.6
	A5				41.2	0.983	1.0	41.9	83.8
	A1				221	0.847	1.0	261	522
	A2				3133	0.917	1.0	3417	6834
AHE64	A3	Carbaryl	1.0	0.3	42.6	0.878	1.2	58.2	116
	A4				2689	0.917	1.0	2932	5864
	A5				40.8	0.878	1.2	55.8	112

When < LOQ or < LOD is reported, ½ LOQ or ½ LOD is used. Note no LOD was derived for AHE07 for any sampling matrix.

^b Calculated from chromatogram peak response (e.g., ug/mL)

^c From Supplemental Tables – 12a-b.

^d PPE characterized in Supplemental Table S – 5. PPE Adjustment Factors discussed in Section 3.2.2.

^e Adjusted Exposure = Raw Exposure ÷ FF Adjustment Factor * PPE Adjustment Factor

^f MEA = method efficiency adjustment. Data reflects a 2X adjustment to account for potential residue collection method inefficiencies. See Section 3.3.3 for more details. Only utilized for total dermal exposure with chemical-resistant hats (i.e., this adjustment is not applicable to exposure estimates without CR hats).

					Ta	ble S - 28	. Hand Was	h Field San	nple Resu	lts				
			Anal	ytical				Hand Was	h Sample	b			То	tal
Study	MIT	Activo	Met	thod	#	1	# 2		#	3	#	4	(u	g) ^e
ID	ID	Ingredient	Le [.] (ug/sa LOQ	vels mple) ^a LOD	Raw Exp. (ug) ^c	FFAF ^d	Raw Exp. (ug) ^c	FFAF ^d	Raw Exp. (ug) ^c	FFAF ^d	Raw Exp. (ug) ^c	FFAF ^d	Non- MEA	MEA ^f
	1				79.8	0.966	145	0.966	185	0.966			424	848
	3				1080	0.966	347	0.966	361	0.966			1851	3702
	4				21.7	0.966	114	0.966	37.6	0.966			179	358
	6				6.55	0.966	12.2	0.966	20.0	0.966	171	0.966	217	434
	8				781	0.966	640	0.966	484	0.966	2100	0.966	4146	8292
	10				86.7	0.966	179	0.966					275	550
	12				4.29	0.997	46.9	0.997					51.4	103
АПЕ0 7	13	Carbaryl	1.0		64.4	0.966	132	0.966					203	406
/	15				16.8	0.966	138	0.966					160	320
	16				109	0.966	267	0.966					389	778
	17				6.62	0.997	4.76	0.997					11.4	22.8
	22				663	0.966	893	0.966					1614	3228
	23				847	0.966							877	1754
	26				811	0.966							840	1680
	27				578	0.966	253	0.966	1940	0.966			2869	5738
	A1				46.8	0.984	207.6	0.933					271	542
	A2	Malathion	1.0	0.3	14.8	0.984							15.0	30.0
2	A3				3.3	0.984	10.2	0.984					13.8	27.6
	A1				52.2	1.11	215	1.10					242	484
	A2				247	1.10							225	450
	A3	Carbaryl	1.0	0.3	64.8	1.10							58.9	118
5	A4				5.9	1.11	12	1.11					16.1	32.2
	A5				33.2	1.11							29.9	59.8
	A1				168	1.03	333	1.03					486	972
A HE6	A2				1152	1.12							1029	2058
	A3	Carbaryl	1.0	0.3	428	1.03							416	832
7	A4				1546	1.12							1380	2760
	A5				< LOQ								0.5	1.0

When \leq LOQ or \leq LOD is reported, $\frac{1}{2}$ LOQ or $\frac{1}{2}$ LOD is used. Note no LOD was derived for AHE07 for any sampling matrix.

^b Hand washes were conducted prior to lunch or bathroom breaks and at the end of the day.

^c Calculated from chromatogram peak response (e.g., ug/mL)

^d FFAF = field fortification adjustment factor. From Supplemental Tables S^{-} 13a-b.

