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Related Studies

e There are numerous modeling studies on the effects
of vegetation canopy on boundary layer turbulence.

e Street canyon studies provide good background on
micro-scale modeling.



Vegetation model

Sink term on momentum equation:

S, =—c, -a-‘b"l-uf

Source term on turbulent kinetic energy (k) transport equation:

S, = cda(ﬂp‘U ‘_ B, U\k)

Source term on turbulent kinetic energy dissipation (&)
transport equation:
8)
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Computational Fluid Dynamics (CFD) models

Solving Navier-Stokes equations using finite difference and
finite volume methods in two or three dimensions.

Turbulence is modeled using different formulations, e.g.,
Reynolds-averaged Navier—Stokes approach (k—& model, RNG
k—& model, Realizable k—€ model), and Large-Eddy Simulation
(LES) approach.

Computational cost depending on resolution
Widely used in street canyon simulations
Recently used in modeling air quality near large roads

CFD capable of simulating vegetation effects: URVE, ENVI-
MET, M2UE, ...



QUIC (Quick urban & Industrial complex)

Does not solve Navier-Stokes equations

The buildings and stands of trees treated as solid, non-
porous, rectangular blocks

Use empirical formulation of flow around blocks to predict
the flow patterns in the entire domain

Relatively computationally inexpensive

Employed in several studies on noise and vegetation barriers
(Bowker et al., 2006; Bowker et al., 2007)

Bowker, G.E., Gillette, D.A., et al. (2006). Modeling flow patterns in a small vegetated area in the northern
Chihuahuan Desert using QUIC (Quick Urban & Industrial Complex). Environmental Fluid Mechanics 6, 359-384.
Bowker, G. E., R. Baldauf, et al. (2007). "The effects of roadside structures on the transport and dispersion of
ultrafine particles from highways." Atmospheric Environment 41(37): 8128-8139.
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Bowker, G. E., R. Baldauf, et al. (2007). Atmospheric Environment 41(37): 8128-8139



Noise Barriers: Simulations of wind tunnel data
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Hagler et al., Computational fluid dynamics modeling to assess the
impact of roadside barriers on near-road air quality. CWE2010

Heist, D. K., S. G. Perry, et al. (2009) Atmospheric Environment Bargitr Height= 1H
43(32): 5101-5111




URban VEgetation module (URVE) - 1

CO conc. (ng.m™)

LT[R

The alignment of the trees with the incoming wind increases the ventilation
and efficiency of the CO removal. However, in specific areas the trees
induce the rearrangement of vortices that lead to the formation of additional
hot-spots.

Amorim et al., (2010) CLIMAQS conference



URban VEgetation module (URVE) - 2

The obligue roof-level incoming
winds induce a counter-clockwise
swirling flow inside the avenue. This
spiral airflow transports the pollutant
emitted near ground level by traffic
towards the leeward side of the
street-canyon through the open
space under the foliage.

With no space available in the trunk
region, the canopy would trap the
pollutants within the lateral
boundaries of the Avenue, sheltering
the buildings from the direct impact
of traffic emissions.

Amorim et al., (2010) CLIMAQS conference



ENVI-met
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M. Bruse et al., Univ. of Mainz



ENVI-met analysis
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CFD-VIT-RIT, a micro-environmental air quality model




CFD-VIT-RIT: Micro-environment

A complex exposure environment



CFD-VIT-RIT: Roadway configurations
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Wang, Y. and K. M. Zhang (2009). Environmental Science & Technology 43(20): 7778-7783.



CFD-VIT-RIT: NOx chemistry near roadways
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Wang et al. (2010). To be submitted to Atmospheric Environment



CFD-VIT-RIT: Aerosol dynamics

Unit: particles per cubic meter

1.351
1.2856+011
1.222e+010
1.163e+009
1.106e+008
1.051e+007
1.000e+006

We incorporated a sectional,
aerosol dynamics module
into the CFD-VIT-RIT
framework to simulate the
on-road and near-road
evolution of particle size
distribution.

Wang, Y and K. M. Zhang, Unpublished
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CFD-VIT-RIT: Aerosol dynamics
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Preliminary results on vegetation barriers
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CQ Conc. {ppm)

Dense Tree vs Sparse Tree
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CO Conc. (ppm)

Short Tree vs Tall Tree
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Height Above Ground {m)

Vertical Profiles
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CO Conc. (ppm)

On-road concentrations
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Different Geometry
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Simulation of EPA field data

e Wind speed and angle at clearing used as conditions
upwind of trees

 Average wind speed and TKE behind tree at 3 and 7
meters recorded

e By adjusting values for Cd and
LAD, was able to reasonably
match experimental velocity
magnitudes (not directions) at
the two sample points

e Could not get reasonable

agreement in TKE data



Simulation Results
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Limitations of the existing studies on
vegetation barriers

More on street canyons, less on environments near large
roads.

Few studies on NOx chemistry and PM2.5/PM10 deposition
When dealing with PM deposition, no size distribution is used.
No studies on aerosol dynamics and ultrafine particles.

Few well-designed field studies are available to validate the
models.

The effects of local meteorology on the are not clear.



Scientific gaps

Better characterizations of leaf area density and drag
coefficients for different types of trees and layouts are needed.

Are the simulations capturing the enhanced mixing effect? It
may be worthwhile revisiting the formation of the different
turbulent source and sink terms. It is also related to the

Deposition of particulate matter on leaf is not well understood,
especially concerning ultrafine particles.

It is critical to understand the effects on NOx chemistry and
aerosol dynamics.

CFD tools can be used to improve scientific understandings.
Screening models are needed for regulatory and planning
purposes.



Implications

From modeling perspective, there are no conclusive findings on the
effects of vegetation barriers. More research is needed.

Positive or negative, the effects of vegetation need to be
considered in micro-scale air quality and human exposure studies in
urban areas.

A systematic study will guide the designs of vegetation barriers to
achieve more benefits, and avoid potential negative effects.

What is our main objective in mitigating near-road air pollution?
— Maximum pollutant concentrations vs. overall concentration
— Near-road concentrations vs. on-road concentrations
— Ground-level vs. higher-elevation
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