^e Total Hand Exposure = [Hand Wash $\#1 \div$ FF Adjustment Factor] + [Hand Wash $\#2 \div$ FF Adjustment Factor] ...+ [Hand Wash $\#N \div$ FF Adjustment Factor] ^f MEA = method efficiency adjustment. Data reflects a 2X adjustment to account for potential residue collection method inefficiencies. See Section 3.3.4 for more details. Only utilized for total dermal exposure with chemical-resistant hats (i.e., this adjustment is not applicable to exposure estimates without CR hats).

			Table S - 29. Socks	s (AHE07 only): Fiel	d Sample Results		
Study ID	MU ID	Active	Analytical N (ug/sa	Tethod Levels		Socks	
-		Ingredient	LOQ	LOD	Raw Exp. ^b	FFAF^c	Adj. Exp. (ug) ^d
	1				1.5	0.692	2.2
	3				1.2	0.692	1.7
Table S - 29. Socks (AHE07 only): Field Sample Results Study ID MU ID Active Ingredient Analytical Method Levels (ug/sample) ^a Socks 1 Image: Ingredient Image: Ingredient Image: Ingredient Socks 1 Image: Ingredient Image: Ingredient Image: Ingredient Image: Ingredient Socks 3 Image: Ingredient Image: Ingredient <td>0.39</td>			0.39				
Table S - 29. Socks (AHE07 only): Field Sample Results Study ID MU ID Active Ingredient Analytical Method Levels (ug/sample) ^a Socks 1 1 1.5 0.692 1 3 4 1.2 0.692 1 4 0.27 0.692 1 6 0.27 0.692 1 10 0.59 0.692 1 112 0.64 0.692 1 112 0.55 0.692 1 112 0.55 0.692 1 112 0.55 0.692 1 112 0.64 0.692 1 113 Carbaryl 0.25 0.41 0.692 16 17 0.67 0.692 1 1 12 22 0.61 0.692 1 1 13 Carbaryl 0.25 0.41 0.692 1 14 0.692 0.67			0.85				
Table S - 29. Socks (AHE07 or Analytical Method Leve (ug/sample)aStudy IDMU IDActive IngredientAnalytical Method Leve (ug/sample)a 1 1 10 10 4 6 8 10 12 10 12 13 Carbaryl 16 16 17 22 23 26 27 26 27 10 by LOD is used. Note no LOD wa b Calculated from chromatogram peak response (e.g., ug/mL) c FFAF=field fortification adjustment factor. From Supplemental Table S – 17. d Adjusted Exposure = Raw exposure \neq Field Fortification Adjustment Factor.				16.1	0.692	23.3	
	10				0.64	0.692	0.92
	12				0.55	0.692	0.79
AHE07	13	Carbaryl	0.25		0.41	0.692	0.59
	15				4.6	0.692	6.6
	16				5.8	0.692	8.4
10 0.64 0.692 12 0.25 0.55 0.692 15 0.41 0.692 0.41 16 17 5.8 0.692 0.67 0.692 0.692				0.97			
	22				0.81	0.692	1.2
	23				4.8	0.692	6.9
	26				5	0.692	7.2
	27				83.7	0.775	108
^a When < LOQ	or < LOD is r	reported, 1/2 LOQ or 1/2	/2 LOD is used. Note	no LOD was derived	for AHE07 for any san	npling matrix.	
^b Calculated fro	om chromatog	ram peak response (e	e.g., ug/mL)				
^c FFAF=field f	ortification adj	justment factor. From	m Supplemental Tabl	e S−17.			
^a Adjusted Exp	osure = Raw e	exposure ÷ Field Fort	tification Adjustment	Factor			

Table S - 30. Head Exposure with and without Chemical-Resistant Hats (Face/Neck Wipes plus Inner and Outer Head Face/Neck Wipe Head Patch Total Study MU (ug) ^a Inner (ug) Outer (ug) w/a CB										
		Face/Neck	k Wipe			Total Hea	ad Exposur	e (ug)		
Study	MU	(ug) ^a	a		Inner (ug)		Outer (ug)	w/o CR	With C	R Hat ¹
ID	ID	Non- MEA	MEA	Adj. Exp. ^b	Extrapolated to Non- wiped Head Areas ^c	Adj. Exp. ^b	Extrapolated to Non-wiped Head Areas ^d	Hat ^e	Non- MEA	MEA
	1	80.3	161	1.6	9.58	732	8769	8859	89.9	170
	3	162	324	2.7	16.17	3687	44170	44348	178	340
	4	33.2	66.4	0.133	0.75	269	3223	3257	33.9	67.1
	6	92.8	186	0.49	2.94	1542	18473	18569	95.7	189
	8	956	1912	9.8	58.70	6618	79284	80298	1015	1971
	10	60.9	122	0.133	0.75	1143	13693	13755	61.6	123
	12	56.2	112	0.36	2.16	573	6865	6923	58.4	115
AHE07	13	53.2	106	0.76	4.55	4287	51358	51416	57.8	111
	15	294	588	1.1	6.59	2451	29363	29664	301	595
	16	51.0	102	1.6	9.58	1530	18329	18390	60.6	112
	17	15.4	30.8	0.133	0.75	312	3738	3754	16.1	31.5
	22	340	680	1.6	9.58	1680	20126	20476	350	690
	23	516	1032	58.1	348.02	2037	24403	25267	864	1380
	26	521	1042	0.45	2.70	779	9332	9856	524	1045
	27	2534	5068	0.70	4.19	7394	88580	91118	2538	5072
	A1	13	26.0	5.90	35.34	334	4001	4050	48.3	61.3
AHE62	A2	66.7	133	0.59	3.53	89.2	1069	1139	70.2	137
	A3	89.7	179	0.97	5.81	223	2672	2767	95.5	185
	A1	576	1152	13.4	80.27	5662	67831	68487	656	1232
	A2	46.3	92.6	2.9	17.37	2673	32023	32086	63.7	110
AHE63	A3	127	254	3.8	22.76	4142	49621	49771	150	277
	A4	3.3	6.6	0.13	0.78	19.1	229	233	4.1	7.4
	A5	41.9	83.8	0.04	0.24	132	1581	1623	42.1	84.0
	A1	261	522	1.1	6.59	1376	16484	16752	268	529
	A2	3417	6834	1.4	8.39	6130	73437	76863	3425	6842
AHE64	A3	58.2	116	0.48	2.88	175	2097	2158	61.1	119
	A4	2932	5864	0.53	3.17	13080	156698	159634	2935	5867
	A5	55.8	112	0.04	0.24	0.73	9	64.8	56.0	112

^b Head patch exposures from Supplemental Table S – 19. ^c Inner head patch extrapolated to areas of the head not wiped using the Face/Neck wipe by adjusting the estimated surface area of the head not wiped by the

Face/Neck wipe (599 cm2) and the surface area of the inner head patch (100 cm²), as follows: Inner Head Patch value (ug) * (599 cm²/100 cm²). ^d Outer head patch extrapolated to areas of the head not wiped using the Face/Neck wipe by adjusting the estimated surface area of the head not wiped by the Face/Neck wipe (599 cm2) and the surface area of the outer head patch (50 cm²), as follows: Outer Head Patch value (ug) * (599 cm²/50 cm²). ^e Head Exposure without CR Hats (ug) = Face/Neck Wipe (µg) + Extrapolated Inner Head Patch (ug) + Extrapolated Outer Head Patch (ug). Note only "Non-MEA" face/neck wipe values are used for this estimate.

^f Head Exposure with CR Hats (ug) = Face/Neck Wipe (μ g) + Extrapolated Inner Head Patch (ug).

							r	Fable S -	31. Tot	al Derma	l Expos	ures						
						Dody	a			Ца	nd ^b	Н	ead ^c			Total F	Exposure	
Study	MU	BW				Douy (III)				11a (11	nu a)	(μg)	Feetd	()	ug) ^e	(µg	g/kg) ^f
ID	ID	(kg)		1	1	(µg)	1	1	1	(µ	5)	with	w/o	(ug)	with	w/o	with	w/o CR
		(8)	LA	UA	FT	RT	LL	UL	Total	Non-	MEA	CR	CR	(CR	CR	CR	Hat
	1	61	75.4	16.6	22.0	25.6	20.1	04.6	205	MEA 42.4	0.40	Hat	Hat	2.2	Hat	Hat	Hat	107.65
	1	51	/5.4	46.6	23.9	25.6	29.1	84.6	285	424	848	1/0	8859	2.2	1305	9570	25.59	187.65
	3	/3	1255	1/2	360	156	31./	191	2166	1851	3702	340	44348	1./	6210	48367	85.07	662.56
	4	118	197	43.1	90.0	43.8	11.0	68.6	454	1/9	358	6/.1	3257	0.39	8/9	3890	7.45	32.97
	6	68	355	131	161	103	11.8	51.7	814	21/	434	189	18569	0.85	1438	19601	21.15	288.25
	8	64	908	243	426	276	112	542	2507	4146	8292	19/1	80298	23.3	12/93	869/4	199.89	1358.97
	10	94	1415	1/90	237	50.0	18.5	65.7	4084	2/5	550	123	13/55	0.92	4/58	18115	50.62 9.25	192./1
	12	93	235	99.3	99.9	59.9	14.8	49.3	338	51.4	103	115	6923	0.79	1(10	/533	8.35	81.00
AHE0/	15	//	235	213	182	162	99.5 51.9	209	2070	203	406	505	51416	0.59	1619	52/21	21.03	684.69
	15	6/	/26	6/3	/18	3/6	51.8	333	28/8	160	320	595	29664	0.0	3800	32709	56.72	488.19
	16	109	535	60.8	212	/1.1	169	326	11/2	389	//8	112	18390	8.4	2070	19959	18.99	183.11
	17	89	53.1	25.1	37.3	15.1	14.8	15.1	161	11.4	22.8	31.5	3/54	0.97	216	3927	2.43	44.12
	22	96	532	285	495	310	101	543	2266	1614	3228	690	20476	1.2	0185	24357	64.43	253.72
	23	127	1005	292	605	913	125	1020	3960	8//	1/54	1380	25267	6.9	/101	30111	55.91	237.09
	26	//	799	001	2421	2(94	00.3	6/.8	2595	840	1680	1045	9856	1.2	3327	13298	09.18	1/2./0
	2/	99	5028	2888	50.2	2684	267	564	14852	2869	5/38	50/2	91118	108	25770	108947	260.30	1100.4/
	AI	/3	33.9	28.0	59.2	23.2	82.5	01.5	288	2/1	20.0	01.3	4050		891	4609	12.21	03.14
AHE62	A2	83	69.6	60.5	67.3	5/.5	14.5	9.9	279	15.0	30.0	13/	27(7		446	1433	5.37	1/.2/
	A3	89	80.3	10.1	82.2	18.1	20.9	15.5	239	13.8	27.0	185	2/6/		452	3020	5.08	33.93
	AI	114	1230	1206	2251	502	34.5	138	5362	242	484	1232	6848/		7078	/4091	62.09	649.92
	A2	/9	3480	52.2	999	482	49.2	55.2 95.0	6/86	225	450	277	32086		/ 340	50590	92.99	494.90
AHE03	AS	83	293	35.2	185	90	40.0	85.0	750	38.9	118	2//	49//1		1145	20280	13.80	009.40
	A4	92	5.0	3.0	2.4	0.0	2.3	2.0	20.7	10.1	50.8	/.4	233		00.5	270	0.00	2.95
	A5	89	44.0	48.7	34.1	25.2	13.0	5.5	191	29.9	59.8 072	84.0 520	1025		333	1844	3.70	20.72
	AI	90	5147	240	4/5	2(71	70.9	512	2//3	480	972	529	10/52		42/4	20011	47.49	1250.90
	A2	/5	294	3408	3339	30/1	290	518 72.5	10393	1029	2058	0842	/0803		25495	94485	19.04	1259.80
AHE04	AS	90	564	8/.4	140	40.1	45.4	12.5	/81	410	832	59(7	2138		1/32	222090	18.04	34.95
	A4	92	2021	1000	15/4	5492	/080	0.50	12075	1380	2/60	380/	159054		80702	233089	8/7.20	2555.58
^a D	AS	86	2.0	0.50	0.50	0.50	0.5	0.50	4.5	0.5	1.0	<u> </u>	64.8		118	69.8	1.3/	0.81
Dermai	body e	exposur	es from	DT 1		Tables 3	5 - 18a-	c. $LA =$	lower arr	n; $UA = i$	upper arr	n; FI =	front torso	$; \mathbf{K}\mathbf{I} = \mathbf{r}$	ear torso	; $LL = 10W$	er leg; Ul	L = upper
^b Uand a	$a_{I} = LA$	A + UA	+ F I +	KI + L	L + UL	21												
Hand e	xposur	e from	Suppler	nental I	able S	-21.												

^c Head exposure from Supplemental Table S - 22. Note that MEA data presented for head exposure with CR hats.

^d Feet exposure from Supplemental Table S - 23.

^e Total Exposure (μg) = Total Body + Hands + Feet (AHE07 only) + Head. Note for exposure with CR hats, only estimates using MEA hand wash and face/neck wipe data are shown (see Section 3.4.1).

^f Total Exposure (ug/kg) = Total Exposure (ug) \div Body Weight (kg). Note for exposure with CR hats, only estimates using MEA hand wash and face/neck wipe data are shown. (see Section 3.4.1).

Table S - 32. OVS Air Sample Field Results and Inhalation Exposure															
			Active Ingredient	Analytical Method Levels (ug/sample) ^a		Measured Residue Inhalation Exposure						re			
Study ID	NATT	DW				F	Front Section Back Section			on	р (1	n			
	MU ID	BW (kg)				Raw			Raw			Breath	Pump	Total	
		(Kg)		100	LOD	Exp.	FFAF ^c	Auj. Evn ^d	Exp.	FFAF ^c A	Auj. Evn ^d	d (LDM)	(I DM)		
				LUQ	LOD	(ug) ^b		Evb.	(ug) ^b		тур.			(ug) ^e	(ug/kg) ^e
	1	51	_			4.1	1.094	3.7		NA		8.3	2.00	15.4	0.302
	3	73				14.2	1.094	13.0		NA		8.3	2.00	54.0	0.740
	4	118				4.9	1.094	4.5		NA		8.3	2.00	18.7	0.158
	6	68	Carbaryl	0.01		13	1.094	11.9		NA		8.3	2.05	48.2	0.709
	8	64				73.9	1.012	73.0		NA		8.3	2.05	296	4.625
	10	94				9.5	1.094	8.7		NA		8.3	2.10	34.4	0.366
	12	93				11.7	1.094	10.7		NA		8.3	2.10	42.3	0.455
AHE07 ^f	13	77				10.6	1.094	9.7		NA		8.3	2.05	39.3	0.510
	15	67				9.5	1.094	8.7		NA		8.3	2.05	35.2	0.525
	16	109				8.6	1.094	7.9	NA		8.3	2.05	32.0	0.294	
	17	89				5	1.094	4.6	NA		8.3	2.05	18.6	0.209	
	22	96		0.05		13.5	1.094	12.3		NA		8.3	2.00	51.0	0.531
	23	127				9.3	1.094	8.5		NA		8.3	2.00	35.3	0.278
	26	77				8.2	1.094	7.5		NA		8.3	2.05	30.4	0.395
	27	99				129	1.012	127.5		NA		8.3	2.00	529	5.343
	A1	73	Malathion	0.01	0.0015	7.50	1.05	7.14	0.0208	1.18	0.0176	8.3	1.95	30.5	0.418
AHE62	A2	83				8.80	1.05	8.38	< LOD		0.00075	8.3	1.95	35.7	0.430
	A3	89				10.66	1.05	10.15	< LOD		0.00075	8.3	1.90	44.3	0.498
	A1	114	Carbaryl	0.005	0.0015	28.45	0.990	28.74	< LOD		0.00075	8.3	2.04	117	1.026
	A2	79				5.23	0.990	5.28	< LOD		0.00075	8.3	2.01	21.8	0.276
AHE63	A3	83				16.36	0.990	16.53	< LOD		0.00075	8.3	2.03	67.6	0.814
	A4	92				0.78	0.990	0.79	< LOD		0.00075	8.3	2.01	3.25	0.035
	A5	89				7.31	0.990	7.38	< LOQ		0.00250	8.3	2.02	30.3	0.340
AHE64	A1	90	Carbaryl	0.005	0.0015	10.81	1.04	10.39	< LOQ		0.00250	8.3	2.02	42.7	0.474
	A2	75				3.72	1.04	3.58	< LOQ		0.00250	8.3	2.05	14.5	0.193
	A3	96				3.38	1.04	3.25	< LOD		0.00075	8.3	2.01	13.4	0.140
	A4	92				1.68	1.04	1.62	< LOD		0.00075	8.3	2.02	6.66	0.072
	A5	86				0.082	1.16	0.07	< LOD		0.00075	8.3	2.02	0.294	0.003
^a When \leq LOQ or \leq LOD is reported, $\frac{1}{2}$ LOQ or $\frac{1}{2}$ LOD is used.															
^c Calculated from chromatogram peak response (e.g., ug/mL)															
$^{\circ}$ FFAF = field fortification adjustment factor. From Supplemental Tables S – 14a-b.															

^e Total Exposure = [Adjusted front section + Adjusted back section] * [Breathing Rate ÷ Pump Flow Rate] ^f OVS sampler sections not analyzed separately. Results for "Front Section" represent a composite of the sections. **US EPA ARCHIVE DOCUMENT**

^d Adjusted Exposure = Raw Exposure ÷ FF Adjustment Factor

				Table S - 33. De	rmal and Inhalation	Unit Exposures			
Study ID	MIT			Derma	Inhalation Exposure				
	ID	AaiH	Total	(µg) ^a	Unit Exposu	re (ug/lb ai) ^b	T - 4 - 1 () ⁶		
			with CR Hat ^d	w/o CR Hat	with CR Hat ^d	w/o CR Hat	i otai (ug)	Unit Exposure (ug/10 al)	
AHE07	1	75	1305	9570	17.4	128	15.4	0.205	
	3	45	6210	48367	138	1075	54.0	1.20	
	4	75	879	3890	11.7	51.9	18.7	0.249	
	6	60	1438	19601	24.0	327	48.2	0.803	
	8	52	12793	86974	246	1673	296	5.68	
	10	32	4758	18115	149	566	34.4	1.07	
	12	33	777	7533	23.5	228	42.3	1.28	
	13	36	1619	52721	45.0	1464	39.3	1.09	
	15	24	3800	32709	158	1363	35.2	1.47	
	16	40	2070	19959	51.8	499	32.0	0.800	
	17	34	216	3927	6.4	116	18.6	0.548	
	22	60	6185	24357	103	406	51.0	0.851	
	23	90	7101	30111	78.9	335	35.3	0.392	
	26	90	5327	13298	59.2	148	30.4	0.337	
	27	90	25770	108947	286	1211	529	5.88	
AHE62	A1	34.3	891	4609	26.0	134	30.5	0.889	
	A2	5.0	446	1433	89.2	287	35.7	7.13	
	A3	10.4	452	3020	43.5	290	44.3	4.26	
	A1	48.4	7078	74091	146	1531	117	2.42	
	A2	35.6	7346	39097	206	1098	21.8	0.612	
AHE63	A3	24.4	1145	50580	46.9	2073	67.6	2.77	
	A4	15.2	60.3	270	4.0	17.8	3.25	0.214	
	A5	6.1	335	1844	54.9	302	30.3	4.97	
AHE64	A1	63.1	4274	20011	67.7	317	42.7	0.677	
	A2	10.1	25493	94485	2524	9355	14.5	1.44	
	A3	35.3	1732	3355	49.1	95.0	13.4	0.380	
	A4	25.2	80702	233089	3202	9250	6.66	0.264	
	A5	18.2	118	69.8	6.5	3.8	0.294	0.00026	
^a See Supp	olemental	Tables S -	- 24.						

^b Unit Exposure (μg /lb ai) = Exposure (μg) ÷ AaiH (lbs). ^c See Supplemental Tables S – 25. ^d Dermal exposure with CR hats reflects MEA hand wash and face/neck wipe data.

	Table S - 34. Protocol	Amendments and Deviations					
Study	Survey of Amondation to	Summary of Deviations					
ID	Summary of Amenuments	Field Phase	Analytical Phase				
AHE62	 Amended once to incorporate comments from EPA, California Department of Pesticide Regulation, and HSRB. Protocol Amendment 1 Inclusion criteria amended to allow participation of workers who normally wear two layers of clothing. Recruitment area expanded to allow any county in CA or WA. Removed efficient configuration requirement if recruitment area is expanded. 	 <u>Reported</u>: 1. On study day 1, inner and outer head patch field fortifications were conducted in duplicate instead of triplicate, and on study day 1, no samples were taken for the higher fortification level (100 ug) for the inner head patches. 	Field fortification solutions for some lots were not verified to establish concentration.				
	 Added a new malathion product to possible test products (the active ingredient malathion was already an approved surrogate) Protocol Amendment 3 Specified the analytical methods to be used for head patches 	<u>Unreported</u> : 1. Subject A2 was monitored for 174 minutes, although the protocol requires a minimum 4-hour period.					
AHE63	 Amended once to incorporate comments from EPA and HSRB. Protocol Amendment 1 Recruitment process modified to permit use of recruitment letters Reduce heat index triggering stopping rule lowered from 120° F to 105° F Amend dermal exposure sampling procedure to specify that the inner dosimeters would be cut into 6 sections rather than 2 sections Revise analytical methods to make them appropriate for dosimeters sectioned into 6 pieces Amend protocol to clarify the AHETF's raw data retention policy Protocol Amendment 2 Amended analytical method for head patches 	Reported: 1. Subject A5 applied only 2 tank loads and sprayed for only 2 hours, although the protocol specifies that each subject should apply a minimum of 3 tank loads over a minimum time of 4 hours; also, the highest stratum (56 to 100 lbs a.i.) was not achieved; the highest amount sprayed was 48 lbs a.i Unreported: 1. None	 The analytical laboratory deviated from methodologies related to analysis of carbaryl in inner dosimeters The analytical lab deviated from methodologies related to analysis of carbaryl in face/neck wipe samples 				
AHE64	 Amended once to incorporate comments from EPA and HSRB. Protocol Amendment 1 Recruitment process modified to permit use of recruitment letters Recruitment area expanded to allow counties adjacent to Tulsa County. Oklahoma 	 <u>Reported</u>: 1. Subjects A2, A3, A4, A5 each applied only 2 tank loads and sprayed for less than 4 hours, although the protocol specifies that each subject should apply a 	1. The analytical laboratory deviated from analytical methodologies related to analysis of carbaryl in inner dosimeters.				

Table S - 34. Protocol Amendments and Deviations							
Study	Summary of Amondmonta	Summary of Deviations					
ID	Summary of Amendments	Field Phase	Analytical Phase				
	 Removed efficient configuration requirement if recruitment area is expanded. Amended dermal exposure sampling procedure to specify that the inner dosimeters would be cut into 6 sections Revise analytical methods to make them appropriate for dosimeters cut in 6 sections 	minimum of 3 tank loads over a minimum time of 4 hours. Also, the lowest stratum (5 to 9 lbs a.i.) was not achieved; the lowest amount sprayed was 10 lbs a.i.					
	Protocol Amendment 2 The study director was changed from Eric D. Bruce to Larry D. Smith offentive Sentember 14, 2000 (after study alonger)	<u>Unreported</u> : 1. None					
	The study director was changed from Eric D. Bruce to Larry D. Smith, effective September 14, 2009 (after study closure)	I. None					